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Abstract Yuan’s theorem of the alternative is an important theoretical tool in opti-
mization, which provides a checkable certificate for the infeasibility of a strict inequal-
ity system involving two homogeneous quadratic functions. In this paper, we provide
a tractable extension of Yuan’s theorem of the alternative to the symmetric tensor
setting. As an application, we establish that the optimal value of a class of nonconvex
polynomial optimization problems with suitable sign structure (or more explicitly,
with essentially nonpositive coefficients) can be computed by a related convex conic
programming problem, and the optimal solution of these nonconvex polynomial opti-
mization problems can be recovered from the corresponding solution of the convex
conic programming problem. Moreover, we obtain that this class of nonconvex poly-
nomial optimization problems enjoy exact sum-of-squares relaxation, and so, can be
solved via a single semidefinite programming problem.
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1 Introduction

Alternative theorems for arbitrary finite systems of linear or convex inequalities have
played key roles in the development of optimality conditions for continuous opti-
mization problems. Although these theorems are generally not valid for an arbitrary
finite system of (possibly nonconvex) quadratic inequalities, recent research has estab-
lished alternative theorems for quadratic systems involving two inequalities or arbitrary
inequalities involving suitable sign structure. For instance, a theorem of the alterna-
tive of Gordan type for a strict inequality system of two homogeneous quadratic
functions has been given in [1]. This theorem is often referred as Yuan’s theorem of
the alternative. This theorem provides a checkable certificate for the infeasibility of
a strict inequality system involving two homogeneous quadratic functions, and plays
an important role in the convergence analysis of the trust region method. Recently, it
was also established in [2] that this theorem of the alternative is equivalent to another
popular result called S-lemma, which is an important tool in quadratic optimization,
optimal control, and robust optimization [3–6].

Because of the importance of this theorem of the alternative, researchers have
attempted to extend it to systems with more than two quadratic functions. In particular,
[7,8] showed that, under a positive definite regularity condition, Yuan’s theorem of
the alternative continues to hold for an inequality system with three homogeneous
quadratic functions. They also provided examples illustrating that, in general, the
regularity condition cannot be dropped. Moreover, [9,10] (see also [11]) established
an extension of Yuan’s theorem of the alternative to inequality systems involving
finitely many quadratic functions, under the condition that all the Hessian matrices of
the quadratic functions have nonpositive off-diagonal elements (up to a nonsingular
transformation). This result can be regarded as an extension of Yuan’s theorem of the
alternative as its assumption becomes superfluous in the case when only two quadratic
forms are involved (see [10, Remark 2.3]).

The purpose of this paper is to extend Yuan’s alternative theorem to symmetric ten-
sors and to provide an application to nonconvex polynomial optimization. Tensor (or
hypermatrix) is a multilinear generalization of the concept of matrix. Recently, Lim
[12] and Qi [13] independently introduced the concept of eigenvalues and singular
values for tensors of higher order. After this, a reasonably complete and consistent
theory of eigenvalues and singular values for tensors of higher order has been devel-
oped in the past few years, which generalizes the theory of matrix eigenvalues and
singular values in various manners and extent. Moreover, numerical study on ten-
sors also has attracted a lot of researchers due to its wide applications in polynomial
optimization [14–19], space tensor programming [20,21], spectral hypergraph theory
[22–25], high-order Markov chain [26], signal processing [27,28], and image science
[29]. In particular, various efficient numerical schemes have been proposed to find the
low rank approximations of a tensor and the eigenvalues/eigenvectors of a tensor with
specific structure (cf. [30–37]).

The contributions of this paper are as follows:

• First, we provide a tractable extension ofYuan’s theoremof the alternative (Theorem
3.1) and homogeneous S-lemma (Corollary 3.2) to the symmetric tensor setting.We
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achieve this by exploiting two important features of a special class of tensors (called
essentially nonpositive tensors): hidden convexity and numerical checkability.

• Second, we establish that the optimal value of a class of nonconvex polynomial
optimization problems with suitable sign structure (or more explicitly, essentially
nonpositive coefficients) can be computed by a related convex conic programming
problem, and the optimal solution of these nonconvex polynomial optimization
problems can be recovered from the corresponding solution of the convex conic
programming problem.Moreover,we obtain that this class of nonconvex polynomial
optimization problems enjoys exact sum-of-squares (SOS) relaxation, and so, can
be solved via a semidefinite programming problem.

The organization of this paper is as follows. In Sect. 2, we recall some basic facts
of tensors and polynomials, and establish some basic geometric properties of posi-
tive semidefinite (PSD) tensor cones. In Sect. 3, we provide a tractable extension of
Yuan’s theorem of the alternative and homogeneous S-lemma to the symmetric ten-
sor setting. In Sect. 4, we apply the new theorem of the alternative to obtain exact
conic programming relaxation for nonconvex polynomial optimization problems with
essentially nonpositive coefficients.We also obtain that these class of nonconvex poly-
nomial optimization problems enjoy exact SOS relaxation. Finally, we conclude this
paper and present some possible future research topics.

2 Preliminaries: Positive Semidefinite Tensors

2.1 Notations and Basic Facts

We first fix some notations and recall some basic facts of tensors and polynomials. We
denote the n-dimensional Euclidean space asRn . For x1, x2 ∈ R

n (as column vectors),
〈x1, x2〉 denotes the inner product between x1 and x2 and is given by 〈x1, x2〉 := xT1 x2.
Moreover, for all x ∈ R

n , the norm of x is denoted by ‖x‖ and is given by ‖x‖ :=
(〈x, x〉)1/2.

Let n ∈ N and let m be an even number. An mth-order n-dimensional tensor
A consists of nm entries in real number: A = (Ai1i2...im ), Ai1i2...im ∈ R, 1 ≤
i1, i2, . . . , im ≤ n. We say a tensorA is symmetric if the value ofAi1i2...im is invariant
under any permutation of its indices {i1, i2, . . . , im}. Whenm = 2, a symmetric tensor
is nothing but a symmetric matrix. Consider

Sm,n := {A : A is an mth-order n-dimensional symmetric tensor}.

Clearly, Sm,n is a vector space under the addition and multiplication defined as
below: for any t ∈ R, A = (Ai1...im )1≤i1,...,im≤n and B = (Bi1...im )1≤i1,...,im≤n

A + B = (Ai1...im + Bi1...im )1≤i1,...,im≤n and tA = (tAi1...im )1≤i1,...,im≤n .

For each A,B ∈ Sm,n , we define the inner product by
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〈A,B〉 :=
n∑

i1,...,im=1

Ai1...imBi1...im .

The corresponding norm is defined by ‖A‖ = (〈A,A〉)1/2 = (∑n
i1,...,im=1

(Ai1...im )2
)1/2. For a vector x ∈ R

n , we use xi to denote its i th component. Moreover,
for a vector x ∈ R

n , we use x⊗m to denote the mth-order n-dimensional symmetric
rank-one tensor induced by x , i.e.,

(x⊗m)i1i2...im = xi1xi2 . . . xim , ∀ i1, . . . , im ∈ {1, . . . , n}.

We now collect some basic facts on real polynomials. Recall that f : Rn → R is a
(real) polynomial if there exists a number d ∈ N such that

f (x) :=
∑

0≤|α|≤d

fαx
α,

where fα ∈ R, x = (x1, . . . , xn), xα := xα1
1 · · · xαn

n , αi ∈ N ∪ {0}, and |α| :=∑n
j=1 α j . The corresponding number d is called the degree of f , and is denoted by

deg f . For a degree d real polynomial f onRn with the form f (x) = ∑
0≤|α|≤d fαxα ,

its canonical homogenization f̃ is a homogeneous polynomial on R
n+1 with degree

d given by

f̃ (x, t) =
∑

0≤|α|≤d

fαx
αtd−|α|.

A real polynomial f is called a SOS polynomial if there exist r ∈ N and real polyno-
mials f j , j = 1, . . . , r , such that f = ∑r

j=1 f 2j . An important property of the sum
of squares of polynomials is that checking if a polynomial is sum of squares or not is
equivalent to solving a semi-definite linear programming problem (cf. [38–40]).

Finally, we note that anmth-order n-dimensional symmetric tensor uniquely defines
an mth degree homogeneous real polynomial fA on R

n : for all x = (x1, . . . , xn)T ∈
R
n ,

fA(x) = 〈A, x⊗m〉 :=
n∑

i1,...,im=1

Ai1i2···im xi1xi2 . . . xim .

Conversely, anymth degree homogeneous polynomial function f onRn also uniquely
corresponds to a symmetric tensor. Let n ∈ N and m be an even number. Define

I (m, n) =
(
n + m − 1

n − 1

)
. It is known that the space that consists of all homogeneous

polynomials onRn with degreem is a finite dimensional spacewith dimension I (m, n).
Note that each A ∈ Sm,n uniquely corresponds to a homogeneous polynomial on R

n

with degree m. It follows that dimSm,n = I (m, n).
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2.2 Positive Semidefinite Tensors and Their Associated Cones

Definition 2.1 (PSD tensor cone and SOS tensor cone) Letm be an even number and
n ∈ N. We say an mth-order n-dimensional symmetric tensor A is

(i) a positive semi-definite (PSD) tensor iff fA(x) := 〈A, x⊗m〉 ≥ 0 for all x ∈ R
n ;

(ii) a SOS tensor iff fA(x) := 〈A, x⊗m〉 is a SOS polynomial.

Moreover, we define the PSD tensor cone PSDm,n (resp. SOS tensor cone SOSm,n)
to be the set consisting of all PSD (resp. SOS) mth-order n-dimensional symmetric
tensors.

Note that any SOS polynomial must take non-negative values. So, SOSm,n ⊆
PSDm,n for each m ∈ N and n ∈ N. It is known that [41,42] that SOSm,n = PSDm,n

in one of the following three cases: n = 1; m = 2; n = 3 and m = 4. Moreover, if
m = 2, then PSDm,n and SOSm,n are equal, and both collapse to the positive semi-
definite matrix cone. On the other hand, the inclusion SOSm,n ⊆ PSDm,n is strict in
general. Indeed, let fM be the homogeneous Motzkin polynomial:

fM (x) = x63 + x21 x
4
2 + x41 x

2
2 − 3x21 x

2
2 x

2
3 .

It is known that (cf. [43]), fM takes non-negative value (by the Arithmetic–Geometric
inequality), and it is not a SOS polynomial. LetAM be the symmetric tensor associated
to fM in the sense that fM (x) = 〈AM , x⊗6〉. Then, we see thatAM ∈ PSD6,3\SOS6,3.

Below, we identify a class of tensors with suitable sign structure such that they are
SOS whenever they are PSD.

Definition 2.2 (Essentially nonpositive/non-negative tensor) Define the index set I
by

I := {(i, i, . . . , i) ∈ N
m : 1 ≤ i ≤ n}.

We say an mth-order n-dimensional tensor A is

(i) essentially non-negative iff Ai1,...,im ≥ 0 for all {i1, . . . , im} /∈ I .
(ii) essentially nonpositive iff Ai1,...,im ≤ 0 for all {i1, . . . , im} /∈ I .

Define Em,n as the set consisting of all essentially nonpositive tensor, i.e.,

Em,n := {A ∈ Sm,n : A is essentially nonpositive}.

In the special case when the order m = 2, the definition of essentially nonpositive
tensor reduces to the notion of a Z -matrix. The class of essentially non-negative tensors
was introduced in [36] (see also [31]), and some interesting log-convexity results
were discussed there. One interesting example of essentially nonpositive tensors is the
Laplacian tensor of a hypergraph, which was examined in detail recently in [23–25].
From the definition, any tensor with non-negative entries is essentially non-negative,
while the converse may not be true in general.
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For any essentially nonpositive tensor A, we establish that it is PSD if and only if
it is SOS. To do this, we first recall some definitions and a useful lemma.

Consider a homogeneous polynomial f (x) = ∑
α fαxα with degree m (m is an

even number). Let fm,i be the coefficient associated with xmi and

(� f := {α := (α1, . . . , αn) ∈ (N ∪ {0})n : fα 
= 0 and α 
= mei , i = 1, . . . , n},
(1)

where ei be the vector whose i th component is one, and all the other components are
zero. We note that

f (x) =
n∑

i=1

fm,i x
m
i +

∑

α∈� f

fαx
α.

Recall that 2N denotes the set consisting of all the even numbers. Define

� f := {α = (α1, . . . , αn) ∈ � f : fα < 0 or α /∈ (2N ∪ {0})n}. (2)

We associate to f a new homogeneous polynomial f̂ , given by

f̂ (x) =
n∑

i=1

fm,i x
m
i −

∑

α∈� f

| fα|xα.

We now recall the following useful lemma, which provides a test for verifying whether
f is a sum of squares polynomial or not in terms of the nonnegativity of the new
homogeneous function f̂ .

Lemma 2.1 ([44, Corollary 2.8]) Let f be a homogeneous polynomial of degree m
where m is an even number. If f̂ is a polynomial which always takes non-negative
values, then f is a SOS polynomial.

We are now ready to state the fact that, any essentially nonpositive tensor is PSD
if and only if it is SOS. This fact was essentially established in [31]. For the self-
containment purpose, its proof is provided in the appendix for the reader’s convenience.

Proposition 2.1 It holds that PSDm,n ∩ Em,n = SOSm,n ∩ Em,n.

Next, we study the dual cone of PSDm,n . Recall that for a given closed and convex
cone C in Sm,n , its dual cone (or positive polar) C⊕ is defined as

C⊕ := {X ∈ Sm,n : 〈X , C〉 ≥ 0 for all C ∈ C}.

To establish the dual cone of PSDm,n , we first define a set which is the convex hull of
all rank-one tensors.

Definition 2.3 Let m be an even number and n ∈ N. we define the set Um,n as the
convex hull of all mth-order n-dimensional symmetric rank-one tensors, i.e.,

Um,n := conv{x⊗m : x ∈ R
n}.
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Next, we justify that the set Um,n is indeed a closed convex cone.

Lemma 2.2 Let m be an even number and n ∈ N. Then, Um,n is a closed and convex
cone with dimension at most I (m, n).

Proof From the definition,Um,n is a convex cone. Note thatUm,n ⊆ Sm,n and Sm,n is
of dimension Im,n . So,Um,n is a convex cone with dimension at most I (m, n). To see
the closeness ofUm,n , we letAk ∈ Um,n withAk → A. Then, for each k ∈ N, by the
Carathéodory theorem, there exist x j

k ∈ R
n , j = 1, . . . , I (m, n), such that

Ak =
I (m,n)∑

j=1

(x j
k )⊗m

As Ak → A, {‖Ak‖}k∈N is a bounded sequence. Note that

‖Ak‖2 ≥
I (m,n)∑

j=1

n∑

i1,...,im=1

[(x j
k )i1 . . . (x j

k )im ]2 ≥
I (m,n)∑

j=1

n∑

i=1

[(x j
k )i ]2m .

So, {x j
k }k∈N, j = 1, . . . , I (m, n), are bounded sequences. By passing to subsequences,

we can assume that x j
k → x j , j = 1, . . . , I (m, n). Passing to the limit, we have

A =
I (m,n)∑

j=1

(x j )⊗m ∈ Um,n .

Thus, the conclusion follows. ��
We now present the duality result between the PSD cone and the rank-one tensor

cone. In the case that n = 3, Lemma 2.2 and the following result were established in
[21].

Lemma 2.3 (Duality between PSD cone and rank-one tensor cone) It holds that

(Um,n)
⊕ = PSDm,n and PSD⊕

m,n = Um,n .

Proof Let Z ∈ PSDm,n . Then, for all x ∈ R
n , 〈Z, x⊗m〉 ≥ 0. Let X ∈ Um,n . Then,

there exist p ∈ N and x j ∈ R
n , j = 1, . . . , p, such that X = ∑p

j=1 x
⊗m
j . It follows

that

〈X ,Z〉 = 〈
p∑

j=1

x⊗m
j ,Z〉 =

p∑

j=1

〈Z, x⊗m
j 〉 ≥ 0.

Thus, PSDm,n ⊆ (Um,n)
⊕. To see the converse inclusion, let X ∈ (Um,n)

⊕. Note that
x⊗m ∈ Um,n for all x ∈ R

n . Thus, 〈X , x⊗m〉 ≥ 0 for all x ∈ R
n . This implies that

X ∈ PSDm,n , and so, (Um,n)
⊕ ⊆ PSDm,n . Therefore, we see that (Um,n)

⊕ = PSDm,n .
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To see the second assertion, we take polars on both sides of (Um,n)
⊕ = PSDm,n . It

then follows from the double polar theorem in convex analysis (cf [44]) that

PSD⊕
m,n = (Um,n)

⊕⊕ = cl conv(Um,n) = Um,n,

where cl convUm,n denotes the closed and convex hull of the set Um,n , and the last
equality follows from the preceding lemma. Thus, the conclusion follows. ��

3 Tensor Analogy of Yuan’s Alternative Theorem

In the section, we provide an extension of Yuan’s theorem of the alternative and
homogeneous S-lemma to the symmetric tensor setting. We start with the following
technical proposition on hidden convexity which will be useful for our later analysis.

Proposition 3.1 (Hidden Convexity) Let n, p ∈ N and let m be an even number.
Let Fl be mth-order n-dimensional essentially nonpositive symmetric tensors, l =
0, 1, . . . , p. Define a set M ⊆ R

p+1 by M := {(〈F0,X 〉, . . . , 〈Fp, x⊗m〉) : x ∈
R
n} + intRp+1

+ . Then, we have

M = {(〈F0,X 〉, . . . , 〈Fp,X 〉) : X ∈ Um,n} + intRp+1
+ , (3)

and M is a convex cone. In particular, the following statements are equivalent:

(i) (∃x ∈ R
n) (〈Fl , x⊗m〉 < 0, l = 0, 1, . . . , p);

(ii) (∃X ∈ Um,n) (〈Fl ,X 〉 < 0, l = 0, 1, . . . , p).

Proof To see (3), we first note that

M = {(〈F0,X 〉, . . . , 〈Fp, x
⊗m〉) : x ∈ R

n}
+ intRp+1

+ ⊆ {(〈F0,X 〉, . . . , 〈Fp,X 〉) : X ∈ Um,n} + intRp+1
+

always holds. To get the reverse inclusion, we let

(u0, . . . , u p) ∈ {(〈F0,X 〉, . . . , 〈Fp,X 〉) : X ∈ Um,n} + intRp+1
+ .

Then, there exist X ∈ Um,n such that

〈Fl ,X 〉 < ul , l = 0, 1, . . . , p. (4)

As X ∈ Um,n and Um,n is a closed and convex cone with dimension at most I (m, n),
there exists u j ∈ R

n such that

X =
I (m,n)∑

j=1

(u j )⊗m . (5)
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Define x̄ ∈ R
n by

x̄ = ( m
√
X1,...,1, . . . ,

m
√
Xn,...,n) =

⎛

⎜⎝ m

√√√√√
I (m,n)∑

j=1

(u j )m1 , . . . , m

√√√√√
I (m,n)∑

j=1

(u j )mn

⎞

⎟⎠.

We now show that 〈Fl , x̄⊗m〉 ≤ 〈Fl ,X 〉 for all l = 0, 1, . . . , p. To see this, let

I = {(i1, . . . , im) : i1 = · · · = im}.

Then, for each l = 0, 1, . . . , p, we have

〈Fl , x̄
⊗m〉 =

n∑

i1,...,im=1

(Fl)i1...im
m

√√√√√
I (m,n)∑

j=1

(u j )mi1 . . . m

√√√√√
I (m,n)∑

j=1

(u j )mim

=
⎡

⎣
n∑

i=1

(Fl)i ...i
( I (m,n)∑

j=1

(u j )mi
)
⎤

⎦

+
∑

(i1,...,im )/∈I
(Fl)i1...im

m

√√√√√
I (m,n)∑

j=1

(u j )mi1 . . . m

√√√√√
I (m,n)∑

j=1

(u j )mim

=
[

n∑

i=1

(Fl)i ...i Xi ...i

]

+
∑

(i1,...,im )/∈I
(Fl)i1...im

m

√√√√√
I (m,n)∑

j=1

(u j )mi1 · · · m

√√√√√
I (m,n)∑

j=1

(u j )mim . (6)

Recall the following generalized Hölder inequality (cf [45]): for q ∈ N and akj ≥ 0,
k = 1, . . . ,m and j = 1, . . . , q

m∏

k=1

q∑

j=1

akj ≥
⎛

⎝
q∑

j=1

m

√√√√
m∏

k=1

akj

⎞

⎠
m

.

Applying this inequality with akj = (u j )mik
≥ 0 and q = I (m, n), we have

m∏

k=1

I (m,n)∑

j=1

(u j )mik ≥
⎛

⎝
I (m,n)∑

j=1

m

√√√√
m∏

k=1

(u j )mik

⎞

⎠
m

=
⎛

⎝
I (m,n)∑

j=1

m∏

k=1

|(u j )ik |
⎞

⎠
m

.
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and so,

m∏

k=1

m

√√√√√
I (m,n)∑

j=1

(u j )mik
≥

I (m,n)∑

j=1

m∏

k=1

(u j )ik .

As Fl are essentially nonpositive, for each l = 0, 1, . . . , p, (Fl)i1...im ≤ 0 for all
(i1, . . . , im) /∈ I . This together with (6) implies that

〈Fl , x̄
⊗m〉 ≤

n∑

i=1

(Fl)i ...i Xi ...i +
∑

(i1,...,im )/∈I
(Fl)i1...im

I (m,n)∑

j=1

(u j )i1 · · · (u j )im

=
n∑

i=1

(Fl)i ...i Xi ...i +
∑

(i1,...,im )/∈I
(Fl)i1...imXi1...im

= 〈Fl ,X 〉,

where the first equality follows from (5). Thus, from (4), we have 〈Fl , x̄⊗m〉 < ul , l =
0, 1, . . . , p. So, (u0, . . . , u p) ∈ M = {(〈F0,X 〉, . . . , 〈Fp, x⊗m〉) : x ∈ R

n} +
intRp+1

+ , and hence (3) holds. From (3), we see that M is clearly a convex cone.
Finally, the equivalence between the statements (i) and (ii) follows immediately by
(3). ��
Remark 3.1 (A useful inequality) The proof of the preceding proposition gives us
the following useful inequality: Let X ∈ Um,n and F ∈ Em,n . Define x̄ =
( m
√X1,...,1, . . . ,

m
√Xn,...,n). Then, we have

〈F , x̄⊗m〉 ≤ 〈F ,X 〉.

Let P = (Pi j ) be an n × n real matrix. Define B = PmA as an mth-order n-
dimensional tensor where its entries are given by

Bi1···im =
n∑

j1··· jm=1

Pi1 j1 · · · Pim jmA j1··· jm .

Lemma 3.1 For a symmetricmth-order n-dimensional tensorA and an (n×n)matrix
P, we have 〈A, (PT x)⊗m〉 = 〈PmA, x⊗m〉 for all x ∈ R

n.

Proof From the definition, we have

〈A, (PT x)⊗m〉 =
n∑

i1···im=1

Ai1···im (PT x)i1 · · · (PT x)im

=
n∑

i1···im=1

Ai1···im (

n∑

j1=1

Pj1i1x j1) · · · (
n∑

jm=1

Pjmim x jm )
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=
n∑

i1···im=1

Ai1···im
n∑

j1··· jm=1

(
Pj1i1x j1 · · · Pjmim x jm

)

=
n∑

i1···im=1

n∑

j1··· jm=1

Ai1···im
(
Pj1i1x j1 · · · Pjmim x jm

)

=
n∑

j1··· jm=1

n∑

i1···im=1

Pj1i1 · · · PjmimAi1···im x j1 · · · x jm .

Note that

(PmA) j1··· jm =
n∑

i1···im=1

Pj1i1 · · · PjmimAi1···im .

It follows that

〈A, (PT x)⊗m〉 =
n∑

j1··· jm=1

n∑

i1···im=1

Pj1i1 · · · PjmimAi1···im x j1 · · · x jm

=
n∑

j1··· jm=1

(PmA) j1··· jm x j1 · · · x jm

= 〈PmA, x⊗m〉.

Thus, the conclusion follows. ��
We are now ready to state the extension of Yuan’s theorem of the alternative in

symmetric tensor setting.

Theorem 3.1 (Tensor Analogy of Yuan’s Alternative Theorem) Let n, p ∈ N and let
m be an even number. LetFl , l = 0, 1, . . . , p, be mth-order n-dimensional symmetric
tensors. Suppose that there exists a nonsingular (n × n) matrix P such that PmFl ,
l = 0, 1, . . . , p, are all essentially nonpositive tensors. Then, one and exactly one of
the following statements holds:

(i) (∃x ∈ R
n) (〈Fl , x⊗m〉 < 0, l = 0, 1, . . . , p);

(ii) (∃λl ≥ 0, l = 0, 1, . . . , p,
p∑

l=0

λl = 1) (

p∑

l=0

λlFl ∈ SOSm,n),

where SOSm,n is the mth-order n-dimensional SOS tensor cone, and x⊗m is the mth-
order n-dimensional rank-one tensor induced by x.

Proof [(ii) ⇒ Not(i)] Suppose that statement (ii) holds. Then, there exist λl ≥ 0,
l = 0, 1, . . . , p, with

∑p
l=0 λl = 1 such that

p∑

l=0

λlFl ∈ SOSm,n .
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We now establish that (i) must fail by using the method of contradiction. Suppose
that (i) holds. Then, there exists u ∈ R

n such that 〈Fl , u⊗m〉 < 0, l = 0, 1, . . . , p. It
follows that

0 ≤ 〈
p∑

l=0

λlFl , u
⊗m〉 ≤ max

0≤l≤p
〈Fl , u

⊗m〉 < 0.

This is impossible, and so (i) must fail.
[Not(i) ⇒ (ii)] Suppose that (i) fails. Then, the following system has no solution:

(∃x ∈ R
n) (〈Fl , x

⊗m〉 < 0, l = 0, 1, . . . , p).

Letting x = PT y, this implies that the following system has no solution:

(∃y ∈ R
n) (〈Fl , (P

T y)⊗m〉 < 0, l = 0, 1, . . . , p).

Note from the preceding lemma that 〈Fl , (PT y)⊗m〉 = 〈PmFl , y⊗m〉. This together
with the equivalence between statements (i) and (ii) in Proposition 3.1 implies that the
following system also has no solution:

(∃X ∈ Um,n)(〈PmFl ,X 〉 < 0, l = 0, 1, . . . , p).

This implies that (0, . . . , 0) /∈ {(〈PmF0,X 〉, . . . , 〈PmFp,X 〉) : X ∈ Um,n} +
intRp+1

+ . As Um,n is a convex cone, {(〈PmF0,X 〉, . . . , 〈PmFp,X 〉) : X ∈ Um,n}
is also a convex cone, and so,

C := {(〈PmF0,X 〉, . . . , 〈PmFp,X 〉) : X ∈ Um,n} + intRp+1
+

is a convex cone. Then, the standard separation theorem (cf [44, Theorem 1.1.3])
implies that there exists (μ0, . . . , μp) ∈ R

p+1\{0} such that

0 ≤
p∑

l=0

μlal for all (a0, a1, . . . , ap) ∈ C.

As C + intRp+1
+ ⊆ C , it follows that μl ≥ 0, l = 0, 1, . . . , p. So, (μ0, . . . , μp) ∈

R
p+1
+ \{0} and hence

∑p
l=0 μl > 0. Let λl = μl∑p

l=0 μl
≥ 0. Then,

∑p
l=0 λl = 1 and

p∑

l=0

λlal ≥ 0 for all (a0, a1, . . . , ap) ∈ C

In particular, this shows that, for each ε > 0,

p∑

l=0

λl(〈PmFl ,X 〉) + ε =
p∑

l=0

λl(〈PmFl ,X 〉 + ε) ≥ 0 for all X ∈ Um,n .
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Let ε → 0. This implies that

p∑

l=0

λl〈PmFl ,X 〉 ≥ 0 for all X ∈ Um,n .

In other words,

p∑

l=0

λl P
mFl ∈ (Um,n)

⊕ = PSDm,n .

To finish the proof, we only need to show that
∑p

l=0 λl Fl ∈ SOSm,n . To see this, note
from our assumption that

∑p
l=0 λl PmFl ∈ Em,n . It follows that

∑p
l=0 λl PmFl ∈

PSDm,n ∩ Em,n . Then, Proposition 2.1 gives us that
p∑

l=0

λl P
mFl ∈ SOSm,n . So,

σ(x) := 〈
p∑

l=0
λl PmFl , x⊗m〉 is a SOS polynomial onRn with degreem. This together

with Lemma 3.1 implies that for all z ∈ R
n

p∑

l=0

〈 λlFl , (P
T z)⊗m〉 =

p∑

l=0

λl〈 PmFl , z
⊗m〉 = 〈

p∑

l=0

λl P
mFl , z

⊗m〉 = σ(z).

So, for all x ∈ R
n

p∑

l=0

〈 λlFl , x
⊗m〉 = σ((PT )−1x)

is also a SOS polynomial on R
n with degree m. Thus,

∑p
l=0 λl Fl ∈ SOSm,n , and

hence the conclusion follows. ��
In the matrix case, Theorem 3.1 reduces to the following theorem of the alternative

presented in [10] (see also [11]).

Corollary 3.1 (Matrix Cases) Let A0, A1, . . . , Ap, p ∈ N be symmetric (n × n)

matrices. Suppose that there exists a nonsingular (n × n) matrix Q such that
QT A0Q, QT A1Q, . . . , QT ApQ are all matrices with nonpositive off-diagonal ele-
ments. Then, exactly one of the following statements holds:

(i) there exists x ∈ R
n such that xT Al x < 0, l = 0, 1, . . . , p;

(ii) (∃λl ≥ 0, l = 0, 1, . . . , p,
p∑

l=0

λl = 1) (

p∑

l=0

λl Al is positive semidefinite).

Proof In the special case when m = 2 (and so, Fl = Fl are (n × n) symmetric ),
we have 〈Fl , x⊗m〉 = xT Fl x , and SOSm,n collapses to the PSD matrix cone. So, the
conclusion follows from the preceding theorem by letting the order m = 2. ��
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Wenote that, inCorollary 3.1, the assumption that “there exists a nonsingular (n×n)

matrix Q such that QT A0Q, QT A1Q, . . . , QT ApQ are all matrices with nonpositive
off-diagonal elements” is superfluous when only two quadratic functions are involved
(i.e., p = 1). This was explained in [10, Remark 2.3]. In this case, Corollary 3.1
reduces to Yuan’s theorem of the alternative. Therefore, Theorem 3.1 can be regarded
as an extension of Yuan’s theorem of the alternative to the symmetric tensor setting.

However, unlike thematrix cases, if the condition “there exists a nonsingular (n×n)

matrix P such that PmFl , l = 0, 1, . . . , p, are all essentially nonpositive tensors“ is
dropped, then the above tensor analogy of Yuan’s theorem of the alternative can fail
even in the case p = 1. We illustrate this fact by the following example:

Example 3.1 Let fM be the homogeneous Motzkin polynomial, i.e.,

fM (x1, x2, x3) = x63 + x21 x
4
2 + x41 x

2
2 − 3x21 x

2
2 x

2
3 , x = (x1, x2, x3) ∈ R

3.

Let f0, f1 be polynomials with degree 6 on R
4 defined by

f0(x1, x2, x3, x4) = fM (x1, x2, x3) and f1(x1, x2, x3, x4) = x61 + x62 + x63 − x64 .

Let Fi be the symmetric tensors associated to fi , i = 1, 2, in the sense that fi (x) =
〈Fi , x⊗6〉, for all x ∈ R

4. As the homogeneous Motzkin polynomial always takes
non-negative value, one cannot find x ∈ R

4 such that 〈Fi , x⊗m〉 < 0, i = 0, 1.
This implies that statement (1) in Theorem 3.1 fails. We now see that statement (2)
in Theorem 3.1 also fails. Suppose on the contrary that there exist λ0, λ1 ≥ 0 with
λ0+λ1 = 1 such that λ0F0+λ1F1 ∈ SOS6,4. Note that f0 does not depend on x4 and
f1(x1, x2, x3, x4) → −∞ as x4 → ∞ for fixed x1, x2, x3. It follows that λ1 = 0(and
so, λ0 = 1). Hence, F0 ∈ SOS6,4. This contradicts the fact that the homogeneous
Motzkin polynomial is not a SOS polynomial. Therefore, for this example, statements
(i) and (ii) in Theorem 3.1 both fail.

As a consequence, we now provide an extension of the homogeneous S-lemma as
follows:

Corollary 3.2 (Tensor Analogy of Homogeneous S-lemma) Let n, p ∈ N and let
m be an even number. Let Fl , l = 0, 1, . . . , p, be mth-order n-dimensional sym-
metric tensors. Suppose that there exists a nonsingular matrix P such that PmFl ,
l = 0, 1, . . . , p, are all essentially nonpositive tensors. Suppose that there exists
x0 ∈ R

n such that 〈Fl , x
⊗m
0 〉 < 0, l = 1, . . . , p. Then, the following statements are

equivalent:

(i) 〈Fl , x⊗m〉 ≤ 0, l = 1, . . . , p ⇒ 〈F0, x⊗m〉 ≥ 0;

(ii) (∃λl ≥ 0, l = 1, . . . , p) (F0 +
p∑

l=1

λlFl ∈ SOSm,n).
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Proof [(ii) ⇒ (i)] Suppose that statement (ii) holds. Then, there exist λl ≥ 0, l =
1, . . . , p such that

F0 +
p∑

l=1

λlFl ∈ SOSm,n ⊆ PSDm,n .

Let x ∈ R
n such that 〈Fl , x⊗m〉 ≤ 0, l = 1, . . . , p. Then,

0 ≤ 〈F0 +
p∑

l=1

λlFl , x
⊗m〉 = 〈F0, x

⊗m〉 +
p∑

l=1

λl〈Fl , x
⊗m〉 ≤ 〈F0, x

⊗m〉.

Thus, (i) follows.
[(i) ⇒ (ii)] Suppose that (i) holds. Then, the following inequality system has no

solution:

(∃x ∈ R
n) (〈Fl , x

⊗m〉 < 0, l = 0, 1, . . . , p).

Then, the preceding alternative theorem implies that there exist λ̄l ≥ 0, l =
0, 1, . . . , p, with

p∑

l=0

λ̄l = 1 such that

p∑

l=0

λ̄lFl = A ∈ SOSm,n .

We now observe that λ̄0 > 0 (Otherwise, λ̄0 = 0 and so,
∑p

l=1 λ̄l = 1 and∑p
l=1 λ̄lFl ∈ SOSm,n . This gives us that

0 ≤ 〈
p∑

l=1

λ̄lFl , x
⊗m
0 〉 =

p∑

l=1

λ̄l〈Fl , x
⊗m
0 〉 ≤ max

1≤l≤p
〈Fl , x

⊗m
0 〉 < 0,

which is impossible). Let λl = λ̄l/λ̄0, l = 1, . . . , p. Then, we have

F0 +
p∑

l=1

λlFl = (λ̄0)
−1A ∈ SOSm,n .

Thus, the conclusion follows. ��
Remark 3.2 Similar to the Yuan’s theorem of the alternative, in the case when
m = 2 and p = 1 (i.e., inequality system involving two homogeneous quadratic
functions), the above corollary collapses to the well-known homogeneous S-lemma
(cf. [4]).
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4 Application: Polynomial Optimization with Essentially Nonpositive
Coefficients

In this section, as an application of our theorem of the alternative, we establish an
exact conic programming relaxation result for polynomial optimization problems with
essentially nonpositive coefficients. To do this, we first introduce the definition of
polynomials with essentially nonpositive coefficients.

Definition 4.1 (Polynomials with essentially nonpositive coefficients)Let f be a poly-
nomial on R

n with degree m. Let r = f (0) be the constant term of f and let fm,i be
the coefficient associated with xmi . Recall that

� f = {α = (α1, . . . , αn) ∈ (N ∪ {0})n : fα 
= 0 and α 
= mei , i = 1, . . . , n}, (7)

where ei be the vector whose i th component is one, and all the other components are
zero. We note that f can be written as

f (x) =
n∑

i=1

fm,i x
m
i +

∑

α∈� f \{0}
fαx

α + r.

We say f has essentially nonpositive coefficients if fα ≤ 0 for all α ∈ � f \{0}.
Let n ∈ N and letm be an even number. Consider the following nonconvex polynomial
optimization problem with essentially nonpositive coefficients:

min
x∈Rn

{ f0(x) : fl(x) ≤ 0, l = 1, . . . , p}. (P)

where fl , l = 0, 1, . . . , p, are polynomials on R
n with essentially nonpositive coef-

ficients and degree m. We use min(P) to denote the optimal value of problem (P).
Throughout this section, we always assume that the feasible set of (P) is nonempty.

Below, we first establish that the optimal value of problem (P) can be found by a
conic programming problem, and the optimal solution of (P) can be recovered by a
solution of the corresponding conic programming problem. To do this, we introduce
the canonical homogenization of a polynomial and a conic programming problem as
follows.

Consider the following conic programming problem:

(CP)min{〈F̃0,X 〉 : 〈F̃l ,X 〉 ≤ 0, l = 1, . . . , p, Xn+1...n+1 = 1,

X ∈ Um,n+1}.

where each F̃l , l = 0, 1, . . . , p, is the symmetric tensor associated with the canonical
homogenization of f̃l , i.e., f̃l(x̃) = 〈F̃l , x̃⊗m〉 for any x̃ = (xT , t)T ∈ R

n+1.

Lemma 4.1 Let n ∈ N and let m be an even number. Let f be a polynomial on R
n

with essentially nonpositive coefficients and degree m, and let f̃ be the canonical
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homogenization of f . Let F̃ be the symmetric tensor associated with the canonical
homogenization of f̃ , i.e., f̃ (x̃) = 〈F̃ , x̃⊗m〉 for any x̃ = (xT , t)T ∈ R

n+1. Then, F̃
is an essentially nonpositive tensor.

Proof For each real polynomial f with essentially nonpositive coefficients, we can
decompose it as

f (x) =
n∑

i=1

fm,i x
m
i +

∑

α∈� f \{0}
fα xα + r,

where r = f (0) and fα ≤ 0 for all α ∈ � f \{0}. Its canonical homogenization can be
written as

f̃ (x, t) =
n∑

i=1

fm,i x
m
i +

∑

α∈� f \{0}
fα xαtm−|α| + r tm for all (xT , t)T ∈ R

n+1.

Recall that F̃ is the symmetric tensor associated with the canonical homogenization
of f̃ , i.e., for all x̃ = (xT , t)T ∈ R

n+1,

f̃ (x̃) = 〈F̃, x̃⊗m〉 =
n+1∑

i1···im=1

F̃i1,...,im x̃i1 . . . x̃im .

Note that eachm-th order (n+1)-dimensional symmetric tensor uniquely corresponds
to a degree m homogeneous polynomial on R

n+1. As fα ≤ 0 for all α ∈ � f \{0}, it
follows that

F̃i1,...,im ≤ 0 for all (i1, . . . , im) ∈ I,

where I := {(i, i, . . . , i) ∈ N
m : 1 ≤ i ≤ n + 1}. Therefore, F̃ is essentially

nonpositive. ��
Theorem 4.1 (Exact Solutions via Conic Programs) Let n ∈ N and let m be an
even number. Let F̃l be the mth-order (n + 1)-dimensional symmetric tensor asso-
ciated with the canonical homogenization of f̃l , i.e., f̃l(x̃) = 〈F̃l , x̃⊗m〉 for any
x̃ = (xT , t)T ∈ R

n+1. Consider the nonconvex polynomial optimization prob-
lem with essentially nonpositive coefficients (P) and its associated conic relaxation
problem (CP). Then, we have min(P) = min(CP). Moreover, for any solution X̄
of (CP),

x̄ := (
m
√
X̄1,...,1, . . . ,

m
√
X̄n,...,n) ∈ R

n

is a solution of (P).
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Proof Let f̃l be the canonical homogenization of fl , l = 0, 1, . . . , p. Note that
f̃l(x, 1) = fl(x) for all x ∈ R

n and l = 0, 1, . . . , p. We first see that

min(P) = min
x̃=(xT ,t)T ∈Rn+1

{ f̃0(x, t) : f̃l(x, t) ≤ 0, l = 1, . . . , p, t = 1}

= min
x̃=(xT ,t)T ∈Rn+1

{〈F̃0, x̃
⊗m〉 : 〈F̃l , x̃

⊗m〉 ≤ 0, l = 1, . . . , p, t = 1}

≥ min{〈F̃0,X 〉 : 〈F̃l ,X 〉 ≤ 0, l=1, . . . , p, Xn+1,...,n+1=1, X ∈ Um,n+1}
= min(CP),

where the inequality follows as {x̃⊗m : x̃ = (xT , 1)T ∈ R
n+1} ⊆ {X ∈ Um,n+1 :

Xn+1,...,n+1 = 1}.
On the other hand, let X ∈ Um,n+1 with 〈F̃l ,X 〉 ≤ 0, l = 1, . . . , p and

Xn+1,...,n+1 = 1. Define x = ( m
√X1,...,1, . . . ,

m
√Xn,...,n) and x̃ = (xT , 1)T . As F̃l ,

l = 0, 1, . . . , p, are all essentially nonpositive tensors, then Remark 3.1 implies that

fl(x) = f̃l(x̃) = 〈F̃l , x̃
⊗m〉 ≤ 〈F̃l ,X 〉.

This implies that, fl(x) ≤ 0 for each l = 1, . . . , p (and so, x is feasible for (P)), and
f0(x) ≤ 〈F̃0,X 〉. So, min(P) ≤ min(CP). Thus, we see that min(P) = min(CP).

To see the last assertion, let X̄ be a solution of (CP) and let

x̄ := (
m
√
X̄1,...,1, . . . ,

m
√
X̄n,...,n) ∈ R

n .

Then, using similar argument as before, we have fl(x̄) ≤ 〈F̃l , X̄ 〉, l = 0, . . . , p. So,
x̄ is feasible for (P) and min(P) = f0(x̄) ≤ min(CP). Thus, the conclusion follows
as min(P) = min(CP). ��

It isworth noting that, in general, checking themembership problemX ∈ Um,n+1 is,
in general, an NP (nondeterministic polynomial time) hard problem. Thus, solving the
above conic programming problem is, in general, again a hard problem. Thismotivates
us to examine an alternative tractable approach for solving nonconvex polynomial
optimization problem with essentially nonpositive coefficients.

Below we show that the optimal value of the nonconvex polynomial optimization
problemwith essentially nonpositive coefficients (P) can be computed by the following
SOS program:

(SOS)max{μ : f0 +
p∑

l=1

λl fl − μ = σ0, λl ≥ 0,

l = 1, . . . , p, σ0 is SOS, degσ0 ≤ m}..

We note that this problem can be regarded as the first-level problem in the celebrated
Lasserre hierarchy approximation of the general polynomial optimization problem.
Moreover, the above SOS program can be equivalently reformulated as a semidefinite
programming problem. For details, see the excellent surveys [38,39]
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Theorem 4.2 (Exact Sums-of-Squares Relaxation) Let n, p ∈ N and let m be an even
number. Let fl , l = 0, 1, . . . , p, be polynomials on R

n with essentially nonpositive
coefficients and degree m. Consider the nonconvex polynomial optimization problem
with essentially nonpositive coefficients (P). Suppose that the strict feasibility condition
holds, i.e., there exists x0 ∈ R

n such that fl(x0) < 0 for all l = 1, . . . , p. Then, we
have

min(P) = max{μ : f0 +
p∑

l=1

λl fl − μ = σ0,

λl ≥ 0, l = 1, . . . , p,

σ0 is SOS, degσ0 ≤ m},

and the maximum in the SOS problem is attained.

Proof We first observe that

min(P) ≥ max{μ : f0 +
p∑

l=1

λl fl − μ = σ0,

λl ≥ 0, l = 1, . . . , p,

σ0 is SOS, degσ0 ≤ m},

always holds. To see the reverse inequality and the attainment, we can assume that
min(P) > −∞. As the feasible set of (P) is nonempty, γ := min(P) ∈ R. This
implies that the following strict inequality system has no solution::

x ∈ R
n, fl(x) < 0, l = 1, . . . , p and f0(x) − γ < 0.

Let f̃l be the canonical homogenization of fl , l = 0, 1, . . . , p. From the definition of
canonical homogenization, f̃l(x, 1) = fl(x) for all x ∈ R

n , l = 0, 1, . . . , p. We now
see that the following strict homogeneous inequality system also has no solution:

(xT , t)T ∈ R
n+1, f̃l(x, t) < 0, l = 1, . . . , p and f̃0(x, t) − γ tm < 0. (8)

Suppose on the contrary that there exists (x̄ T , t̄ )T ∈ R
n+1 such that

f̃l(x̄, t̄ ) < 0, l = 1, . . . , p and f̃0(x̄, t̄) − γ t̄m < 0.

If t̄ 
= 0, then we have

fl(
x̄

t̄
) = f̃l(

x̄

t̄
, 1) = f̃l(x̄, t̄)

t̄m
< 0, l = 1, . . . , p and f0(

x̄

t̄
) − γ

= f̃0(
x̄

t̄
, 1) − γ = f̃0(x̄, t̄) − γ t̄m

t̄m
< 0.
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This leads to contradiction. Now, if t̄ = 0, then we have

f̃l(x̄, 0) < 0, l = 1, . . . , p and f̃0(x̄, 0) < 0.

This implies that limμ→+∞ fl(μx̄) = −∞, l = 0, 1, . . . , p, and so, for all large
μ > 0,

fl(μx̄) < 0, l = 1, . . . , p and f0(μx̄) < γ.

This also leads to contradiction, and hence the claim (8) follows.
Letting En+1 be the mth-order (n + 1)-dimensional symmetric tensor such that

〈En+1, x̃⊗m〉 = tm for x̃ = (xT , t)T ∈ R
n+1 and noting that f̃l(x̃) = 〈F̃l , x̃⊗m〉 for

any x̃ = (xT , t)T ∈ R
n+1, (8) gives us that the following system has no solution:

〈F̃l , x̃
⊗m〉 < 0, l = 1, . . . , p and 〈F̃0 − γ En+1, x̃

⊗m〉 < 0.

Note that Fl , l = 0, 1, . . . , p, are all essentially nonpositive tensors (and so, F̃0 −
γ En+1 is also essentially nonpositive). Then, Theorem 3.1 implies that there exist
λl ≥ 0, l = 0, 1, . . . , p, such that

∑p
l=0 λl = 1 and

λ0(F̃0 − γ En+1) +
p∑

l=1

λlF̃l ∈ SOSm,n+1.

This shows that

σ̃0(x, t) := 〈λ0(F̃0−γ En+1)+
p∑

l=1

λlF̃l , x̃
⊗m〉 = λ0( f̃0(x, t)−γ tm)+

p∑

l=1

λl f̃l(x, t)

(9)
is a SOS polynomial with degree m. Letting t = 1 in (9), it follows that

λ0( f0(x) − γ ) +
p∑

l=1

λl fl(x) = σ̃0(x, 1) (10)

is a SOS polynomial with degree m. We now show that λ0 > 0. Indeed, if λ0 = 0,
then

∑p
l=1 λl = 1 and

p∑

l=1

λl fl(x) = σ̃0(x, 1) ≥ 0 for all x ∈ R
n .

Thus, the strict feasibility condition implies that λl =0, l=1, . . . , p. This contradicts
the fact that

∑p
l=1 λl =1, and so, λ0>0. Dividing λ0 on both sides of (10) shows that

f0(x) − γ +
p∑

l=1

λl

λ0
fl(x) = σ̃0(x, 1)

λ0
,
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is a SOS polynomial with degree m, and so,

min(P) = γ ≤ max{μ : f0 +
p∑

l=1

λl fl − μ = σ0,

λl ≥ 0, l = 1, . . . , p,

σ0 is SOS, degσ0 ≤ m}.

Thus, the conclusion follows. ��
Remark 4.1 (Connection to the existing result in polynomial optimization) It is known
that the optimal value of a general nonconvex polynomial optimization problem can
be approximated by a sequence of semidefinite programming problem under the so-
called Archimedean assumption. We note that the Archimedean assumption implies
the feasible set of the nonconvex polynomial optimization problem must be compact.
This sequence of semidefinite programming problem is now often referred as Lasserre
hierarchy and has become one of the important and popular tools in solving a general
polynomial optimization problem with compact feasible sets. For excellent survey,
see [37,38,46,47].

It is worth noting that, if we have some prior knowledge about a solution x∗ (say
‖x∗‖ ≤ R for some R > 0), one can impose an additional constraint ‖x‖2 ≤ R2

and convert the problem into an optimization problem with compact feasible set. In
this case, a global solution can be found by using this big ball approach as long as
we have some prior knowledge about a solution. Moreover, there are also some other
approaches for solving polynomial optimization problems with unbounded feasible
sets by exploiting gradient ideals of the underlying problem (e.g., see [48–50]).

On the other hand, Theorem 4.2 shows that the optimal value of a nonconvex
polynomial optimization problem with essentially nonpositive coefficients can be
found by solving the first-level problem in the Lasserre hierarchy approximation
under the strict feasibility condition. Interestingly, Theorem 4.2 allows the feasible
set to be non-compact (see, Example 4.3) without having prior knowledge of the
solution x∗.

As a corollary, we show that the nonconvex polynomial optimization problem with
generalized lm-type constraints enjoys exact SOS relaxation whenever the objective
function has essentially nonpositive coefficients.

Corollary 4.1 (Exact Sums-of-Squares Relaxation for generalized lm constraints) Let
m be an even number and let n ∈ N. Let f0 be a polynomial on R

n with essentially
nonpositive coefficients and degree m. Consider the following nonconvex polynomial
optimization problem with generalized lm-type constraint:

(Plm ) min
x∈Rn

{ f0(x) :
n∑

i=1

ai x
m
i ≤ 1},

where ai ∈ R, i = 1, . . . , n. Let f1(x) = ∑n
i=1 ai x

m
i − 1. Then, we have
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min(Plm ) = max{μ : f0 + λ f1 − μ = σ0,

λ ≥ 0, μ ∈ R

σ0 is SOS, degσ0 ≤ m},

and the maximum in the SOS problem is attained.

Proof Clearly, f1(0) = −1 and so, the strict feasibility condition is satisfied for (Plm ).
So, the conclusion follows from the preceding theorem. ��
Remark 4.2 (Further links to the existing literature) Below, we compare the preceding
corollary with some known results in the literature.

(1) We first discuss the relationship of problem (Plm ) and the positive-definiteness
problem of a symmetric tensor. Let A be a symmetric tensor, and let fA(x) =
〈A, x⊗m〉.We say the tensorA is positive definite if fA(x) > 0 for all x ∈ R

n\{0}.
This is equivalent to the fact that the optimal value of the following polynomial
optimization problem is positive:

min
x∈Rn

{ fA(x) :
n∑

i=1

xmi ≤ 1}.

Note that this is a special case of Plm with homogeneous objective function and
ai = 1. So, the preceding corollary shows that the positive definiteness of an essen-
tially nonpositive tensor can be tested by solving a SOS programming problem.
This result has been established very recently in [31].

(2) Recently, the nonconvex polynomial optimization problem with generalized lm-
type constraint was studied in [51], and a geometric programming relaxation prob-
lemwas proposed to calculate the lower bound of the optimal value of the problem
(see also [52]). It was demonstrated that the lower bound provided by the geometric
programming relaxation is a lower bound of the SOS relaxation and can be more
efficient from the computational point of view compared with the SOS relaxation.
At this moment, it is not clear for us whether the geometric programming relax-
ation is indeed exact in the case when the objective function is a polynomial with
essentially nonpositive coefficients. This would be an interesting research question
for our further study.

Before we end this section, we provide an example verifying Theorem 4.2 and Corol-
lary 4.1.

Example 4.1 Let f0 be a homogeneous polynomial on R3 with degree 6 defined by

f0(x1, x2, x3) = x61 + x62 + x63 − (x21 (x
4
2 + x43 ) + x22 (x

4
1 + x43) + x23 (x

4
1 + x42)).

Clearly f is a homogeneous polynomial with essentially nonpositive coefficients.
Consider the homogeneous polynomial optimization problem:

(EP3) min
x∈R3

{ f0(x) : x61 + x62 + x63 ≤ 1}.

123



468 J Optim Theory Appl (2016) 168:446–474

Let f1(x) = x61 + x62 + x63 − 1. Then, the corresponding SOS relaxation is given by

(REP3) max
λ≥0,μ∈R

{μ : f0 + λ f1 − μ = σ0, σ0 is SOS and degσ0 ≤ 6}

Solving the sum of squares programming problem (REP3) via YALMIP (see [53,54])
gives us that min(REP3) = −1.

On the other hand, note that the following Robinson polynomial (cf. [41])

fR(x) = x61 + x62 + x63 − (x21 (x
4
2 + x43 ) + x22 (x

4
1 + x43 ) + x23 (x

4
1 + x42)) + 3x21 x

2
2 x

2
3

is always non-negative, and fR(x) = f0(x) + 3x21 x
2
2 x

2
3 . This implies that, for all

(x1, x2, x3) with x61 + x62 + x63 ≤ 1,

f0(x) ≥ −3x21 x
2
2 x

2
3 ≥ −3(

(x21 )
3 + (x22 )

3 + (x23 )
3

3
) ≥ −1,

where the second inequality follows by the inequality of arithmetic and geometric

means. Moreover, note that (x̄1, x̄2, x̄3) = ( 6
√

1
3 ,

6
√

1
3 ,

6
√

1
3 ) satisfies x̄

6
1 + x̄62 + x̄63 ≤ 1

and f0(x̄) = −1. So, min(EP3) = −1. This verifies that the SOS relaxation is exact
for this example.

4.1 Examples

Below, we present a few numerical examples. The first example shows that the con-
clusion of Theorem 4.2 can fail if a polynomial optimization problem does not have
essentially nonpositive coefficients. The second example illustrates that Theorem 4.2
can be applied to a polynomial optimization problem with possibly non-compact fea-
sible set.

Example 4.2 (Importance of the assumption on essentially nonpositive coefficients)
Let fM be the homogeneous Motzkin polynomial

fM (x) = x63 + x21 x
4
2 + x41 x

2
2 − 3x21 x

2
2 x

2
3 .

It is clear that fM is not a polynomial with essentially nonpositive coefficients. It is
known that fM is a polynomial which takes non-negative values but is not a SOS
polynomial [41]. Consider the following polynomial optimization :

min
x∈R3

{ fM (x) : x61 + x62 + x63 ≤ 1}. (EP1)

Clearly, min(EP1) = 0 (as fM takes non-negative value). Let f1(x) = x61 + x62 +
x63 − 1. The SOS relaxation of (EP1) takes the form:

max
λ≥0,μ∈R

{μ : fM + λ f1 − μ = σ0, σ0 is SOS and degσ0 ≤ 6} (REP1)
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We now show that the conclusion of Theorem 4.2 fails. To see this, we suppose on the
contrary that there exist λ ≥ 0 and a SOS polynomial σ0 with degree at most 6 such
that fM + λ f1 = σ0. Note that 0 ≤ σ0(0) = fM (0) + λ f1(0) = −λ. This together
with λ ≥ 0 implies that λ = 0, and so, fM = σ0 which is a SOS polynomial. This
contradicts the fact that fM is not a SOS polynomial. Thus, the conclusion of Theorem
4.2 fails.

Example 4.3 (An example with noncompact feasible set) Let f0 be a homogeneous
polynomial on R

3 with degree 4 defined by f0(x1, x2, x3) = x41 + x42 + x43 − 4x1x33 .
Clearly, f is a homogeneous polynomial with essentially nonpositive coefficients.
Consider the homogeneous polynomial optimization problem

(EP2) min
x∈R3

{ f0(x) : x41 − 1

2
x42 + x43 ≤ 1}.

Clearly, the feasible set of (EP2) is not compact. Let f1(x) = x41 − 1
2 x

4
2 + x43 − 1.

Then, the corresponding SOS relaxation is given by

(REP2) max
λ≥0,μ∈R

{μ : f0 + λ f1 − μ = σ0, σ0 is SOS and degσ0 ≤ 4}

Solving the sum of squares programming problem (REP2) via YALMIP (see [52,53])
gives us that min(REP2) = −1.2795.

On the other hand, direct calculation shows that any global minimizer of (EP2)
satisfies the following KKT condition: there exist λ ≥ 0 and (x1, x2, x3) with x41 −
1
2 x

4
2 + x43 ≤ 1 such that

x31 − x33 + λx31 = 0,

x32 − λ

2
x32 = 0,

x33 − 3x1x
2
3 + λx33 = 0.

Solving this homogeneous polynomial equality system gives us that λ = 2 or λ =
4
√
27 − 1 and the possible KKT points are

{(0, x2, 0) : x2 ∈ R} ∪ {(x1, 0, x3) : x3 = 4
√
3 x1, |x1| ≤ 4

√
1

4
}.

By comparing the corresponding objective function values of the KKT points, it can
be verified that the optimal value of (EP2) is 1 − 4

√
27 ≈ −1.2795. This verifies that

the SOS relaxation is exact.

5 Perspectives

Alternative theorems for arbitrary finite systems of linear or convex inequalities
have played key roles in the development of optimality conditions for continuous
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optimization problems. Although these theorems are generally not valid for an arbi-
trary finite system of (possibly nonconvex) quadratic inequalities, recent research has
established alternative theorems for quadratic systems involving two inequalities or
arbitrary inequalities involving suitable sign structure. For instance, a theorem of the
alternative of Gordan type for a strict inequality system of two homogeneous quadratic
functions has been given in [1], where it was used in convergence analysis of trust-
region algorithms. This theorem is often referred as Yuan’s Theorem of the alternative
and has a connection with the convexity of joint-range of homogeneous quadratic
functions even though the functions may be nonconvex [3,4].

On the other hand, tensor computation and optimization problems involving poly-
nomials arise in a wide variety of contexts, including operational research, statistics,
probability, finance, computer science, structural engineering, statistical physics, com-
putational biology, and graph theory [33,37,38]. They are, however, extremely chal-
lenging to solve, both in theory and practice. A fascinating feature of this field is that it
can be approached from several directions. In addition to traditional techniques drawn
from operational research, computer science, and numerical analysis, new techniques
have recently emerged based on concepts taken from algebraic geometry, moment
theory, multilinear algebra, and modern convex programming (semidefinite program-
ming).

Due to the wide applications of tensor computation and polynomial optimization,
an important research topic is to obtain a tractable extension of alternative theorem
for the system of homogeneous polynomial inequalities (or equivalently inequalities
involving tensors). Obtaining such a multilinear (or tensor) version of a theorem of the
alternative is extremely useful as it naturally leads to numerically verifiable conditions
for a global minimizer of a related polynomial optimization problem. Unfortunately,
in general, this is an extremely challenging task. Two of the main obstructions are (1)
some of the nice geometric structure (such as joint-range convexity) for homogeneous
quadratic functions cannot be carried forward to polynomial cases, and are more
challenging to exploit; and (2) unlike the quadratic cases, checking the nonnegativity
of a homogeneous polynomial (or equivalently the positive semi-definiteness of a
symmetric tensor) is, in general, an NP-hard problem [13,37,38].

In this paper, we provided a tractable extension of Yuan’s theorem of the alternative
in the symmetric tensor setting. We achieve this by exploiting two important features
of a special class of tensors (called essentially nonpositive tensors): hidden convexity
and numerical checkability. As an immediate application, we showed that the optimal
value and optimal solution of a nonconvex polynomial optimization problem, with
essentially nonpositive coefficients, can be found by a related convex conic program-
ming problem.We also established that this class of polynomial optimization problem
enjoys exact SOS relaxation.

Our results point out some useful observations and interesting further research
topics. In particular, although a tensor problem (or a polynomial optimization problem)
is, in general NP-hard, we feel that it is important to exploit the special structure of
the underlying problem and push the boundary of the tractable classes of problems.
This is of particular importance because (1) those tractable classes are the problems
we can efficiently solve via the current software/technology; and (2) many of the
practical problems often come with some special structures (such as sign structure and
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sparse structure) naturally. The results presented in this paper suggest that problems
involving tensors/polynomials with suitable sign structure would be a good candidate
for the tractable classes. In fact, this is not a coincidence as it was shown recently that
almost the whole Perron–Frobenius theory for non-negative matrices can be extended
to tensor setting, and so, the extreme eigenvalue problem involving tensors with non-
negative entries is numerically tractable [25,29,35,36]. On the other hand, this paper
is still a preliminary study for structured tensors (or polynomial optimization with
special structures), and a lot of interesting research topics need further investigation.
Below, we list some of the topics which are particularly important from our point of
view:

(a) Can one extend the results presented in this paper to a special structured ten-
sor other than the tensors with essentially nonpositive entries? Some particularly
important structured tensors that arise naturally in signal processing, stochastic
process, and data fitting include the Hankel tensors and circulant tensors [55–57].
Can the theorem of the alternative be extended to cover these structured tensors?

(b) As discussed in Example 4.2, our exact relaxation result can fail for a polynomial
optimizationproblems if the functions involveddonot have essentially nonpositive
coefficients. On the other hand, it would be of interest to see how our results can
be used to provide some approximate bounds for the optimal value of the general
nonconvex polynomial optimization problems.

(c) Finally, it would be also useful to extend the known theorem of the alternative for
copositive matrix to the symmetric tensor setting (if possible).

These will be our future research directions.

6 Conclusion

In this paper, by exploiting the hidden convexity and numerical verifiability a special
class of tensors, we established a tractable extension of Yuan’s theorem of the alter-
native in the symmetric tensor setting. As an application, we showed that the solution
of a polynomial optimization problem with suitable structure can be found by solving
a single semi-definite programming problem.
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Appendix

Proof of Proposition 2.1

Proof As any SOS polynomial takes non-negative value, SOSm,n ∩Em,n ⊆ PSDm,n ∩
Em,n always holds. We only need to show the converse inclusion. To establish this, let
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A ∈ PSDm,n ∩ Em,n , and let us consider the associated homogeneous polynomial:

f (x) = 〈A, x⊗m〉 =
n∑

i1,...,im=1

Ai1···im xi1 · · · xim .

Then, f is a polynomial which takes non-negative value. Note that

f (x) =
n∑

i1,...,im=1

Ai1···im xi1 · · · xim =
n∑

i=1

(Ai i ···i )xmi +
∑

(i1,...,im )/∈I
(Ai1···im )xi1 · · · xim ,

where I := {(i, i, . . . , i) ∈ N
m : 1 ≤ i ≤ n}. As A is essentially nonpositive,

Ai1i2···im ≤ 0 for all (i1, . . . , im) /∈ I . Now, let f (x) = ∑n
i=1 fm,i xmi +∑

α∈� f
fαxα .

Then, fm,i = Ai i ···i and fα < 0 for all α ∈ � f where � f = {α = (α1, . . . , αn) ∈
(N ∪ {0})n : fα 
= 0 and α 
= mei , i = 1, . . . , n}, and ei is the vector where its
i th component is one and all the other components are zero. Recall that � f = {α =
(α1, . . . , αn) ∈ � f : fα < 0 or α /∈ (2N ∪ {0})n}. Note that fα < 0 for all α ∈ � f ,
and so, � f = � f . It follows that

f̂ (x) :=
n∑

i=1

fm,i x
m
i −

∑

α∈� f

| fα|xα

=
n∑

i=1

fm,i x
m
i +

∑

α∈� f

fαx
α

=
n∑

i=1

fm,i x
m
i +

∑

α∈� f

fαx
α = f (x).

So, f̂ is also a polynomial which takes non-negative value. Thus, the conclusion
follows by Lemma 2.1. ��
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