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SUMMARY

It is well known that the dominant eigenvalue of a real essentially nonnegative matrix is a convex function
of its diagonal entries. This convexity is of practical importance in population biology, graph theory,
demography, analytic hierarchy process, and so on. In this paper, the concept of essentially nonnegativity is
extended from matrices to higher-order tensors, and the convexity and log convexity of dominant eigenvalues
for such a class of tensors are established. Particularly, for any nonnegative tensor, the spectral radius turns
out to be the dominant eigenvalue and hence possesses these convexities. Finally, an algorithm is given
to calculate the dominant eigenvalue, and numerical results are reported to show the effectiveness of the
proposed algorithm. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Tensors are increasingly ubiquitous in various areas of applied, computational, and industrial math-

ematics and have wide applications in data analysis and mining, information science, signal/image

processing, computational biology, and so on; see the workshop report [1] and references therein. A

tensor can be regarded as a higher-order generalization of a matrix, which takes the form

A D
!

Ai1���im

�

, Ai1���im 2 R, 1 6 i1, : : : , im 6 n.

Such a multi-array A is said to be an m-order n-dimensional square real tensor with nm entries

Ai1���im . In this regard, a vector is a first-order tensor and a matrix is a second-order tensor. Tensors

of order more than two are called higher-order tensors.

Analogous with that of matrices, the theory of eigenvalues and eigenvectors is one of the fun-

damental and essential components in tensor analysis. Seventy-two references on eigenvalues of

tensors can be found in the bibliography [2]. A wide range of practical applications can be found the

references there. Compared with that of matrices, eigenvalue problems for higher-order tensors are

nonlinear because of their multilinear structure. Various types of eigenvalues are defined for higher-

order tensors in the setting of multilinear algebra. For example, the eigenvalue, the H -eigenvalue,

the E-eigenvalue, the Z-eigenvalue, the N -eigenvalue defined by Qi for even order symmetric ten-
sors [3], the lp eigenvalues for general order symmetric tensors, and the mode-i eigenvalues for

general square tensors defined by Lim [4], theM -eigenvalue for a partially symmetric fourth-order

tensor, defined by Qi et al. [5], theD-eigenvalue for a fourth-order symmetric tensor and a second-

order symmetric tensor, defined by Qi et al. [6], eigenvalues of general square tensors extended by
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Qi in [2], Chang et al. in [7], and equivalent eigenvalue pair classes by Cartwright and Sturmfels

[8]. Here, we are concerned with the one in [2,7] as reviewed in the succeeding texts.

Definition 1.1

Let C be the complex field. For a vector x 2 Cn, we use xi to denote its components and xŒm!1� to

denote a vector in Cn such that

x
Œm!1�
i D xm!1

i

for all i . Axm!1 denotes a vector in Cn, whose i th component is

n
X

i2,:::,imD1

Ai i2���im xi2 � � � xim .

A pair .�, x/ 2 C� .Cnnf0g/ is called an eigenvalue–eigenvector pair ofA, if they satisfy

Axm!1 D �xŒm!1�. (1)

Nonnegative tensors, arising from multilinear pagerank [4], spectral hypergraph theory [9–11],

and higher-order Markov chains [12], and so on form a singularly important class of tensors and

have attracted more and more attention because they share some intrinsic properties with those of

the nonnegative matrices. One of those properties is the Perron–Frobenius theorem on eigenval-

ues. In [13], Chang et al. generalized the Perron–Frobenius theorem for nonnegative matrices to

irreducible nonnegative tensors. In [14], Friedland et al. generalized the Perron–Frobenius theorem

to weakly irreducible nonnegative tensors. Further generalization of the Perron–Frobenius theorem

to nonnegative tensors can be found in [15]. Numerical methods for finding the spectral radius of

nonnegative tensors are subsequently proposed. Ng et al. [12] provided an iterative method to find

the largest eigenvalue of an irreducible nonnegative tensor by extending the Collatz method [16]

for calculating the spectral radius of an irreducible nonnegative matrix. The Ng–Qi–Zhou method

is efficient, but it is not always convergent for irreducible nonnegative tensors. Chang et al. [17]

extended the notion of primitive matrices into the realm of tensors and established the convergence

of the Ng–Qi–Zhou method for primitive tensors. Zhang and Qi [18] established global linear con-

vergence of the Ng–Qi–Zhou method for essentially positive tensors. Liu et al. [19] proposed an

always convergent algorithm for computing the largest eigenvalue of an irreducible nonnegative

tensors. Zhang et al. [20] established its explicit linear convergence rate for weakly positive tensors.

The essentially nonnegative tensor we defined in this paper is ultimately related to the nonnegative

tensor and includes the latter one as a special case. It is a higher-order generalization of the so-called

essentially nonnegativematrix, whose off-diagonal entries are all nonnegative. Such a class of matri-

ces possesses nice properties on eigenvalues. It follows from the famous Perron–Frobenius theorem

for nonnegativematrices that for any essentially nonnegativematrixA, there exists a real eigenvalue

with a nonnegative eigenvector, which is the largest one among real parts of all other eigenvalues of

A. This special eigenvalue, termed as r.A/, is often called the dominant eigenvalue of A. Moreover,
r.A/ is known as a convex function of the diagonal entries of A. This convexity is a fundamental

property for essentially nonnegative matrices [21–23] and has numerous applications, not only in

many branches of mathematics, such as graph theory [24] and differential equations [23], but also

in practical fields, for example, population biology [23] and analytic hierarchy process [25], as well.

A natural question arises: Does this convexity maintain for higher-order essentially nonnegative

tensors? In this paper, we will give an affirmative answer to this question.

Similar to the essentially nonnegative matrix, an essentially nonnegative tensor has a real eigen-

value with the property that it is greater than or equal to the real part of every eigenvalue of A. We

also call it the dominant eigenvalue ofA and denoted by �.A/. Particularly, ifA is nonnegative, we

have �.A/ D �.A/, where �.A/ is the spectral radius of A. By employing the technique proposed

in [23], we manage to obtain that the dominant eigenvalue is a convex function of the diagonal ele-

ments for any essentially nonnegative tensor. In addition, it is also a convex function of all elements

of a tensor in some special convex set of tensors. Furthermore, the log convexity is also exploited for
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essentially nonnegative tensors with whose entries are either identically zero or log convex of some

real univariate functions. Finally, we propose an algorithm to calculate the dominant eigenvalue,

convergence of the proposed algorithm is established, and numerical results are reported to show

the effectiveness of the proposed algorithm.

This paper is organized as follows. In Section 2, we recall some preliminary results, introduce the

concept of essentially nonnegative tensors, and characterize some basic properties of such tensors.

In Section 3, we show that the spectral radius of nonnegative tensors is a convex function of the

diagonal elements and so is the dominant eigenvalue of essentially nonnegative tensors. Section 4 is

devoted to the log convexity of the dominant eigenvalue. In Section 5, we give an algorithm to cal-

culate the dominant eigenvalue, and some numerical results are reported. An application and some

concluding remarks are made in Section 6.

2. PRELIMINARIES AND ESSENTIALLY NONNEGATIVE TENSORS

We start this section with some fundamental notions and properties on tensors. An m-order n-

dimensional tensorA is called nonnegative (or, respectively, positive) ifAi1���im > 0 (or, respectively,
Ai1���im > 0). The m-order n-dimensional unit tensor, denoted by I , is the tensor whose entries are

ıi1:::im with ıi1:::im D 1 if and only if i1 D � � � D im and otherwise zero. The symbol A > B means

thatA!B is a nonnegative tensor. A tensorA is called reducible, if there exists a nonempty proper

index subset I � f1, 2, : : : ,ng such that

Ai1���im D 0, 8i1 2 I , 8i2, : : : , im 62 I .

Otherwise, we say A is irreducible. We call �.A/ the spectral radius of tensor A if

�.A/ Dmaxfj�j W � is an eigenvalue of Ag,

where j�j denotes the modulus of �. An immediate consequence on the spectral radius follows
directly from Corollary 3 in [3].

Lemma 2.1

Let A be an m-order n-dimensional tensor. Suppose that B D a.A C bI/, where a and b are two
real numbers. Then � is an eigenvalue of B if and only if � D a.� C b/ and � is an eigenvalue of

A. In this case, they have the same eigenvectors. Moreover, �.B/ 6 jaj.�.A/ C jbj/.

Let P WD fx 2 Rn W xi > 0, 1 6 i 6 ng, and int.P / D fx 2 Rn W xi > 0, 1 6 i 6 ng. The
Perron–Frobenius theorem for nonnegative tensors is as discussed in the succeeding texts, following

by [13, Theorem 1.4].

Theorem 2.1

If A is an irreducible nonnegative tensor of order m and dimension n, then there exist �0 > 0 and

x0 2 int.P / such that

Axm!1
0 D �0x

Œm!1�
0 .

Moreover, if � is an eigenvalue with a nonnegative eigenvector, then � D �0. If � is an eigenvalue

of A, then j�j 6 �0.

The well-known Collatz minimax theorem [16] for irreducible nonnegative matrices has been

extended to irreducible nonnegative tensors in [13, Theorem 4.2].
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Theorem 2.2

Assume that A is an irreducible nonnegative tensor of order m dimension n. Then

min
x2int.P /

max
xi >0

.Axm!1/i

xm!1
i

D �0 D max
x2int.P /

min
xi >0

.Axm!1/i

xm!1
i

,

where �0 is the unique positive eigenvalue corresponding to a positive eigenvector.

For nonnegative tensors, Yang and Yang [15] asserted that the spectral radius is an eigenvalue,

which is a generalization of the weak Perron–Frobenius theorem for nonnegative matrices. We state

it [15, Theorem 2.3 and Lemma 5.8] in the following theorem.

Theorem 2.3

Assume that A is a nonnegative tensor of order m dimension n, then �.A/ is an eigenvalue of A

with a nonzero nonnegative eigenvector. Moreover, for any x 2 int.P /, we have

min
16i6n

.Axm!1/i

xm!1
i

6 �.A/ 6 max
16i6n

.Axm!1/i

xm!1
i

.

The following inequality and continuity of the spectral radius were given in [15, Lemma 3.5] and

the proof of [15, Theorem2.3], respectively.

Lemma 2.2

LetA be a nonnegative tensor of orderm and dimension n, and " > 0 be a sufficiently small number.
Suppose A 6 B, then �.A/ 6 �.B/. Furthermore, if A" D A C E where E denotes the tensor with

every entry being ", then

lim
"!0

�.A"/ D �.A/.

On the basis of the preceding results, we can easily obtain the following lemma.

Lemma 2.3

Suppose that A is an irreducible nonnegative tensor of order m dimension n and that there exists a
nonzero vector x 2 P and a real number ˇ such that

Axm!1
6 ˇxŒm!1�. (2)

Then ˇ > 0, x 2 int.P /, and �.A/ 6 ˇ. Furthermore, �.A/ < ˇ unless equality holds in (2).

Proof

Assume on the contrary that for x 2 int.P / there exists a nonempty proper index subset I �

f1, 2, : : : , ng such that xi D 0 for i 2 I and xi > 0 for i 62 I . It follows from (2) that

Ai1���im D 0, 8i1 2 I , 8i2, : : : , im 62 I .

A contradiction to the irreducibility ofA comes, which henceforth implies that x 2 int.P /. Together

with Lemma 2.2 in [12], Axm!1 2 int.P / is established. It further deduces that ˇ > 0, and then the

last statement holds from Lemma 5.9 in [15]. This completes the proof. �

A simple but useful result follows immediately from Lemmas 2.2 and 2.3.

Lemma 2.4

Let A and B be irreducible nonnegative tensors of order m dimension n. If A 6 B and A ¤ B, then

�.A/ < �.B/.
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Proof

By Lemma 2.2, �.A/ 6 �.B/. As B is irreducible, Theorem 2.1 implies that there exists x 2 int.P /

such that

Axm!1
6 Bxm!1 D �.B/xŒm!1�. (3)

As x 2 int.P / and A ¤ B, equality cannot hold in (3). The desired strict inequality �.A/ < �.B/
holds from Lemma 2.3. �

The remainder of this section is devoted to the essentially nonnegative tensor, with the introduc-

tion of its definition and some basic properties.

Definition 2.1

Let A be an m-order and n-dimensional tensor. A is said to be essentially nonnegative if all its

off-diagonal entries are nonnegative.

Theorem 2.4

LetA be anm-order and n-dimensional essentially nonnegative tensor. Then there exists ˛ > 0 such

that ˛ICA is nonnegative.Moreover,A has a real eigenvalue�.A/ with corresponding eigenvector
in P and �.A/ > Re� for every eigenvalue � of A. Furthermore,

�.A/ D �.˛I CA/ ! ˛.

Proof

Take

˛ D max
16i6n

jAi :::i j C 1.

Clearly, ˛ > 0, and ˛I CA is nonnegative. By Lemma 2.1 and Theorem 2.3, we have

�.˛I CA/ D ˛ C �1, (4)

where �1 is an eigenvalue ofA with corresponding eigenvector in P . Thus, (4) implies �1 2 R. Let

�.A/ D �1, It follows from Lemma 2.1 that

�.A/ C ˛ Dmaxfj˛ C �j W � is an eigenvalue of Ag

> j˛ C �j > ˛ CRe�.

The desired result arrives. �

We call such an eigenvalue in the preceding theorem the dominant eigenvalue of A. Throughout

this paper, �.A/ and �.A/ will denote the spectral radius and dominant eigenvalue, respectively, of

a tensor A. In the next section, we will show that both �.A/ and �.A/ are convex functions of the
diagonal elements ofA.

3. CONVEXITY OF THE SPECTRAL RADIUS AND THE DOMINANT EIGENVALUE

On the basis of Theorems 2.1 and 2.3, we proceed with the convexity of the dominant eigenvalue

of essentially nonnegative tensors in this section. It can be verified that the diagonal entries have

nothing to do with the irreducibility of a tensor. Specifically, let A be an essentially nonnegative

tensor of order m and dimension n, define a nonnegative tensor B by Bi1:::im D 0 if i1 D � � � D im,

and the others are Ai1:::im . Then A is irreducible if and only if B is. Equivalently, A is irreducible

if and only if A C ˛I is, whenever it is nonnegative. Thus, by Lemma 2.2 and Theorem 2.4, it is

sufficient to consider the class of irreducible nonnegative tensors.

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:929–941
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Theorem 3.1

If A is a given irreducible nonnegative tensor of orderm and dimension n, and D is allowed to vary

in the class of nonnegative diagonal tensors, then the spectral radius �.ACD/ is a convex function
of the diagonal entries of D. That is, for nonnegative diagonal tensors C and D, we have

�.AC tC C .1 ! t /D/ 6 t�.AC C/ C .1 ! t /�.ACD/, 8t 2 Œ0, 1�. (5)

Moreover, equality holds in (5) for some t 2 .0, 1/ if and only if D ! C is a scalar multiple of the

unit tensor I .

Proof

As both A C C and A C D are irreducible nonnegative tensors, by Theorems 2.1 and 2.3, we have

�.AC C/ > 0, �.AC D/ > 0, and there exist x,y 2 int.P / such that

.A C C/xm!1 D �.AC C/xŒm!1�, .A CD/ym!1 D �.ACD/yŒm!1�.

That is, for i D 1, 2, : : : , n, we have

�.AC C/ D Ci :::i C

n
X

i2:::imD1

Ai i2:::im

xi2 � � � xim

xi

,

�.ACD/ D Di :::i C

n
X

i2:::imD1

Ai i2:::im

yi2 � � � yim

yi

,

and hence �.AC C/ ! Ci :::i > 0 and �.ACD/ ! Di :::i > 0. The inequality between geometric and

arithmetic means yields

0

@

n
X

i2:::imD1

Ai i2:::im

xi2 � � � xim

xi

1

A

t0

@

n
X

i2:::imD1

Ai i2:::im

yi2 � � � yim

yi

1

A

1!t

6 t .�.AC C/ ! Ci :::i /

C .1 ! t /.�.ACD/ ! Di :::i /.
(6)

Therefore, Hölder’s inequality and Theorem 2.2 give from (6)

�.AC tC C .1 ! t /D/ 6 max
16i6n

8

<

:
tCi :::i C .1 ! t /Di :::i C

n
X

i2:::imD1

Ai i2:::im

´i2 � � � ´im

´i

9

=

;

6 t�.AC C/ C .1 ! t /�.ACD/,

where ´i D xt
i y

1!t
i for i D 1, : : : ,n. This shows that (5) holds.

The inequality between geometric and arithmetic means implies that equality in (5) holds for

t 2 .0, 1/ if and only if �.ACC/ ! Ci :::i D �.ACD/ ! Di :::i for i D 1, : : : , n, that is, D!C D I ,

where  D �.ACD/ ! �.AC C/. This completes the proof. �

The convexity involved in Theorem 3.1 can be extended to the case of essentially nonnegative

tensors as follows.

Corollary 3.1

If A is a given irreducible essentially nonnegative tensor of order m dimension n and D is allowed
to vary in the class of diagonal tensors, then the dominant eigenvalue �.ACD/ is a convex function

of the diagonal entries of D. That is, for diagonal tensors C and D, we have

�.A C tC C .1 ! t /D/ 6 t�.A C C/ C .1 ! t /�.A CD/, 8t 2 Œ0, 1�. (7)

Moreover, equality holds in (7) for some t 2 .0, 1/ if and only if D ! C is a scalar multiple of the

unit tensor I .

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:929–941
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Proof

Take

˛ D 1 C max
16i6n

fjAi :::i j C jCi :::i j C jDi :::i jg.

Then ˛I C A C C and ˛I C A C D are all irreducible nonnegative tensors. By Theorems 2.4 and

3.1, we have for 0 6 t 6 1

�.A C tC C .1 ! t /D/ C ˛ D �.˛I CA C tC C .1 ! t /D/

6 t�.˛I CA C C/ C .1 ! t /�.˛I CA C D/

D t�.A C C/ C .1 ! t /�.A CD/ C ˛,

which yields (7). This completes the proof. �

Invoking the continuity presented in Lemma 2.2, it is easy to see that Theorem 3.1 and

Corollary 3.1 hold even when A is reducible. Moreover, Theorem 3.1 and Corollary 3.1 give

necessary and sufficient conditions for the strict convexity. It is worth pointing out that the convexity

of the dominant eigenvalue only works on the diagonal elements rather than on all elements of

the essentially nonnegative tensor, except for some special cases. By collecting all symmetric

essentially nonnegative tensors of order m and dimension n, we can obtain a closed convex cone,

say S.m, n/. The dominant eigenvalue of any tensor in S.m, n/ remains convex of all elements of
the corresponding tensor in the domain S.m, n/, as the following proposition shows.

Proposition 3.1

For any A, B 2 S.m, n/, and any t 2 Œ0, 1�, we have

�.tAC .1 ! t /B/ 6 t�.A/ C .1 ! t /�.B/.

Proof

For anyA, B 2 S.m, n/, there exists an integer k > 0 such thatACkI and BCkI are nonnegative
and symmetric and hence for any of their convex combinations. The Perron–Frobenius theorem then

ensures that �.AC kI/, �.BC kI/, and �.tAC .1 ! t /BC kI/.t 2 Œ0, 1�/ all act as eigenvalues of

the corresponding nonnegative symmetric tensor. By the variational approach, it follows that

�.tAC .1 ! t /B C kI/

Dmax

(

.tAC .1 ! t /B C kI/xm W

n
X

iD1

xm
i D 1

)

6 t max

(

.A C kI/xm W

n
X

iD1

xm
i D 1

)

C .1 ! t /max

(

.B C kI/xm W

n
X

iD1

xm
i D 1

)

D t�.AC kI/ C .1 ! t /�.B C kI/.

Combining with the fact that �.AC kI/ D �.A/ C k, the desired convexity follows. �

4. LOG CONVEXITY OF THE SPECTRAL RADIUS AND THE DOMINANT EIGENVALUE

If a function f .x/ is positive on its domain and logf .x/ is convex, then f .x/ is called log convex.

It is known that the sum or product of log convex functions is also log convex. In this section,

we extend Kingman’s theorem [23] for matrices to tensors. Our motivation for the following proof

comes from [23].

Theorem 4.1

For t 2 Œ0, 1�, assume that F.t / D
!

Fi1:::im.t /
�

is anm-order n-dimensional irreducible nonnegative

tensor, and suppose that for 1 6 i1, : : : , im 6 n, Fi1:::im.t / is either identically zero or positive and

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:929–941
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a log convex function of t . Then �.F.t // is a log convex function of t for t 2 Œ0, 1�. That is, if

F.0/ D A, F.1/ D B, and a nonnegative tensor G.t / D
�

A1!t
i1:::im

B t
i1:::im

�

, then

�.F.t // 6 �.G.t // 6 �.A/1!t�.B/t . (8)

Moreover, the first equality occurs in (8) for some t with t 2 .0, 1/ if and only if

F.t / D G.t /,

and the second equality occurs in (8) for some t with t 2 .0, 1/ if and only if there exists a constant

� > 0 and a positive diagonal matrixD D diag.d1, : : : , dn/ such that

B D �A � D!.m!1/ �

m!1
‚ …„ ƒ

D � � � D with Bi1i2:::im D �Ai1i2:::imd
!.m!1/
i1

di2 � � � dim .

Proof

Clearly, G.0/ D F.0/ D A and G.1/ D F.1/ D B. The log convexity assumption on Fi1:::im.t /

implies that, for t 2 Œ0, 1�,

F.t / 6 G.t /,

which, together with Lemma 2.2, implies

�.F.t // 6 �.G.t //. (9)

As F.t / is irreducible, if equality holds in (9) for some t0 with 0 < t0 < 1, Lemma 2.4 implies that
F.t0/ D G.t0/.

As F.0/ and F.1/ are irreducible nonnegative, Theorem 2.1 shows that there exist x, y 2 int.P /

such that

Axm!1 D �.A/xŒm!1�, Bym!1 D �.B/yŒm!1�.

For a fixed t 2 .0, 1/, define ´ D x1!tyt , that is, ´i D x1!t
i yt

i for 1 6 i 6 n. Then the i th component

of G.t /´m!1 satisfies

!

G.t /´m!1
�

i
D

n
X

i2:::imD1

A1!t
i i2:::im

B t
i i2:::im

´i2 � � � ´im .

Hence, Hölder’s inequality gives

!

G.t /´m!1
�

i
6

0

@

n
X

i2:::imD1

Ai i2:::imxi2 � � � xim

1

A

1!t 0

@

n
X

i2:::imD1

Bi i2:::im yi2 � � � yim

1

A

t

D �.A/1!t�.B/t´m!1
i . (10)

It follows from Lemma 2.3 and (10) that

�.G.t // 6 �.A/1!t�.B/t .

Furthermore, equality holds in (10) for some t 2 .0, 1/ if and only if, for 1 6 i 6 n,

Bi i2:::imyi2 � � � yim D �iAi i2:::imxi2 � � � xim . (11)

Summing (11) over i2 : : : im yields

�.B/ym!1
i D �i�.A/xm!1

i . (12)

Take

� D
�.B/

�.A/
, di D

xi

yi

,

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:929–941
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Then combining (11) and (12), we obtain

Bi i2:::im D �Ai i2:::imd
!.m!1/
i di2 � � � dim ,

that is,

B D �A � D!.m!1/ �

m!1
‚ …„ ƒ

D � � � D .

This completes the proof. �

By Theorems 2.3 and 2.4, the preceding theorem also holds for the dominant eigenvalue of F.t /,

when F.t / is essentially nonnegative with t 2 Œ0, 1�.

5. AN ALGORITHM FOR CALCULATING THE DOMINANT EIGENVALUE

Let A be an essentially nonnegative tensor of order m and dimension n. In this section, we
propose an algorithm to calculate the dominant eigenvalue of an essentially nonnegative tensor.

This algorithm is a modification of the Ng–Qi–Zhou algorithm given in [12]. By Lemma 2.2 and

Theorem 2.4, we modify the Ng–Qi–Zhou algorithm such that for any essentially nonnegative

tensor, the sequence generated by the modified algorithm always converges to its dominant

eigenvalue.

Define two functions from int.P / to P :

F.x/ WD min
xi ¤0

.Wxm!1/i

xm!1
i

, G.x/ WD max
xi ¤0

.Wxm!1/i

xm!1
i

, (13)

where W is an irreducible nonnegative tensor. The details of the modified algorithm are given

as follows.

Algorithm 5.1

Step 0. Given a sufficiently small number " > 0, let

W D A C ˛I C E , (14)

where

˛ D max
16i6n

jAi :::i j C 1,

and E is the tensor with every entry being ". Choose any x.0/ 2 int.P /. Set y.0/ D
W.x.0//m!1 and k WD 0.

Step 1. Compute

x.kC1/ D

!

y.k/
�Œ 1

m!1 �






!

y.k/
�Œ 1

m!1 �





, y.kC1/ D B

�

x.kC1/
�m!1

.

According to (13), compute F
!

x.kC1/
�

and G
!

x.kC1/
�

.

Step 2. IfG
!

x.kC1/
�

!F
!

x.kC1/
�

< ", stop. Output "-approximation of the dominant eigenvalue

of A:

�.kC1/ D
1

2

�

G
�

x.kC1/
�

C F
�

x.kC1/
��

! ˛, (15)

and the corresponding eigenvector x.kC1/. Otherwise, set k WD k C 1 and go to step 1.
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Clearly, the tensorW defined by (14) is positive, and hence it is primitive [17, Corollary 3.7]. By

Theorems 2.1 and 2.2, Algorithm 5.1 is well defined. As an immediate consequence of Lemma 2.2,

Theorem 2.4, and Theorem 5.3 in [17], we have the following convergence theorem.

Theorem 5.1

Let A be an essentially nonnegative tensor of order m and dimensional n, and letW be defined by

(14) where " is a sufficiently small number. Then the sequences
˚

F
!

x.k/
�	

and
˚

G
!

x.k/
�	

, gener-

ated by Algorithm 5.1, converge to �", where �" is the unique positive eigenvalue ofW . Moreover,

the sequence fx.k/g converges to x�
" and x�

" is a positive eigenvector of W corresponding to the

largest eigenvalue �". Furthermore,

lim
"!0

�" D ��, lim
"!0

x�
" D x�,

where �� is the spectral radius ofAC˛I and x� is the corresponding eigenvector. In particular, the

dominant eigenvalue ofA is �.A/ D �� ! ˛, and x� is also the eigenvector corresponding to �.A/.

Proof

It follows from (14) thatW is positive, and hence it is irreducible. Therefore, for any nonzero x 2 P ,

we haveWxm!1 2 int.P /, which shows that the tensorW is primitive. Hence, by Theorem 5.3 in

[17],

lim
k!1

F
�

x.k/
�

D lim
k!1

n

G
�

x.k/
�

D �", lim
k!1

x.k/ D x�
" .

Therefore, �" ! ˛ is an "-approximation of the dominant eigenvalue of A from Theorem 2.4.

Furthermore, it follows from Lemma 2.2 that

lim
"!0

�" D ��, lim
"!0

x�
" D x�.

It is easy to see that �� !˛ is the dominant eigenvalue ofA with corresponding eigenvector x�. �

The preceding theorem shows that the convergence of Algorithm 5.1 is established for any essen-

tially nonnegative tensor without the irreducible and primitive assumption. In order to show the

effectiveness of Algorithm 5.1, we used MATLAB 7.4 (MathWorks, Natick, MA) to test it on the

following seven examples. The last four examples are large-scale numerical examples.

Example 5.1

Consider the three-order three-dimensional essentially nonnegative tensor

A D ŒA.1, W, W/,A.2, W, W/,A.3, W, W/�,

where

A.W, W, 1/ D

0

@

!1.51 8.35 1.03

4.04 3.72 1.45
6.71 6.43 1.35

1

A

A.W, W, 2/ D

0

@

9.02 0.78 6.89

9.71 !5.32 1.85
2.09 4.17 2.98

1

A

A.W, W, 3/ D

0

@

9.55 1.57 6.91

5.63 5.55 1.43

5.76 8.29 !0.15

1

A .

Example 5.2

Let a three-order three-dimensional tensor A2 be defined by A133 D A233 D A311 D A322 D 1,

A111 D A222 D !1, and zero otherwise.
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Example 5.3

Let a three-order four-dimensional tensor A be defined by A111 D A222 D A333 D A444 D !1,

A112 D A114 D A121 D A131 D A212 D A332 D A443 D 1, and zero otherwise.

Example 5.4

Let a three-order 500-dimensional tensorA be defined by A1jj D 1 for j ¤ 1, Aj11 D 1 for j ¤ 1,
A111 D !1, A222 D 20, and zero otherwise.

Example 5.5

Let a four-order 100-dimensional tensorA be defined by A1jjj D 1 for j ¤ 1, Aj111 D 1 for j ¤ 1,

A1111 D !1, A2222 D 20, and zero otherwise.

Example 5.6

Let A be a randomly generated three-order 200-dimensional tensor.

Example 5.7

Let A be a randomly generated three-order 50-dimensional tensor.

Clearly, the essentially nonnegative tensors defined in Examples 5.1 and 5.2 are irreducible,

whereas the essentially nonnegative tensors defined in Examples 5.3–5.5 are reducible. The tensors

defined in Examples 5.6 and 5.7 are randomly generated nonnegative tensors. The tensors defined

in Examples 5.4 and 5.5 are sparse tensors.

We take " D 10!9 and terminate our iteration when one of the conditions G
!

x.k/
�

! F
!

x.k/
�

6

10!9 and k > 100 is satisfied. Algorithm 5.1 produces the dominant eigenvalue �.A/ D 36.2757

with eigenvector x� D .1.0000I 0.8351I 0.9415/ for Example 5.1, the dominant eigenvalue �.A/ D

1 with eigenvector x� D .0.5000I 0.5000I 1.000/ for Example 5.2, and the dominant eigenvalue
�.A/ D 0.8225 with eigenvector x� D .1.0000I 0.7408I 0.9714I 0.5330/ for Example 5.3. For the

large-scale tensors in the last four examples, we just list their dominant eigenvalues. Algorithm 5.1

produces the dominant eigenvalue �.A/ D 25.8107 for Example 5.4, the dominant eigenvalue
�.A/ D 8.9499 for Example 5.5, the dominant eigenvalue �.A/ D 1.9995e4 for Example 5.6,

and the dominant eigenvalue �.A/ D 6.2462e4 for Example 5.7,

The details of numerical results are reported in Tables I and II. We list the output details at each

iteration for Example 5.1 in Table I. We also report the number of iterations (No.Iter), the elapsed

Table I. Detailed output of Algorithm 5.1 for Example 5.1.

k �.k/ �
.k/

�.k/ �
.k/

! �.k/ �.k/

1 35.9969 36.5635 36.2802 0.5666 0.2833
2 36.2554 36.3030 36.2792 0.0476 0.0211
3 36.2747 36.2776 36.2762 0.0030 0.0015
4 36.2757 36.2758 36.2757 9.1725e!5 4.5870e!5
5 36.2757 36.2757 36.2757 6.7568e!6 2.9868e!6
6 36.2757 36.2757 36.2757 4.6425e!7 2.2441e!7
7 36.2757 36.2757 36.2757 1.9041e!8 1.4348e!8
8 36.2757 36.2757 36.2757 8.8998e!10 8.1036e!9

Table II. Output of Algorithm 5.1 for Examples 5.1–5.7.

Example No.Iter CPU (s) �.k/ �
.k/

�.k/ �
.k/

! �.k/ �.k/

5.1 8 0.013 36.2757 36.2757 36.2757 8.8998e!10 8.1036e!9
5.2 31 0.035 1.0000 1.0000 1.0000 9.6831e!10 4.1210e!9
5.3 37 0.078 0.8225 0.8225 0.8225 7.3324e!10 1.0635e!8
5.4 39 931 25.8107 25.8107 25.8107 7.2051e!9 3.9024e!9
5.5 21 647 8.9499 8.9499 8.9499 3.5831e!9 2.5078e!9
5.6 4 3.9 1.9995e4 1.9995e4 1.9995e4 4.4001e!9 1.3502e!9
5.7 4 7.3 6.2462e4 6.2462e4 6.2462e4 2.3059e!9 4.1502e!9
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CPU time (CPU (s)), the lower bound �.k/ D F
!

x.k/
�

!˛ and the upper bound �
.k/

D G
!

x.k/
�

!˛

for k > 1, the error�.k/ D kA
!

x.k/
�m!1

!�.k/
!

x.k/
�Œm!1�

k1, and the approximation �.k/ defined

by (15) of the dominant eigenvalue in Tables I and II.

From Tables I and II, we see that the sequence generated by Algorithm 5.1 converges to the

dominant eigenvalue of the essentially nonnegative tensor without irreducibility. Algorithm 5.1

is promising for calculating the dominant eigenvalues of the seven examples. For the sparse ten-

sors in Examples 5.4 and 5.5, the elapsed CPU times are longer because they need more iter-

ations. Algorithm 5.1 can solve the non-sparse tensor in 20 s with the number of entries less

than 100 million. For sparse tensors, Algorithm 5.1 is slow. Note that an internet link is made

available to MATLAB codes of Algorithm 5.1 in the web http://www.polyu.edu.hk/ama/staff/new/

qilq/TensorComp.htm

6. AN APPLICATION AND SOME CONCLUSIONS

In this paper, we have introduced the concepts of essentially nonnegative tensors, which is closely

related to nonnegative tensors. The main contribution is the convexity and log convexity of the dom-

inant eigenvalue of an essentially nonnegative tensor, and hence the same for the spectral radius of

a nonnegative tensor. We also have proposed an algorithm for calculating the dominant eigenvalue,

and convergence analysis has been established for any essentially nonnegative tensor without the

assumptions of irreducibility and primitiveness.

As an application, we find that the convexity of the maximal eigenvalue function plays an impor-

tant role in the trace-preserving problem, which arises in signal processing system [26, 27]. The

trace-preserving problem is to determine �.A/ D minf�.A C Du/ W eTu D 0g and to find a vector

u D .u1, : : : ,un/T that achieves this minimum, where A is an essentially nonnegative tensor and

Du is a diagonal tensor with u1, : : : ,un as the diagonal entries. By Theorem 3.1 and Corollary 3.1,

this problem is a convex problem. Motivated by the idea in [26], we guess that the semismoothness

of the dominant eigenvalue function also holds, and then we may propose a Newton-type algorithm

to solve the trace-preserving problem. This is a topic in the future research.
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