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Abstract

Recently, Zhao and Yang introduced centrosymmetric tensors. In this paper, we further intro-

duce skew centrosymmetric tensors and centrosymmetric Cauchy tensors, and discuss properties of

these three classes of structured tensors. Some sufficient and necessary conditions for a tensor to be

centrosymmetric or skew centrosymmetric are given. We show that, a general tensor can always be

expressed as the sum of a centrosymmetric tensor and a skew centrosymmetric tensor. Some sufficient

and necessary conditions for a Cauchy tensor to be centrosymmetric or skew centrosymmetric are also

given. Spectral properties on H-eigenvalues and H-eigenvectors of centrosymmetric, skew centrosym-

metric and centrosymmetric Cauchy tensors are discussed. Some further questions on these tensors

are raised.
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1 Introduction

Let Rn be the n dimensional real Euclidean space. Denote the set of all natural numbers by N . Suppose

m and n are two positive natural numbers and denote [n] = {1, 2, · · · , n}.

Centrosymmetric and skew centrosymmetric matrices play an important role in information theory,

linear system theory and numerical analysis [1, 2, 4, 7, 20]. Discussion on various properties of such matrices

can be traced back to Muir [11]. Motivated by these notions, Zhao and Yang introduced centrosymmetric

tensors and discussed properties of spectral radii of nonnegative centrosymmetric tensors [23].

We now define centrosymmetric tensors and skew centrosymmetric tensors. The definition of cen-

trosymmetric tensors here is the same as Definition 2.1 of [23].

Definition 1.1 Suppose an order m dimension n real tensor A = (ai1i2···im) satisfies

ai1i2···im = an−i1+1n−i2+1···n−im+1, ij ∈ [n], j ∈ [m].

Then A is called a centrosymmetric tensor. A is called a skew centrosymmetric tensor if it satisfies

ai1i2···im = −an−i1+1n−i2+1···n−im+1, ij ∈ [n], j ∈ [m].

By Definition 1.1, a centrosymmetric tensor is symmetric about its center. When dimension n is odd,

the centrosymmetric tensor has the central entry aii···i, where i =
n+1
2 . When n is even, there is no central

entry. For cases m = 2, n = 2 and n = 3 respectively, we have

A =





a b

b a



 , B =











a b c

d e d

c b a











.

As we look at centrosymmetric tensors, we will find that they have many interesting properties, comparable

in some ways with symmetric tensors. In general, a centrosymmetric tensor is not a symmetric tensor.

We have to point out that, in this paper, we always consider order m dimension n centrosymmetric and

skew centrosymmetric tensors defined in the real field R.

Apparently, centrosymmetric and skew centrosymmetric tensors are structured tensors. Recently, many

interesting and impressed properties of structured tensors have been discovered, and a lot of research papers

on structured tensors appeared [5, 6, 8, 9, 10, 13, 14, 15, 18, 19, 21, 22]. These include M tensors, circulant

tensors, completely positive tensors, Hankel tensors, Hilbert tensors, P tensors, B tensors and Cauchy

tensors. These papers not only established results on spectral properties, positive semi-definiteness and

definiteness of structured tensors, but also gave some important applications of structured tensors in

stochastic process and data fitting [6, 9].
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Our paper is organized as follows. In the next section, definitions of tensor products, H-eigenvalues

and H-eigenvectors are given. In Section 3, basic properties of centrosymmetric and skew centrosymmetric

tensors are presented. Firstly, we prove that the product of two arbitrary centrosymmetric tensors is also

centrosymmetric. Secondly, several sufficient and necessary conditions for a tensor to be centrosymmetric

or skew centrosymmetric are given. They are natural extensions of the matrix case. Furthermore, we show

that any general tensor can be denoted as the sum of a centrosymmetric tensor and a skew centrosymmetric

tensor. Some properties on left inverses and right inverses of centrosymmetric and skew centrosymmetric

tensors are also presented in that section. Properties on H-eigenvectors of centrosymmetric and skew

centrosymmetric tensors are discussed in Section 4. We prove that some real lower dimensional tensors

always have symmetric H-eigenvectors or skew H-eigenvectors. It is proven that all H-eigenvectors of a

centrosymmetric tensor are still H-eigenvectors of the tensor which is resulted from reversing the orders

of the entries. For a skew centrosymmetric tensor, all nonzero H-eigenvalues must exist as pairs, which

means that the reversed value of a nonzero H-eigenvalue remains as an H-eigenvalue of that tensor. In

Section 5, the notion of centrosymmetric Cauchy tensor is introduced. It is proved that a Cauchy tensor is

centrosymmetric if and only if its generating vector is symmetric. We prove that there is no odd dimension

skew centrosymmetric Cauchy tensors. Furthermore, when a centrosymmetric Cauchy tensor is of even

order, then its H-eigenvectors corresponding to any nonzero H-eigenvalues are symmetric vectors. For a

centrosymmetric Cauchy tensor of odd order, the absolute vectors of H-eigenvectors corresponding to any

nonzero H-eigenvalues are symmetric. We conclude this paper with some final remarks in Section 6.

By the end of the introduction, we add some comments on the notation that will be used in the sequel.

Let Cn be the n dimensional complex space and let C be the complex field. Vectors are denoted by italic

lowercase letters i.e. x, y, · · · , and tensors are written as calligraphic capitals such as A, T , · · · . Suppose

e ∈ Rn be all one vectors. Let I = (δi1i2···im) denote the real identity tensor. If the symbol | · | is used on

a vector x = (x1, x2, · · · , xn), then we get another vector |x| = (|x1|, |x2|, · · · , |xn|).

2 Preliminaries

In this section, we present some basic definitions that will be used in the sequel, such as tensor product,

H-eigenvalue and H-eigenvector.

Definition 2.1 [3] Let A ∈ Cn1×n2×···×n2 and B ∈ Cn2×n3×···×nk+1 be order m ≥ 2 and k ≥ 1 tensors,

respectively. The product AB is the following tensor C of order (m− 1)(k − 1) + 1 with entries:

ciα1α2···αm−1
=

∑

i2,··· ,im∈[n2]

aii2···imbi2α1
· · · bimαm−1

,
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where i ∈ [n1], α1, α2, · · · , αm−1 ∈ [n3]× · · · × [nk+1].

In this paper, we mainly study the case when n1 = n2 = · · · = nk+1 = n. The product AB was defined

in [16, 17] when n1 = n2 = · · · = nk+1 = n.

The definition of eigenvalue-eigenvector pairs of real symmetric tensors comes from [12]. Here we allow

the tensors to be not symmetric.

Definition 2.2 Let C be the complex field. A pair (λ, x) ∈ C×Cn\{0} is called an eigenvalue-eigenvector

pair of a real tensor T with order m dimension n, if they satisfy

T xm−1 = λx[m−1], (2.1)

where T xm−1 =
(

∑n

i2,··· ,im=1 tii2···imxi2 · · ·xim

)

1≤i≤n
and x[m−1] = (xm−1

i )1≤i≤n are dimension n vec-

tors.

In Definition 2.2, if λ ∈ R and the corresponding eigenvector x ∈ Rn, then λ, x are called H-eigenvalue

and H-eigenvector respectively.

3 Basic Properties of Centrosymmetric and Skew Centrosym-

metric Tensors

In this section, we first give some results about products of centrosymmetric tensors and skew centrosym-

metric tensors. Then, some sufficient and necessary conditions for a tensor to be a centrosymmetric tensor

or a skew centrosymmetric tensor are presented, which are natural extensions of the matrix case. Finally,

we present properties of left inverses and right inverses of centrosymmetric and skew centrosymmetric

tensors.

Lemma 3.1 Assume B is an n × n square centrosymmetric matrix and A is an order m dimension n

centrosymmetric tensor. Then BA is an order m dimension n centrosymmetric tensor.

Proof. By Definition 2.1, we have

(BA)i1i2···im =
∑

j∈[n]

bi1jaji2···im .

For any i1, i2, · · · , im ∈ [n], since B and A are centrosymmetric, so

(BA)i1i2···im =
∑

j∈[n] bi1jaji2···im

=
∑

j∈[n] bn−i1+1n−j+1an−j+1n−i2+1···n−im+1

=
∑

l∈[n] bn−i1+1laln−i2+1···n−im+1

= (BA)n−i1+1n−i2+1···n−im+1.
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Combining this with Definition 1.1, we know that BA is a centrosymmetric tensor. �

Lemma 3.2 Suppose A and B are defined as in Lemma 3.1. Then AB is a centrosymmetric tensor.

Proof. By Definition 2.1 and the fact that A and B are centrosymmetric, we have

(AB)i1i2···im =
∑

j2,j3,··· ,jm∈[n] ai1j2···jmbj2i2 · · · bjmim

=
∑

j2,j3,··· ,jm∈[n] an−i1+1n−j2+1···n−jm+1bn−j2+1n−i2+1 · · · bn−jm+1n−im+1

=
∑

l2,l3,··· ,lm∈[n] an−i1+1l2···lmbl2n−i2+1 · · · blmn−im+1

= (AB)n−i1+1n−i2+1···n−im+1,

for any i1, i2, · · · , im ∈ [n]. Thus AB is a centrosymmetric tensor. �

Theorem 3.1 Let A be order m dimension n tensor and B be order k dimension n tensor. Assume A

and B are centrosymmetric tensors. Then the production AB is an order (m− 1)(k − 1) + 1 dimension n

centrosymmetric tensor.

Proof. By Definition 2.1, for any i1 ∈ [n], αj = α
j
1α

j
2 · · ·α

j
k−1 ∈ [n]k−1, j ∈ [m− 1], we have

(AB)i1α1···αm−1
=

∑

j2,j3,··· ,jm∈[n] ai1j2···jmbj2α1
· · · bjmαm−1

=
∑

j2,j3,··· ,jm∈[n] an−i1+1n−j2+1···n−jm+1bn−j2+1n−α1+1 · · · bn−jm+1n−αm−1+1

=
∑

l2,l3,··· ,lm∈[n] an−i1+1l2···lmbl2n−α1+1 · · · blmn−αm−1+1

= (AB)n−i1+1n−α1+1···n−αm−1+1,

where n− αj + 1 means n− α
j
t + 1 for every index α

j
t in αj , t ∈ [k − 1]. Here, the second equality follows

that A and B are centrosymmetric tensors. Obviously AB are centrosymmetric tensors. �

From the proof process of Theorem 3.1, we have the following corollaries and we omit the proofs for

simplicity.

Corollary 3.1 Suppose tensor A, B are defined as in Theorem 3.1. Then the following statements holds:

(i) if A is skew centrosymmetric and B is centrosymmetric, then AB is skew centrosymmetric.

(ii) if A is centrosymmetric and B is skew centrosymmetric, then AB is centrosymmetric when m is

odd; AB is skew centrosymmetric when m is even.

(iii) if A and B are both skew ceontrosymmetric, then AB is centrosymmetric when m is even; AB is

skew centrosymmetric when m is odd.

Corollary 3.2 For any finite dimension n tensors A1, A2, · · · , As, if they are all centrosymmetric

tensors, then the product A1A2 · · · As is also a centrosymmetric tensor.
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Let ri, i ∈ [n] denote the sum of some elements in A such that

ri =
∑

i2,i3,··· ,im∈[n]

aii2···im , i ∈ [n].

By the definition of centrosymmetric tensors and skew centrosymmetric tensors, we have the following

conclusions.

Theorem 3.2 Let A = (ai1i2···im) be an order m dimension n tensor. If A is centrosymmetric, then

ri = rn−i+1; if A is skew centrosymmetric, then ri = −rn−i+1.

Corollary 3.3 Assume A is defined as in Theorem 3.2. Suppose A is skew centrosymmetric and n is an

odd number. Then there are at least one zero element in A and at least one i ∈ [n] satisfying ri = 0.

Proof. From Definition 1.1 and the fact that n is odd, let i = n+1
2 , then we have

aii···i = −aii···i, ri = −ri,

which implies that

aii···i = 0, ri = 0

and the desired results hold. �

We now give some sufficient and necessary conditions for a tensor to be centrosymmetric or skew

centrosymmetric. Let J be the n × n real matrix with elements satisfying Jij = δin−j+1, 1 ≤ i, j ≤ n,

where δin−j+1 denotes the Kronecker delta

J =























0 0 · · · 0 1

0 0 · · · 1 0

· · ·

0 1 · · · 0 0

1 0 · · · 0 0























.

Theorem 3.3 Let A be an order m dimension n tensor. Then A is centrosymmetric if and only if

JAJ = A; A is skew centrosymmetric if and only if JAJ = −A.

Proof. For any ij ∈ [n], j ∈ [m], by Definition 2.1, we have

(JAJ)i1i2···im =
∑

j1,j2,··· ,jm∈[n]

Ji1j1aj1j2···jmJj2i2 · · · Jjmim
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By Definition 1.1 and the definition of matrix J , one has

(JAJ)i1i2···im =
∑

j1,j2,··· ,jm∈[n] Ji1j1aj1j2···jmJj2i2 · · · Jjmim

= an−i1+1n−i2+1···n−im+1,

which implies that the sufficient and necessary condition holds. Moreover, the second conclusion can be

proven similarly. �

Since JJ = I, where I is the n× n identity matrix, according to Proposition 1.1 of [16] and Theorem

1.1 of [16], we have the following conclusion.

Theorem 3.4 Let A be an order m dimension n tensor. Then A is centrosymmetric if and only if

AJ = JA; A is skew centrosymmetric if and only if AJ = −JA.

Let x = (x1, x2, · · · , xn) ∈ Rn. Then Jx is a vector that can be gotten by reversing orders of elements

of x. If Jx = x, we call x is a symmetric vector and it is called skew symmetric if Jx = −x. For any given

tensor A = (ai1i2···im) with order m dimension n, the corresponding homogeneous polynomial is denoted

by

f(x) = Axm =
∑

i1,i2,··· ,im∈[n]

ai1i2···imxi1 · · ·xim .

Theorem 3.5 Suppose order m dimension n tensor A is centrosymmetric. Then f(Jx) = f(x) for any

x ∈ Rn; If A is skew centrosymmetric, then f(Jx) = −f(x).

Proof. Let y = Jx = (xn, xn−1, · · · , x2, x1), which means yi = xn−i+1, i ∈ [n]. If A is centrosymmetric,

then we have

f(Jx) = f(y)

=
∑

i1,i2,··· ,im∈[n] ai1i2···imyi1 · · · yim

=
∑

i1,i2,··· ,im∈[n] ai1i2···imxn−i1+1xn−i2+1 · · ·xn−im+1

=
∑

i1,i2,··· ,im∈[n] an−i1+1n−i2+1···n−im+1xn−i1+1xn−i2+1 · · ·xn−im+1

=
∑

j1,j2,··· ,jm∈[n] aj1j2···jmxj1xj2 · · ·xjm

= f(x).

(3.1)

When A is skew centrosymmetric, one has

f(Jx) = f(y)

=
∑

i1,i2,··· ,im∈[n] ai1i2···imyi1 · · · yim

=
∑

i1,i2,··· ,im∈[n] ai1i2···imxn−i1+1xn−i2+1 · · ·xn−im+1

= −
∑

i1,i2,··· ,im∈[n] an−i1+1n−i2+1···n−im+1xn−i1+1xn−i2+1 · · ·xn−im+1

= −
∑

j1,j2,··· ,jm∈[n] aj1j2···jmxj1xj2 · · ·xjm

= −f(x).

(3.2)
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By (3.1) and (3.2), we know that the desired results hold. �

Suppose A = (ai1i2···im) and B = (bi1i2···im) are two order m dimension n tensors, the Hadamard

product of A and B is defined as

A ◦ B = (ai1i2···imbi1i2···im), (3.3)

which is still an order m dimension n tensor. Now, we present several conclusions about the Hadamard

product of centrosymmetric tensors and skew centrosymmetric tensors.

Theorem 3.6 For two order m dimension n tensors A and B, we have the following statements:

(i) if A and B are centrosymmetric, then A ◦ B is centrosymmetric;

(ii) if A and B are skew centrosymmetric tensors, then A ◦ B is centrosymmetric;

(iii) if A is centrosymmetric and B is skew centrosymmetric, then A ◦ B is skew centrosymmetric.

Proof. By Definition 1.1 and (3.3), it is easy to check the authenticity of the results. Thus, we omit the

proof. �

As we all know that any matrix can be decomposed to the sum of a symmetric matrix and a skew

symmetric matrix. Similarly, we have the following result.

Theorem 3.7 Any order m dimension n tensor A can be expressed as the sum of a centrosymmetric

tensor and a skew centrosymmetric tensor.

Proof. Without loss of generality, let A = (ai1i2···im), ij ∈ [n], j ∈ [m]. Set a new tensor Ac = (aci1i2···im)

such that

aci1i2···im = an−i1+1n−i2+1···n−im+1, ij ∈ [n], j ∈ [m].

From a direct computation, we have

A =
A+Ac

2
+

A−Ac

2
,

where A+Ac

2 is centrosymmetric and A−Ac

2 is skew centrosymmetric. Thus, the desired result follows. �

Another important property of centrosymmetric matrices is that the inverse matrix of a centrosym-

metric matrix is also centrosymetric [20]. So, we want to know whether the inverse of a centrosymmetric

tensor is centrosymmetric or not. Unfortunately, there is no definition of the inverse of a tensor. But,

definitions of left inverse and right inverse of tensors are given in [3]. In the following, we will study the

centrosymmetric property of left inverse tensors and right inverse tensors under the assumption that a

centrosymmetric tensor has left inverse and right inverse.

In [3], Bu C. et al. presented the definition of left inverse and right inverse of tensors as below.
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Definition 3.1 [3] Let A be a tensor of order m and dimension n and let B be a tensor of order k and

dimension n. If AB = I, then A is called an order m left inverse of B, and B is called an order k right

inverse of A.

Theorem 3.8 Assume A = (ai1i2···im) be a diagonal centrosymmetric tensor of order m dimension n.

Then,

(i) A has real centrosymmetric left inverse if and only if A has nonzero diagonal entries;

(ii) when m is even, A has real centrosymmetric right inverse if and only if A has nonzero diagonal

entries;

(iii) when m is odd, A has real centrosymmetric right inverse if all diagonal entries of A are positive.

Proof. (i) By Definition 3.1, A has real centrosymmetric left inverse if and only if there exists a real

centrosymmetric tensor B = (bi1i2···ik) with order k and dimension n such that

BA = I, (3.4)

and

bi1i2···ik = bn−i1+1n−i2+1···n−im+1.

For any i ∈ [n], αj ∈ [n]m−1, j ∈ [k − 1]we have

(BA)iα1···αk−1
=

∑

j2,j3,··· ,jk∈[n] bij2···jkaj2α1
· · · ajkαk−1

= δiα1···αk−1
.

When αj = ii · · · i for all j ∈ [k − 1], one has

bii···ia
k−1
ii···i = 1.

Thus, the existence of left inverse of A implies that all diagonal elements of A must be nonzero and the

only if part holds. For sufficient condition, if

aii···i 6= 0, i ∈ [n],

let

bii···i =
1

ak−1
ii···i

, i ∈ [n]

and bi1i2···ik = 0 for the others. Then, B is centrosymmetric since A is centrosymmetric and it is easy to

check equation (3.4) holds. Thus tensor B is an order k real left inverse of A.

(ii) For only if part, there is an order k dimension n real centrosymmetric tensor B = (bi1i2···ik) such

that

(AB)iα1···αm−1
=

∑

j2,j3,··· ,jm∈[n] aij2···jmbj2α1
· · · bjmαm−1

= δiα1···αm−1
.

9



for i ∈ [n], αj ∈ [n]k−1, j ∈ [m− 1]. For diagonal entries of AB, we have

aii···ib
m−1
ii···i = δii···i = 1, i ∈ [n], (3.5)

which implies that tensor A has nonzero diagonal entries.

For sufficient conditions, let the entries of tensor B be that

bii···i = (
1

aii···i
)

1
m−1 , i ∈ [n]

and bi1i2···ik = 0 for the others. Then, by a direct computation, we know that B is a real centrosymmetric

right inverse of A.

(iii) When m is odd, by (3.5)

aii···ib
m−1
ii···i = δii···i = 1, i ∈ [n],

we have that all diagonal elements of A are positive. The others are similar to the proof of (ii). �

Theorem 3.9 Suppose A is a centrosymmetric tensor of order m and dimension n. If A has an order 2

dimension n real left inverse, then it must be unique and centrosymmetric.

Proof. Suppose matrix B is an order 2 real left inverse of tensor A. By Definition 3.1, we have

BA = I.

From Proposition 2.1 of [16] and Problem 1 of [17], we obtain

det(B) 6= 0,

which means that B is a nonsingular matrix. Let B−1 = (b−1
ij ) denote the inverse of B. From Theorem

1.1 of [16], one has

A = B−1I.

Thus, for any i, j ∈ [n], it holds that

aijj···j =
∑

t∈[n]

b−1
it δtjj···j = b−1

ij

and

an−i+1n−j+1···n−j+1 =
∑

t∈[n]

b−1
n−i+1tδtn−j+1n−j+1···n−j+1 = b−1

n−i+1n−j+1.

Since tensor A is centrosymmetric, so

b−1
n−i+1n−j+1 = an−i+1n−j+1···n−j+1 = aijj···j = b−1

ij ,

10



which implies that B−1 is a centrosymmetric matrix. By Proposition 6 of [20], we know that B is

centrosymmetric.

Assume A has another order 2 real left inverse C. Then,

A = B−1I = C−1I,

where C−1 is the inverse of C. Then,

(B−1 − C−1)I = 0.

Combining this with Lemma 2.1 of [3], we have

B−1 = C−1.

By the fact that a nonsingular matrix has a unique inverse matrix, it follows that B = C and the desired

results hold. �

Theorem 3.10 Suppose A is a centrosymmetric tensor of order m and dimension n. Let m be even. If

A has an order 2 dimension n real right inverse, then it must be unique and centrosymmetric.

Proof. Let B = (bij) be any order 2 real right inverse of A. By Proposition 2.1 of [16] and Problem 1 of

[17], we know that B is nonsingular. So, from Theorem 1.1 of [16], we obtain

AB = I,

which can be written

A = IB−1,

where B−1 = (b−1
ij ) is the inverse of matrix B. For any i, j ∈ [n], one has

aijj···j =
∑

i2,i3,··· ,im∈[n]

δii2···imb−1
i2j

b−1
i3j

· · · b−1
imj .

Thus, we obtain

aijj···j = (b−1
ij )m−1, an−i+1n−j+1n−j+1···n−j+1 = (b−1

n−i+1n−j+1)
m−1.

By the fact that tensor A is centrosymmetric, it follows that

(b−1
ij )m−1 = (b−1

n−i+1n−j+1)
m−1, i, j ∈ [n],

and

b−1
ij = b−1

n−i+1n−j+1, i, j ∈ [n],

11



since m is even. So matrix B−1 is centrosymmetric and B is centrosymmetric from Proposition 6 of [20].

Assume A has another order 2 real right inverse C. Then,

A = IB−1 = IC−1,

where C−1 is the inverse of C. Then,

I(B−1 − C−1) = 0.

By Lemma 2.2 of [3], we know that B−1 = C−1 and B = C. �

4 Spectral Properties of Centrosymmetric and Skew Centrosym-

metric Tensors

In this section, we present several conclusions about H-eigenvalues and H-eigenvectors of real centrosym-

metric and skew centrosymmetric tensors.

In [20], it listed that all H-eigenvectors of real matrices with dimension 2×2 or dimension 3×3 are either

symmetric or skew symmetric. But, these nice formulas cannot be extended to the 4 × 4 case. Next, we

will give some properties about H-eigenvectors of dimension 2 and dimension 3 centrosymmetric tensors.

The following two theorems show that order m dimension 2 and order m dimension 3 centrosymmetric

tensors always have symmetric H-eigenvectors or skew symmetric H-eigenvectors respectively.

Theorem 4.1 Suppose A = (ai1i2···im) is a centrosymmetric tensor of order m and dimension 2. Then,
2
∑

i2,··· ,im=1

a1i2···im and
2
∑

i2,··· ,im=1

a1i2···im(−1)i2+···+im+m−1 are H-eigenvalues of A with symmetric H-eigenvector

and skew symmetric H-eigenvector respectively.

Proof. Let e = (1, 1)T and u = (1,−1)T . From Definition 2.2 and the fact that A is centrosymmetric, by

a direct computation we have

Aem−1 = (

2
∑

i2,··· ,im=1

a1i2···im)e[m−1]

and

Aum−1 = (

2
∑

i2,··· ,im=1

a1i2···im(−1)i2+···+im+m−1)u[m−1],

which imply that the desired results hold. �

Theorem 4.2 Assume A = (ai1i2···im) is a centrosymmetric tensor of order m dimension 3. Suppose

m is even. Then, λ =
∑

i2,··· ,im∈{1,3}

a1i2···im(−1)r(i2···im) is an H-eigenvalue of A with skew symmetric

H-eigenvector, where r(i2 · · · im) denote the number of indices i2, · · · , im equal 3.
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Proof. Let x = (1, 0,−1)T . By Definition 2.2, it is easy to check that

(Axm−1)1 =
3
∑

i2,··· ,im=1

a1i2···imxi2 · · ·xim

=
∑

i2,··· ,im∈{1,3}

a1i2···imxi2 · · ·xim

=
∑

i2,··· ,im∈{1,3}

a1i2···im(−1)r(i2···im).

(4.1)

Combining this with the fact A is centrosymmetric and m is even, one has

(Axm−1)3 = −(Axm−1)1. (4.2)

On the other hand,

(Axm−1)2 =
∑

i2,··· ,im∈{1,3}

a2i2···imxi2 · · ·xim

=
∑

i2,··· ,im∈{1,3}

a2i2···im(−1)r(i2···im)

=
∑

i2,··· ,im∈{1,3}

a24−i2···4−im(−1)r(i2···im)

=
∑

j2,··· ,jm∈{1,3}

a2j2···jm(−1)m−1−r(j2···jm)

= −
∑

j2,··· ,jm∈{1,3}

a2j2···jm(−1)r(j2···jm)

= −(Axm−1)2.

Thus,

(Axm−1)2 = 0. (4.3)

By (4.1)-(4.3), we know that λ is an H-eigenvalue of A corresponding to the skew symmetric H-eigenvector

x. �

Now, we consider general order m dimension n centrosymmetric tensors and skew centrosymmetric

tensors. We will show that all H-eigenvectors of a centrosymmetric tensor are still H-eigenvectors of

the tensor which is resulted from reversing the orders of the entries. On the other side, for a skew

centrosymmetric tensor, if it has a nonzero H-eigenvalue λ, then −λ is still an H-eigenvalue of that skew

centrosymmetric tensor.

Theorem 4.3 Let tensor A be a centrosymmetric tensor of order m dimension n. If A has an H-

eigenvalue λ with an H-eigenvector x, then Jx is also an H-eigenvector of A corresponding to λ.

Proof. By Definition 2.2, we have

Axm−1 = λx[m−1].

13



Let x = (x1, x2, · · · , xn), then Jx = (xn, xn−1, · · · , x1). For any i ∈ [n], one has

(A(Jx)m−1)i =
∑

i2,i3,··· ,im∈[n] aii2i3···im(Jx)i2 · · · (Jx)im

=
∑

i2,i3,··· ,im∈[n] aii2i3···imxn−i2+1xn−i3+1 · · ·xn−im+1

=
∑

i2,i3,··· ,im∈[n] an−i+1n−i2+1···n−im+1xn−i2+1xn−i3+1 · · ·xn−im+1

=
∑

t2,t3,··· ,tm∈[n] an−i+1t2t3···tmxt2xt3 · · ·xtm

=
∑

t2,t3,··· ,tm∈[n] λx
m−1
n−i+1

=
∑

t2,t3,··· ,tm∈[n] λ(Jx)
m−1
i .

(4.4)

Thus, Jx is an H-eigenvector of A corresponding to the H-eigenvalue λ. �

Theorem 4.4 Let tensor A be a skew centrosymmetric tensor of order m dimension n. If A has a

nonzero H-eigenvalue λ with an H-eigenvector x, then Jx is also an H-eigenvector of A corresponding to

the H-eigenvalue −λ.

Proof. By definition of H-eigenvalues and H-eigenvectors, we have

Axm−1 = λx[m−1].

Similarly, by (4.4), for any i ∈ [n], one has

(A(Jx)m−1)i =
∑

i2,i3,··· ,im∈[n] aii2i3···im(Jx)i2 · · · (Jx)im

=
∑

i2,i3,··· ,im∈[n] aii2i3···imxn−i2+1xn−i3+1 · · ·xn−im+1

= −
∑

i2,i3,··· ,im∈[n] an−i+1n−i2+1···n−im+1xn−i2+1xn−i3+1 · · ·xn−im+1

= −
∑

t2,t3,··· ,tm∈[n] an−i+1t2t3···tmxt2xt3 · · ·xtm

= −
∑

t2,t3,··· ,tm∈[n] λx
m−1
n−i+1

=
∑

t2,t3,··· ,tm∈[n](−λ)(Jx)m−1
i .

Thus, Jx is an H-eigenvector of A corresponding to the H-eigenvalue −λ. �

Theorem 4.5 Let A = (ai1i2···im) be a centrosymmetric tensor of order m dimension n. Then, all H-

eigenvectors corresponding to the H-eigenvalue λ, where dimker(λI − A) = 1, are either symmetric or

skew-symmetric.

Proof. Suppose x ∈ Rn is a H-eigenvector of A corresponding to λ, where dimker(λI − A) = 1. By

Definition 2.2, we have

Axm−1 = λx[m−1]. (4.5)

By Theorem 3.3 and (4.5), one has

JAJxm−1 = λx[m−1],
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which implies that

AJxm−1 = λJx[m−1] = λ(Jx)[m−1]. (4.6)

On the other hand, by Definition 1.1, we have

(AJxm−1)i =
∑

i2,i3,··· ,im∈[n](AJ)ii2i3···imxi2xi3 · · ·xim

=
∑

i2,i3,··· ,im∈[n](
∑

j2,j3,··· ,jm∈[n] aij2···jmJj2i2 · · · Jjmim)xi2xi3 · · ·xim

=
∑

i2,i3,··· ,im∈[n] ain−i2+1···n−im+1xi2xi3 · · ·xim

=
∑

t2,t3,··· ,tm∈[n] ait2t3···tmxn−t2+1xn−t3+1 · · ·xn−tm+1

=
∑

t2,t3,··· ,tm∈[n] ait2t3···tm(Jx)t2(Jx)t3 · · · (Jx)tm

= (A(Jx)m−1)i,

for any i ∈ [n]. So, it holds that

AJxm−1 = A(Jx)m−1. (4.7)

By (4.6)-(4.7), we obtain

A(Jx)m−1 = λ(Jx)[m−1],

which means Jx is also an H-eigenvector corresponding to λ. By assumptions, it follows that Jx = ax

for some nonzero real constant, and a is also an eigenvalue of J . Then a = 1. Therefore, Jx = x, which

implies that x is either symmetric or skew-symmetric. �

5 Centrosymmetric Cauchy tensors

In [5], Chen and Qi introduced Cauchy tensors, and gave sufficient and necessary conditions for positive

definiteness and semi-definiteness of even order Cauchy tensors. In this section, we study centrosymmetric

Cauchy tensors and give several sufficient and necessary conditions for a Cauchy tensor to be centrosym-

metric. Furthermore, we prove that there are no odd dimension skew centrosymmetric Cauchy tensors.

When the order is even, we prove that all H-eigenvalues corresponding to nonzero H-eigenvalues of a cen-

trosymmetric Cauchy tensor are symmetric vectors. When the order is odd, we prove that the absolute

vectors of these H-eigenvalues are symmetric vectors.

Now, we first state the definition of Cauchy tensors.

Definition 5.1 [5] Let vector c = (c1, c2, · · · , cn) ∈ Rn. Suppose that a real tensor C = (ci1i2···im) is

defined by

ci1i2···im =
1

ci1 + ci2 + · · ·+ cim
, j ∈ [m], ij ∈ [n]. (5.1)

Then, we say that C is an order m dimension n symmetric Cauchy tensor and the vector c ∈ Rn is called

the generating vector of C.
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In the sequence, a centrosymmetric symmetric Cauchy tensor is called a centrosymmetric Cauchy

tensor for simplicity.

Theorem 5.1 Assume C is a Cauchy tensor defined as in (5.1). Let c ∈ Rn be the generating vector of

C. Then Cauchy tensor C is centrosymmetric if and only if c is symmetric i.e. Jc = c.

Proof. For sufficient conditions, suppose c = (c1, c2, · · · , cn). By the definition of symmetric vectors, we

have

ci = cn−i+1, i ∈ [n].

So, for any i1, i2, · · · , im ∈ [n], one has

ci1,i2,··· ,im = 1
ci1+ci2+···+cim

= 1
cn−i1+1+cn−i2+1+···+cn−im+1

= cn−i1+1n−i2+1···n−im+1,

which implies that C is a centrosymmetric Cauchy tensor.

For necessary conditions, assume Cauchy tensor C is centrosymmetric. Then we have

cii···i = cn−i+1n−i+1···n−i+1, i ∈ [n],

which means
1

mci
=

1

mcn−i+1
, i ∈ [n].

Thus ci = cn−i+1, i ∈ [n] and c is a symmetric vector. �

Theorem 5.2 Assume C is a Cauchy tensor defined as in (5.1). Then C is centrosymmetric if and only

if

JC = C.

Proof. Let c be the generating vector of C. For any i1, i2, · · · , im ∈ [n], we have

(JC)i1,i2,··· ,im =
∑

t∈[n] Ji1tcti2···im

= cn−i1+1i2···im

= 1
cn−i1+1+ci2+···+cim

.

(5.2)

Thus, from (5.2), we obtain that

JC = C

if and only if ci = cn−i+1, i ∈ [n] i.e. c is symmetric. By Theorem 5.1, we know that JC = C if and only

if Cauchy tensor C is centrosymmetric. �

By Theorem 3.3, we have the following result.
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Corollary 5.1 Assume C is a Cauchy tensor defined as in (5.1). Then C is centrosymmetric if and only

if

CJ = C.

Theorem 5.3 Assume C is a Cauchy tensor defined as in (5.1). Assume n is even, then C is skew

centrosymmetric if and only if c is skew symmetric i.e. Jc = −c, where c ∈ Rn is the generating vector of

C.

Proof. When Cauchy tensor C is skew centrosymmetric, by Definitions 1.1 and 5.1, we have

1

mci
= cii···i = −cn−i+1n−i+1···n−i+1 = −

1

mcn−i+1
, i ∈ [n].

Hence

ci = −cn−i+1, i ∈ [n],

which implies that c is skew symmetric and the only if part holds. For sufficient conditions, for any

i1, i2, · · · , im ∈ [n], we have

ci1i2···im = 1
ci1+ci2+···+cim

= − 1
cn−i1+1+cn−i2+1+···+cn−im+1

= −cn−i1+1n−i2+1···n−im+1,

where the second equality uses the fact that c is skew symmetric. Thus Cauchy tensor C is skew cen-

trosymmetric. �

Here, it should be noted that there is no odd dimension skew centrosymmetric Cauchy tensor. If C is

skew centrosymmetric Cauchy tensor and suppose n is odd, let i = n+1
2 , then

cii···i =
1

mci
= −cn−i+1n−i+1···n−i+1 = −

1

mcn−i+1
= −

1

mci
.

Thus
1

mci
= 0,

which is a contradiction.

Theorem 5.4 Assume order m dimension n Cauchy tensor C is defined as in (5.1). Let c = (c1, c2, · · · , cn)

be the generating vector of C. Suppose C is centrosymmetric. Then, for any H-eigenvector x ∈ Rn of C

corresponding to a nonzero H-eigenvalue, x is symmetric when m is even; |x| is symmetric when m is odd.
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Proof. Since Cauchy tensor C is centrosymmetric, by Theorem 5.1, the generating vector c is symmetric.

Suppose x is an H-eigenvector of C corresponding to a nonzero H-eigenvalue λ. By Definition 2.2, for

i ∈ [n], we have

λxm−1
i = (Cxm−1)i

=
∑

i2,i3,··· ,im∈[n] cii2···imxi2xi3 · · ·xim

=
∑

i2,i3,··· ,im∈[n]
1

ci+ci2+···+cim
xi2xi3 · · ·xim

=
∑

i2,i3,··· ,im∈[n]
1

cn−i+1+ci2+···+cim
xi2xi3 · · ·xim

= λxm−1
n−i+1.

When m is even, it holds that xi = xn−i+1, i ∈ [n], which implies that x is symmetric. When m is odd,

we obtain |xi| = |xn−i+1|, i ∈ [n], which implies that |x| is symmetric. �

6 Final Remarks

In this article, properties of centrosymmetric tensors and skew centrosymmetric tensors are discussed.

Some interesting results are natural extensions of the matrix case such as the products of centrosymmetric

tensors, the sufficient and necessary conditions for a tensor to be centrosymmetric and skew centrosym-

metric. Spectral properties about H-eigenvalues and H-eigenvectors of these tensors are also discussed.

Furthermore, some symmetry properties of H-eigenvectors corresponding to nonzero H-eigenvalues of cen-

trosymmetric Cauchy tensors are presented. Some further questions are as follows.

Question 1. How about the positive definiteness property of centrosymmetric tensors? Can we give

some sufficient conditions just like the matrix case in [1]?

Question 2. What are the properties of H-eigenvectors of skew centrosymmetric Cauchy tensors?
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