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The main purpose of this paper is to investigate the perturbation bounds of
the tensor eigenvalue and singular value problems with even order. We
extend classical definitions from matrices to tensors, such as, λ-tensor and the
tensor polynomial eigenvalue problem. We design a method for obtaining a
mode-symmetric embedding from a general tensor. For a given tensor, if the
tensor is mode-symmetric, then we derive perturbation bounds on an algebraic
simple eigenvalue and Z-eigenvalue. Otherwise, based on symmetric or mode-
symmetric embedding, perturbation bounds of an algebraic simple singular value
are presented. For a given tensor tuple, if all tensors in this tuple are mode-
symmetric, based on the definition of a λ-tensor, we estimate perturbation bounds
of an algebraic simple polynomial eigenvalue. In particular, we focus on tensor
generalized eigenvalue problems and tensor quadratic eigenvalue problems.

Keywords: algebraic simple; mode-symmetry; mode-symmetric embedding;
mode-k tensor polynomial eigenvalue; tensor generalized eigenvalue; tensor
quadratic eigenvalue; tensor generalized singular value; nonsingular tensor

AMS Subject Classifications: 15A18; 15A69; 65F15; 65F10

1. Introductions

Qi [1] defined two kinds of eigenvalue and investigated relative results similar to the matrix
eigenvalue. Independently, Lim [2] proposed another definition of eigenvalue, eigenvectors,
singular value and singular vectors for tensors based on a constrained variational approach,
much like the Rayleigh quotient for symmetric matrix eigenvalue (see [3, Chapter 8]).

Chang et al. [4,5] introduced the eigenvalue and defined generalized tensor eigenprob-
lems. To our best knowledge, Kolda and Mayo [6], Cui et al. [7] proposed two algorithms
for solving generalized tensor eigenproblems, and they pointed out that the generalized
eigenvalue framework unifying definitions of tensor eigenvalue, such as, eigenvalue and
H-eigenvalue [1,2], E-eigenvalue, Z-eigenvalue [1] and D-eigenvalue [8]. Ding and Wei
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2 M. Che et al.

[9] focused on the properties and perturbations of the spectra of regular tensor pairs and
extended results from matrices or matrix pairs to tensor pairs.

Li and Ng [10,11] extended the well-known column sum bound of the spectral radius
for nonnegative matrices to the tensor case, and also derived an upper bound of the spectral
radius for a nonnegative tensor via the largest eigenvalue of a symmetric tensor.

Throughout this paper, we assume that m, n (≥ 2) are positive integers and m is even.
We use small letters x, u, v, . . . , for scalars, small bold letters x, u, v, . . . , for vectors,
capital letters A, B, C, . . . , for matrices and calligraphic letters A,B, C, . . . , for tensors.
Denote [n] by {1, 2, . . . , n}. Denote 〈n〉 by {n1, n2, . . . , nm}.

The set Tm,n consists of all order m dimension n tensors and each element of A ∈ Tm,n

is real, that is, Ai1i2...im ∈ R where ik ∈ [n] with k ∈ [m], and the set Tm,〈n〉 consists of all
order m tensors of size n1 × n2 × · · · × nm and each element of A ∈ Tm,〈n〉 is real, that is,
Ai1i2...im ∈ R where ik ∈ [nk] with k ∈ [m]. For a vector x ∈ C

n , ‖x‖2 = x∗x where ‘∗’
represents conjugate transposition, |x|mm means xm

1 + xm
2 + · · · + xm

n . In particular, when
x ∈ Rn , the vector m-norm for |x|mm is ‖x‖m

m = |x1|m + |x2|m + · · · + |xn|m . 0 means the
zero vector in C

n .
A ∈ Tm,n is nonnegative (see [4]), if all elements are nonnegative, and we denote

nonnegative tensors by N Tm,n . D ∈ Tm,n is diagonal (see [1]), if all off-diagonal entries
are zero. In particular, if the diagonal entries of D are 1, then D is called the identity tensor
(see [1]) and denote it by I.

The rest of our paper is organized as follows. Section 2 introduces some definitions,
such as mode-k determinant, the polynomial tensor eigenvalue problem, from matrices to
tensors, derives a method for obtaining mode-symmetric embedding from A ∈ Tm,〈n〉,
and covers a classical result about the perturbation of a simple eigenvalue of A ∈ C

n×n . In
Section 3, for a mode-symmetric tensor, we derive some perturbation bounds of an algebraic
simple eigenvalue and Z-eigenvalue, based on symmetric or mode-symmetric embedding,
we explore the perturbation bounds of an algebraic simple singular value of A ∈ Tm,〈n〉.
In Section 4, for a given λ-tensor, we derive the first-order perturbation of an algebraic
simple polynomial eigenvalue and obtain the coefficient of the first-order perturbation term.
In particular, we consider the tensor generalized eigenvalue problem, and present a new
perturbation bound of an algebraic simple eigenvalue. We show ill-condition tensors for
computing Z-eigenvalue or singular value via random numerical examples. We conclude
our paper in Section 6.

2. Preliminaries

In this section, we present several definitions generalized from matrices to tensors, we state
some remarks and properties associated with these definitions. We shall recall a lemma
about the perturbation of a simple eigenvalue of a matrix A ∈ C

n×n .

2.1. Definitions

The mode-k product (see [12,13]) of a tensor A ∈ Tm,n by a matrix B ∈ R
n×n , denoted by

A ×k B is a tensor C ∈ Tm,n ,

Ci1...ik−1 j ik+1...im =
n∑

ik=1

Ai1...ik−1ik ik+1...im b jik , k ∈ [m].
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Linear and Multilinear Algebra 3

In particular, the mode-k multiplication of a tensor A ∈ Tm,n by a vector x ∈ R
n is

denoted by A×̄kx. When we set C = A×̄kx, by elementwise, we have

Ci1...ik−1ik+1...im =
n∑

ik=1

Ai1...ik−1ik ik+1...im xik .

Let m vectors xk ∈ R
n , A×̄1x1 . . . ×̄mxm is easy to define. If these m vectors are also the

same vectors, denoted by x, then A×̄1x . . . ×̄mx can be simplified as Axm . The mode-k
product of a tensor A ∈ Tm,〈n〉 by a matrix B ∈ R

p×nk is easy to define.
The Frobenius norm of a tensor A ∈ Tm,〈n〉 (see [13,14]) is the square root of the sum

of the squares of all its elements, i.e.

‖A‖F =
√√√√ n1∑

i1=1

n2∑
i2=1

· · ·
nm∑

im=1

A2
i1i2...im

,

which is a generalization of the well-known Frobenius-norm of a matrix A ∈ C
m×n .

Analogous to the reducible matrices (see [15, Chapter 2]), A ∈ Tm,n is called reducible
(see [4]), if there exists a nonempty proper index subset I ⊂ {1, 2, . . . , n} such that

Ai1i2...im = 0, for all i1 ∈ I and i2, . . . , im /∈ I.

If A is not reducible, then we call A irreducible.
A is called symmetric (see [1,2]) if Ai1i2...im is invariant by any permutation π , that is,

Ai1i2...im = Aπ(i1,i2,...,im ), where all ik ∈ [n] with k ∈ [m]. We denote all symmetric tensors
by STm,n .

Symmetric tensor is a special case of the following definition of ‘mode-symmetric’. We
shall provide a more general definition about mode-symmetric of a tensor.

Definition 2.1 Let A ∈ Tm,n. A is called mode-symmetric, if its entries satisfy the
following formulae

Ai1i2...im = Ai2i3...im i1 = · · · = Aimi1...im−1 ,

where ik ∈ [n] with k ∈ [m]. We denote all mode-symmetric tensors by M STm,n.

The following definition generalizes that of Lim [2], and when x∗x is represented by
x	x, this definition extends that of Qi [1].

Definition 2.2 Let A ∈ Tm,n. For any k ∈ [m], if there exists unit xk ∈ C
n and λk ∈ C

such that

A×̄1xk . . . ×̄k−1xk×̄k+1xk . . . ×̄mxk = λkxk, (2.1)

then the pair (λk, xk) is called a mode-k E-eigenpair of A.
If xk ∈ R

n and λk ∈ R, then the pair (λk, xk) is called a mode-k Z-eigenpair of A.
Moreover, the mode-k E-spectrum and Z-spectrum of A are defined as

Ek(A) = {λ|λ is a mode-k E-eigenvalue of A},
Zk(A) = {λ|λ is a mode-k Z-eigenvalue of A}.
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4 M. Che et al.

Given A ∈ Tm,n , a mode-k eigenpair, which is a little bit different from Lim [2], is
defined as follows.

Definition 2.3 Let A ∈ Tm,n. For any k ∈ [m], if there exists nonzero xk ∈ C
n and

λk ∈ C such that

A×̄1xk . . . ×̄k−1xk×̄k+1xk . . . ×̄mxk = λkx[m−1]
k , (2.2)

where x[m−1] = (xm−1
1 , xm−1

2 , . . . , xm−1
n )	, then the pair (λk, xk) is called a mode-k

eigenpair of A.
If xk ∈ R

n and λk ∈ R, then the pair (λk, xk) is called a mode-k H-eigenpair of A.
Moreover, the mode-k spectrum σk(A) of A is defined as

σk(A) = {λ|λ is a mode-k eigenvalue of A}.

The mode-k spectral radius ρk(A) is max{|λ| | λ ∈ σk(A)}. While the spectral radius
ρ(A) of a tensor A is denoted by ρ(A) = max1≤k≤m ρk(A).

Mode-k eigenvectors are generalized by left and right eigenvectors of a matrix
A ∈ Rn×n . For k ∈ [m], some properties of the mode-k eigenpairs of A are presented
in the following:

(a) Given a tensor A ∈ Tm,n and a vector x ∈ Cn , the following equalities

A×̄2x×̄3x . . . ×̄mx = A×̄1x×̄3x . . . ×̄mx = · · · = A×̄1x×̄2x . . . ×̄m−1x

do not hold. However, when A is symmetric or mode-symmetric, above equalities
hold.

(b) Generally, σk(A) (k ∈ [m]) are different sets. Furthermore, ρk(A) �= ρl(A), where
k �= l ∈ [m].

(c) Suppose that A is symmetric (mode-symmetric), if (λ, x) is a mode-k eigenpair
of A, then, (λ, x) is also other mode-l eigenpairs of A, where k �= l ∈ [m].
Furthermore, σk(A) (k ∈ [m]) are the same sets, denoted by σ(A).

Now, we state the reason why (a) exists for symmetric or mode-symmetric tensor. Without
loss of generality, let m = 4. We have

(A×̄2x×̄3x×̄4x)i =
n∑

jkl=1

Ai jkl x j xk xl ,

(A×̄1x×̄3x×̄4x) j =
n∑

ikl=1

Ai jkl xi xk xl =
n∑

kli=1

A jkli xk xl xi ,

(A×̄1x×̄2x×̄4x)k =
n∑

i jl=1

Ai jkl xi xk xl =
n∑

li j=1

Akli j xk xi x j ,

(A×̄1x×̄2x×̄3x)l =
n∑

i jk=1

Ai jkl xi x j xk =
n∑

i jk=1

Ali jk xi x j xk .
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Linear and Multilinear Algebra 5

According to Definitions 2.1 and 2.3, we have

Ai jkl = A jkli = Akli j = Ali jk, i, j, k, l ∈ [n].
Then, (a) holds for symmetric or mode-symmetric tensors.

For a given tensor A ∈ Tm,n , if a pair (λ, x) is the mode-1 eigenpair of A, then (2.2) in
Definition 2.3 can be simplified as Axm−1 = λx[m−1], with Axm−1 := A×̄2x×̄3x . . . ×̄mx.
For a symmetric tensor, Qi [1] derived some properties of a mode-1 eigenvalue. And for a
generic tensor, Chang et al. [16] described mode-1 spectrum and the mode-1 spectral radius.

Qi [1] defined the symmetric hyper-determinant of a super-symmetric tensor A. The
following definition generalizes from Hu et al. [17, Definition 1.2] and we name it as mode-k
determinant of A with k ∈ [m], where A ∈ Tm,n .

Definition 2.4 Suppose that A ∈ Tm,n. For k ∈ [m], mode-k determinant of A, denoted
by Detk(A), is defined as the resultant of polynomial system

A×̄1x . . . ×̄k−1x×̄k+1x . . . ×̄mx = 0.

When Detk(A) �= 0, then A is called mode-k nonsingular.

When k = 1, Hu et al. [17, Corollary 6.5] derived that

Det1(A) =
∏

λi ∈σ1(A)

λi .

According to Definitions 2.3 and 2.4, we can derive a more general result:

Detk(A) =
∏

λi ∈σk (A)

λi .

For the set Tm,n , Chang et al. [4] considered the tensor generalized eigenvalue problem,
and a more general case than the tensor generalized eigenvalue problem is the tensor
polynomial eigenvalue problem. For given tensors A0, . . . ,Al ∈ Tm,n and we define the
λ-tensor Pl(λ) as

Pl(λ) = λlAl + λl−1Al−1 + · · · + λA1 + A0.

Hence, we state the definition of the polynomial tensor eigenvalue problem.

Definition 2.5 For any k ∈ [m], if there exists nonzero vector xk ∈ C
n and λk ∈ C such

that

Pl(λk)×̄1xk . . . ×̄k−1xk×̄k+1xk . . . ×̄mxk = 0,

then the pair (λk, xk) is called a mode-k polynomial eigenpair of Pl(λ).
If xk ∈ R

n and λk ∈ R, then the pair (λk, xk) is called a mode-k polynomial H-eigenpair
of Pl(A). Meanwhile, we denote the set of Pl(λ)’s mode-k polynomial eigenvalue by

�k(Pl(λ)) = {λ | Detk(Pl(λ)) = 0}
= {λ | λ is a mode-k polynomial eigenvalue of Pl(λ)}.
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6 M. Che et al.

Ding et al. [18] defined a regular tensor pair (A,B) with A,B ∈ Tm,n . In general,
according to Definition 2.4 and λ-tensor Pl(λ), mode-k regular about a tensor (l + 1)-tuple
is defined as follows.

Definition 2.6 For a given λ-tensor Pl(λ), a tensor (l + 1)-tuple (Al , . . . ,A1,A0) is
mode-k singular if for all λ, Detk(Pl(λ)) ≡ 0 holds, where all tensors in this tuple belong
to Tm,n, or if all tensors in this tuple belong to Tm,〈n〉, where these exist two different indices
k, l ∈ [m] such that nk �= nl . Otherwise the (l + 1)-tuple (Al , . . . ,A1,A0) is said to be
mode-k regular, where all tensors in the tuple belong to Tm,n.

In this paper, we only consider the tensor polynomial eigenvalue problem where as-
sociated tensor (l + 1)-tuple (Al , . . . ,A1,A0) is regular. Meanwhile, for a given mode-k
regular tensor tuple, according to Definition 2.6, we know that there exists a λ̂ such that
Detk(Pl (̂λ)) �= 0. Then, we can choice another (l + 1)-tuple (Ãl , . . . , Ã1, Ã0) such that
Ãl = ∑l

i=0 λ̂lAl and there is a one-to-one map between �k(Pl(λ)) and �k(P̃l(λ)), where
Detk(Ãl) �= 0 and P̃l(λ) = λlÃl + λl−1Ãl−1 + · · · + λÃ1 + Ã0.

Furthermore, we can also suppose that Detk(Al) �= 0, that is, Al is nonsingular. For
a given Pl(λ), when Al is nonsingular, we will show that, for all k ∈ [m], �k(Pl(λ)) are
finite subsets of C.

Meanwhile, for a given tensor (l + 1)-tuple (Al , . . . ,A1,A0), we can also define a
(α, β)-tensor. Let Pl(α, β) = αlAl + αl−1βAl−1 + · · · + αβl−1A1 + βlA0. It is obvious
that Pl(α, β) is a homogeneous polynomial on α and β. The relationship between Pl(λ)

and Pl(α, β) is listed below. If β �= 0, then Pl(α, β) = βl Pl(α/β); and if α �= 0, then
Pl(α, β) = αl P̃l(β/α), where P̃l(β/α) = Al + tAl−1 +· · ·+ t l−1A1 + t lA0 and t = β/α.

For a given λ-tensor Pl(λ), when the pair (λk, xk) is a mode-k polynomial eigenpair of
Pl(λ), then, we can choose a pair (αk, βk) such that

Pl(αk, βk)×̄1xk . . . ×̄k−1xk×̄k+1xk . . . ×̄mxk = 0

and

λk =
{

αk/βk, βk �= 0,

∞, βk = 0,

with (αk, βk) �= (0, 0).
For a given tensor A ∈ Tm,〈n〉, let xk ∈ R

nk be nonzero vectors and ‖xk‖ = 1 with
k ∈ [m]. If (σ, x1, x2, . . . , xm) is a solution of this following nonlinear equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

A×̄2x2×̄3x3 . . . ×̄mxm = σx1,

A×̄1x1×̄3x3 . . . ×̄mxm = σx2,
...

A×̄1x1×̄2x2 . . . ×̄m−1xm−1 = σxm,

(2.3)

then, the unit vector xk and σ are called the mode-k singular vector, k ∈ [m], and singular
value of A, respectively (see [2]).

Meanwhile, for a given tensor A ∈ Tm,〈n〉, its singular value and associated mode-k
singular vectors can be generalized the in following form.

Definition 2.7 Let Bk ∈ R
nk×nk be positive definite matrices and xk ∈ R

nk be nonzero
vectors where x	

k Bkxk=1 with k ∈ [m]. If (σ, x1, x2, . . . , xm) is a solution of this following
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Linear and Multilinear Algebra 7

nonlinear equations ⎧⎪⎪⎪⎨⎪⎪⎪⎩
A×̄2x2×̄3x3 . . . ×̄mxm = σ B1x1,

A×̄1x1×̄3x3 . . . ×̄mxm = σ B2x2,
...

A×̄1x1×̄2x2 . . . ×̄m−1xm−1 = σ Bmxm,

(2.4)

then, xk and σ are called the restricted mode-k singular vector, k ∈ [m], and restricted
singular value of A, respectively.

When all matrices Bk are the identity matrix, Formulae (2.4) reduces to Formulae (2.3).

2.2. Some remarks

As we know, many scholars extended definitions from matrices to tensors. However, for
these definitions, there are some differences between matrices and tensors given in following
remark.

Remark 2.1 For all mode-k E-spectrum of A and all mode-k tensor polynomial eigenvalue
of Pl(λ), some statements are given.

(1) When A ∈ Tm,n , Ek(A) (k ∈ [m]) are the different sets. However, either A is
symmetric or mode-symmetric, Ek(A) (k ∈ [m]) are the same sets, denoted by
E(A). Similar to the case of Zk(A).

(2) When A ∈ Tm,n , Detk(A) �= Detl(A) with k �= l ∈ [m]. Either A is symmetric
or mode-symmetric, for all k ∈ [m], Detk(A) are the same number, denoted by
Det(A).

(3) If all tensors in Pl(λ) are symmetric or mode-symmetric, �k(Pl(λ)) (k ∈ [m]) are
the same sets, denoted by �(Pl(λ)). If there exists a tensor in Pl(λ) is not symmetric
or mode-symmetric, then the result does not hold.

(4) Hereinafter, when we refer to an Z- (or E- or polynomial) eigenpair (λ, x), it means
that (λ, x) is a mode-1 Z- (or E- or polynomial) eigenpair.

We know that the matrix eigenvalue problem and the generalized matrix eigenvalue
problem are two special cases of the polynomial matrix eigenvalue problem (see [3]). For
the polynomial tensor eigenvalue problem, similar statements are in following.

Remark 2.2 Let Pl(λ) = λlAl+λl−1Al−1+· · ·+λA1+A0 with Ai ∈ Tm,n (i = 0 : l−1).
The following three special cases of Definition 2.5 should be emphasized.

(a) When l = 1, A1 = I and A0 is symmetric, Definition 2.5 is a generalization of
Lim [2] and Qi [1] derived some properties of a mode-1 eigenpair, i.e. the tensor
eigenvalue problem.

(b) When l = 1 and A1 is not the identity tensor, Chang et al. [4] considered Definition
2.5, and further developed by Zhang [19] with k = 1. We call a pair (λk, xk),
satisfying Definition 2.5, is a mode-k generalized eigenpair of a 2-tuple (A1,A0),
i.e. the tensor generalized eigenvalue problem.
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8 M. Che et al.

Figure 1. Intuitive performance of msym(A): A1 for the first part, the second part represented by
A2; and A3 for the third part. Not labelled part means all zero elements of msym(A).

(c) When l = 2, We call a pair (λk, xk), satisfying Definition 2.5, is a mode-k quadratic
eigenpair of a 3-tuple (A2,A1,A0), i.e. the tensor quadratic eigenvalue problem.

Some properties of the mode-k tensor matrix product are given as follows.

Lemma 2.1 ([14, Property 2 and 3], [13]) Given a tensor A ∈ Tm,n and the matrices
F ∈ R

n×n and G ∈ R
n×n. For different integers k and l, one has

(A ×k F) ×l G = (A ×l G) ×k F = A ×k F ×l G, (A ×k F) ×k G = A ×k (G · F),

where ‘·’ means the multiplication of two matrices.

Suppose that A ∈ C
n×n . Wilkinson [20], Demmel [21] and Stewart and Sun [22]

concentrated on computing the condition number of a simple eigenvalue, respectively.

Lemma 2.2 ([21, Theorem 4.4], [22, Theorem 2.3]) Let λ be a simple eigenvalue of A
with right eigenvector x and left eigenvector y, normalized so that ‖x‖ = ‖y‖ = 1. Let
λ + δλ be the corresponding eigenvalue of A + δA. Then

δλ = y∗δAx
y∗x

+ O(‖δA‖2
2), or

|δλ| ≤ ‖δA‖2

y∗x
+ O(‖δA‖2

2) = sec 
(y, x)‖δA‖2 + O(‖δA‖2
2),
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Linear and Multilinear Algebra 9

where 
(y, x) is the acute angle between y and x and ‖A‖2 is the largest singular value
of the matrix A. In other words, sec 
(y, x) = 1/|y∗x| is the condition number of the
eigenvalue λ.

2.3. Symmetric and mode-symmetric embeddings

Assume that A ∈ R
m×n , well known relationship exists between the singular value de-

composition of A and the Schur decomposition of its symmetric embedding sym(A) =
([0 A; A	 0]) (see [3, Chapter 8.6]). For a general tensor A ∈ Tm,〈n〉, Ragnarsson et
al. [23] derived a method for obtaining a symmetric embedding sym(A) from A, where
sym(A) ∈ STm,n̂ with n̂ = n1 + n2 + · · · + nm .

In the rest of this subsection, we consider how to obtain a mode-symmetric embedding
msym(A) from A, where msym(A) ∈ M STm,n̂ with n̂ = n1 + n2 + · · · + nm .

Let Kt = n1 + n2 + · · · + nt , t ∈ [m], and msym(A) ∈ Tm,Km . Then all entries of
msym(A) satisfy

msym(A)i1i2...im =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ai1i2...im 1 ≤ i1 ≤ K1, K1 + 1 ≤ i2 ≤ K2, K2 + 1 ≤ i3 ≤ K3
K3 + 1 ≤ i4 ≤ K4, . . . , Km−1 + 1 ≤ im ≤ Km ,

Ai2...imi1 K1 + 1 ≤ i2 ≤ K2, K2 + 1 ≤ i3 ≤ K3, K3 + 1 ≤ i4 ≤ K4,

. . . , Km−1 + 1 ≤ im ≤ Km , 1 ≤ i1 ≤ K1,

. . . . . .

Aimi1...im−1 Km−1 + 1 ≤ im ≤ Km , 1 ≤ i1 ≤ K1, K1 + 1 ≤ i2 ≤ K2
K2 + 1 ≤ i3 ≤ K3, . . . , Km−2 + 1 ≤ im−1 ≤ Km−1,

0 otherwise.

According to Definition 2.1, it is obvious that msym(A) is mode-symmetric. When
m = 3, intuitive performance of msym(A) is given in Figure 1.

Suppose that xk ∈ R
nk with k ∈ [m]. Let x = (x	

1 , x	
2 , . . . , x	

m)	, then, we have

sym(A)xm �= msym(A)xm = mA×̄1x1×̄2x2 . . . ×̄mxm .

Meanwhile, according to A and xk with k ∈ [m], it is easy to derive all entries of
msym(A)xm−1. Here, we do not list them out. The reader can also find these expressions
of sym(A)xm and sym(A)xm−1 in [23,24].

3. Perturbation bounds of Z-eigenvalue and singular value

In this section, we consider the properties of eigenvalue and Z-eigenvalue of a mode-
symmetric tensor. We also investigate perturbation bounds of an algebraic simple eigenvalue
and Z-eigenvalue of a mode-symmetric tensor. Finally, given a tensor A ∈ Tm,〈n〉, based
on symmetric or mode-symmetric embedding from A, perturbation bounds of an algebraic
simple singular value are obtained.

3.1. Properties of eigenvalue and Z-eigenvalue

In this subsection, we assume that A ∈ STm,n . Qi [1] derived some properties of eigenvalue
and Z-eigenvalue of a symmetric tensor. Those results also hold with a mode-symmetric
tensor. In order to prove Theorems 3.2 and 3.4, we need the following theorem.
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10 M. Che et al.

Theorem 3.1 Assume that A is a mode-symmetric tensor and m is even. The following
conclusions holds for A:

(a) A always has H-eigenvalue. A is positive definite (positive semidefinite) if and only
if all of its H-eigenvalue are positive (nonnegative).

(b) A always has Z-eigenvalue. A is positive definite (positive semidefinite) if and only
if all of its Z-eigenvalue are positive (nonnegative).

Proof Firstly, we prove part (a). We see (2.2) is the optimality condition of

max

{
Axm :

n∑
i=1

xm
i = 1, x ∈ R

n

}
(3.1)

and

min

{
Axm :

n∑
i=1

xm
i = 1, x ∈ R

n

}
. (3.2)

As the feasible set is compact and the objective function is continuous, the global maximizer
and minimizer always exist. This shows that (2.2) has real solutions, i.e. A always has H-
eigenvalue. Since A is positive definite (positive semidefinite) if and only if the optimal
value of (3.1) is positive (nonnegative), we draw the second conclusion of (a).

Now, we will prove part (b). The proof of (b) is similar to the proof of (a), as long as
we replace by

max

{
Axm :

n∑
i=1

xm
i = 1, x ∈ R

n

}
and

min

{
Axm :

n∑
i=1

xm
i = 1, x ∈ R

n

}
.

�

3.2. Algebraic simple Z-eigenvalue

Suppose that A ∈ M STm,n . Since m is even, then there exists a positive integer h such
that m = 2h. Denote by E the tensor I ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸

h

. A always has Z-eigenvalue (see [1,

Theorem 5]), if λ̃ is an Z-eigenvalue of A, it is known that λ̃ is a root of Det(A − λE) = 0
(see [1, Theorem 2]).

It is observed (see [25]) that the complex E-eigenpairs of a tensor form the equivalence
class under a multiplicative transformation. That is (see [26]), if (λ, x) is an E-eigenpair of
A and y = eιϕx with ϕ ∈ R, where ι = √−1 then y∗y = x∗x = 1 and

Aym−1 = eι(m−1)ϕAxm−1 = eι(m−1)ϕλx = eι(m−2)ϕλy. (3.3)

Therefore, (eι(m−2)ϕλ, eιϕx) is also an E-eigenpair of A for any ϕ ∈ R. Then, we can choose
ϕ∗ such that (eι(m−2)ϕ∗λ, eιϕ∗x) is a Z-eigenpair. Hence, without loss of generality, we only
consider the perturbation bounds of a Z-eigenvalue of a symmetric or mode-symmetric
tensor.
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Linear and Multilinear Algebra 11

Chang et al. [4] defined the geometric multiplicity of an eigenvalue λ, meanwhile,
Hu et al. [17] considered the algebraic multiplicity of an eigenvalue λ. Similarly, we can
define the geometric and algebraic multiplicity of an Z-eigenvalue. An algebraic simple Z-
eigenvalue is defined as an Z-eigenvalue whose algebraic multiplicity is one. This definition
is applicable to a generalized eigenvalue, a polynomial eigenvalue and a singular value. We
present the perturbation bound of an algebraic simple Z-eigenvalue λ of A + εB.

Theorem 3.2 Suppose A,B ∈ M STm,n and ε ∈ R. Let (λ, x) be an algebraic simple
Z-eigenpair of A. Then there exists ε0 > 0 and an analytic function λ(ε) with |ε| ≤ ε0 such
that

λ(0) = λ, λ′(0) = dλ

dε

∣∣∣∣
ε=0

= Bxm,

with x	x = 1. Therefore, λ(ε) is an algebraic simple Z-eigenvalue of A+εB over |ε| ≤ ε0,
and

λ(ε) = λ + εBxm + O(ε2).

Proof When A is symmetric, we know that A always has Z-eigenvalue (see [1, Theorem
5]), that is, Z(A) is the nonempty set. This result also holds when A is mode-symmetric
(see Theorem 3.1).

By the description of Qi [1], the E-characteristic polynomial of A + εB becomes

ϕε(z) = Det(zE − A − εB).

It is obvious that ϕε(z) is an analytic function associated to ε and z. Define Dr := {z ∈ C :
|z − λ| ≤ r}. Let r be arbitrarily small such that Z(A) ∩ Dr = {λ}. Denote the boundary
of Dr as ∂Dr . Then minz∈∂Dr |ϕ0(z)| = γ > 0.

Since ϕε(z) is a continuous function of ε, then there exists ε0 > 0, such that for all ε

with |ε| ≤ ε0, ϕε(z) has only one zero point in Dr and minz∈∂Dr|ε|≤ε0

|ϕε(z)| > 0.

It follows from the Residue Theorem (see [27]) that the zero point λ(ε) of ϕε(z) in Dr

can be represented as λ(ε) = 1
2π

∮
∂Dr

zϕ′
ε(z)

ϕε(z)
dz, where ϕ′

ε(z) = dϕε(z)/dz.

Noting that zϕ′
ε(z)

ϕε(z)
and d

dz

(
zϕ′

ε(z)
ϕε(z)

)
are continuous on ∂Dr , by the differential and integral

order exchange theorem, λ(ε) is an analytic function, if |ε| ≤ ε0. Hence, λ(ε) can be
expressed as

λ(ε) = λ(0) + λ′(0)ε + O(ε2), λ(0) = λ, |ε| ≤ ε0.

For an algebraic simple Z-eigenvalue λ of a mode-symmetric tensor A, if there exist two
real vectors x1 and x2 such that

Axm−1
i = λxi , x	

i xi = 1, i ∈ [2],
then, it is obvious that if x1 = cx2, then c satisfies that c2 = 1 and cm−2 = 1. In this case,
we can see that x1 and x2 are the same vectors, otherwise, we see that x1 and x2 are the
different vectors. Hence, we denote

δ = min{‖y − x‖ : y and x are the different eigenvectors associated with λ}.
Then, over {z ∈ Cn : ‖z − x‖ < δ}, there exists a unique eigenvector x of A associated to
λ. (For an algebraic simple Z-eigenvalue λ, if its geometric multiplicity is also 1, then set
δ ≤ ε0.)
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12 M. Che et al.

For an algebraic simple Z-eigenvalue λ(ε) of A+ εB, since λ(ε) is an analytic function
with |ε| ≤ ε0, then there exists δ̃ = min{δ, ε0} such that ‖x(ε) − x‖ < δ̃ and x(ε) is
the unique eigenvector of A + εB corresponding to λ(ε). According to some results about
algebraic functions (see [28]), we derive that x(ε) is an analytic function, where |ε| ≤ δ̃

and x(0) = x.
As (A+εB)x(ε)m−1 = λ(ε)x(ε), by differentiating this equation with respect to ε, and

setting ε = 0, we have

Ax̃ + Bx(0)m−1 = λ′(0)x(0) + λ(0)x′(0),

where Ax̃ = A(×̄2x′(0)×̄3x(0) . . . ×̄mx(0) + · · · + ×̄2x(0) . . . ×̄m−1x(0)×̄mx′(0)).
Since (λ, x) is a mode-k Z-eigenpair and ‖x‖ = 1, then

λ′(0) = Bx(0)m = Bxm .

Hence, this theorem is complete proved. �

Gohberg and Koltracht [29] studied condition numbers of maps in finite-dimensional
spaces F : R

p → R
q . The condition number of F at a point a ∈ DF characterizes the

instantaneous rate of change in F(a) with respect to perturbations in a.
Then, another perturbation result of an nonzero algebraic simple Z-eigenvalue λ = λ(A)

is considered, whose associated eigenvector x is a real nonzero vector with ‖x‖ = 1. It is
well known that the map FE : ε → λ(A + εB) is analytic in a neighbourhood of 0 (see
[17]). Therefore, the map F : A → λ(A) has continuous partial derivatives with respect to
each entry at A and

∂ F

∂i1i2...im

(A) := lim
t→0

F(A + tJ ) − F(A)

t
= xi1 xi2 . . . xim ,

where J is the zero tensor except for Ji1i2...im = 1. Here, we give an example to illustrate
the meaning of J . Without loss of generality, let m = 4 and (i1, i2, i3, i4) = (1, 2, 3, 4),
then J can be written as J = e1 ◦ e2 ◦ e3 ◦ e4 where ei is the i th column of the n × n
identity matrix with i ∈ [4]. Then, all entries of J are given in following:

J j1 j2 j3 j4 = e1( j1)e2( j2)e3( j3)e4( j4),

where jk ∈ [n] and ek( jk) is the jk th element of ek with k ∈ [4]. In general, J = ei1 ◦ ei2 ◦
· · · ◦ eim where eik is the ik th column of the n × n identity matrix with k ∈ [m].

Hence, as a map from R
nm → R, F is differentiable at A and

F ′(A) =
[

∂ F

∂11...1
, . . . ,

∂ F

∂11...1n
,

∂ F

∂21...1
, . . . ,

∂ F

∂nn...n

]
.

According to a formula by Gohberg and Koltracht [29], for relatively small componen-
twise perturbations in A, i.e.

|Ei1i2...im | ≤ ε|Ai1i2...im |, ik ∈ [n], k ∈ [m],
where E ∈ M STm,n and ε > 0 is arbitrarily small, the sensitivity of F(A) is characterized
by the componentwise condition number of F at A is
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Linear and Multilinear Algebra 13

c(F,A) = ‖F ′(A)DA‖∞
‖F(A)‖∞

,

where DA = diag(A11...1, . . . ,A11...1n,A21...1, . . . ,Ann...n), and λ �= 0.
It indicates that

c(F,A)

= ‖(A11...1x1x1 . . . x1, . . . , A11...1n x1 . . . x1xn, A21...1x2x1 . . . x1, . . . , Ann...n xn xn . . . xn)‖∞
|λ| ,

where the infinity norm of the map F ′(A)DA is, in fact, the 1-norm of the row vector that
represents it. Thus

c(F,A) =
∑n

i1i2...im=1 |Ai1i2...im xi1 xi2 . . . xim |
|λ| = |A||x|m

|λ| ,

where an absolute value of a tensor is the corresponding tensor of the absolute values of its
entries. Thus, if E is a perturbation of A, then we have a relative perturbation bound of a
nonzero Z-eigenvalue.

Theorem 3.3 Suppose that E ∈ M STm,n such that |Ei1i2...im | ≤ ε|Ai1i2...im |, where ik ∈
[n] with k ∈ [m]. Then, for an algebraic simple Z-eigenvalue λ �= 0, there exists an
Z-eigenvalue λ̂ of A + E such that

|̂λ − λ|
|λ| ≤ c(F,A)ε + O(ε2).

For an irreducible and mode-symmetric nonnegative tensor, the perturbation bound of
the Z-spectral radius is derived from Theorem 3.3.

Corollary 3.1 Let A ∈ M STm,n. If A is nonnegative and irreducible, and suppose
that E ∈ M STm,n such that |E | ≤ εA, (0 < ε < 1). Let � and �ε denote, respectively, the
Z-spectral radius of A and A + E . Then

|�ε − �|
�

≤ ε.

Proof Since |E | ≤ εA, i.e. |Ei1,...,im | ≤ εAi1,...,im , we can write it as

0 ≤ A − εA ≤ A + E ≤ A + εA.

Since Z-spectral radius �(·) of A is monotone, it follows that �(A − εA) ≤ �(A + E) ≤
�(A + εA). As �(A ± εA) = (1 ± ε)�(A), we obtain that

(1 − ε)� ≤ �ε ≤ (1 + ε)�.

As � > 0, the last inequality is equivalent to the result. �

Since A always has Z-eigenvalue, then, according to Theorem 3.2 and formula (3.3),
when (λ, x) is an algebraic simple E-eigenpair of A, the perturbation of λ can be also
considered.
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14 M. Che et al.

3.3. Algebraic simple eigenvalue

An algebraic simple eigenvalue is defined as an eigenvalue whose algebraic multiplicity is
one. We present the explicit expression of an algebraic simple eigenvalue λ of A + εB,
which extends the classical results in [22, Theorem 2.3].

Theorem 3.4 Suppose A and B ∈ M STm,n, and ε ∈ R. Let (λ, x) be an algebraic
simple eigenpair of A. If |x|mm �= 0, then there exists ε0 > 0 and an analytic function λ(ε)

with |ε| ≤ ε0 such that

λ(0) = λ, λ′(0) = dλ

dε

∣∣∣∣
ε=0

= Bxm

|x|mm
.

Therefore, λ(ε) is an algebraic simple eigenvalue of A + εB over |ε| ≤ ε0, and

λ(ε) = λ + ε
Bxm

|x|mm
+ O(ε2).

Particularly, if (λ, x) is an algebraic simple H-eigenpair of A, normalized x so that
|x|mm = 1. Then there exists ε0 > 0 and an analytic function λ(ε) with |ε| ≤ ε0 such
that

λ(0) = λ, λ′(0) = dλ

dε

∣∣∣∣
ε=0

= Bxm .

Thus, λ(ε) is an algebraic simple H-eigenvalue of A + εB over |ε| ≤ ε0, and

λ(ε) = λ + εBxm + O(ε2). (3.4)

Remark 3.1 For Theorem 3.4, when A and B are irreducible and symmetric nonnegative
tensors, and let ε be a positive number, formula (3.4) can be reduced to the result by Li et al.
[11, Theorem 5.2].

Another perturbation result of an nonzero algebraic simple H-eigenvalue λ = λ(A) is
considered, whose associated eigenvector x is a real nonzero vector.

It is well known that the map FE : ε → λ(A + εB) is analytic in a neighbourhood of
0 (see [17]). Therefore, the map F : A → λ(A) has continuous partial derivatives with
respect to each entry at A and

∂ F

∂i1i2...im

(A) := lim
t→0

F(A + tJ ) − F(A)

t
= xi1 xi2 . . . xim

‖x‖m
m

,

where J = ei1 ◦ ei2 ◦ · · · ◦ eim where eik is the ik th column of the n × n identity matrix with
k ∈ [m].

Hence, as a map from Rnm → R, F is differentiable at A and

F ′(A) =
[

∂ F

∂11...1
, . . . ,

∂ F

∂11...1n
,

∂ F

∂21...1
, . . . ,

∂ F

∂nn...n

]
.

Based on a formula by Gohberg and Koltracht [29], for the componentwise perturbations
in A, i.e.

|Ei1i2...im | ≤ ε|Ai1i2...im |, ik ∈ [n], k ∈ [m],
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Linear and Multilinear Algebra 15

where E ∈ M STm,n and ε > 0 is arbitrarily small, the sensitivity of F(A) is characterized
by the componentwise condition number of F at A

c(F,A) = ‖F ′(A)DA‖∞
‖F(A)‖∞

,

where DA = diag(A11...1, . . . ,A11...1n,A21...1, . . . ,Ann...n), and λ �= 0.
It indicates that

c(F,A)

= ‖(A11...1x1x1 . . . x1, . . . , A11...1n x1 . . . x1xn, A21...1x2x1 . . . x1, . . . , Ann...n xn xn . . . xn)‖∞
|λ| ,

where the infinity norm of the map F ′(A)DA is 1-norm of the row vector that represents
it. Thus

c(F,A) =
∑n

i1i2...im=1 |Ai1i2...im xi1 xi2 . . . xim |
|λ|‖x‖m

m
= |A||x|m

|λ|‖x‖m
m

,

where an absolute value of a tensor is the corresponding tensor of the absolute values of its
entries. Thus if E is a perturbation of A, then we have the relative perturbation bound of an
algebraic simple H-eigenvalue λ.

Theorem 3.5 Suppose that E ∈ M STm,n and |Ei1i2...im | ≤ ε|Ai1i2...im |, where ik ∈ [n]
with k ∈ [m]. For an algebraic simple H-eigenvalue λ �= 0, then there exists an eigenvalue
λ̂ of A + E such that

|̂λ − λ|
|λ| ≤ c(F,A)ε + O(ε2).

For an irreducible and mode-symmetric nonnegative tensor, the perturbation bound of
the spectral radius, is derived from Theorem 3.5.

Corollary 3.2 Let A ∈ M STm,n. If A is nonnegative and irreducible, and suppose that
E ∈ M STm,n and |E | ≤ εA, (0 < ε < 1). Let ρ and ρε denote the spectral radius of A
and A + E , respectively. Then

|ρε − ρ|
ρ

≤ ε.

Proof Since |E | ≤ εA, i.e. |Ei1,...,im | ≤ εAi1,...,im , we can write it as

0 ≤ A − εA ≤ A + E ≤ A + εA.

Since spectral radius ρ(·) of A ia monotone [30], it follows that ρ(A− εA) ≤ ρ(A+E) ≤
ρ(A + εA). As ρ(A ± εA) = (1 ± ε)ρ(A), we obtain that

(1 − ε)ρ ≤ ρε ≤ (1 + ε)ρ.

As ρ > 0, the last inequality is equivalent to the result. �

Remark 3.2 This corollary is a special case of Theorem 3.5, if A is an irreducible nonneg-
ative tensor, c(F,A) = 1 for the spectral radius. For nonnegative matrices, the perturbation
of Perron root has been discussed by Elsner et al. [31].
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16 M. Che et al.

3.4. Singular value

For a given a tensor A ∈ Tm,〈n〉, Ragnarsson et al. [23] explored the singular value σ and
mode-k singular vectors xk through its symmetric embedding sym(A), and Chen et al.
[24] further developed the connection between tensor singular value and its symmetric
embedding eigenvalue. In the rest part, we consider the connection between tensor singular
value and its mode-symmetric embedding Z-eigenvalue.

First, through the example when m = 3, we derive the process for implementing how
to transform tensor singular value to its mode-symmetric embedding eigenvalue.

When m = 3, formulae (2.3) can be simplified as

A×̄2x2×̄3x3 = σx1, A×̄1x1×̄3x3 = σx2, A×̄1x1×̄2x2 = σx3. (3.5)

Elementwise, we have∑
j,k

Ai jk x2, j x3,k = σ x1,i ,
∑
i,k

Ai jk x1,i x3,k = σ x2, j ,
∑
i, j

Ai jk x1,i x2, j = σ x3,k, (3.6)

where A ∈ T3,〈n〉, with i ∈ [n1], j ∈ [n2] and k ∈ [n3].
In formulae (3.6), when we change the sum order, then, componentwise, we have∑

j,k

Ai jk x2, j x3,k = σ x1,i ,
∑
k,i

A jki x3,k x1,i = σ x2, j ,
∑
i, j

Aki j x1,i x2, j = σ x3,k .

Let x = 1√
3
(x	

1 , x	
2 , x	

3 )	, then we have ‖x‖ = 1. This is because that ‖xk‖ = 1,

k ∈ [3]. We have
∥∥(x	

1 , x	
2 , x	

3 )	
∥∥ = √

3. Hence, the formulae (3.5) can be transformed as

1√
3

msym(A)×̄2x×̄3x = σx,
1√
3

msym(A)×̄1x×̄3x = σx,

1√
3

msym(A)×̄1x×̄2x = σx.

Furthermore, when we set Ã = 1√
3

msym(A), then, the above formulae is equivalent to

Ãx2 = σx, ‖x‖2 = 1.

Generally, for a given tensor A ∈ Tm,〈n〉, through the above description, formulae (2.3)
can be transformed the following eigenvalue problem. Suppose (σ, x1, . . . , xm) is a solution
of (2.3), with ‖xk‖ = 1, k ∈ [m]. Let x = 1√

m
(x	

1 , x	
2 , . . . , x	

m)	, then we have ‖x‖ = 1.

This is because that ‖xk‖ = 1, k ∈ [m], we get
∥∥(x	

1 , x	
2 , . . . , x	

m)	
∥∥ = √

m.
Thus, we can derive⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
1√
m

)m−2
msym(A)×̄2x×̄3x . . . ×̄mx = σx,(

1√
m

)m−2
msym(A)×̄1x×̄3x . . . ×̄mx = σx,

...(
1√
m

)m−2
msym(A)×̄1x×̄2x . . . ×̄m−1x = σx.
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Linear and Multilinear Algebra 17

Furthermore, let Ã =
(

1√
m

)m−2
msym(A), then (σ, x) is an Z-eigenpair of Ã, that is,

(σ, x) is the solution of nonlinear equations

Ãxm−1 = σx, ‖x‖ = 1.

Meanwhile, we have that both msym(A) and Ã are mode-symmetric. The value σ is called
an algebraic simple singular value, when σ is an algebraic simple Z-eigenvalue of Ã.

According to symmetric or mode-symmetric embedding of A ∈ Tm,〈n〉 and the pertur-
bation bounds about an algebraic simple Z-eigenvalue of a mode-symmetric tensor, it is
obvious to derive these three theorems about the perturbation of an algebraic simple singular
value. Hence, the proof is omitted.

Theorem 3.6 Suppose A,B ∈ Tm,〈n〉. Let (σ, x1, x2, . . . , xm) be a solution of (2.3) and
σ be an algebraic simple singular value of A with xk ∈ R

nk , k ∈ [m]. Then there exists
ε0 > 0 and an analytic function σ(ε) with |ε| ≤ ε0 such that

σ(0) = λ, σ ′(0) = dσ

dε

∣∣∣∣
ε=0

= B×̄1x1×̄2x2 . . . ×̄mxm,

with x	
k xk = 1 (k ∈ [m]). Therefore, σ(ε) is an algebraic simple singular value of A + εB

over |ε| ≤ ε0, and

σ(ε) = σ + εB×̄1x1×̄2x2 . . . ×̄mxm + O(ε2).

Theorem 3.7 Suppose that E ∈ Tm,〈n〉 and |Ei1i2...im | ≤ ε|Ai1i2...im |, where ik ∈ [nk]
with k ∈ [m]. Then, for an algebraic simple singular value σ �= 0, there exists a singular
value σ̂ of A + E such that

|̂σ − σ |
|σ | ≤ c(F,A)ε + O(ε2),

where c(F,A) = 1
|σ | |A|×̄1|x1|×̄2|x2| . . . ×̄m |xm | and all xk are the mode-k singular

vectors associated with σ .

Corollary 3.3 If A is nonnegative and irreducible, and suppose that E ∈ Tm,〈n〉 and
|E | ≤ εA, (0 < ε < 1). Let σ̄ and σ̄ε denote, respectively, the largest singular value of
A and A + E . Then

|σ̄ε − σ̄ |
σ̄

≤ ε.

4. Perturbation for the case of Pl(λ)

In this section, we derive perturbation bounds of an algebraic simple mode-k tensor poly-
nomial eigenvalue λk in �k(Pl(λ)). However, according to Remark 2.1, all sets �k(Pl(λ))

are different. When we suppose that all tensors in Pl(λ) are symmetric or mode-symmetric
and Al is nonsingular, we can see that all sets �k(Pl(λ)) are the same finite set, denoted
by �(Pl(λ)), and an algebraic simple mode-k polynomial eigenvalue λk can be simplified
as an algebraic simple polynomial eigenvalue λ. Hence, we just study some perturbation
bounds of λ.
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18 M. Che et al.

Meanwhile, we denote �Pl(λ) by λl�Al + λl−1�Al−1 + · · · + λ�A1 + �A0 with
�Ai ∈ Tm,n(i = 0 : l − 1).

4.1. Tensor generalized eigenvalue problem

According to Remark 2.2, for a given tensor pair (A,B) with A, B ∈ Tm,n , the ten-
sor generalized eigenvalue problem is a special case of the polynomial eigenvalue prob-
lem with l = 1. Since A and B are mode-symmetric, then the set of all generalized
eigenvalue λ of a pair (A,B) is �(P1(λ)) with P1(λ) = A + λ(−B). When B is non-
singular, some perturbation bounds on an algebraic simple generalized eigenvalue are
considered. The following theorem states a perturbation of an algebraic generalized
eigenvalue λ.

Theorem 4.1 If λ is an algebraic simple generalized eigenvalue of the pair (A,B). Then,
there exists an algebraic simple generalized eigenvalue λ̃ of (A+ εA1,B + εB1) such that

λ̃ = λ + O(ε),

where |ε| ≤ ε0 with sufficient small ε0 > 0.

Proof Since two tensors A and B are mode-symmetric, we can denote the set of tensor
generalized eigenvalue of the pair (A,B) by

�(A,B) = {λ ∈ C | Det(A − λB) = 0}.
According to the relationship between the determinant and the eigenvalue of a tensor

(see [17]), we know that Det(A−λB) is a n(m − 1)n−1th polynomial about λ with leading
coefficient Det(B).

Since Det(B) �= 0, we can derive that there exists ε̂ > 0 such that Det(B + ε̂B1) �= 0.
Hence, the set of all generalized eigenvalue of the pair (A + εA1,B + εB1) (|ε| ≤ ε̂) can
be denoted by

�ε(A,B) = {λ ∈ C | Det((A − λB) + ε(A1 − λB1)) = 0}.
Meanwhile, Det((A − λB) + ε(A1 − λB1)) is also a n(m − 1)n−1th polynomial about λ

with leading coefficient Det(B + εB1). Det(B + εB1) is a n(m − 1)n−1th polynomial about
ε with the constant term Det(B).

Hence, we know that Det(B + εB1) �≡ 0. According to theorems of algebraic functions
of one variable (see [28]), if λ is an algebraic simple generalized eigenvalue, then there
exists an algebraic simple generalized eigenvalue λ̃ of the pair (A + εA1,B + εB1) and
ε0 > 0 such that

λ̃ = λ + O(ε),

where |ε| ≤ min{ε̂, ε0}. �

In the above theorem, there are two statements we need to emphasize the following
issues.

(1) The choice of the tensor pair (A1,B1) in Theorem 4.1 is not only one. In general,
we suppose that (A1,B1) = (A,B).

D
ow

nl
oa

de
d 

by
 [

Fu
da

n 
U

ni
ve

rs
ity

] 
at

 1
5:

44
 1

4 
A

ug
us

t 2
01

5 



Linear and Multilinear Algebra 19

(2) Theorem 4.1 only states the relationship about the first-order perturbation of an
algebraic simple generalized eigenvalue, but does not present the coefficient of the first-
order perturbation term.

Hence, in the rest of this subsection, we consider how to present an expression of this
coefficient.

Theorem 4.2 Suppose that �A,�B ∈ M STm,n. If λ �= 0 is an algebraic simple
generalized H-eigenvalue of (A,B) with associated generalized eigenvector x ∈ R

n. Then,
there exists an algebraic simple generalized H-eigenvalue λ̂ of (A + �A,B + �B) such
that |̂λ − λ|

|λ| ≤ ε
(α + |λ|β)‖x‖m

|λ||Bxm | + O(ε2),

where ‖�A‖F ≤ εα and ‖�B‖F ≤ εβ with 0 < ε < 1.

Proof Since Det(B) �= 0, it is obvious that Bxm �= 0 for all nonzero vectors x ∈ R
n .

Let λ �= 0 be an algebraic simple generalized H-eigenvalue of (A,B), with corresponding
eigenvector x, then a normwise condition number of λ can be defined as follows,

κ(λ) := lim sup
ε→0

{ |�λ|
ε|λ| : (A + �A)(x + �x)m−1 = (λ + �λ)(B + �B)(x + �x)m−1,

‖�A‖F ≤ εα, ‖�B‖F ≤ εβ

}
.

Next, we prove that the following formula holds,

κ(λ) = (α + |λ|β)‖x‖m

|λ||Bxm | .

The given expression is clearly an upper bound for κ(λ). We now show that the bound
is attained. From the definition of a normwise condition number of λ, we have

�λ = �Axm − λ�Bxm

Bxm
+ O(ε2). (4.1)

Let G = (x ◦ x ◦ · · · ◦ x︸ ︷︷ ︸
m

)/‖x‖m . Then ‖G‖F = 1 and Gxm = ‖x‖m . Let �A = εαG and

�B = −sign(λ)εαG. Then ‖�A‖F ≤ εα and ‖�B‖F ≤ εβ and the modulus of the first-
order term of (4.1) is ε‖x‖m(α + |λ|β)/|Bxm |; dividing (4.1) by ε|λ| and taking the limit
as ε → 0 then gives the desired equality.

From the definition of κ(λ) we have, for the perturbation system in (4.1),

|�λ|
|λ| ≤ κ(λ)ε + O(ε2).

Hence, the proof is over. �

Theorem 4.3 Suppose that �A,�B ∈ M STm,n. If λ �= 0 is an algebraic simple
generalized H-eigenvalue of (A,B) with corresponding eigenvector x ∈ R

n. Then, there
exists an algebraic simple generalized H-eigenvalue λ̂ of (A + �A,B + �B) such that

|̂λ − λ|
|λ| ≤ ε

(E + |λ|F)|x|m
|λ||Bxm | + O(ε2),
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20 M. Che et al.

where |�A| ≤ εE and |�B| ≤ εF with nonnegative tensors E,F ∈ M STm,n and 0 <

ε < 1.

Proof Since Det(B) �= 0, it is obvious that Bxm �= 0 for all nonzero vectors x ∈ R
n .

Let λ �= 0 be an algebraic simple generalized H-eigenvalue of (A,B), with corresponding
eigenvector x, then a componentwise condition number for an algebraic simple generalized
H-eigenvalue λ analogous to the normwise condition number is defined by

cond(λ) := lim sup
ε→0

{ |�λ|
ε|λ| : (A + �A)(x + �x)m−1

= (λ + �λ)(B + �B)(x + �x)m−1, |�A| ≤ εE, |�B| ≤ εF
}

.

From this defintion it follows that,

|�λ|
|λ| ≤ cond(λ)ε + O(ε2).

In the following, we will derive the expression of cond(λ). First, according to the
definition of a componentwise condition number for an algebraic simple generalized H-
eigenvalue λ, we have

cond(λ) ≥ (E + |λ|F)|x|m
|λ||Bxm | .

Next, we will show that the expression for the cond(λ) attained when we choose �A =
εE ×1 D ×2 D · · · ×m D and �B = −sign(λ)εF ×1 D ×2 D · · · ×m D, where D =
diag(sign(x)). Hence, the proof is over. �

Remark 4.1 For all nonzero vectors x ∈ C
n , when a pair (λ, x) is an algebraic simple

generalized eigenpair of the pair (A,B) with Bxm �= 0, the above two theorems also hold.
However, according to Theorem 4.4, it is known that when B is nonsingular and all nonzero
vectors x ∈ C

n , the inequality Bxm �= 0 holds (also see [17, Theorem 3.1]).
Hence, Theorems 4.2 and 4.3 hold for an algebraic simple generalized eigenpair (λ, x)

of a tensor pair (A,B) when B is nonsingular.

There are many choices for the pair (α, β) and the pair (E,F). In practice, we always
choose (α, β) = (‖A‖F , ‖B‖F ) and (E,F) = (A,B).

We consider briefly the special case when A is an irreducible nonnegative tensor and B
is diagonal with positive diagonal entries. Here, the tensor generalized eigenvalue problem
is equivalent to the standard eigenvalue problem for A ×k D−1, where D is diagonal and
its diagonal entries is equivalent to the diagonal entries of B. Perron-Frobenius theorem for
nonnegative tensors (see [4]) will be used in the process of the corollary.

Corollary 4.1 Suppose A is an irreducible and nonnegative tensor and B is a diagonal
tensor with positive diagonal entries. B is a diagonal matrix and its diagonal entries are
equal to the diagonal entries of B. Let λk be the mode-k Perron root of A ×k B−1. Then,
the following statements hold.

(1) All λk are equal, denoted by λ.
(2) Assume λ be simple, and let E = A and F = B. Then cond(λ) = 2.
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Linear and Multilinear Algebra 21

(3) Moreover, if λ+�λ is the Perron root of the pair (A+�A,B+�B), for 0 ≤ ε < 1,
then we have

|�λ|
|λ| ≤ 2ε

1 − ε
.

Proof Parts 1 and 2 are trivial to verify. For the third part, we only prove when k = 1.
The rest is analogous to the case of k = 1. Note that since |�B| ≤ εB, with B diagonal,
and |�A| ≤ εA,(

1 − ε

1 + ε

)
A ×1 B−1 ≤ A ×1 B−1 ≤

(
1 + ε

1 − ε

)
A ×1 B−1.

Since ρ1(·) is monotone on the nonnegative tensors,(
1 − ε

1 + ε

)
ρ1(A ×1 B−1) ≤ ρ1(A ×1 B−1) ≤

(
1 + ε

1 − ε

)
ρ1(A ×1 B−1).

Hence, the third part is proved. �

When B is the identity tensor and �B is the zero tensor, part (3) of Corollary 4.1 gives
a perturbation bound about the spectral radius of an nonnegative irreducible tensor.

According to [18, Theorem 2.1] and Det(B) �= 0, the number of all generalized
eigenvalue is n(m − 1)n−1 and all generalized eigenvalue are finite numbers. Then a
generalized eigenvalue λ can be represented as λ = α/β with β �= 0. Hence, a generalized
eigenpair (λ, x) can also be represented as (α, β, x). We can also denote a generalized
eigenvalue λ by (α, β) or 〈α, β〉, where 〈α, β〉 = τ(α, β) with τ �= 0. A property of the pair
〈α, β〉 is given below.

Theorem 4.4 Let 〈α, β〉 be an algebraic simple generalized eigenvalue of the pair (A,B)

with corresponding generalized eigenvector x. Then

〈α, β〉 = 〈Axm,Bxm〉.

Proof Since det(B) �= 0, then λ is a finite number. Let λ = α/β, we obtain β �= 0. For
the vector x, there exists a Householder matrix P such that Px = ‖x‖e1, where e1 is the
first column of the identity matrix I .

According to [18], we have that λ(A,B) = λ(Â, B̂), where Â = A ×1 P · · · ×m P
and B̂ = B ×1 P · · · ×m P . Then, the pair (α, β, e1) satisfies βÂem−1

1 = αB̂em−1
1 , that is,

〈α, β〉 = 〈Âem
1 , B̂em

1 〉. Hence, the proof is over. �

Similar to Theorem 4.1, we can derive the perturbation bound of an algebraic simple
generalized eigenvalue 〈α, β〉.

Theorem 4.5 Suppose A,B ∈ M STm,n. Let 〈α, β〉 be an algebraic simple eigenvalue
of the regular pair (A,B) with associated eigenvector x. Let 〈̃α, β̃〉 be the corresponding
eigenvalue of the O(ε) perturbation (Ã, B̃). Then

〈̃α, β̃〉 = 〈Ãxm, B̃xm〉 + O(ε2).
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22 M. Che et al.

Proof According to the implicit function theory, we find that we may take for the eigen-
vectors corresponding to 〈̃α, β̃〉 the vectors x̃ = x + u where u = O(ε) (see also [32]). By
Theorem 4.4,

〈̃α, β̃〉 = 〈Ãx̃m, B̃x̃m〉 = 〈Ãxm + mu	Axm−1 + O(ε2), B̃xm + mu	Bxm−1 + O(ε2)〉.
Since det(B) �= 0, then β must be nonzero. Then

mu	Axm−1 = α
mu	Bxm−1

β
, mu	Bxm−1 = β

mu	Bxm−1

β
.

Thus, (mu	Axm−1, mu	Bxm−1) is an order ε perturbation of 〈Ãxm, B̃xm〉 that lies along
(α, β). Hence, the proof is over. �

4.2. Tensor quadratic eigenvalue problem

In this section, we will consider another special case of the polynomial eigenvalue problem
with l = 2. Suppose that all tensors in P2(λ) are symmetric or mode-symmetric and A2 is
nonsingular.

Given P2(λ) = λ2A2 +λA1 +A0, let μ = λ1/(m−1) and y = μx, then P2(λ)xm−1 = 0
can be represented as

λA2ym−1 + A1ym−1 + A0xm−1 = 0,

y[m−1] − λx[m−1] = 0.

These above equations are equal to the generalized eigenvalue problems as follows.

Ãx̃m−1 = λ(−B̃)̃xm−1,

where x̃ = (y	, x	)	 and the definitions of Ã and B̃ are in following:

Ãi1i2...im =

⎧⎪⎪⎨⎪⎪⎩
A1,i1i2...im ik = 1, 2, . . . , n, k ∈ [m],
A0,i1(i2−n)...(im−n) i1 = 1, 2, . . . , n; ik = n + 1, n + 2, . . . , 2n, k ∈ [m] − {1},
I(i1−n)i2...im i1 = n + 1, n + 2, . . . , 2n; ik = 1, 2, . . . , n, k ∈ [m] − {1},
0 otherwise,

and

B̃i1i2...im =
⎧⎨⎩

A2,i1i2...im ik = 1, 2, . . . , n, k ∈ [m],
−I(i1−n)(i2−n)...(im−n) ik = n + 1, n + 2, . . . , 2n, k ∈ [m],
0 otherwise,

where, for two given sets X and Y, an element belongs to the set X − Y means that this
element belongs to X, but does not belong to Y. Since A2 is nonsingular and B̃ is symmetric,
then, according to [17, Theorem 4.2], we obtain that Det(B̃) = Det(A2)

(m−1)n �= 0, hence,
the number of all quadratic eigenvalue is 2n(m − 1)2n−1 and tensor quadratic eigenvalue
are finite.

For the tensor quadratic eigenvalue problem, the perturbation of an algebraic simple
quadratic eigenvalue is derived by the following theorem.
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Linear and Multilinear Algebra 23

Theorem 4.6 If λ is an algebraic simple quadratic eigenvalue of P2(λ), associated
eigenvector x. Then, there exists an algebraic simple quadratic eigenvalue λ̃ of P2(λ) +
�P2(λ) such that

λ̃ = λ + O(ε),

where |ε| ≤ ε0 with ε0 > 0.

Proof According to the above description, if (λ, x) is a tensor quadratic eigenpair of
P2(λ), then, there exists a vector x̃ = (λ1/(m−1)x	, x	)	 and two m-order 2n dimensional
tensors Ã and B̃ such that Ãx̃m−1 = λ(−B̃)̃xm−1. If (λ, x) is an algebraic simple quadratic
eigenpair, then (λ, x̃) is an algebraic simple generalized eigenpair of the pair (Ã,−B̃).

According to Theorem 4.1, for the pair (Ã,−B̃), there exists an algebraic simple
generalized eigenvalue λ̂ of (Ã + ε̂̃A,−(B̃ + ε̂̃B)) such that λ̂ = λ + O(ε). Meanwhile,
for these two tensors ̂̃A and ̂̃B, there exist three tensors �Al (l = 0, 1, 2) such that λ̂

is the algebraic simple quadratic eigenvalue of P2(λ) + �P2(λ). Then, this theorem is
proved. �

4.3. Tensor polynomial eigenvalue problem

In this section, we now consider the tensor polynomial eigenvalue problem, given in
Definition 2.5, with l ≥ 3. Suppose all tensors in Pl(λ) are symmetric or mode-symmetric
and Al is nonsingular.

Choosing μ = λ1/(m−1), we can transform, for the nonzero x ∈ C
n , P(λ)xm−1 = 0 to

the formula given as follows.⎧⎪⎪⎨⎪⎪⎩
λAly

m−1
l−1 + · · · + A1ym−1

1 + A0xm−1 = 0,

yl−1 = μyl−2,

. . . . . . . . .

y1 = μx.

Meanwhile, we have yk = μkx with k ∈ [l − 1].
Hence, a solution (λ, x) of P(λ)xm−1 = 0 also solves the generalized eigenvalue

problem Âx̂m−1 = λ(−B̂)̂xm−1, where x̂ = (y	
l−1, . . . , y	

1 , x	)	, and all nonzero elements
of Â and B̂ are given as follows, respectively,

B̂(1 : n, 1 : n, . . . , 1 : n) = Al ,

B̂(ni + 1 : (i + 1)n, ni + 1 : (i + 1)n, . . . , ni + 1 : (i + 1)n) = −I, i = 1, . . . , l − 1,

Â(1 : n, ni + 1 : (i + 1)n, . . . , ni + 1 : (i + 1)n) = Al−1−i , i = 0, 1, . . . , l − 1,

Â(n(i + 1) + 1 : n(i + 2), ni + 1 : (i + 1)n, . . . , ni + 1

: (i + 1)n) = I, i = 0, 1, . . . , l − 1.

Since Al is nonsingular and B̂ is symmetric, then, according to [17, Theorem 4.2],
we obtain that Det(B̂) = Det(Al)

(m−1)(l−1)n �= 0, hence, the number of tensor quadratic
eigenvalue is ln(m − 1)ln−1 and all polynomial eigenvalue are finite.

Theorem 4.7 Suppose that all tensors in P(λ) and �P(λ) are mode-symmetric. If λ is
an algebraic simple eigenvalue of P(λ). Then, there exists an algebraic simple generalized
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24 M. Che et al.

eigenvalue λ̃ of P(λ) + �P(λ) such that

λ̃ = λ + O(ε),

where |ε| ≤ ε0 with ε0 > 0.

Proof According to the above argument, if (λ, x) is a polynomial eigenpair of Pl(λ), then,
there exists a vector x̂ = (y	

l−1, . . . , y	
1 , x	)	 and two tensors Â and B̂, where B̂ is singular

and mode-symmetric, such that Âx̂m−1 = λ(−B̂)̂xm−1. When (λ, x) is also an algebraic
simple polynomial eigenpair, then (λ, x̂) is an algebraic simple generalized eigenpair of the
tensor pair (Â,−B̂).

According to Theorem 4.1, for the pair (Â,−B̂), there exists an algebraic simple
generalized eigenvalue λ̃ of (Â + ε˜̂A,−(B̂ + ε˜̂B)) such that λ̃ = λ + O(ε). Meanwhile,
for these two tensors ˜̂A and ˜̂B, there exist l + 1 tensors �Ai (i = 0, 1, . . . , l) such that
λ̂ is the algebraic simple polynomial eigenvalue of Pl(λ) + �Pl(λ). Then, this theorem is
over. �

Furthermore, for the tensor polynomial eigenvalue problem, the perturbations of an
algebraic simple polynomial eigenvalue have some more precise results, generalized by
Theorems 4.2 and 4.3.

Theorem 4.8 If λ �= 0 is an algebraic simple polynomial H-eigenvalue of Pl(λ), asso-
ciated polynomial eigenvector x ∈ R

n. Then, when P ′
l (λ)xm �= 0, there exists an algebraic

simple polynomial H-eigenvalue λ̂ of Pl(λ) + �Pl(λ) such that

|̂λ − λ|
|λ| ≤ ε

(∑l
i=0 |λ|iαi

)
‖x‖m

|λ||P ′
l (λ)xm | + O(ε2),

where ‖�Ai‖F ≤ εαi with 0 < ε < 1 and P ′
l (λ) = lλl−1Al + (l −1)λl−2Al−1 +· · ·+A1.

Proof Since λ �= 0 is an algebraic simple polynomial H-eigenvalue of Pl(λ), with
corresponding eigenvector x, then a normwise condition number of λ can be defined as
follows.

κ(λ) := lim sup
ε→0

{ |�λ|
ε|λ| : (Pl(λ + �λ) + �Pl(λ + �λ))(x + �x)m−1 = 0,

‖�Ai‖F ≤ εαi

}
.

Next, we prove that, if P ′
l (λ)xm �= 0, the following formula holds,

κ(λ) =
(∑l

i=0 |λ|iαi

)
‖x‖m

|λ||P ′
l (λ)xm | .
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The given expression is clearly an upper bound for κ(λ). We now show that the bound is
attained. From the definition of a normwise condition number of λ, we have

�λ =
(∑l

i=0 λi�Ai

)
xm

P ′
l (λ)xm

+ O(ε2). (4.2)

Let G = (x ◦ x ◦ · · · ◦ x︸ ︷︷ ︸
m

)/‖x‖m . Then ‖G‖F = 1 and Gxm = ‖x‖m . Let �Ai =
−sign(λi )εαiG. Then ‖�Ai‖F ≤ εαi and the modulus of the first-order term of (4.2)
is

(∑l
i=0 |λ|iαi

)
‖x‖m/|λ||P ′

l (λ)xm |; dividing (4.2) by ε|λ| and taking The limit as ε → 0
then gives the desired equality.

From the definition of κ(λ) we have, for the perturbation system in (4.2),

|�λ|
|λ| ≤ κ(λ)ε + O(ε2).

Hence, the proof is over. �

Theorem 4.9 If λ �= 0 is an algebraic simple polynomial H-eigenvalue of Pl(λ), asso-
ciated eigenvector x ∈ R

n. Then, when P ′
l (λ)xm �= 0, there exists an algebraic simple

polynomial H-eigenvalue λ̂ of Pl(λ) + �Pl(λ) such that

|̂λ − λ|
|λ| ≤ ε

(∑l
i=0 |λ|iEi

)
|x|m

|λ||P ′
l (λ)xm | + O(ε2),

where |�Ai | ≤ εEi with 0 < ε < 1 and P ′
l (λ) = lλl−1Al + (l − 1)λl−2Al−1 + · · · + A1.

Proof Since λ �= 0 is an algebraic simple polynomial H-eigenvalue of Pl(λ), with
corresponding eigenvector x, then a componentwise condition number for an algebraic
simple generalized eigenvalue λ analogous to the normwise condition number is defined by

cond(λ) := lim sup
ε→0

{ |�λ|
ε|λ| : (Pl(λ + �λ)(x + �x)m−1

+(�Pl(λ + �λ)(x + �x)m−1 = 0, |�Ai | ≤ εEi

}
.

From this defintion it follows that,

|�λ|
|λ| ≤ cond(λ)ε + O(ε2).

In the following, we derive the expression of cond(λ). According to the definition of a
componentwise condition number for an algebraic simple eigenvalue λ, when P ′

l (λ)xm �= 0,
we have

cond(λ) ≥
(∑l

i=0 |λ|iEi

)
|x|m

|λ||P ′
l (λ)xm | .

Next, we show that the expression for the cond(λ) attained when we choose �Ai =
−sign(λi )εEi ×1 D ×2 D · · · ×m D, where D = diag(sign(x)). Hence, the proof
is over. �
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26 M. Che et al.

Figure 2. Verification of Corollary 3.1 when |E | < εA with ε = linspace(0.001, 0.1, 50). The blue
stars represent the values of δ+ (δ−) in each part of this figure (left axis), and the red circles represent
the values of ε in each part of this figure (right axis).

Remark 4.2 When the pair (λ, x) is not an algebraic simple polynomial H-eigenpair in
above two theorems, these two theorems also hold.

5. Numerical examples

The computation of all examples is based on Matlab 2013b and the Matlab Tensor Toolbox
[33]. Without loss of generality, we assume that m = 4 and n = 10, for first two examples in
this section and for the third example, let 〈n〉 = {10, 12, 14, 16}. We show ill-condition ten-
sors for computing Z-eigenvalue or singular value via three random
numerical examples.

Example 5.1 Let A ∈ M STm,n be a random nonnegative irreducible tensor with the Z-
spectral radius �. The perturbation tensor E satisfies |E | ≤ εA, with 0 < ε < 1. Denote
�̂+ (̂�−) by the Z-spectral radius of A+E (A−E) (noting that �, �̂+, and �̂− are computed by
the NQZ method [34]). In order to verify Corollary 3.1, we compare ε and |̂�+−�|

�

( |̂�−−�|
�

)
,

denoted by δ+ (δ−), under two kinds of perturbation tensors: E = rand(1)εA and E = εA.
Let ε = linspace(a, b, 50) with 0 < a < b < 1. For these two kinds of perturbation

tensors described above, the comparative results are given in Figures 2 and 3, respectively.

Example 5.2 Suppose that C ∈ M STm,n is a random nonnegative irreducible tensor with
the spectral radius λmax and B is a diagonal tensor, where its diagonal entries are equal to
λmax + 10. Let A = C where all its diagonal elements are zero. The perturbation tensor
pair (E,F) satisfies |E | ≤ εA and |F | ≤ εB, with 0 < ε < 1. Denote λ, λ̂+ and (̂λ−) by
the Perron roots of the tensor pair (A,B), (A + E,B + F) and (A − E,B − F) (noting
that σ , σ̂+ and σ̂− are computed by the NQZ method [34]). In order to verify Corollary 4.1,
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Linear and Multilinear Algebra 27

Figure 3. Verification of Corollary 3.1 when |E | = εA with ε = linspace(0.001, 0.1, 50). The blue
stars represent the values of δ+ (δ−) in each part of this figure (left axis), and the red circles represent
the values of ε in each part of this figure (right axis).

Figure 4. Verification of Corollary 4.1 when |E | < εA and |F | < εB with ε =
linspace(0.001, 0.1, 50). The blue stars represent the values of δ+ (δ−) in each part of this figure
(left axis), and the red circles represent the values of 2ε

1−ε
in each part of this figure (right axis).

we compare 2ε
1−ε

and |̂λ+−λ|
λ

( |̂λ−−λ|
λ

)
, denoted by δ+ (δ−), under two kinds of perturbation

tensor pairs: (E,F) = rand(1)ε(A,B) and (E,F) = ε(A,B).
Let ε = linspace(a, b, 50) with 0 < a < b < 1. For these two kinds of perturba-

tion tensor pairs described above, the comparative results are given in Figures 4 and 5,
respectively.

D
ow

nl
oa

de
d 

by
 [

Fu
da

n 
U

ni
ve

rs
ity

] 
at

 1
5:

44
 1

4 
A

ug
us

t 2
01

5 



28 M. Che et al.

Figure 5. Verification of Corollary 4.1 when |E | = εA and |F | = εB with ε =
linspace(0.001, 0.1, 50). The blue stars represent the values of δ+ (δ−) in each part of this figure
(left axis), and the red circles represent the values of 2ε

1−ε
in each part of this figure (right axis).

Figure 6. Verification of Corollary 3.3 when |E | < εA with ε = linspace(0.001, 0.1, 50). The blue
stars represent the values of δ+ (δ−) in each part of this figure (left axis), and the red circles represent
the values of ε in each part of this figure (right axis).

Example 5.3 Let A ∈ Tm,〈n〉 be a random nonnegative irreducible tensor with the largest
singular value σ . The perturbation tensor E satisfies |E | ≤ εA, with 0 < ε < 1. Denote
σ̂+ (̂σ−)by the Z-spectral radius ofA+E (A−E) (Noting thatσ , σ̂+, and σ̂− are computed by
the NQZ method [34]). In order to verify Corollary 3.3, we compare ε and |̂σ+−σ |

σ

( |̂σ−−σ |
σ

)
,

denoted by δ+ (δ−), under two kinds of perturbation tensors: E = rand(1)εA and E = εA.
Let ε = linspace(a, b, 50) with 0 < a < b < 1. For these two kinds of perturbation

tensors described above, the comparative results are given in Figures 6 and 7, respectively.
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Linear and Multilinear Algebra 29

Figure 7. Verification of Corollary 3.3 when |E | = εA with ε = linspace(0.001, 0.1, 50). The blue
stars represent the values of δ+ (δ−) in each part of this figure (left axis), and the red circles represent
the values of ε in each part of this figure (right axis).

6. Conclusion

In this paper, for a mode-symmetric tensor, the perturbation of an algebraic simple eigen-
value and E-eigenvalue are considered. Based on symmetric or mode-symmetric embed-
ding, for a given tensor A ∈ Tm,〈n〉, we obtain perturbation bounds about a singular value
of A. Furthermore, we define the tensor polynomial eigenvalue problem and derive pertur-
bation bounds about an algebraic simple polynomial eigenvalue. In particular, we focus on
the tensor generalized eigenvalue problem and tensor quadratic eigenvalue problem.

Acknowledgements
The authors are grateful to Prof. Meng Chen of Fudan University for fruitful discussions on results
about algebraic functions. We would like to thank the editor Ren-cang Li and the referee for their
detailed comments on our manuscript.

Funding
Maolin Che andYimin Wei were supported by the National Natural Science Foundation of China under
[grant number 11271084]; Liqun Qi was supported by the Hong Kong Research Grant Council [grant
number PolyU 502510], [grant number 502111], [grant number 501212], [grant number 501913].

Disclosure statement
No potential conflict of interest was reported by the authors.

References

[1] Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput. 2005;40:1302–1324.
doi:10.1016/j.jsc.2005.05.007.

D
ow

nl
oa

de
d 

by
 [

Fu
da

n 
U

ni
ve

rs
ity

] 
at

 1
5:

44
 1

4 
A

ug
us

t 2
01

5 

http://dx.doi.org/10.1016/j.jsc.2005.05.007


30 M. Che et al.

[2] Lim L. Singular values and eigenvalues of tensors: a variational approach. In: IEEE CAMSAP
2005: First International Workshop on Computational Advances in Multi-Sensor Adaptive
Processing. IEEE; 2005. p. 129–132.

[3] Golub GH, Van Loan CF. Matrix computations. 4th ed. Baltimore (MD): Johns Hopkins Studies
in the Mathematical Sciences, Johns Hopkins University Press; 2013.

[4] Chang KC, Pearson K, Zhang T. Perron–Frobenius theorem for nonnegative tensors. Commun.
Math. Sci. 2008;6:507–520. http://projecteuclid.org/euclid.cms/1214949934.

[5] Chang KC, Pearson K, Zhang T. On eigenvalue problems of real symmetric tensors. J. Math.
Anal. Appl. 2009;350:416–422. doi:10.1016/j.jmaa.2008.09.067.

[6] Kolda TG, Mayo JR. An adaptive shifted power method for computing generalized tensor
eigenpairs. SIAM J. Matrix Anal. Appl. 2014;35:1563–1581. doi:10.1137/140951758.

[7] Cui CF, Dai YH, Nie J. All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl.
2014;35:1582–1601.

[8] Qi L, Wang Y, Wu EX. D-eigenvalues of diffusion kurtosis tensors. J. Comput. Appl. Math.
2008;221:150–157. doi:10.1016/j.cam.2007.10.012.

[9] Ding W, Wei Y. Generalized tensor eigenvalue problems. SIAM J. Matrix Anal. Appl. 2015;
36:1073–1099.

[10] Li W, Ng MK. The perturbation bound for the spectral radius of a nonnegative tensor. Adv.
Numer. Anal. 2014:10 p. Article ID 109525. doi:10.1155/2014/109525.

[11] Li W, Ng MK. Some bounds for the spectral radius of nonnegative tensors. Numer. Math.
2015;130:315–335.

[12] Cichocki A, Zdunek R, Phan AH, Amari Si. Nonnegative matrix and tensor factorizations:
applications to exploratory multi-way data analysis and blind source separation. New York
(NY): John Wiley & Sons; 2009.

[13] Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev. 2009;51:455–500.
doi:10.1137/07070111X.

[14] De Lathauwer L, De Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM
J. Matrix Anal. Appl. 2000;21:1253–1278. doi:10.1137/S0895479896305696.

[15] Berman A, Plemmons RJ. Nonnegative matrices in the mathematical sciences. Vol. 9, Classics in
applied mathematics. Philadelphia (PA): Society for Industrial and Applied Mathematics; 1994.
doi:10.1137/1.9781611971262.

[16] Chang KC, Qi L, Zhang T. A survey on the spectral theory of nonnegative tensors. Numer. Linear
Algebra Appl. 2013;20:891–912. doi:10.1002/nla.1902.

[17] Hu S, Huang ZH, Ling C, Qi L. On determinants and eigenvalue theory of tensors. J. Symbolic
Comput. 2013;50:508–531.

[18] Ding W, Qi L, Wei Y. M-tensors and nonsingular M-tensors. Linear Algebra Appl.
2013;439:3264–3278.

[19] Zhang T. Existence of real eigenvalues of real tensors. Nonlinear Anal. 2011;74:2862–2868.
doi:10.1016/j.na.2011.01.008.

[20] Wilkinson JH. The algebraic eigenvalue problem. New York (NY): Oxford University Press;
1965.

[21] Demmel JW. Applied numerical linear algebra. Philadelphia (PA): Society for Industrial and
Applied Mathematics (SIAM); 1997. doi:10.1137/1.9781611971446.

[22] Stewart GW, Sun JG. Matrix perturbation theory. Boston (MA): Computer Science and Scientific
Computing, Academic Press Inc; 1990.

[23] Ragnarsson S, Van Loan CF. Block tensors and symmetric embeddings. Linear Algebra Appl.
2013;438:853–874. doi:10.1016/j.laa.2011.04.014.

[24] Chen Z, Lu L. A tensor singular values and its symmetric embedding eigenvalues. J. Comput.
Appl. Math. 2013;250:217–228. doi:10.1016/j.cam.2013.03.014.

[25] Cartwright D, Sturmfels B. The number of eigenvalues of a tensor. Linear Algebra Appl.
2013;438:942–952. doi:10.1016/j.laa.2011.05.040.

D
ow

nl
oa

de
d 

by
 [

Fu
da

n 
U

ni
ve

rs
ity

] 
at

 1
5:

44
 1

4 
A

ug
us

t 2
01

5 

http://projecteuclid.org/euclid.cms/1214949934
http://dx.doi.org/10.1016/j.jmaa.2008.09.067
http://dx.doi.org/10.1137/140951758
http://dx.doi.org/10.1016/j.cam.2007.10.012
http://dx.doi.org/10.1155/2014/109525
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1137/S0895479896305696
http://dx.doi.org/10.1137/1.9781611971262
http://dx.doi.org/10.1002/nla.1902
http://dx.doi.org/10.1016/j.na.2011.01.008
http://dx.doi.org/10.1137/1.9781611971446
http://dx.doi.org/10.1016/j.laa.2011.04.014
http://dx.doi.org/10.1016/j.cam.2013.03.014
http://dx.doi.org/10.1016/j.laa.2011.05.040


Linear and Multilinear Algebra 31

[26] Kolda TG, Mayo JR. Shifted power method for computing tensor eigenpairs. SIAM J. Matrix
Anal. Appl. 2011;32:1095–1124. doi:10.1137/100801482.

[27] Ahlfors LV. Complex analysis: an introduction of the theory of analytic functions of one complex
variable. 2nd ed. New York (NY): McGraw-Hill Book Co.; 1966.

[28] Chevalley C. Introduction to the theory of algebraic functions of one variable. No. VI.
Mathematical surveys. New York (NY): American Mathematical Society; 1951.

[29] Gohberg I, Koltracht I. Mixed, componentwise, and structured condition numbers. SIAM J.
Matrix Anal. Appl. 1993;14:688–704. doi:10.1137/0614049.

[30] Yang Y, Yang Q. Further results for Perron–Frobenius theorem for nonnegative tensors. SIAM
J. Matrix Anal. Appl. 2010;31:2517–2530.

[31] Elsner L, Koltracht I, Neumann M, Xiao D. On accurate computations of the Perron root. SIAM
J. Matrix Anal. Appl. 1993;14:456–467. doi:10.1137/0614032.

[32] Zhang T, Golub GH. Rank-one approximation to high order tensors. SIAM J. Matrix Anal. Appl.
2001;23:534–550.

[33] Bader BW, Kolda TG. Matlab Tensor Toolbox Version 2.5. 2012 Jan. Available from: http://
www.sandia.gov/tgkolda/TensorToolbox/.

[34] Ng M, Qi L, Zhou G. Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix
Anal. Appl. 2009;31:1090–1099. doi:10.1137/09074838X.

D
ow

nl
oa

de
d 

by
 [

Fu
da

n 
U

ni
ve

rs
ity

] 
at

 1
5:

44
 1

4 
A

ug
us

t 2
01

5 

http://dx.doi.org/10.1137/100801482
http://dx.doi.org/10.1137/0614049
http://dx.doi.org/10.1137/0614032
http://www.sandia.gov/ tgkolda/TensorToolbox/
http://www.sandia.gov/ tgkolda/TensorToolbox/
http://dx.doi.org/10.1137/09074838X

	Abstract
	1. Introductions
	2. Preliminaries
	2.1. Definitions
	2.2. Some remarks
	2.3. Symmetric and mode-symmetric embeddings

	3. Perturbation bounds of Z-eigenvalue and singular value
	3.1. Properties of eigenvalue and Z-eigenvalue
	3.2. Algebraic simple Z-eigenvalue
	3.3. Algebraic simple eigenvalue
	3.4. Singular value

	4. Perturbation for the case of Pl(λ)
	4.1. Tensor generalized eigenvalue problem
	4.2. Tensor quadratic eigenvalue problem
	4.3. Tensor polynomial eigenvalue problem

	5. Numerical examples
	6. Conclusion
	Acknowledgements
	Funding
	Disclosure statement
	References



