
Applied Mathematics and Computation 275 (2016) 50–62

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Further results on Cauchy tensors and Hankel tensors

Haibin Chen a,1,∗, Guoyin Li b,2, Liqun Qi a,3

a Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
b Department of Applied Mathematics, University of New South Wales, Sydney 2052, Australia

a r t i c l e i n f o

MSC:

90C30

15A06

Keywords:

Generalized Cauchy tensor

SOS tensor

Hankel tensor

Positive semi-definiteness

H-eigenvalue

a b s t r a c t

In this article, we present various new results on Cauchy tensors and Hankel tensors. We first

introduce the concept of generalized Cauchy tensors which extends Cauchy tensors in the

current literature, and provide several conditions characterizing positive semi-definiteness of

generalized Cauchy tensors with nonzero entries. Furthermore, we prove that all even order

generalized Cauchy tensors with positive entries are completely positive tensors, which means

every such that generalized Cauchy tensor can be decomposed as the sum of nonnegative

rank-1 tensors. We also establish that all the H-eigenvalues of nonnegative Cauchy tensors

are nonnegative. Secondly, we present new mathematical properties of Hankel tensors. We

prove that an even order Hankel tensor is Vandermonde positive semi-definite if and only if

its associated plane tensor is positive semi-definite. We also show that, if the Vandermonde

rank of a Hankel tensor A is less than the dimension of the underlying space, then positive

semi-definiteness of A is equivalent to the fact that A is a complete Hankel tensor, and so, is

further equivalent to the SOS property of A. Thirdly, we introduce a new class of structured

tensors called Cauchy–Hankel tensors, which is a special case of Cauchy tensors and Hankel

tensors simultaneously. Sufficient and necessary conditions are established for an even order

Cauchy-Hankel tensor to be positive definite.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Let R
n be the n dimensional real Euclidean space. Denote the sets of all natural numbers by N. Suppose m, n ∈ N, m, n ≥ 2 and

denote [n] = {1, 2, . . . , n}. It should be noted in advance, we always consider real order m dimension n tensors in this paper.

Tensors (or sometimes called hypermatrices) are the multi-array extensions of matrices. It was recently demonstrated in [13]

that most of the problems associated with tensors are, in general, NP-hard. So, it motivates researchers to study tensors with

special structure i.e. structured tensors. In the last two or three years, a lot of research papers on structured tensors appeared

[3,4,8,9,12,20,28,29,33,37–39,41]. These include M-tensors, circulant tensors, completely positive tensors, Hankel tensors, Hilbert

tensors, P-tensors, B-tensors and Cauchy tensors. Many interesting properties and meaningful results of structured tensors have

been discovered. For instance, spectral properties of structure tensors, positive definiteness and semi-definiteness of structured

tensors were established. Furthermore, some practical applications of structured tensors were studied such as application in
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stochastic process and data fitting [4,9]. Very recently, authors of [20] studied SOS-Hankel tensors and applied them to the

positive semi-definite tensor completion problem.

Among the various structured tensors we mentioned above, there are two particular interesting classes: Cauchy tensors and

Hankel tensors. The symmetric Cauchy tensors were defined and analyzed in [3]. In the following discussion, we simply refer it

as Cauchy tensors instead of symmetric Cauchy tensors. One of the nice properties of a Cauchy tensor is that its positive semi-

definiteness (or positive definiteness) can be easily verified by the sign of the associated generating vectors. In fact, it was proved

in [3] that an even order Cauchy tensor is positive semi-definite if and only if each of entries of its generating vector is positive,

and an even order Cauchy tensor is positive definite if and only if each entries of its generating vector is positive and mutually

distinct.

Hankel tensors arise from signal processing and data fitting [1,9,25]. As far as we know, the definition of Hankel tensor was

first introduced in [25]. Recently, some easily verifiable structured tensors related to Hankel tensors were also introduced in

[28]. These structured tensors include strong Hankel tensors, complete Hankel tensors and the associated plane tensors that

correspond to underlying Hankel tensors. It was proved that if a Hankel tensor is copositive or an even order Hankel tensor is

positive semi-definite, then the associated plane tensor is copositive or positive semi-definite respectively [28]. Furthermore,

results on positive semi-definiteness of even order strong and complete Hankel tensors were given. However, the relationship

between strong Hankel tensors and complete Hankel tensors was not provided in [28]. Later, in [20], it was shown that complete

Hankel tensors are strong Hankel tensors; while the converse is, in general, not true.

In this paper, we will provide further new results for Cauchy tensors and Hankel tensors which complements the existing

literature. The remainder of this paper is organized as follows. In Section 2, we will first recall some basic notions of tensors are

given such as H-eigenvalues, Z-eigenvalues and positive semi-definite tensors. We will also introduce the notion of Vandermonde

positive semi-definite tensors, which is a special class of positive semi-definite tensors.

In Section 3, we will first introduce the generalized Cauchy tensors which is an extension of the Cauchy tensors in the liter-

ature. Then, we provide complete characterization for positive semi-definite generalized Cauchy tensors with nonzero entries.

We also present sufficient and necessary conditions guaranteeing an even order generalized Cauchy tensor with nonzero entries

to be completely decomposable. After that, it is proven that all even order generalized Cauchy tensors with positive entries are

SOS (sum-of-square) tensors if and only if they are completely positive tensors, which means every generalized Cauchy tensor

with positive entries can be written as a sum of nonnegative rank-1 tensors. Furthermore, we prove that the Hadamard product

of two positive semi-definite Cauchy tensors are still positive semi-definite tensors. And the nonnegativity for H-eigenvalues of

nonnegative Cauchy tensors are testified.

In Section 4, we provide further new properties of Hankel tensors. We prove that the associated plane tensor of an even

order Hankel tensor is positive semi-definite if and only if the Hankel tensor is Vandermonde positive semi-definite. Using this

conclusion, we give an example to show that, for higher dimensional Hankel tensors, the associated plane tensor is positive

semi-definite but the Hankel tensor failed. We also show that, if the Vandermonde rank of a Hankel tensor A is less than the

dimension of the underlying space, then positive semi-definiteness of A is equivalent to the fact that A is a complete Hankel

tensor, and so, is further equivalent to the SOS property of A.

In Section 5, we introduce Cauchy–Hankel tensors, which are natural extensions of Cauchy–Hankel matrices. The class of

Cauchy–Hankel tensors is a subset of Cauchy tensors [3] and Hankel tensors [9,20,28] simultaneously. We provide a checkable

sufficient and necessary condition for an even order Cauchy–Hankel tensor to be positive definite. We also show that an even or-

der Cauchy–Hankel tensor is positive semi-definite if and only if the associated homogeneous polynomial is strict monotonically

increasing on the nonnegative orthant R
n+. Some final remarks are provided in Section 6.

Before we end the introduction section, let us make some comments on the symbols that will be used throughout this paper.

Vectors are denoted by italic lowercase letters i.e. x, y, . . . , and matrices are denoted by capital letters A, B, . . . . Suppose e ∈ R
n

be all one vectors and let ei denotes the ith unite coordinate vector in R
n. We use bold letters 0 ∈ R

n to denote zero vector.

Tensors are written as calligraphic capitals such as A, T , . . . . Let I denote the real identity tensor. For x = (x1, x2, . . . , xn)T , y =
(y1, y2, . . . , yn)T ∈ R

n, then x ≥ y (x ≤ y) means xi ≥ yi (xi ≤ yi) for all i ∈ [n]. x[m] is defined by (xm
1

, xm
2

, . . . , xm
n )T .

2. Preliminaries

A real tensor with order m and dimension n is defined by A = (ai1i2 ...im ), ij ∈ [n], j ∈ [m]. If the entries ai1i2 ...im are invariant

under any permutation of the subscripts, then tensor A is called symmetric tensor. Let x = (x1, x2, . . . , xn)T ∈ R
n. The two forms

below will be used in the following analysis frequently:

Axm−1 =
(

n∑
i2,i3,...,im=1

aii2 ...im
xi2

. . . xim

)n

i=1

;

Axm =
n∑

i1,i2,...,im=1

ai1i2 ...im
xi1

xi2
. . . xim

.

Denote R
n+ = {x ∈ R

n|x ≥ 0}. If Axm ≥ 0 for all x ∈ R
n+, then A is called copositive. An even order m dimension n tensor A is

called positive semi-definite if for any vector x ∈ R
n, it satisfies Axm ≥ 0. Tensor A is called positive definite if Axm > 0 for all

nonzero vectors x ∈ R
n. From the definition, it is easy to see that, for a positive semi-definite tensor, its order m must be an even
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number. Therefore, in the following analysis, we always assume the order of the tensor is even when we consider a positive

semi-definite tensor.

We call u ∈ R
n a Vandermonde vector if u = (1,μ,μ2, . . . ,μn−1)T ∈ R

n for some μ ∈ R. If Aum ≥ 0 for all Vandermonde

vectors u ∈ R
n, then we say that tensor A is Vandermonde positive semi-definite. It’s obvious that positive semi-definite tensors

are always Vandermonde positive semi-definite, but not vice versa.

Next, we recall the definitions of eigenvalues of tensors.

Definition 2.1. Let A be a symmetric tensor with order m and dimension n. We say λ ∈ R is a Z-eigenvalue of A and x ∈ R
n\{0}

is an Z-eigenvector corresponding to λ if (x, λ) satisfies{
Axm−1 = λx,

xT x = 1.

Moreover, we say λ ∈ R is an H-eigenvalue of A and x ∈ R
n\{0} is an H-eigenvector corresponding to λ if (x, λ) satisfies

Axm−1 = λx[m−1],

where x[m−1] = (xm−1
1

, . . . , xm−1
n )T ∈ R

n.

The definitions of Z-eigenvalue and H-eigenvalue were introduced by Qi in [27]. Independently, Lim [24] also gave the defini-

tions via a variational approach and established an interesting Perron–Frobenius theorem for tensors with nonnegative entries.

From [27] and [5], both Z-eigenvalues and H-eigenvalues for an even order symmetric tensor always exist. Moreover, from the

definitions, we can see that finding an H-eigenvalue of a symmetric tensor is equivalent to solving a homogeneous polynomial

equation while calculating a Z-eigenvalue is equivalent to solving nonhomogeneous polynomial equations. In general, the behav-

iors of Z-eigenvalues and H-eigenvalues can be quite different. For example, a diagonal symmetric tensor A has exactly n many

H-eigenvalues and may have more than n Z-eigenvalues (for more details see [27]). Recently, a lot of researchers have devoted

themselves to the study of eigenvalue problems of symmetric tensors and have found important applications in diverse areas

including spectral hypergraph theory [7,23], dynamical control [31], medical image science [22,32] and signal processing [17].

3. SOS properties and complete positivity of even order generalized Cauchy tensors

Symmetric Cauchy tensors was first studied in [3]. Some checkable sufficient and necessary conditions for an even order

symmetric Cauchy tensor to be positive semi-definite or positive definite were provided in [3], which extends the matrix cases

established in [10].

Definition 3.1 [3]. Let c = (c1, c2, . . . , cn)T ∈ R
n. Let a real tensor C = (ci1i2 ...im ) be defined by

ci1i2 ...im
= 1

ci1
+ ci2

+ · · · + cim

, j ∈ [m], i j ∈ [n]. (3.1)

Then, we say that C is a symmetric Cauchy tensor with order m and dimension n. The corresponding vector c ∈ R
n is called the

generating vector of C.

Now, given two vectors c = (c1, c2, . . . , cn)T , d = (d1, d2, . . . , dn)T ∈ R
n. Consider the generalized Cauchy tensor C =

(ci1i2 ...im ) with order m dimension n, where

ci1i2 ...im
= di1

di2
. . . dim

ci1
+ ci2

+ · · · + cim

, i j ∈ [n], j ∈ [m].

For the sake of simplicity, we call vectors c, d the generating vectors of the generalized Cauchy tensor C. In the special case

when di = 1, i ∈ [n], a generalized Cauchy tensor reduces to a Cauchy tensor defined in Definition 3.1. In the case when m = 2,

a generalized Cauchy tensor collapses to a symmetric generalized Cauchy matrix [26]. We also note that every rank-one tensor

with the form um for some u ∈ R
n is, in particular, a generalized Cauchy tensor.

Define Cauchy tensor C = (ci1,i2,...im ) where

ci1,i2,...im
= 1

ci1
+ ci2

+ · · · + cim

, i j = 1, . . . , n, j = 1, . . . , m.

It is easy to see for any x ∈ R
n, we have

Cxm ≡ Cym,

where y ∈ R
n with yi = dixi for i = 1, . . . , n. By Theorems 2.1 and 2.3 of [3], one may easily conclude that the generalized Cauchy

tensor C is positive semi-definite if and only if di = 0, ci �= 0 or di �= 0, ci > 0, i ∈ [n] and C is positive definite if and only if

c1, c2, . . . , cn are positive real number and mutually distinct, and di �= 0, i = 1, . . . , n.

In this section, we mainly characterize SOS (sum-of-squares) properties and completely positiveness of even order general-

ized Cauchy tensors with nonzero entries. Before giving the main results, we briefly recall the definitions of SOS tensors and

completely positive tensors.
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SOS tensors are first defined in [14]. The definition of SOS tensors relies on the celebrated concept of SOS polynomials, which

is a fundamental concept in polynomial optimization theory [14,15,18,19,34]. Assume A is an order m dimension n symmetric

tensor. Let m = 2k be an even number. If

f (x) = Axm, x ∈ R
n

can be decomposed to the sum of squares of polynomials of degree k, then f is called a sum-of-squares (SOS) polynomial, and

the corresponding symmetric tensor A is called an SOS tensor [14]. From the definition, any SOS tensor is positive semi-definite.

On the other hand, the converse is not true, in general [14,15]. The importance of studying SOS tensors is that the problem for

determining an even order symmetric tensor is an SOS tensor or not is equivalent to solving a semi-infinite linear programming

problem, which can be done in polynomial time; while determining the positive semi-definiteness of a symmetric tensor is, in

general, NP-hard. Interestingly, it was recently shown in [14] that for a so-called Z-tensor A where the off-diagonal elements are

all non-positive, A is positive semi-definite if and only if it is a SOS tensor.

Tensor A is called a completely decomposable tensor if there are vectors x j ∈ R
n, j ∈ [r] such that A can be written as sums

of rank-one tensors generated by the vector xj, that is,

A =
∑
j∈[r]

xm
j .

If x j ∈ R
n+ for all j ∈ [r], then A is called a completely positive tensor [33]. It was shown that a strongly symmetric, hierarchically

dominated nonnegative tensor is a completely positive tensor [33]. It can be directly verified that all even order completely

positive tensors are SOS tensors, and so, are also positive semi-definite tensors. We note that verifying a tensor A is a completely

decomposable or not, and finding its explicit rank one decomposition are highly nontrivial. This topic has attracted a lot of

researchers and many important work has been established along this direction. For detailed discussions, see [6,16,33] and the

reference therein.

We now characterize the SOS property and complete decomposability for even order generalized Cauchy tensors with nonzero

entries.

Theorem 3.1. Let C be a generalized Cauchy tensor with even order m and dimension n. Let c = (c1, . . . , cn)T ∈ R
n and d =

(d1, . . . , dn)T ∈ R
n be the generating vectors of C. Assume di �= 0, i ∈ [n]. Then, the following statements are equivalent:

(i) the generalized Cauchy tensor C is a completely decomposable tensor;

(ii) the generalized Cauchy tensor C is an SOS tensor;

(iii) the generalized Cauchy tensor C is positive semi-definite;

(iv) ci > 0, i ∈ [n].

Proof. Since m is even, by the definitions of completely decomposable tensor, SOS tensor and positive semi-definite tensor, we

can easily obtain (i) ⇒ (ii) and (ii) ⇒ (iii).

[(iii) ⇒ (iv)] Let C be an even order generalized Cauchy tensor which is positive semi-definite. Then

Cem
i = dm

i

mci

≥ 0.

So ci > 0 for all i ∈ [n].

[(iv) ⇒ (i)] Suppose that ci > 0, i ∈ [n]. Then, for any x ∈ R
n,

f (x) = Cxm =
n∑

i1,i2,...,im=1

di1
di2

. . . dim

ci1
+ ci2

+ · · · + cim

xi1
xi2

. . . xim

=
n∑

i1,i2,...,im=1

(∫ 1

0

tci1
+ci2

+···+cim −1di1
di2

. . . dim
xi1

xi2
. . . xim

dt

)

=
∫ 1

0

(
n∑

i1,i2,...,im=1

tci1
+ci2

+···+cim −1di1
di2

. . . dim
xi1

xi2
. . . xim

)
dt

=
∫ 1

0

(
n∑

i=1

tci− 1
m dixi

)m

dt. (3.2)

By the definition of Riemann integral, we have

Cxm = lim
k→∞

k∑
j=1

(∑n
i=1(

j
k
)ci− 1

m dixi

)m

k
.
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Let Ck be the symmetric tensor such that

Ckxm =
k∑

j=1

(∑n
i=1(

j
k
)ci− 1

m dixi

)m

k

=
k∑

j=1

(
n∑

i=1

( j
k
)ci− 1

m di

k
1
m

xi

)m

=
k∑

j=1

(〈uj, x〉)m
, (3.3)

where

uj =
(

( j
k
)c1− 1

m d1

k
1
m

, . . . ,
( j

k
)cn− 1

m dn

k
1
m

)
∈ R

n, j = 1, . . . , k. (3.4)

Let CDm, n denote the set consisting of all completely decomposable tensor with order m and dimension n. From [20, Theorem 1],

CDm, n is a closed convex cone when m is even. It then follows that C = limk→∞ Ck is also a completely decomposable tensor. �

Next, we provide a sufficient and necessary condition for the complete positivity of a generalized Cauchy tensor with nonzero

entries, in terms of its generating vectors.

Theorem 3.2. Let C be a generalized Cauchy tensor defined as in Theorem 3.1 with generating vectors c = (c1, . . . , cn)T ∈ R
n and

d = (d1, . . . , dn)T ∈ R
n. Assume di �= 0, i ∈ [n]. Then C is a completely positive tensor if and only if ci > 0 and di > 0, i ∈ [n].

Proof. For necessary condition, suppose that C is a completely positive tensor. Then, for any vector x ∈ R
n+, we must have Cxm ≥ 0.

So, Cem
i

= dm
i

mci
≥ 0. This implies that ci > 0, i ∈ [n]. To finish the proof, we only need to show di > 0, i ∈ [n]. To see this, we proceed

by the method of contradiction and suppose that

I− := {i ∈ {1, . . . , n} : di < 0} �= ∅.

Denote r to be the cardinality of I−. Without loss of generality, we assume that I− = {1, . . . , r}. Then, d1 < 0 and dr+1 > 0, and

hence, the (r + 1, 1, . . . , 1)th entry of C satisfies

Cr+1 1 ··· 1 = dr+1dm−1
1

cr+1 + (m − 1)c1

< 0.

Note that each entry of a completely positive tensor must be a nonnegative number. This makes contradiction, and hence, the

necessary condition follows.

To prove the sufficient condition, from (3.2) and (3.3), we know that

Cxm = lim
k→∞

k∑
j=1

(〈uj, x〉)m
.

As ci > 0 and di > 0, i ∈ [n], (3.4) implies that u j ∈ R
n+, j ∈ [k]. So each Ck is a completely positive tensor. Let CPm, n denote the

set consisting of all completely positive tensors with order m and dimension n. From [33], CPm, n is a closed convex cone for any

m, n ∈ N. It then follows that C = limk→∞ Ck is also a completely positive tensor. �

Let A = (ai1 ...im ) and B = (bi1...im ) be two real tensors with order m and dimension n. Then their Hadamard product is a real

order m dimension n tensor

A ◦ B = (ai1 ...im
bi1 ...im

).

From Proposition 1 of [33], we know that the Hadamard product of two completely positive tensors is also a completely positive

tensor. So, we have the following conclusion.

Corollary 3.1. Let C1 and C2 be two positive semi-definite Cauchy tensors. Then the Hadamard product C1 ◦ C2 is also positive semi-

definite.

Next, we have the following theorem on H-eigenvalues of nonnegative Cauchy tensors. By [40], we know that each nonneg-

ative symmetric tensor has at least one H-eigenvalue, which is the largest modulus of its eigenvalues. Here, for nonnegative

Cauchy tensors, all the H-eigenvalues must be nonnegative.

Theorem 3.3. Let C be a nonnegative Cauchy tensor with order m dimension n. Let c = (c1, c2, . . . , cn)T be the generating vector of

tensor C. Then all H-eigenvalues of Cauchy tensor C are nonnegative.
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Proof. In the case where m is even, since C is nonnegative and the definition of a Cauchy tensor, we have ci > 0, i = 1, . . . , n.

From Theorem 2.1 of [3], we know that C is positive semi-definite. Then, Theorem 5 of [27] gives us that all H-eigenvalues of C
are nonnegative.

We now consider the case where m is odd. Let λ be an arbitrary H-eigenvalue of C with an H-eigenvector x �= 0. By the

definition of H-eigenvalue, it holds that

λxm−1
i

= (Cxm−1)i

=
n∑

i2,...,im=1

xi2
xi3

. . . xim

ci + ci2
+ · · · + cim

=
n∑

i2,...,im=1

(∫ 1

0

tci+ci2
+···+cim −1xi2

xi3
. . . xim

dt

)

=
∫ 1

0

(
n∑

i2,...,im=1

tci+ci2
+···+cim −1xi2

xi3
. . . xim

)
dt

=
∫ 1

0

(
n∑

j=1

tc j+ ci−1

m−1 x j

)m−1

dt.

This implies that λ ≥ 0 since m is odd. Thus, the desired result holds. �

Now, we give an example to verify the result of Theorem 3.3. Here, we only show the nonnegativity of H-eigenvalues for an

odd order nonnegative Cauchy tensor since all even order nonnegative Cauchy tensors are always positive semi-definite [3].

Example 3.1. Let C = (ci1i2i3
) be a nonnegative Cauchy tensor with generating vector c = (1, 1, 2). Then, it has entries such that

c111 = c222 = 1

3
, c333 = 1

6
, c112 = c121 = c211 = 1

3
, c113 = c131 = c311 = 1

4
,

c122 = c221 = c212 = 1

3
, c133 = c331 = c313 = 1

5
, c223 = c232 = c322 = 1

4
,

c233 = c332 = c323 = 1

5
, c123 = c132 = c312 = c321 = c231 = c213 = 1

4
.

By Definition 2.1, to get all H-eigenvalues of C is equivalent to solving the following system:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

3
x2

1 + 2

3
x1x2 + 1

2
x1x3 + 1

3
x2

2 + 1

5
x2

3 + 1

2
x2x3 = λx2

1

1

3
x2

2 + 2

3
x1x2 + 1

2
x2x3 + 1

3
x2

1 + 1

5
x2

3 + 1

2
x1x3 = λx2

2

1

6
x2

3 + 2

5
x1x3 + 2

5
x2x3 + 1

4
x2

2 + 1

4
x2

1 + 1

2
x1x2 = λx2

3

(3.5)

Since Cauchy tensor C is nonnegative, it always has H-eigenvalue i.e. the above system at least has a solution λ ∈ R. Next, we will

prove that λ may not be negative. Without loss of generality, choose one equation from (3.5) such that

1

3
x2

1 + 2

3
x1x2 + 1

2
x1x3 + 1

3
x2

2 + 1

5
x2

3 + 1

2
x2x3 = λx2

1. (3.6)

It is east to see that the left of the equality in (3.6) is quadratic form and the corresponded symmetric matrix is⎛
⎜⎜⎜⎜⎜⎝

1

3

1

3

1

4

1

3

1

3

1

4

1

4

1

4

1

5

⎞
⎟⎟⎟⎟⎟⎠.

By direct computation, we obtain that the matrix is positive semi-definite, which implies that

1

3
x2

1 + 2

3
x1x2 + 1

2
x1x3 + 1

3
x2

2 + 1

5
x2

3 + 1

2
x2x3 ≥ 0, ∀x ∈ R

3.

Thus, all H-eigenvalues of Cauchy tensor C are nonnegative. �
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4. Further properties on Hankel tensors

Hankel tensors arise from signal processing and some other applications [1,9,25,28]. Recall that an order m dimension n tensor

A = (ai1i2 ...im ) is called a Hankel tensor if there is a vector v = (v0, v1, . . . , v(n−1)m)T such that

ai1i2 ...im
= vi1+i2+···+im−m,∀i1, i2, . . . , im ∈ [n]. (4.1)

Such a vector v is called the generating vector of Hankel tensor A.

For any k ∈ N, let s(k, m, n) be the number of distinct sets of indices (i1, i2, . . . , im), ij ∈ [n], j ∈ [m] such that i1 + i2 + · · · + im −
m = k. For example, s(0, m, n) = 1, s(1, m, n) = m, s(2, m, n) = m(m+1)

2 . Suppose P = (pi1i2 ...i(n−1)m
) is an order (n − 1)m dimen-

sion 2 tensor defined by

pi1i2 ···i(n−1)m
= s(k, m, n)vk(

(n−1)m
k

) ,

where k = i1 + i2 + · · · + i(n−1)m − (n − 1)m. Then tensor P is called the associated plane tensor of Hankel tensor A. When n = 2,

it is obvious that P = A.

In [28], it was proved that, if a Hankel tensor is copositive, then its associated plane tensor P is copositive and the associated

plane tensor is positive semi-definite if the Hankel tensor is positive semi-definite. Since the associated plane tensor P has

dimension 2, we can use the Z-eigenvalue method in [30] to check its positive semi-definiteness (alternatively, noting that any

2-dimensional symmetric tensor is positive semi-definite if and only if it is a sums-of-squares tensor, we can also verify the

positive semi-definiteness of the associated plane tensor by solving a semi-definite programming problem). Thus, the positive

semi-definiteness of the associated plane tensor is a checkable necessary condition for the positive semi-definiteness of even

order Hankel tensors (see more discussion in [28]). This naturally raises the following questions: Can these necessary conditions

be also sufficient? If not, are there any concrete counter-examples?

We first present a result stating that the positive semi-definiteness of the associated plane tensor is equivalent to the Vander-

monde positive semi-definiteness of the original Hankel tensor.

Theorem 4.1. Let A be a Hankel tensor defined as in (4.1) with an even order m. Then, the associated plane tensor P is positive

semi-definite if and only if A is Vandermonde positive semi-definite.

Proof. For necessary condition, let u = (1,μ,μ2, . . . ,μn−1)T ∈ R
n be an arbitrary Vandermonde vector. If μ = 0, then we have

Aum =
∑

i1,i2,...,im∈[n]

ai1i2 ...im
ui1

ui2
. . . uim

= v0. (4.2)

By our assumption, for y = (1, 0)T ∈ R
2, it follows that

Py(n−1)m =
∑

i1,i2,...,i(n−1)m∈[2]

pi1i2 ...i(n−1)m
yi1

yi2
. . . yi(n−1)m

= v0 ≥ 0.

Combining this with (4.2), we obtain

Aum ≥ 0. (4.3)

If μ �= 0, there exist y1, y2 ∈ R\{0} such that μ = y2
y1

. Let y = (y1, y2)T ∈ R
2. Then, we have

Py(n−1)m =
∑

i1,i2,...,i(n−1)m∈[2]

pi1i2 ...i(n−1)m
yi1

yi2
. . . yi(n−1)m

= y(n−1)m
1

(n−1)m∑
k=0

(
(n − 1)m

k

)
s(k, m, n)vk(

(n−1)m
k

) μk

= y(n−1)m
1

Aum

≥ 0.

By (4.3) and the fact that m is even, for all Vandermonde vectors u ∈ R
n, it follows that

Aum ≥ 0,

which implies Hankel tensor A is Vandermonde positive semi-definite.

For sufficiency, let y = (y1, y2)T ∈ R
2. We now verify that Py(n−1)m ≥ 0. To see this, we first consider the case where y1 �= 0.

In this case, let u = (1,μ,μ2, . . . ,μn−1)T ∈ R
n, where μ = y2

y1
. From the analysis above, we have

Py(n−1)m = y(n−1)m
1

Aum ≥ 0 (4.4)

since m is even and A is Vandermonde positive semi-definite.
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On the other hand, if y = (y1, y2)T ∈ R
2 with y1 = 0, then we let yε = (ε, y2)T ∈ R

2 and u = (1,μ,μ2, . . . ,μn−1)T ∈ R
n, where

μ = y2
ε , ε > 0. By (4.4), we have

Py(n−1)m
ε = ε(n−1)mAum ≥ 0.

Combining this with the fact that ε �→ Py(n−1)m
ε is a continuous mapping, it follows that

Py(n−1)m = lim
ε→0

Py(n−1)m
ε ≥ 0.

This then implies that plane tensor P is positive semi-definite and the desired result holds. �

Below, we provide an example illustrating that a Hankel tensor which is Vandermonde positive semi-definite need not to be

positive semi-definite. This example together with Theorem 4.1, also implies that the positive semi-definiteness of the associate

plane tensor is not sufficient for positive semi-definiteness of the Hankel tensor.

Example 4.1. Let A be a Hankel tensor with order m = 4 and dimension n = 3. Let the generating vector of A be v0 = 1, v1 =
−1, v2 = 1 and v3 = v4 = · · · = v8 = 0. So, for any u = (1,μ,μ2)T ∈ R

3,

Au4 =
∑

i1,i2,i3,i4∈[3]

ai1i2i3i4
ui1

ui2
ui3

ui4

=
k=8∑
k=0

s(k, 4, 3)vkμ
k

= v0 + 4v1μ + 10v2μ
2

= 1 − 4μ + 10μ2 ≥ 0

for all μ ∈ R. By Theorem 4.1, we know that the associated plane tensor P is positive semi-definite. We now verify that A is not

positive semi-definite. To see this, let x = (1, 1,−1)T , then,

Ax4 =
∑

i1,i2,i3,i4∈[3]

vi1+i2+i3+i4−4xi1
xi2

xi3
xi4

= v0x4
1 + 4v1x3

1x2 + v2(6x2
2x2

1 + 4x3
1x3)

= x4
1 − 4x3

1x2 + (6x2
2x2

1 + 4x3
1x3)

= 1 − 4 + 6 − 4 = −1 < 0,

which implies that Hankel tensor A is not positive semi-definite. �

The following example shows that the the copositivity of the associated plane tensor is also not sufficient for the copositivity

of the Hankel tensor, in general.

Example 4.2. Let A be a Hankel tensor with order m = 4 and dimension n = 3. Let the generating vector of A be v0 = 1, v1 =
−1, v2 = 1

2 , v3 = v4 = · · · = v8 = 0. Let x = (1, 1
2 , 0)T . Then, we have

Ax4 = −1

4
< 0,

which implies that Hankel tensor A is not copositive. On the other hand, it holds that

Au4 = 1 − 4μ + 5μ2 ≥ 0

for any Vandermonde vector u = (1,μ,μ2)T ∈ R
3. By Theorem 4.1, the associated plane tensor P is positive semi-definite. Thus,

P is copositive. �

A special class of Hankel tensor is the complete Hankel tensors. To recall the definition of a complete Hankel tensor, we note

that, for a Hankel tensor A with order m dimension n, if

A =
r∑

k=1

αk(uk)
m, (4.5)

where αk ∈ R, αk �= 0, uk = (1,μk,μ
2
k
, . . . ,μn−1

k
)T ∈ R

n, k = 1, 2, . . . , r, for some μi �= μj for i �= j, then, we say A has a Van-

dermonde decomposition. The corresponding vector uk, k = 1, . . . , r are called Vandermonde vectors and the minimum value

of r is called Vandermonde rank of A [28]. From Theorem 3 of [28], we know that A is a Hankel tensor if and only if it has a

Vandermonde decomposition (4.5). If αk > 0 for k ∈ [r] in (4.5), then A is called a complete Hankel tensor.

In [28], it is proved that an even order complete Hankel tensor is positive semi-definite. Moreover, examples were also pre-

sented to show that the converse is, in general, not true. Here, in the following theorem, we show that if the Vandermonde rank

of a Hankel tensor A is less than the dimension of the underlying space, then positive semi-definiteness of A is equivalent to the

fact that A is a complete Hankel tensor, and so, is further equivalent to the SOS property of A.
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Theorem 4.2. Let A be a Hankel tensor with an even order m. Assume that the Hankel tensor A has Vandermonde decomposition (4.5)

with the Vandermonde rank r satisfies r ≤ n. Then, the following statements are equivalent:

(i) A is a positive semi-definite tensor;

(ii) A is a complete Hankel tensor.

(iii) A is an SOS tensor;

Proof. We first note that the implications [(ii)] ⇒ [(iii)] and [(iii)] ⇒ [(i)] are direct consequences from the definitions. Thus,

to see the conclusion, we only need to prove [(i)] ⇒ [(ii)]. To do this, we proceed by the method of contradiction and assume

that there exists at least one coefficient αi in (4.5) which is negative. Without loss of generality, we assume that α1 < 0. For any

x = (x1, x2, . . . , xn)T ∈ R
n, then we have

Axm =
r∑

k=1

αk(uT
k x)m

= α1(uT
1x)m + α2(uT

2x)m + · · · + αr(uT
r x)m. (4.6)

Consider the following two homogeneous linear equation systems

Ax = 0, Bx = 0,

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 μ1 μ2
1 · · · μn−1

1

1 μ2 μ2
2 · · · μn−1

2

...
...

...
...

...

1 μr μ2
r · · · μn−1

r

⎞
⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎝

1 μ2 μ2
2 · · · μn−1

2

1 μ3 μ2
3 · · · μn−1

3

...
...

...
...

...

1 μr μ2
r · · · μn−1

r

⎞
⎟⎟⎟⎟⎟⎠.

By conditions r ≤ n, it is easy to get

Rank(A) = r ≤ n, Rank(B) = r − 1 < n,

which imply that there is vector x0 ∈ R
n, x0 �= 0 such that

Ax0 �= 0, Bx0 = 0.

Here, Rank(A) denotes the rank of matrix A. So, it holds that

uT
1x0 �= 0, uT

i x0 = 0, i ∈ {2, 3, . . . , r}.
Combining this with (4.6), we have

Axm
0 = α1(uT

1x0)
m < 0

since m is even. However, this contradicts to the fact that A is positive semi-definite. Thus, all coefficients in (4.5) are positive

and A is a complete Hankel tensor. �

An interesting consequence of Theorem 4.2 is as follows: a necessary condition for a PNS (positive semi-definite but not sum-

of-squares) Hankel tensor A is that the Vandermonde rank r of the Hankel tensor A is strictly larger than the dimension n of the

underlying space. We note that searching for a PNS Hankel tensor is a non-trivial task and is related to Hilbert’s 17th question.

Recently, some extensive study for PNS Hankel tensor has been initialed in [21].

Next, we provide some necessary conditions for the positive semi-definiteness of a Hankel tensor A in terms of the sign

properties of the coefficients of its Vandermonde decomposition.

Proposition 4.1. Let A be a Hankel tensor with the Vandermonde decomposition (4.5). Suppose that A is positive semi-definite. Then,

(i) the coefficients of the Vandermonde decomposition satisfy

α1 + α2 + · · · + αr ≥ 0;
(ii) if r > n, then the total number of positive coefficients of the Vandermonde decomposition is greater than or equal to n;

(iii) if r ≤ n, then all coefficients of the Vandermonde decomposition are positive.

Proof.

(i) Since A is positive semi-definite, so we have

Aem
1 =

r∑
i=1

αi(uT
i e1)

m = α1 + α2 + · · · + αr ≥ 0.
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(ii) Denote the total number of positive coefficients in (4.5) by t. Without loss of generality, let

αi > 0, i ∈ [t];α j < 0, j ∈ {t + 1, t + 2, . . . , r}.
We proceed by the method of contradiction and suppose that t < n. If t = 0, we can easily get a contradiction because A is

positive semi-definite. If 0 < t < n, consider the following two linear equation systems

Ax = 0 (4.7)

and

Bx = 0, (4.8)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 μ1 μ2
1 · · · μn−1

1

1 μ2 μ2
2 · · · μn−1

2

...
...

...
...

...

1 μt μ2
t · · · μn−1

t

⎞
⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 μ1 μ2
1 · · · μn−1

1

1 μ2 μ2
2 · · · μn−1

2

...
...

...
...

...

1 μr μ2
r · · · μn−1

r

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Noting that Rank(A) = t < n and Rank(B) = n, basic linear algebra theory implies that the system (4.7) has nonzero solu-

tions and system (4.8) has only zero solution. Thus, there exists x̄ ∈ R
n, x̄ �= 0 such that

uT
i x̄ = 0, i ∈ [t] and (uT

t+1x̄, . . . , uT
r x̄)T �= 0.

Note that the order m is an even number (as A is positive semi-definite). This implies that

Ax̄m =
r∑

j=t+1

α j(uT
j x̄)m < 0.

This contradicts with the fact that A is positive semi-definite. Then we get t ≥ n.

(iii) If r ≤ n, then the conclusion is a direct result of Theorem 4.2. �

The following example shows that r ≤ n in Theorem 4.2 is necessary and the results (i), (ii) of Proposition 4.1 are not sufficient.

Example 4.3. Let A be 4th order 2 dimension Hankel tensor with Vandermonde decomposition such that

A = (ai1i2i3i4
) = x4 + y4 − z4, (4.9)

where x = (1, 0), y = (1, 1), z = (1, −1) are Vandermonde vectors in R
2. We first prove that the Vandermonde rank of A is r = 3.

(I) Suppose A = αu4, α ∈ R, α �= 0, u = (1,μ) ∈ R
2. Then, by (4.9), we obtain

a1111 = α = 1, a1112 = αμ = 2, a1122 = αμ2 = 0,

which are contradictive equations. So, the Vandermonde rank of A satisfies r ≥ 2.

(II) Suppose A = α1u4
1 + α2u4

2, where u1 = (1,μ1), u2 = (1,μ2) ∈ R
2,μ1 �= μ2, and α1, α2 are nonzero real numbers. Then,

by (4.9), we have the following system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α1 + α2 = 1, (1)

α1μ1 + α2μ2 = 2, (2)

α1μ
2
1 + α2μ

2
2 = 0, (3)

α1μ
3
1 + α2μ

3
2 = 2, (4)

α1μ
4
1 + α2μ

4
2 = 0. (5)

We first prove that μ1 �= 1, μ2 �= 1. By contradiction, if μ1 = 1, then by (2) (4), we have

α2μ2(μ
2
2 − 1) = 0,

which implies that μ2 = 0 or μ2 = −1 (μ2 can not be 1 since μ1 �= μ2). If μ1 = 1,μ2 = 0, we get a contradiction from

(2) and (3); if μ1 = 1,μ2 = −1, we get another contradiction from (1) and (3). Thus, μ1 �= 1. Similarly, we can prove that

μ2 �= 1.

On the other hand, by (2)–(5), it holds that

α1μ1(μ
2
1 − 1) = α2μ2(1 − μ2

2) (4.10)

and

α1μ
2
1(μ

2
1 − 1) = α2μ

2
2(1 − μ2

2). (4.11)
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By (4.10), (4.11), it follows that μ1 = μ2, which is a contradiction. Thus, the Vandermonde rank of the Hankel tensor A is

r = 3.

For this Hankel tensor A, it is easy to check that conditions (i), (ii) in Proposition 4.1 hold. But A is not positive semi-definite

since that

Ax4
0 = −15 < 0, x0 = (1,−1) ∈ R

2.

�

5. Properties of Cauchy–Hankel tensors

In the literature, there is an important class of structured matrices called Cauchy–Hankel matrices which is closely related

with Cauchy matrices and Hankel matrices simultaneously [11,35,36]. A matrix A is called a Cauchy–Hankel matrices if it can be

formulated as

A =
(

1

g + h(i + j)

)n

i, j=1

,

where g and h are real constants such that h �= 0 and g
h

is not an integer [2].

As a natural extension of Cauchy–Hankel matrix, a tensor A = (ai1i2...im ) with order m and dimension n is called a Cauchy–

Hankel tensor if

ai1i2 ...im
= 1

g + h(i1 + i2 + · · · + im)
, i j ∈ [n], j ∈ [m], (5.1)

where g, h �= 0 ∈ R and g
h

is not an integer.

It is obvious that a Cauchy–Hankel tensor is a symmetric tensor. From Definition 3.1, we know that a Cauchy–Hankel tensor

defined by (5.1) is a Cauchy tensor [3] with generating vector

c =
(

g

m
+ h,

g

m
+ 2h, . . . ,

g

m
+ nh

)T

∈ R
n,

and it is a Hankel tensor [25,28] at the same time with

vk = 1

g + h(k + m)
, k ∈ {0, 1, 2, . . . , (n − 1)m}.

Theorem 5.1. Let A be a Cauchy–Hankel tensor defined as in (5.1) with even order m. Then, A is positive definite if and only if

g + mh > 0, g + nmh > 0.

Proof. For necessary condition, since A is positive definite, so we have

Aem
1 = 1

g + mh
> 0,Aem

n = 1

g + mnh
> 0,

and the desired results hold.

For sufficiency, since

g + mh > 0, g + nmh > 0,

it follows that

g + smh > 0,∀s ∈ {1, 2, . . . , n}.
Combining Theorem 2.3 of [3] and the fact that

g + imh �= g + jmh,∀i, j ∈ [n], i �= j,

we know that A is positive definite and the desired result follows. �

Next, we define the homogeneous polynomial f(x) as below

f (x) = Axm =
∑

i1,i2,...,im∈[n]

ai1i2 ...im
xi1

xi2
. . . xim

,

for x = (x1, x2, . . . , xn)T ∈ R
n. Let x, y ∈ X ⊆ R

n. If f(x) ≥ f(y) for any x ≥ y(x ≤ y respectively), then we say f(x) is monotonically

increasing (monotonically decreasing respectively) in X. If f(x) > f(y) for any x ≥ y, x �= y(x ≤ y, x �= y respectively), then we say

f(x) is strict monotonically increasing (strict monotonically decreasing respectively) in X.

When A is a Cauchy tensor with even order, it has been proved that f(x) is strict monotonically increasing in R
n+ if the Cauchy

tensor A is positive definite; while the converse need not to be true [3]. For even order Cauchy–Hankel tensors, we have the

following conclusion, which is stronger than the corresponded conclusion listed in [3].
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Theorem 5.2. Let A be a Cauchy–Hankel tensor defined as in (5.1) with an even order m. Then, A is positive definite if and only if

f (x) = Axm is strict monotonically increasing in R
n+.

Proof. For the only if part, suppose x, y ∈ R
n+, x ≥ y and x �= y, which means that there exists at least one subscript i satisfying xi

> yi. Then, we have

f (x) − f (y) = Axm − Aym

=
∑

i1,i2,...,im∈[n]

xi1
xi2

. . . xim
− yi1

yi2
. . . yim

g + h(i1 + i2 + · · · + im)

= xm
i

− ym
i

g + imh
+

∑
i1i2 ...im �=ii...i

xi1
xi2

. . . xim
− yi1

yi2
. . . yim

g + h(i1 + i2 + · · · + im)
.

Since A is positive definite, by Theorem 5.1, we obtain

g + kmh > 0,∀k ∈ [n].

So, we obtain

xm
i

− ym
i

g + imh
> 0

and ∑
i1i2 ...im �=ii...i

xi1
xi2

. . . xim
− yi1

yi2
. . . yim

g + h(i1 + i2 + · · · + im)
≥ 0.

Thus, we have

f (x) − f (y) > 0,

which implies that f(x) is strict monotonically increasing in R
n+.

For the if part, note that ei ∈ R
n+ and ei ≥ 0, ei �= 0, i = 1, n. It then follows that

f (e1) − f (0) = Aem
1 = 1

g + mh
> 0

and

f (en) − f (0) = Aem
n = 1

g + nmh
> 0.

By Theorem 5.1, we know that Cauchy–Hankel tensor A is positive definite and the desired results hold. �

Theorem 5.1 and Theorem 5.2 provide a convenient checkable condition to verify the positive definiteness of the Cauchy–

Hankel tensor, and the strict monotonicity of the multivariate polynomial corresponding to the tensor. Here, we present several

examples to show the efficiency of the theory conclusions.

Example 5.1. Suppose A = (ai1i2i3i4
) is a Cauchy–Hankel tensor such that

ai1i2i3i4
= 1

9 − 2(i1 + i2 + i3 + i4)
, i j ∈ [3], j ∈ [4].

Here, it takes g = 9, h = −2 and m = 4, n = 3. Since g + mh > 0, g + mnh < 0, tensor A is not positive definite and strict mono-

tonically increasing in R
n+. In fact, it holds that

Ae4
2 = −1

7
,Ae4

2 < A04.

Example 5.2. Let A = (ai1i2i3i4i5i6
) be a tensor such that

ai1i2i3i4
= 1

100 − 3(i1 + i2 + i3 + i4 + i5 + i6)
, i j ∈ [4], j ∈ [6].

By Theorem 5.1, Theorem 5.2 and the fact that

g + mh = 100 − 6 · 3 = 72 > 0, g + mnh = 100 − 6 · 4 · 3 = 18 > 0,

A is positive definite and Axm is strict monotonically increasing.
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6. Final remarks

In this article, we present various new results on Cauchy tensors and Hankel tensors which complements the existing litera-

ture. Firstly, we show that generalized positive semi-definite Cauchy tensors with nonzero entries are SOS tensors. Furthermore,

sufficient and necessary conditions are given to guarantee an even order generalized Cauchy tensor is a completely positive ten-

sor. The nonnegativity of H-eigenvalues of nonnegative Cauchy tensors are also established. For Hankel tensors, we prove that it

is Vandermonde positive semi-definite if and only if the associated plane tensor is positive semi-definite. We also show that, if

the Vandermonde rank of a Hankel tensor A is less than the dimension of the underlying space, then positive semi-definiteness

of A is equivalent to the fact that A is a complete Hankel tensor, and so, is further equivalent to the SOS property of A. Finally,

properties of Cauchy-Hankel tensors are also given.
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