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Abstract. Anti-circulant tensors have applications in exponential data fitting. They are special
Hankel tensors. In this paper, we extend the definition of anti-circulant tensors to generalized anti-
circulant tensors by introducing a circulant index r such that the entries of the generating vector of a
Hankel tensor are circulant with module r. In the special case when r=n, where n is the dimension
of the Hankel tensor, the generalized anticirculant tensor reduces to the anti-circulant tensor. Hence,
generalized anti-circulant tensors are still special Hankel tensors. For the cases that GCD(m,r)=1,
GCD(m,r)=2 and some other cases, including the matrix case that m=2, we give necessary and
sufficient conditions for positive semi-definiteness of even order generalized anti-circulant tensors, and
show that in these cases, they are sum of squares tensors. This shows that, in these cases, there are no
PNS (positive semidefinite tensors which are not sum of squares) Hankel tensors.
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1. Introduction
Anti-circulant tensors were introduced in [4]. They are extensions of anti-circulant

matrices in matrix theory [3, 23]. They have applications in exponential data fitting [4].
Anti-circulant tensors are Hankel tensors. Hankel tensors arise from signal processing
and some other applications [1, 16, 18]. In this paper, we extend anti-circulant tensors to
generalized anti-circulant tensors, which are still Hankel tensors, and present conditions
for positive semi-definiteness of generalized anti-circulant tensors.

Let v=(v0,···,v(n−1)m)⊤∈ℜ(n−1)m+1, wherem,n≥2. Anmth order n dimensional
Hankel tensor A=(ai1···im) is defined by

ai1···im =vi1+···+im−m,

for i1,···,im=1,··· ,n. If

vi=vi+r,(1.1)

for i=0,·· ·,(n−1)m−r, where 1≤ r≤n, then A is called a generalized anti-
circulant tensor with circulant index r. If r=n, then A is an anti-circulant tensor
according to [4].

For x=(x1,·· ·,xn)
⊤∈ℜn, A uniquely define a homogeneous polynomial

f(x)≡Ax⊗m=
n∑

i1,···,im=1

ai1···imxi1 ···xim =
n∑

i1,···,im=1

vi1+···+im−mxi1 ···xim .(1.2)
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2 GENERALIZED ANTI-CIRCULANT TENSORS

We call such a polynomial a Hankel polynomial.
Suppose that m=2k is even. In (1.2), if f(x)≥0 for all x∈ℜn, then f is called

a PSD (positive semi-definite) Hankel polynomial and A is called a PSD Hankel
tensor [17]. Denote 0=(0,···,0)⊤∈ℜn. If f(x)>0 for all x∈ℜn,x ̸=0, then f and A
are called positive definite. Clearly, the only odd order PSD Hankel tensor is O and
there are no odd order positive definite Hankel tensors. Thus, we may assume that m
is even in our discussion. If f can be decomposed to the sum of squares of polynomials
of degree k, then f is called an SOS Hankel polynomial and A is called an SOS
Hankel tensor [6, 7, 13, 15]. Clearly, an SOS Hankel tensor is a PSD Hankel tensor
but not vice versa. By [18], a necessary condition for A to be PSD is that

vjm≥0,(1.3)

for j=0,·· ·,n−1. Let ei be the ith unit vector in ℜn. Substitute them to (1.2). Then
we get (1.3) directly. Vector v is called the generating vector of A. It may also
generate a (nk−k+1)×(nk−k+1) Hankel matrix A=(aij) by

aij =vi+j−2

for i,j=1,·· ·,nk−k+1. If the associated Hankel matrix A is PSD, then the Hankel
tensor A is called a strong Hankel tensor [18]. In [13], it was proved that an even
order strong Hankel tensor is an SOS Hankel tensor. Then, a necessary condition for A
to be a strong Hankel tensor is that

v2j ≥0,(1.4)

for j=0,·· ·,(n−1)k.
Let GCD(m,r) denote the greatest common divisor of the two nonnegative integers

m and r.
When r is odd, for the case that m=2k,k≥1,GCD(m,r)=1 and n≥ r, we show

that A is PSD if and only if v0= ···=vr−1≥0. In this case, we show that

f(x)=v0(x1+ ·· ·+xn)
m,

and A is a strong Hankel tensor. We show that this result is still true for r=3,n≥ r
and m=6,12,18,30,42.

When r is even, for the case that m=2k,k≥1,GCD(m,r)=2 and n≥ r, we show
that A is PSD if and only if v0=v2= ···=vr−2, v1=v3= ···=vr−1, and v0≥|v1|. In
these cases, we may write v1=v0(2t−1), where t∈ [0,1]. We show that

f(x)= tv0(x1+ ·· ·xn)
m+(1− t)v0

(
x1−x2+x3−···+(−1)n−1xn

)m
,

and A is a strong Hankel tensor. We show that this result is still true in the case that
m=4, r=4 and n≥4.

Note that these two results are true in the matrix case for all r≥1. In fact, in the
matrix case, for even r, we show the result is true as long as 2≤ r≡2p≤2n−4. We
believe that our results are new even in the matrix case.

The significance of our results is twofold: On one hand, they enrich the theory
of positive semi-definiteness of even order symmetric tensors [2, 10, 11, 14, 17, 18, 19,
21, 22]. On the other hand, they also contribute to the study of the Hilbert-Hankel
problem. In 1988, Hilbert [5] showed that a PSD symmetric homogeneous polynomial
of n variables and degree m=2k is always an SOS polynomial only in the following three
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cases: (1) m=2; (2) n=2; and (3) m=4,n=3. For the other pairs of m=2k≥4 and
n≥3, there are always PSD polynomials which are not SOS polynomials. We may call
such polynomials PNS (PSD non-SOS) polynomials. Later, various PNS polynomials
are found [20]. Since each homogeneous polynomial of n variables and degree m is
uniquely corresponding to an mth order n dimensional symmetric tensor, the discovery
of Hilbert may also be stated in the tensor language. In [13], a question is raised: are all
the PSD Hankel tensors SOS tensors? If the answer to this question is “yes”, then the
problem for determining a given even order Hankel tensor is a PSD tensor or not can
be solved by a linear semi-definite programming problem [8, 9], and so, can be solved
in polynomial time. In [12], a conjecture is made that there are no sixth order three
dimensional PNS Hankel tensors. Since generalized anti-circulant tensors are Hankel
tensors, our results are related to this Hilbert-Hankel problem.

In Section 2, we prove a theorem for circulant numbers. This will be useful for our
further discussion.

In Sections 3 and 4, we discuss the problem for the case where r is odd and r is
even, respectively. Some final remarks are made in Section 5.

Throughout the paper, we use ei to denote the ith unit vector in ℜn.

2. A Theorem on Circulant Numbers
We have the following theorem.

Theorem 1. Let M ≥1 and p≥2. Suppose that we have a sequence {uj : j=0,1,···},
satisfying

uj+p=uj ,

for j=0,1,···. If

M∑
j=0

(
M

j

)
(−1)jui+j ≥0,(2.1)

for i=0,···,p−1, or

M∑
j=0

(
M

j

)
(−1)jui+j ≤0,(2.2)

for i=0,···,p−1, then u0=u1= ·· ·=up−1.
Proof. We may prove this theorem by induction on M . Obviously, it is true for

M =1,2. Suppose that it is true for M =2,···,k. We now prove that it is true for
M =k+1. Define

wi=

k∑
j=0

(
k

j

)
(−1)jui+j

for i=0,···,p−1. Then wi+p=wi for i=0,···,p−1. Suppose that (2.1) holds for M =
k+1. Note that

wi−wi+1=

u0+

k∑
j=1

(
k

j

)
(−1)jui+j

−

k−1∑
j=0

(
k

j

)
(−1)jui+j+1+(−1)kui+k+1


=u0+

 k∑
j=1

((
k

j

)
+

(
k

j−1

))
(−1)jui+j

+(−1)k+1ui+k+1
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=u0+

 k∑
j=1

(
k+1

j

)
(−1)jui+j

+(−1)k+1ui+k+1

=
k+1∑
j=0

(
k+1

j

)
(−1)jui+j .

Then (2.1) is equivalent to

wi−wi+1≥0

for i=0,···,p−1. This implies that w0=w1 ···=wp−1. Thus, either (2.1) or (2.2) holds
for M =k. By our induction assumption, we have u0=u1= ·· ·=up−1. Similarly, if (2.2)
holds for M =k+1, we may show that u0=u1= ···=up−1. This proves the theorem.

3. The Case that r is Odd

3.1. The Case that r=1
This case is trivial. However, we present the statement of the result for the reader’s

convenience here, as it covers the sufficiency part of the results for the cases that r is
an odd number with r≥3.
Proposition 1. Suppose that A is an mth order n dimensional generalized anti-
circulant tensor with circulant index 1, where m=2k≥2 and n≥2. Then A is PSD if
and only if v0≥0. In this case, we have

f(x)=v0(x1+ ·· ·+xn)
m.(3.1)

and

y⊤Ay=v0
(
y1+ ···+y(nk−k+1)

)2
,(3.2)

where A is the associated Hankel matrix, which implies that A is a strong Hankel tensor
and hence an SOS Hankel tensor.

The proof is trivial and we omit it here.

3.2. The Case that GCD(m,r)=1
We have the following theorem.

Theorem 2. Suppose that A is an mth order n dimensional generalized anti-circulant
tensor with m=2k, GCD(m,r)=1, 1≤ r≤n and k≥1. Then A is PSD if and only if
v0= ·· ·=vr−1≥0. In this case, we still have (3.1) and (3.2), which implies that A is a
strong Hankel tensor and hence an SOS Hankel tensor.

Proof. Suppose that A is PSD. Let x=eq−eq+1 for q=1,···,n, with en+1≡e1.
From f(x)≥0, we have

m∑
j=0

(
m

j

)
(−1)jv(q−1)m+j ≥0,(3.3)

for q=1,···,n. Since GCD(m,r)=1, for each i=0,···,r−1, there is an integer q, 1≤ q≤
n such that (q−1)m= i, mod(r). Then vi+j =v(q−1)m+j for such i, q and j=0,·· ·,m.
Thus, (3.3) implies that

m∑
j=0

(
m

j

)
(−1)jvi+j ≥0,

for i=0,···,r−1. Applying Theorem 1 with M =m,uj =vj and p= r, we have v0= ·· ·=
vr−1. By (1.3), v0≥0. Thus, we have v0= ·· ·=vr−1≥0.

The “if” part follows from Proposition 1.
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3.3. The Case that GCD(m,r) ̸=1
The case that GCD(m,r) ̸=1 and r is odd includes the case that r=3,m=6l for

l≥1, the case that r=5,m=10l for l≥1, etc. By [12], Theorem 2 still holds for the
case that m=6 and r=3. We may see that Theorem 2 still holds for more cases that
GCD(m,r) ̸=1 and r is odd.

We now assume that m=6l, r=3 for l≥1.
In this case, (1.1) and (1.2) have the following form:

vi=vi+3(3.4)

for i=0,·· ·,(n−1)m−3, and for x=(x1,···,xn)
⊤∈ℜn,

f(x)≡Ax⊗m=
n∑

i1,···,im=1

vi1+···+imxi1 ···xim =v0f0(x)+v1f1(x)+v2f2(x),(3.5)

where

fj(x)=
∑

{xi1 ···xim : i1+ ···+ im= j, mod(3),i1,···,im=1,···,n},(3.6)

for j=0,1,2. We may see that

f0(x)+f1(x)+f2(x)=(x1+ ···+xn)
m.(3.7)

Since we are concerned about PSD generalized anti-circulant tensors, we may as-
sume that (1.3) holds, i.e., v0≥0.
Proposition 2. Suppose that A is an mth order n dimensional generalized anti-
circulant tensor with circulant index 3, where m=6,12,18,30,42 and n≥3. Assume
that v0≥0. If A is PSD, then

v1+v2=2v0.(3.8)

Proof. Suppose that A is PSD and v0≥0. Then we have f(1,−1,0,·· ·,0)≥0. Note
that

f0(1,−1,0,···,0)=
∑

{xi1 ···xim : i1+ ···+ im=0, mod(3), i1,··· ,im=1,2, x1=1, x2=−1}

=
∑

{xi1 ···xim : the number of ij =1 is m−p, the number of ij =2 is p,

p=0,3,·· ·,m, x1=1, x2=−1}

=
∑{

(−1)p
(
m

p

)
:p=0,3,··· ,m

}
.

Similarly, we can prove that

f1(1,−1,0,···,0)=
∑{

(−1)p
(
m

p

)
:p=1,4,·· ·,m−2

}
and

f2(1,−1,0,···,0)=
∑{

(−1)p
(
m

p

)
:p=2,5,·· ·,m−1

}
.
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By direct calculation, for m=6,18,30,42, we have

f0(1,−1,0,···,0)<0.(3.9)

Since
(

m
p

)
≡
(

m
m−p

)
, we have

f1(1,−1,0,···,0)=f2(1,−1,0,···,0).(3.10)

By (3.7),

f0(1,−1,0,··· ,0)+f1(1,−1,0,···,0)+f2(1,−1,0,·· ·,0)=0.(3.11)

By (3.5), (3.9-3.11) and f(1,−1,0,···,0)≥0, we have v1+v2−2v0≥0.
On the other hand, for m=6,18,30,42,

f0(1,1,−2,0,··· ,0)
=
∑

{xi1 ···xim : i1+ ·· ·+ im=0, mod(3), i1,···,im=1,2,3, x1=1, x2=1, x3=−2}

=
∑

{xi1 ···xim : the number of ij =1 is m−p−q, the number of ij =2 is q,

the number of ij =3 is p, 2p+q=0, mod(3), 0≤p,q≤m, x1=1, x2=1, x3=−2}

=
m∑

p=0

∑
{xi1 ···xim : the number of ij =1 is m−p−q, the number of ij =2 is q,

the number of ij =3 is p, 2p+q=0, mod(3), 0≤ q≤m, x1=1, x2=1, x3=−2}

=
m∑

p=0

∑{
(−2)p

(
m

p

)(
m−p

q

)
: 2p+q=0, mod(3), 0≤ q≤m

}
.

Similarly, we can prove that

f1(1,1,−2,0,··· ,0)=
m∑

p=0

∑{
(−2)p

(
m

p

)(
m−p

q

)
: 2p+q=1, mod(3), 0≤ q≤m

}
and

f2(1,1,−2,0,·· ·,0)=
m∑

p=0

∑{
(−2)p

(
m

p

)(
m−p

q

)
: 2p+q=2, mod(3), 0≤ q≤m

}
.

By direct calculation, for m=6,18,30,42, we have

f0(1,1,−2,0,···,0)>0.(3.12)

Note that
(

m−p
q

)
≡
(

m−p
m−p−q

)
. Also, 2p+q=2, mod(3) is equivalent to 2p+m−p−q=

1, mod(3). Thus,

f1(1,1,−2,0,··· ,0)=f2(1,1,−2,0,···,0).(3.13)

By (3.7),

f0(1,1,−2,0,··· ,0)+f1(1,1,−2,0,···,0)+f2(1,1,−2,0,···,0)=0.(3.14)
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By f(1,1,−2,0,···,0)≥0, (3.5) and (3.12-3.14) we can derive v1+v2−2v0≤0. This
proves (3.8).

For the case that m=12, (3.10) still holds. By direct computation, we have

f0(1,−1,0,0,···,0)>0.(3.15)

By (3.5), (3.10-3.11) and (3.15), we have v1+v2−2v0≤0. On the other hand, consider
f(1,−3,2,0,···,0) and f(1,2,−3,0,·· ·,0). By direct computation, we have

f0(1,−3,2,0,···,0)<0.(3.16)

We have that

f0(1,−3,2,0,·· ·,0)

=
m∑

p=0

∑{
2p(−3)q

(
m

p

)(
m−p

q

)
: 2p+q=0, mod(3), 0≤ q≤m

}
and

f0(1,2,−3,0,·· ·,0)

=
m∑

p=0

∑{
2q(−3)p

(
m

p

)(
m−p

q

)
: 2p+q=0, mod(3), 0≤ q≤m

}
We may see that 2p+q=0, mod(3) if and only if p+2q=0, mod(3). Thus,

f0(1,2,−3,0,·· ·,0)=f0(1,−3,2,0,···,0)<0.(3.17)

Similarly, we may show that

f1(1,2,−3,0,···,0)−f2(1,2,−3,0,···,0)(3.18)

=f2(1,−3,2,0,···,0)−f1(1,−3,2,0,···,0).

By f(1,−3,2,0,···,0)+f(1,2,−3,0,·· ·,0)≥0, (3.5) and (3.17-3.18) we can derive v1+
v2−2v0≥0. This proves that (3.8) still holds for m=12.

We now have the following theorem.
Theorem 3. Suppose that A is an mth order n dimensional generalized anti-circulant
tensor with m=6,12,18,30,42, r=3 and n≥ r. Then A is PSD if and only if v0=v1=
v2≥0. In this case, we still have (3.1) and (3.2), which implies that A is a strong
Hankel tensor and hence an SOS Hankel tensor.

Proof. Suppose that A is PSD. Then v0≥0. Without loss of generality, assume
that v0>0. By Proposition 2, v1+v2=2v0. Let v1=v0(1+α). Then v2=v0(1−α) and

f(x)=v0(x1+ ···+xn)
m+v0α(f1(x)−f2(x)),(3.19)

where f1 and f2 are defined as in (3.6). We may see that

f1(1,2,−3,0,···,0)−f2(1,2,−3,0,·· ·,0)=f2(1,−3,2,0,···,0)−f1(1,−3,2,0,·· ·,0) ̸=0.

Then from this, (3.19), f(1,2,−3,0,·· ·,0)≥0 and f(1,−3,2,0,···,0)≥0, we have α=0.
This proves that v0=v1=v2≥0. The remaining conclusions now follow from Proposi-
tion 1.

In the proof of Proposition 2, we use direct calculation to show (3.9), (3.12), (3.15)
and (3.16). Are (3.9) and (3.12) still true for m=12l+6 with l≥4? Are (3.15) and
(3.16) still true for m=12l with l≥2? How can we prove these by some analytical tech-
nique? The case that m=2k,r=2p+1,GCD(m,r) ̸=1 for k≥2 and p≥2 also remains
unknown. These are some further research topics.
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4. The Case that r is Even

4.1. The Case that r=2
We see that the results in [12] for m=6 and n=3 can be extended to this case.
In this case, (1.1) and (1.2) have the following form:

vi=vi+2(4.1)

for i=0,·· ·,(n−1)m−2, and for x=(x1,···,xn)
⊤∈ℜn,

f(x)≡Ax⊗m=

n∑
i1,···,im=1

vi1+···+im−mxi1 ···xim =v0f0(x)+v1f1(x),(4.2)

where

fj(x)=
∑

{xi1 ···xim : i1+ ···+ im= j, mod(2),i1,···,im=1,···,n},(4.3)

for j=0,1. We may see that

f0(x)+f1(x)=(x1+ ·· ·+xn)
m.(4.4)

Since we are concerned about PSD generalized anti-circulant tensors, we may as-
sume that (1.3) holds, i.e., v0≥0.
Theorem 4. Suppose that A is an mth order n dimensional generalized anti-circulant
tensor with circulant index r=2, where m=2k≥2 and n≥2. Then A is PSD if and
only if |v1|≤v0. In these cases, we may write v1=v0(2t−1), where t∈ [0,1]. We have
that

f(x)= tv0(x1+ ·· ·xn)
m+(1− t)v0

(
x1−x2+x3−···+(−1)n−1xn

)m
,

and A is a strong Hankel tensor.
Proof. Suppose that A is PSD and v0≥0. Then we have f(1,1,0,··· ,0)≥0. Note

that

f0(1,1,0,···,0)=
∑

{xi1 ···xim : i1+ ···+ im=0, mod(2), i1,·· ·,im=1,2, x1=1, x2=1}

=
∑

{xi1 ···xim : the number of ij =1 is m−p, the number of ij =2 is p,

p=0,2,···,m, x1=1, x2=1}

=
∑{(

m

p

)
:p=0,2,···,m

}
.

Similarly, we can prove that

f1(1,1,0,··· ,0)=
∑{(

m

p

)
:p=1,3,·· ·,m−1

}
,

f0(1,−1,0,···,0)=
∑{(

m

p

)
:p=0,2,···,m

}
and

f1(1,−1,0,···,0)=
∑{

(−1)p
(
m

p

)
:p=1,3,·· ·,m−1

}
.
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We may see that

f0(1,−1,0,·· ·,0)+f1(1,−1,0,···,0)=0,

f0(1,1,0,·· ·,0)=f0(1,−1,0,·· ·,0)>0,

f1(1,1,0,·· ·,0)=−f1(1,−1,0,·· ·,0)>0.(4.5)

By (4.2), we have v0+v1≥0. From f(1,−1,0,···,0)≥0 and (4.2), we have v0−v1≥
0. This implies that v0≥|v1|. On the other hand, suppose that v0≥|v1|. We may
write v1=v0(2t−1), where t∈ [0,1]. Write f(x)=v0f0(x)+v1f1(x) such that f0(x)+
f1(x)=(x1+ ···+xn)

m and f0(x)−f1(x)=(x1−x2+x3−···+(−1)n−1xn)
m for all x=

(x1,·· ·,xn)
⊤∈ℜn. It then follows from (4.2) that

f(x)=v0f0(x)+v1f1(x)=v0f0(x)+(2t−1)v0f1(x)

= tv0(f0(x)+f1(x))+(1− t)v0(f0(x)−f1(x))

= tv0(x1+ ···+xn)
m+(1− t)v0(x1−x2+x3−···+(−1)n−1xn)

m.

Similarly, we have

g(y)=y⊤Ay(4.6)

= tv0(y1+ ·· ·+ynk−k+1)
2+(1− t)v0(y1−y2+y3−···+(−1)nk−kynk−k+1)

2,

where A is the associated Hankel matrix of A. The conclusions now follow from the
definitions of PSD, SOS and strong Hankel tensors.

4.2. The Case that GCD(m,r)=2
In this section, we allow r≤2n−4 instead of r≤n, and still call such a tensor a

generalized anti-circulant tensor. We have the following theorem.
Theorem 5. Suppose that A is an mth order n dimensional generalized anti-circulant
tensor with m=2k,k≥1, 4≤ r=2p≤2n−4. If GCD(m,r)=2, then A is PSD if and
only if v0=v2= ···=vr−2, v1=v3= ·· ·=vr−1 and v0≥|v1|. In this case, we may write
v1=v0(2t−1), where t∈ [0,1]. Then we have

f(x)= tv0(x1+ ·· ·xn)
m+(1− t)v0

(
x1−x2+x3−···+(−1)n−1xn

)m
.

This implies that A is PSD if only if it is SOS. Furthermore, in this case, A is a strong
Hankel tensor.

Proof. Suppose that A is PSD. Let x=eq−eq+2 for q=1,···,n, with en+1≡e1 and
en+2≡e2. By f(x)≥0, we have that

m∑
j=0

(
m

j

)
(−1)jv(q−1)m+2j ≥0,(4.7)

for q=1,··· ,n. Since GCD(m,r)=2, for each i=0,·· ·,p−1, there is an integer q, 1≤
q≤n such that (q−1)m=2i, mod(r). Then v2(i+j)=v(q−1)m+2j for such i, q and j=
0,···,m. Thus, (4.7) implies that

m∑
j=0

(
m

j

)
(−1)jv2(i+j)≥0,

for i=0,···,p−1. Applying Theorem 1 with M =m and uj =v2j , we have v0=v2= ·· ·=
vr−2.
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Let x=αeq−1+eq−αeq+1 for q=1,·· ·,n with e0≡en. Since v0=v2= ···=vr−2, in
the expression of f(x), the coefficient for power αm is zero. Hence, the highest power
of α in f(x) is the term for power αm−1, which is

mαm−1

m−1∑
j=0

(
m−1

j

)
(−1)jvmq−2m+1+2j

.

From f(x)≥0, letting α→∞, we have

m−1∑
j=0

(
m−1

j

)
(−1)jvmq−2m+1+2j ≥0,(4.8)

for q=1,···,n. Since GCD(m,r)=2, as in the first part of this proof, (4.8) implies that

m−1∑
j=0

(
m−1

j

)
(−1)jv2i+1+2j ≥0,

for i=0,·· ·,p−1. Applying Theorem 1 with M =m−1 and uj =v2j+1, we have v1=
v3= ·· ·=vr−1. The remaining conclusions now follow from Theorem 4.

4.3. The Case that GCD(m,r)=2l for l≥2
In this case, we have the following theorem for m=4, n≥ r=4.

Theorem 6. Suppose that A is a fourth order n dimensional generalized anti-circulant
tensor with circulant index r=4, where n≥4. Then A is PSD if and only if v0=v2,v1=
v3 and |v1|≤v0. In these cases, we may write v1=v0(2t−1), where t∈ [0,1]. We have
that

f(x)= tv0(x1+ ···xn)
4+(1− t)v0

(
x1−x2+x3−···+(−1)n−1xn

)4
,

and A is a strong Hankel tensor.
Proof. In this case, (1.1) and (1.2) have the following form:

vi=vi+4(4.9)

for i=0,·· ·,4n−8. From (1.2), for x=(x1,···,xn)
⊤∈ℜn, we have

f(x)≡Ax⊗4(4.10)

=
n∑

i1,···,i4=1

vi1+···+i4xi1 ·· ·xi4 =v0f0(x)+v1f1(x)+v2f2(x)+v3f3(x),

where

fj(x)=
∑

{xi1 ·· ·xi4 : i1+ ·· ·+ i4= j, mod(4),i1,···,i4=1,·· ·,n},(4.11)

for j=0,1,2,3. Furthermore, we have

f0(x1,x2,x3,x4,0,···0)(4.12)

=x4
1+x4

2+x4
3+x4

4+6(x2
1x

2
3+x2

2x
2
4)+12(x2

1x2x4+x1x
2
2x3+x2x

2
3x4+x1x3x

2
4),

f1(x1,x2,x3,x4,0,·· ·0)(4.13)

=4(x3
1x2+x3

2x3+x3
3x4+x1x

3
4)+12(x2

1x3x4+x1x
2
2x4+x1x2x

2
3+x2x3x

2
4),
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f2(x1,x2,x3,x4,0,·· ·0)(4.14)

=4(x3
1x3+x1x

3
3+x3

2x4+x2x
3
4)+6(x2

1x
2
2+x2

2x
2
3+x2

3x
2
4+x2

1x
2
4)+24x1x2x3x4,

f3(x1,x2,x3,x4,0,·· ·0)(4.15)

=4(x1x
3
2+x2x

3
3+x3x

3
4+x3

1x4)+12(x2
1x2x3+x2

2x3x4+x1x
2
3x4+x1x2x

2
4).

Suppose now that A is PSD. From (4.13) and (4.15), we see that

f1(1,0,−1,0,·· ·,0)=f3(1,0,−1,0,···,0)=0.

From (4.12) and (4.14), we have

f0(1,0,−1,0,···,0)=−f2(1,0,−1,0,·· ·,0)>0.

Then by f(1,0,−1,0,···,0)≥0, we have v0≥v2.
Similarly, from (4.12-4.15), we have

f1(1,−1,−1,1,0,···,0)=f3(1,−1,−1,1,0,0,··· ,0)=0

and

f0(1,−1,−1,1,0,···,0)=−f2(1,−1,−1,1,0,·· ·,0)<0.

Then by f(1,−1,−1,1,0,···,0)≥0, we have v0≤v2. Thus, we derive that v0=v2.
From f(α,1,−α,0,···,0)≥0, f(α,−1,−α,0,···,0)≥0 and (4.11), we derive that v0≥

ϕ(α)|v3−v1|, where ϕ(α)→∞ if α→∞. Letting α tend to ∞, we have v1=v3. The
remaining conclusions now follow from Theorem 4.

An interesting question would be: can we extend this theorem to m=4l for l≥2?

5. Final Remarks
The matrix case is covered in Subsections 3.2 and 4.2, as the proofs of Theorems 2

and 5 need to use Proposition 1 (r=1) and Theorem 4 (r=2), respectively. This shows
that the matrix case (m=2) and the higher order tensor case (m≥3) are connected to
each other.

In Subsection 4.2, we allow r≤2n−4 instead of r≤n. Is this a general situation
for even r? Further investigation is needed.

From Subsections 3.3 and 4.3, we see that Theorem 2 may still hold as long as r is
odd, even if GCD(m,r)>1; and that Theorem 5 may still hold as long as r is even, even
if GCD(m,r)>2. Are these true in general? How can we prove these? We may see that
the proofs of Theorems 2 and 5 rely on Theorem 1, but the proofs of Theorems 3 and 6
do not use a unified technique like Theorem 1. Can we have a unified technique to study
the case that r is odd, GCD(m,r)>1, and the case that r is even, GCD(m,r)>2?

These remain for further investigation.
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