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HANKEL TENSORS: ASSOCIATED HANKEL MATRICES AND

VANDERMONDE DECOMPOSITION∗

LIQUN QI†

Abstract. Hankel tensors arise from applications such as signal processing. In this paper, we
make an initial study on Hankel tensors. For each Hankel tensor, we associate a Hankel matrix
and a higher order two-dimensional symmetric tensor, which we call the associated plane tensor.
If the associated Hankel matrix is positive semi-definite, we call such a Hankel tensor a strong
Hankel tensor. We show that an m order n-dimensional tensor is a Hankel tensor if and only if it
has a Vandermonde decomposition. We call a Hankel tensor a complete Hankel tensor if it has a
Vandermonde decomposition with positive coefficients. We prove that if a Hankel tensor is copositive
or an even order Hankel tensor is positive semi-definite, then the associated plane tensor is copositive
or positive semi-definite, respectively. We show that even order strong and complete Hankel tensors
are positive semi-definite, the Hadamard product of two strong Hankel tensors is a strong Hankel
tensor, and the Hadamard product of two complete Hankel tensors is a complete Hankel tensor. We
show that all the H-eigenvalues of a complete Hankel tensors (maybe of odd order) are nonnegative.
We give some upper bounds and lower bounds for the smallest and the largest Z-eigenvalues of a
Hankel tensor, respectively. Further questions on Hankel tensors are raised.
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1. Introduction

Hankel matrices play an important role in linear algebra and its applications
[4, 5, 19]. As a natural extension of Hankel matrices, Hankel tensors arise from
applications such as signal processing.

Denote [n] :={1, · · · ,n}. Let A=(ai1···im) be a real mth order n-dimensional ten-
sor. If there is a vector v=(v0,v1, · · · ,v(n−1)m)⊤ such that for i1, · · · ,im∈ [n], we have

ai1···im ≡vi1+i2+···+im−m, (1.1)

then we say that A is an mth order Hankel tensor. Hankel tensors were introduced
by Papy, De Lathauwer, and Van Huffel in [8] in the context of the harmonic retrieval
problem, which is at the heart of many signal processing problems. In [1], Badeau
and Boyer proposed fast higher-order singular value decomposition (HOSVD) for third
order Hankel tensors.

A real mth order n-dimensional tensor (hypermatrix) A=(ai1···im) is a multi-
array of real entries ai1···im , where ij ∈ [n] for j∈ [m]. Denote the set of all real mth
order n-dimensional tensors by Tm,n. Then Tm,n is a linear space of dimension nm.
If the entries ai1···im are invariant under any permutation of their indices, then A is
a symmetric tensor. Denote the set of all real mth order n-dimensional symmetric
tensors by Sm,n. Then Sm,n is a linear subspace of Tm,n. Clearly, a Hankel tensor is a
symmetric tensor. Denote the set of all real mth order n-dimensional Hankel tensors
by Hm,n. Then Hm,n is a linear subspace of Sm,n, with dimension (n−1)m+1.
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Let A=(ai1···im)∈Sm,n and x=(x1, · · · ,xn)
⊤∈ℜn. Denote

Axm=

n
∑

i1,···,im=1

ai1···imxi1 · · ·xim .

Denote ℜn
+={x∈ℜn :x≥0}. If Axm≥0 for all x∈ℜn

+, then A is called copositive.
If Axm>0 for all x∈ℜn

+,x 6=0, then A is called strongly copositive [11]. Suppose
that m is even. If Axm≥0 for all x∈ℜn, then A is called positive semi-definite.
If Axm>0 for all x∈ℜn,x 6=0, then A is called positive definite [9]. Positive
semi-definite symmetric tensors are useful in automatic control [9] and higher-order
diffusion tensor imaging [2, 3, 7, 15, 16]. It is established in [9] that an even order
symmetric tensorA∈Sm,n is positive semi-definite if and only if all of its H-eigenvalues
(or Z-eigenvalues) are nonnegative. On the other hand, copositive tensors do not
restrict the order to be even, and thus are more general. Nonnegative tensors, positive
semi-definite tensors, and Laplacian tensors [12] are copositive tensors [11].

In the next section, for each Hankel tensor A∈Hm,n, we associate it with a
symmetric tensor P ∈S(n−1)m,2. We call such a tensor the associated plane tensor.
We use the term “plane tensor” here as its dimension is only 2, corresponding to a
tensor on the plane in physics, while three dimensional tensors are called space tensors
in [14]. Actually, Sl,2≡Hl,2 for any l≥2. But we do not stress that P is a Hankel
tensor here. For a symmetric tensor, we may use the elimination method proposed
in [13] to calculate its Z-eigenvalues, and to determine if it is positive semi-definite
or not when the order is even. We show that if a Hankel tensor is copositive or an
even order Hankel tensor is positive semi-definite, then the associated plane tensor is
copositive or positive semi-definite, respectively.

Suppose that A∈Hm,n is defined by (1.1). Let A=(aij) be an ⌈ (n−1)m+2
2 ⌉×

⌈ (n−1)m+2
2 ⌉ matrix with aij ≡vi+j−2, where v

2⌈
(n−1)m

2 ⌉
is an additional number when

(n−1)m is odd. Then A is a Hankel matrix, associated with the Hankel tensor A.
Such an associated Hankel matrix is unique if (n−1)m is even. If the Hankel matrix
A is positive semi-definite, then we say that A is a strong Hankel tensor.

It is clear that the Hadamard product of two Hankel tensors is a Hankel tensor.
In Section 3, we show that an even order strong Hankel tensor is positive semi-definite
and the Hadamard product of two strong Hankel tensors is also a strong Hankel tensor.
In order to do this, we introduce a generating function for a Hankel tensor. We show
that a Hankel tensor has a nonnegative generating function if and only if it is a strong
Hankel tensor. We give an example of a positive semi-definite Hankel tensor which
is not a strong Hankel tensor, and an example that the Hadamard product of two
positive semi-definite Hankel tensors is not positive semi-definite.

In Section 4, we introduce Vandermonde decomposition and show that an m

order n-dimensional tensor is a Hankel tensor if and only if it has a Vandermonde
decomposition. We call a Hankel tensor a complete Hankel tensor if it has a
Vandermonde decomposition with positive coefficients. We show that an even order
complete Hankel tensor is positive semi-definite and the Hadamard product of two
complete Hankel tensors is also a complete Hankel tensor.. In general, a positive
semi-definite Hankel tensor may not be a complete Hankel tensor.

As even order complete and strong Hankel tensors are positive semi-definite sym-
metric tensors, all of their H-eigenvalues and Z-eigenvalues are nonnegative, by The-
orem 5 of [9]. On the other hand, what are the spectral properties of odd order
complete and strong Hankel tensors? We study these in Section 5. We show that all
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of the H-eigenvalues of an odd order complete Hankel tensors are also nonnegative.
Suppose that x=(x1, · · · ,xn)

⊤ is a Z-eigenvector of a complete or strong Hankel tensor
A, associated with a nonzero Z-eigenvalue λ of A. We show that for all odd i, xi≥0
if λ>0, and xi≤0 if λ<0. If A is a complete Hankel tensor, then x1>0 if λ>0, and
x1<0 if λ<0.

In Section 6, we give some upper bounds and lower bounds for the smallest and
the largest Z-eigenvalues of a Hankel tensor, respectively. In Section 7, we present an
algorithm to determine whether or not a symmetric plane tensor P ∈Sl,2 is copositive
for l≥2.

Several questions are raised in sections 2-6. Some further questions are raised in
Section 8.

Throughout this paper, we assume that m,n≥2. We use small letters x,u,v,α, · · · ,
for scalers, small bold letters x,y,u, · · · , for vectors, capital letters A,B, · · · , for matri-
ces, calligraphic letters A,B, · · · , for tensors. Denote ei∈ℜn as the ith unit vector for
i∈ [n], and 0 as the zero vector in ℜn.

2. Associated plane tensors, copositive Hankel tensors, positive semi-

definite Hankel tensors

We first give a necessary condition for a Hankel tensor to be copositive.

Proposition 2.1. Suppose that A∈Hm,n is defined by (1.1). If A is copositive, then
v(i−1)m≥0 for i∈ [n].

Proof. Since v(i−1)m=A(ei)
m for i∈ [n], the conclusion follows from the defini-

tion of copositive tensors.

As a positive semi-definite symmetric tensor is copositive [11], the condition
v(i−1)m≥0 for i∈ [n] is also a necessary condition for an even order Hankel tensor
to be positive semi-definite.

For any nonnegative integer k, define s(k,m,n) as the number of distinct ordered
sets of indices (i1, · · · ,im) such that ij ∈ [n] for j∈ [m] and i1+ · · ·+ im−m=k. Then

s(0,m,n)=1,s(1,m,n)=m,s(2,m,n)= m(m+1)
2 , . . ..

We now define the associated plane tensor of a Hankel tensor. Suppose that
A∈Hm,n is defined by (1.1). Define P=(pi1···i(n−1)m

)∈S(n−1)m,2 by

pi1···i(n−1)m
=

s(k,m,n)vk
(

(n−1)m
k

) ,

where k= i1+ · · ·+ i(n−1)m−(n−1)m. We call P the associated plane tensor of
A.

Theorem 2.1. If a Hankel tensor A∈Hm,n is copositive, then its associated plane
tensor P is copositive. If an even order Hankel tensor A∈Hm,n is positive semi-
definite, then its associated plane tensor P is positive semi-definite.

Proof. Suppose that A is copositive. By Proposition 2.1, v(n−1)m≥0. Let

y=(y1,y2)
⊤∈ℜ2

+. If y1=y2=0, then clearly Py(n−1)m=0. If y1=0 and y2 6=0, then

Py(n−1)m=v(n−1)my
(n−1)m
2 ≥0. We now assume that y1 6=0. Let u= y2

y1
. Then u≥0.

We have

Py(n−1)m=y
(n−1)m
1

(n−1)m
∑

k=0

(

(n−1)m

k

)

·
s(k,m,n)vk
(

(n−1)m
k

) uk=y
(n−1)m
1 Aum≥0, (2.1)
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where u=(1,u,u2, · · · ,un−1)⊤∈ℜn
+. Thus, P is copositive.

Suppose that m is even and A is positive semi-definite. Then (n−1)m is also
even. By Proposition 2.1, v(n−1)m≥0. Let y=(y1,y2)

⊤∈ℜ2. If y1=y2=0, then

clearly Py(n−1)m=0. If y1=0 and y2 6=0, then Py(n−1)m=v(n−1)my
(n−1)m
2 ≥0. We

now assume that y1 6=0. Let u= y2

y1
. Then u 6=0. The derivation (2.1) still holds with

u=(1,u,u2, · · · ,un−1)⊤∈ℜn. Thus, P is positive semi-definite.

We may use the methods in [13, 15, 16] to check if P is positive semi-definite or
not when m is even. In Section 7, we will present an algorithm for checking if P is
copositive or not.

Question 2.1. Can we give an example where P is copositive but A is not?

Question 2.2. When m is even, can we give an example where P is positive semi-
definite but A is not?

Question 2.3. Which conditions on P may assure co-positiveness or positive semi-
definiteness of A?

3. Strong Hankel tensors and generating functions

We are going to show that an even order strong Hankel tensor is positive semi-
definite. In order to do this, we introduce a generating function for a Hankel tensor
A.

Let A be a Hankel tensor defined by (1.1). Let f(t) be an absolutely integrable
real valued function on the real line (−∞,∞) such that

vk≡

∫ ∞

−∞

tkf(t)dt, (3.1)

for k=0, · · · ,(n−1)m. Then we say that f is a generating function of the Hankel
tensor A. We see that f(t) is also the generating function of the associated Hankel
matrix of A. By the theory of Hankel matrices [20], f(t) is well-defined.

Theorem 3.1. A Hankel tensor A has a nonnegative generating function if and
only if it is a strong Hankel tensor. An even order strong Hankel tensor is positive
semi-definite.

On the other hand, suppose that A∈Hm,n has a generating function f(t) such
that (3.1) holds. If A is copositive, then

∫ ∞

−∞

t(i−1)mf(t)dt≥0

for i∈ [n].

Proof. By the famous Hamburger moment problem [20], such a nonnegative
generating function exists if and only if the associated Hankel matrix is positive semi-
definite, i.e., A is a strong Hankel tensor. On the other hand, suppose that A has
such a nonnegative generating function f and m is even. Then for any x∈ℜn, we
have

Axm=

n
∑

i1,···,im=1

ai1···imxi1 · · ·xim

=

n
∑

i1,···,im=1

∫ ∞

−∞

ti1+···+im−mxi1 · · ·ximf(t)dt
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=

∫ ∞

−∞

(

n
∑

i=1

xit
i−1

)m

f(t)dt

≥0.

Thus, if m is even and A is a strong Hankel tensor, then A is positive semi-definite.
The final conclusion follows from (3.1) and Proposition 2.1.

We now give an example of a positive semi-definite Hankel tensor, which is not a
strong Hankel tensor. Let m=4 and n=2. Let v0=v4=1, v2=− 1

6 , and v1=v3=0.
Let A be defined by (1.1). Then for any x∈ℜ2, we have

Ax4=v0x
4
1+4v1x

3
1x2+6v2x

2
1x

2
2+4v3x1x

3
2+v4x

4
2=x4

1−x2
1x

2
2+x4

2≥0.

Thus, A is positive semi-definite. Let A be the unique Hankel matrix associated with
A. Since v2<0, by Proposition 2.1, A is not positive semi-definite. Thus, A is not a
strong Hankel tensor.

Question 3.1. The question is, for a fixed even number m≥4, can we characterize
a positive semi-definite Hankel tensor by its generating functions?

Question 3.2. If the associated Hankel matrix is copositive, is the Hankel tensor
copositive?

We now discuss the Hadamard product of two strong Hankel tensors. Let A=
(ai1···im),B=(bi1···im)∈Tm,n. Define the Hadamard product of A and B as A◦B=
(ai1···imbi1···im)∈Tm,n. Clearly, the Hadamard product of two Hankel tensors is a
Hankel tensor.

Proposition 3.1. The Hadamard product of two strong Hankel tensors is a strong
Hankel tensor.

Proof. Let A and B be two strong Hankel tensors in Hm,n. Let A and B

be Hankel matrices associated with A and B respectively, such that A and B are
positive semi-definite. Clearly, the Hadamard product of A and B is a Hankel matrix
associated with the Hadamard product of A and B. By the Schur product theorem
[5], the Hadamard product of two positive semi-definite symmetric matrices is still a
positive semi-definite symmetric matrix. Thus, the Hadamard product of A and B

is positive semi-definite. This implies that the Hadamard product of A and B is a
strong Hankel tensor.

On the other hand, the Hadamard product of two positive semi-definite Hankel
tensors may not be positive semi-definite. Assume that m=4 and n=2. Let A be
the example given above. Then A is a positive semi-definite Hankel tensor. On the
other hand, let B=(bi1i2i3i4)∈S4,2 be defined by bi1i2i3i4 =1 if i1+ i2+ i3+ i4=6,
and bi1i2i3i4 =0 otherwise. We may verify that B is a strong Hankel tensor, thus a
positive semi-definite Hankel tensor. It is easy to verify that A◦B is not positive
semi-definite. Note here that A is not a strong Hankel tensor. Thus, this example
does not contradict Proposition 3.1.

4. Vandermonde decomposition and complete Hankel tensors

For any vector u∈ℜn, um is a rank-one mth order symmetric n-dimensional
tensor um=(ui1 · · ·uim)∈Sm,n. If u=(1,u,u2, · · · ,un−1)⊤, then u is called a Van-

dermonde vector [8]. If

A=
r
∑

k=1

αk (uk)
m
, (4.1)



118 HANKEL TENSORS

where αk ∈ℜ, αk 6=0, uk=(1,uk,u
2
k, · · · ,u

n−1
k )⊤∈ℜn are Vandermonde vectors for

k=1, · · · ,r, and ui 6=uj for i 6= j, then we say that tensor A has a Vandermonde

decomposition. We call the minimum value of r the Vandermonde rank of A.

Theorem 4.1. Let A∈Sm,n. Then A is a Hankel tensor if and only if it has a
Vandermonde decomposition (4.1). In this case, we have r≤ (n−1)m+1.

Suppose that A has a Vandermonde decomposition (4.1). If A is copositive, then

r
∑

k=1

αku
(i−1)m
k ≥0, for i∈ [n]. (4.2)

On the other hand, if m is even and αk>0 for i∈ [r], then A is positive semi-definite.

Proof. Suppose that A has a Vandermonde decomposition (4.1). Let

vi=

r
∑

k=1

αku
i
k, for i=0, · · · ,(n−1)m. (4.3)

By (4.1), we see that (1.1) holds. Thus, A is a Hankel tensor.
On the other hand, assume that A is a Hankel tensor defined by (1.1). Let r=(n−

1)m+1. Pick real numbers uk,k∈ [r] such that ui 6=uj for i 6= j. By matrix analysis
[5], the coefficient matrix of the linear system (4.3), with αk,k∈ [r] as variables, is
a nonsingular Vandermonde matrix. Thus, the linear system (4.3) has a solution
αk,k∈ [r]. Substituting such αk,k=1, · · · ,r into (4.1), we see that (4.1) holds, i.e., A
has a Vandermonde decomposition.

Suppose that A has a Vandermonde decomposition (4.1). If A is copositive, then
(4.2) follows from (4.3) and Proposition 2.1. On the other hand, assume that m is
even. Suppose (4.1) holds with αk>0,k∈ [r]. For any x∈ℜn, we have

Axm=
r
∑

k=1

αk(u
⊤
k x)

m≥0.

Thus, A is positive semi-definite.

In (4.1), if αk>0,k∈ [r], then we say that A has a positive Vandermonde decom-
position and call A a complete Hankel Tensor. Thus, Theorem 4.1 says that an
even order complete Hankel tensor is positive semi-definite. We will study the spectral
properties of odd order complete Hankel tensors in the next section.

By (4.3), if αk>0 for k∈ [r], then vi is nonnegative if i is even. Thus, the
counterexample A, given in the last section, is not a complete Hankel tensor as it has
v2<0. This implies that a positive semi-definite Hankel tensor may not be a complete
Hankel tensor.

We now discuss the Hadamard product of two complete Hankel tensors.

Proposition 4.1. The Hadamard product of two complete Hankel tensors is a com-
plete Hankel tensor.

Proof. Suppose that A,B∈Hm,n are two complete Hankel tensors. Then we
may assume that each of A and B has a positive Vandermonde decomposition:

A=
r
∑

k=1

αk (uk)
m
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and

B=

s
∑

j=1

βj (vj)
m
,

where αk>0,uk=(1,uk,u
2
k, · · · ,u

n−1
k )⊤ are Vandermonde vectors for k∈ [r], βj >

0,vj =(1,vj ,v
2
j , · · · ,v

n−1
j )⊤ are Vandermonde vectors for j∈ [s]. Then the Vander-

monde product of A and B is

A◦B=
r
∑

k=1

s
∑

j=1

αkβj (wkj)
⊤
,

where αkβj >0,wkj =(1,ukvj ,(ukvj)
2, · · · ,(ukvj)

n−1)⊤ are Vandermonde vectors for
k∈ [r] and j∈ [s]. We see that A◦B has a positive Vandermonde decomposition, and
thus is a complete Hankel tensor.

We may summarize the results on Hadamard products. The Hadarmard product
of two Hankel tensors is a Hankel tensor. The Hadarmard product of two strong
Hankel tensors is a strong Hankel tensor. The Hadarmard product of two complete
Hankel tensors is a complete Hankel tensor. But the Hadarmard product of two
positive semi-definite Hankel tensors may not be positive semi-definite.

Question 4.1. Can we characterize a positive semi-definite Hankel tensor by its
Vandermonde decomposition?

Question 4.2. Is a strong Hankel tensor a complete Hankel tensor? Is a complete
Hankel tensor a strong Hankel tensor?

5. Spectral properties of odd order complete and strong Hankel tensors

Suppose that m is even. Then by Theorem 5 of [9], all the H-eigenvalues and Z-
eigenvalues of a strong Hankel tensor or a complete Hankel tensor are nonnegative,
as strong Hankel tensors and complete Hankel tensors are positive semi-definite. In
this section, we discuss spectral properties of odd order complete and strong Hankel
tensors. Hence, assume that m is odd in this section.

We now briefly review the definition of eigenvalues, H-eigenvalues, E-eigenvalues,
and Z-eigenvalues of a real mth order n-dimensional symmetric tensor A=(ai1···im)∈
Sm,n [9]. Let x=(x1, · · · ,xn)

⊤∈Cn. Then Axm−1 is an n-dimensional vector, with
its ith component as

∑n

i2···im=1aii2···imxi2 · · ·xim . For any vector x∈Cn, x[m−1] is a

vector in Cn, with its ith component as xm−1
i . If Axm−1=λx[m−1] for some λ∈C and

x∈Cn \{0}, then λ is called an eigenvalue of A and x is called an eigenvector of
A, associated with λ. If both λ and x are real, then they are called an H-eigenvalue

and an H-eigenvector of A, respectively. If Axm−1=λx for some λ∈C and x∈Cn,
satisfying x⊤x=1, then λ is called an E-eigenvalue of A and x is called an E-

eigenvector of A, associated with λ. If both λ and x are real, then they are called
a Z-eigenvalue and a Z-eigenvector of A, respectively. Note [9] that Z-eigenvalues
always exist, and when m is even, H-eigenvalues always exist.

Proposition 5.1. Suppose that m is odd and A∈Hm,n is a complete Hankel tensor.
Assume that A has at least one H-eigenvalue. Then all the H-eigenvalues of A are
nonnegative. Let λ be an H-eigenvalue of A, with an H-eigenvector x=(x1, · · · ,xn)

⊤.
Then either λ=0 or λ>0 with x1 6=0.
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Proof. By the definition of complete Hankel tensors, A has a Vandermonde
decomposition (4.1), with αk>0 for k∈ [r]. Suppose that A has an H-eigenvalue λ

associated with an H-eigenvector x=(x1, · · · ,xn)
⊤. Then for i∈ [n], we have

λxm−1
i =

(

Axm−1
)

i
=

r
∑

k=1

αku
i−1
k

[

(uk)
⊤x
]m−1

. (5.1)

If (uk)
⊤x=0 for all k∈ [r], then the right hand side of (5.1) is 0. Since x 6=0, we may

pick i such that xi 6=0. Then (5.1) implies that λ=0.
Suppose that (uk)

⊤x 6=0 for at least one k. Let i=1. Then the the right hand
side of (5.1) is positive. This implies that λ>0 and x1 6=0.

In general an odd order symmetric tensor may not have H-eigenvalues.

Question 5.1. Does a complete Hankel tensor always have an H-eigenvalue?

For Z-eigenvalues, we have the following results.

Proposition 5.2. Suppose that m is odd and x=(x1, · · · ,xn)
⊤ is a Z-eigenvector of

a complete Hankel tensor A∈Hm,n, associated with a Z-eigenvalue λ. Then xi≥0
for all odd i and x1>0 if λ>0; and xi≤0 for all odd i and x1<0 if λ<0.

Proof. Again, by the definition of complete Hankel tensors, A has a Vander-
monde decomposition (4.1), with αk>0 for k∈ [r]. Suppose that A has a Z-eigenvalue
λ associated with a Z-eigenvector x=(x1, · · · ,xn)

⊤. Then for i∈ [n], we have

λxi=
(

Axm−1
)

i
=

r
∑

k=1

αku
i−1
k

[

(uk)
⊤x
]m−1

. (5.2)

If (uk)
⊤x=0 for all k∈ [r], then the right hand side of (5.2) is 0. Since x 6=0, we may

pick i such that xi 6=0. Then (5.2) implies that λ=0.

Suppose that (uk)
⊤x 6=0 for at least one k. Let i be odd. Then the the right

hand side of (5.2) is nonnegative. This implies that λxi≥0. The conclusion on xi

with i odd follows. Let i=1. Then the the right hand side of (5.2) is positive. This
implies that λx1>0. The conclusion on x1 follows now.

We now study spectral properties of odd order strong Hankel tensors.

Proposition 5.3. Suppose that m is odd and x=(x1, · · · ,xn)
⊤ is a Z-eigenvector of

a strong Hankel tensor A∈Hm,n, associated with a Z-eigenvalue λ. Then xi≥0 for
all odd i if λ>0; and xi≤0 for all odd i if λ<0.

Proof. By Theorem 3.1, A has a nonnegative generating function f(t) such that
(3.1) holds. Suppose that A has a Z-eigenvalue λ associated with a Z-eigenvector
x=(x1, · · · ,xn)

⊤. Then for i∈ [n], we have

λxi=
(

Axm−1
)

i

=

n
∑

i2,···,im=1

aii2···imxi2 · · ·xim

=

n
∑

i2,···,im=1

∫ ∞

−∞

ti+i2+···+im−mxi2 · · ·ximf(t)dt
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=

∫ ∞

−∞

ti−1





n
∑

j=1

xjt
j−1





m−1

f(t)dt. (5.3)

Let i be odd. Then the the right hand side of (5.3) is nonnegative. The conclusion
follows now.

Note that we miss a result of the H-eigenvalues of an odd order strong Hankel
tensor.

Question 5.2. Are all the H-eigenvalues of an odd order strong Hankel tensor non-
negative?

Similar spectral properties hold for odd order Laplacian tensors [12] and odd order
completely positive tensors [17]. A common point is that such classes of symmetric
tensors are positive semi-definite when the order is even. Thus, we may think if
we may define some odd order “positive semi-definite” symmetric tensors, with such
spectral properties. Further study is needed on such a phenomenon.

6. Upper bounds for the smallest Z-eigenvalue and lower bounds for

the largest Z-eigenvalue

Let A∈Sm,n. Then A always has Z-eigenvalues [9]. Denote the smallest and the
largest Z-eigenvalue of A by λmin(A) and λmax(A) respectively. We always have [9]

λmin(A)=min{Axm :x∈ℜn,x⊤x=1} (6.1)

and

λmax(A)=max{Axm :x∈ℜn,x⊤x=1}. (6.2)

If m is even, A is positive semi-definite if and only if λmin(A)≥0 [9]. If m is odd,
then λmax(A)≥0 and λmin(A)=−λmax(A). In general, max{|λmin(A)|, |λmax(A)|} is
a norm of A in the space Sm,n [10]. If |λmin(A)|=max{|λmin(A)|, |λmax(A)|}, then
λmin(A) and its corresponding eigenvector x form the best rank-one approximation
to A [9, 13]. Similarly, if |λmax(A)|=max{|λmin(A)|, |λmax(A)|}, then λmax(A) and
its corresponding eigenvector x form the best rank-one approximation to A [9, 13].
Let x∈ℜn,x 6=0. By (6.1) and (6.2), we have

λmin(A)≤
Axm

‖x‖m2
≤λmax(A). (6.3)

With the above knowledge, for a Hankel tensorA, we may give some upper bounds
for λmin(A), and some lower bounds for λmax(A).

Proposition 6.1. Suppose that A∈Hm,n. Then

λmin(A)≤min
i∈[n]

v(i−1)m≤max
i∈[n]

v(i−1)m≤λmax(A).

Proof. Since v(i−1)m=A(ei)
m for i∈ [n], the conclusion follows from (6.3).

Suppose P is the associated plane tensor of A. We now use λmin(P) and λmax(P)
to give an upper bound for λmin(A), and a lower bound for λmax(A), respectively.
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Proposition 6.2. Suppose that A∈Hm,n, and P is the associated plane tensor of
A. Assume that m(n−1) is even. If y=(y1,y2)

⊤ is a Z-eigenvector of P associated
with λmin(P), then

√

√

√

√

(n−1)m
∑

j=0

y
2(n−1)m−2j
1 y

2j
2 λmin(A)≤λmin(P). (6.4)

If z=(z1,z2)
⊤ is a Z-eigenvector of P associated with λmax(P), then

√

√

√

√

(n−1)m
∑

j=0

z
2(n−1)m−2j
1 z

2j
2 λmax(A)≥λmax(P). (6.5)

Proof. If y1=0, since y21+y22 =1, then

√

√

√

√

(n−1)m
∑

j=0

y
2(n−1)m−2j
1 y

2j
2 =1.

We have

λmin(P)=Py(n−1)m=v(n−1)m≥λmin(A)=

√

√

√

√

(n−1)m
∑

j=0

y
2(n−1)m−2j
1 y

2j
2 λmin(A),

where the inequality is due to Proposition 6.1. Thus, (6.4) holds.
Suppose that y1 6=0. Let u= y2

y1
and u=(1,u,u2, · · · ,un−1)⊤∈ℜn. Then

λmin(P)=Py(n−1)m

=y
(n−1)m
1

(n−1)m
∑

k=0

(

(n−1)m

k

)

·
sk,mvk
(

(n−1)m
k

)uk

=
∣

∣

∣y
(n−1)m
1

∣

∣

∣Aum

=
∣

∣

∣y
(n−1)m
1

∣

∣

∣‖u‖m2
Aum

‖u‖m2

=

√

√

√

√

(n−1)m
∑

j=0

y
2(n−1)m−2j
1 y

2j
2

Aum

‖u‖m2

≥

√

√

√

√

(n−1)m
∑

j=0

y
2(n−1)m−2j
1 y

2j
2 λmin(A),

where the inequality is due to (6.3). Thus, (6.4) also holds in this case. This proves
(6.4).

We may prove (6.5) similarly.

Question 6.1. Suppose that a Hankel tensor A is associated with a Hankel matrix
A. Can we use the largest and the smallest eigenvalues of A to bound the largest and
the smallest H-eigenvalues (Z-eigenvalues) of A?
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7. An algorithm for recognizing copositivity of a symmetric plane ten-

sor

In Section 2 we showed that if a Hankel tensor A∈Hm,n is copositive, then its
associated plane tensor P ∈S(n−1)m,2 must be copositive. In this section, we present
an algorithm to determine a plane tensor P ∈Sl,2 is copositive or not. Here, l≥2.

Let P=(pi1···il). Denote pk=pi1···il if k of i1, · · · ,il are 2 and the others are 1.
Then for any y=(y1,y2)

⊤∈ℜ2, we have

Pyl=
l
∑

k=0

(

l

k

)

pky
l−k
1 yk2 .

It is easy to see that P is copositive if and only if

min{Pyl :y1+y2=1,y1≥0,y2≥0}≥0,

i.e.,

min

{

l
∑

k=0

(

l

k

)

pky
l−k
1 yk2 :y1+y2=1,y1≥0,y2≥0

}

≥0. (7.1)

Let t=y1. Then y2=1− t. We may rewrite (7.1) as

min{φ(t) : 0≤ t≤1}≥0, (7.2)

where

φ(t)=

l
∑

k=0

(

l

k

)

pkt
l−k(1− t)k. (7.3)

To check if (7.2) holds, we only need to check if φ(t)≥0 for all critical points t of
(7.2). By optimization theory, the critical points of (7.2) are t=0, t=1, and any
t∈ (0,1) such that φ′(t)=0. Note that φ(0)=pl and φ(1)=p0. Thus, we have a
simple algorithm to check if P is copositive or not.

Algorithm 7.1.

Step 1. If p0<0 or pl<0, then P is not copositive. Stop. Otherwise, go to the
next step.

Step 2. Find all the critical points t such that φ′(t)=0 and 0<t<1, where φ(t)
is defined by (7.3). If φ(t)<0 for one of such critical point t, then P is not copositive.
Otherwise P is copositive. Stop.

We see that this algorithm is simple.

8. Final remarks and further questions

In this paper, we make an initial study on Hankel tensors. We see that Hankel
tensors have a very special structure, hence have very special properties. We associate
a Hankel tensor with a Hankel matrix, a symmetric plane tensor, generating functions
and Vandermonde decompositions. They will be useful tools for further study on
Hankel tensors.

Some questions have already been raised in sections 2-6. Here are some further
questions.
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Question 8.1. Badeau and Boyer [1] proposed fast higher-order singular value de-
composition (HOSVD) for third order Hankel tensors. Can we construct some efficient
algorithms for the largest and the smallest H-eigenvalues (Z-eigenvalues) of a Hankel
tensor, or a strong Hankel tensor, or a complete Hankel tensor?

Question 8.2. In general, it is NP-hard to compute the largest and the smallest
H-eigenvalues (Z-eigenvalues) of a symmetric tensor. What is the complexity for
computing the smallest H-eigenvalues (Z-eigenvalues) of a Hankel tensor, a strong
Hankel tensor, and a complete Hankel tensor?

Question 8.3. Proposition 8 of [9] says that the determinants of all the principal
symmetric sub-tensors of a positive semi-definite tensor are nonnegative. The con-
verse is not true in general. Is the converse of Proposition 8 of [9] true for Hankel
tensors?

For the definition of the determinants of tensors, see [6, 9, 18]. They were called
symmetric hyperdeterminants in [9], and simply determinants in [6, 18].

Question 8.4. The theory of Hankel matrices is based upon finite and infinite Hankel
matrices as well as Hankel operators [19]. Should we also study infinite Hankel tensors
and multi-linear Hankel operators?
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