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Abstract

This paper deals with the class of Q-tensors, that is, a Q-tensor is a real tensor A such

that the tensor complementarity problem (q,.A):
finding x € R"™ such that x > 0,q + Ax™~! > 0, and xT(q + Ax™H =0,

has a solution for each vector q € R". Several subclasses of Q-tensors are given:
P-tensors, R-tensors, strictly semi-positive tensors and semi-positive Rg-tensors. We
prove that a nonnegative tensor is a Q-tensor if and only if all of its diagonal entries
are positive, and a symmetric tensor is a Q-tensor if and only if it is strictly coposi-
tive. We also show that the zero vector is the unique feasible solution of the tensor
complementarity problem (q,.4) for g > 0 if A is a nonnegative Q-tensor.
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1 Introduction

Throughout this paper, we use small letters x,u, v, a, - - -, for scalars, small bold letters
X,y,u,---, for vectors, capital letters A, B,---, for matrices, calligraphic letters A, B, - - -,
for tensors. All the tensors discussed in this paper are real. Let I, := {1,2,--- n}, and
R™ := {(z1,22, - ,2,) 2, € Ryji € I}, R := {z € R"; 2 > 0}, R := {x € R";z < 0},
R = {x € R4z >0}, e = (1,1,---,1)7, and x™ = (2, 25",--- ,2m™)7 for x =
(1,29, -+ ,2,)", where R is the set of real numbers, x' is the transposition of a vector x,
and x > 0 (x > 0) means x; > 0 (z; > 0) for all i € I,,.

Let A = (a;;) be an n X n real matrix. A is said to be a Q-matrix iff the linear

complementarity problem, denoted by (q, A),
finding z € R" such that z > 0,q + Az >0, and z' (q + Az) =0 (1.1)

has a solution for each vector q € R". We say that A is a P-matrix iff for any nonzero
vector x in R"™, there exists ¢ € [, such that x;(Az); > 0. It is well-known that A is a
P-matrix if and only if the linear complementarity problem (q, A) has a unique solution for
all g € R™. Xiu and Zhang [1] also gave the necessary and sufficient conditions of P-tensors.
A good review of P-matrices and Q-matrices may be found in the books by Berman and
Plemmons [2], and Cottle and Pang [3].

Q-matrices and P(Pg)-matrices have a long history and wide applications in mathemat-
ical sciences. Pang [4] showed that each semi-monotone Ry-matrix is a Q-matrix. Pang [5]
gave a class of Q-matrices which includes N-matrices and strictly semi-monotone matrices.
Murty [6] showed that a nonnegative matrix is a Q-matrix if and only if its all diagonal
elements are positive. Morris [7] presented two counterexamples of the Q-Matrix conjec-
tures: a matrix is Q-matrix solely by considering the signs of its subdeterminants. Cuttle
8] studied some properties of complete Q-matrices, a subclass of Q-matrices. Kojima and
Saigal [9] showed the number of solutions to a class of linear complementarity problems.
Gowda [10] proved that a symmetric semi-monotone matrix is a Q-matrix if and only if
it is an Ro-matrix. Eaves [11] obtained the equivalent definition of strictly semi-monotone
matrices, a main subclass of Q-matrices.

On the other hand, motivated by the discussion on positive definiteness of multivariate
homogeneous polynomial forms [12, 13, 14], in 2005, Qi [15] introduced the concept of pos-
itive (semi-)definite symmetric tensors. In the same time, Qi also introduced eigenvalues,
H-eigenvalues, E-eigenvalues and Z-eigenvalues for symmetric tensors. It was shown that an
even order symmetric tensor is positive (semi-)definite if and only if all of its H-eigenvalues
or Z-eigenvalues are positive (nonnegative) [15, Theorem 5. Recently, miscellaneous struc-
tured tensors are widely studied, for example, Zhang, Qi and Zhou [16] and Ding, Qi and
Wei [17] for M-tensors, Song and Qi [18] for P-(Pg)tensors and B-(By)tensors, Qi and Song



[19] for positive (semi-)definition of B-(Bg)tensors, Song and Qi [20] for infinite and finite
dimensional Hilbert tensors, Song and Qi [21] for structure properties and an equivalent def-
inition of (strictly) copositive tensors, Chen and Qi [22] for Cauchy tensor, Song and Qi [23]
for E-eigenvalues of weakly symmetric nonnegative tensors and so on. Beside automatical
control, positive semi-definite tensors also found applications in magnetic resonance imaging
[24, 25, 26, 27] and spectral hypergraph theory [28, 29, 30].

The following questions are natural. Can we extend the concept of Q-matrices to Q-
tensors? If this can be done, are those nice properties of Q-matrices still true for Q-tensors?

In this paper, we will introduce the concept of Q-tensors (Q-hypermatrices) and will
study some subclasses and nice properties of such tensors.

In Section 2, we will extend the concept of Q-matrices to Q-tensors. Serval main subclass
of Q-matrices also are extended to the corresponding subclass of Q-tensors: R-tensor, Ry-
tensor, semi-positive tensor, strictly semi-positive tensor. We will give serval examples to
verify that the class of R-(Rg-)tensors properly contains strictly semi-positive tensors as a
subclass, while the class of P-tensors is a subclass of strictly semi-positive tensors. Some
basic definitions and facts also are given in this section.

In Section 3, we will study some properties of Q-tensors. Firstly, we will prove that
each R-tensor is certainly a Q-tensor and each semi-positive Rg-tensor is a R-tensor. Thus,
we obtain that each P-tensor is a Q-tensor. We will show that a nonnegative tensor is a
Q-tensor if and only if its all diagonal elements are positive and a nonnegative symmetric
tensor is a Q-tensor if and only if it is strictly copositive. It will be proved that 0 is the
unique feasible solution of the tensor complementarity problem (q,.4) for g > 0 if A is a

non-negative Q-tensor.

2 Preliminaries

In this section, we will define the notation and collect some basic definitions and facts, which
will be used later on.

A real mth order n-dimensional tensor (hypermatrix) A = (a;,..;,,) is a multi-array of real
entries a;,..;,,, where ¢; € I,, for j € I,,,. Denote the set of all real mth order n-dimensional
tensors by T,,,. Then T,,, is a linear space of dimension n™. Let A = (a;,...,,) € Tonn-
If the entries a;,..;,, are invariant under any permutation of their indices, then A is called
a symmetric tensor. Denote the set of all real mth order n-dimensional tensors by S, ..
Then S,,, is a linear subspace of T,,,. We denote the zero tensor in 71),, by O. Let

A= (aj..,) € Trnn and x € R". Then Ax™! is a vector in R™ with its ith component as

n

m—1\ ._ E
(AX )z = Ao iy Lig * * " Liyy

i, ,im=1



for i € I,,. Then Ax™ is a homogeneous polynomial of degree m, defined by

n
T -1
Ax™ =x' (AX") = g Wjyoriy, Tiy * " T, -

11, im=1

x € R". A tensor A € T, is called positive semi-definite if for any vector x € R",
Ax™ > 0, and is called positive definite if for any nonzero vector x € R", Ax™ > 0.
Clearly, if m is odd, there is no nontrivial positive semi-definite tensors. We now give the

definition of Q-tensors, which are natural extensions of (Q-matrices.

Definition 2.1. Let A = (a;,...,,) € Tmn. We say that A is a Q-tensor iff the tensor
complementarity problem, denoted by (q,.A),

finding x € R™ such that x > 0,q + Ax™ ' >0, and x' (q + Ax™') =0, (2.1)
has a solution for each vector q € R™.
Definition 2.2. Let A = (a;,..;,,) € Trnn. We say that A is
(i) a R-tensor iff the following system is inconsistent
0#x>0,t>0
(Ax™ 1), +t=0if 2; > 0, (2.2)
(Axmfl)j +t>0if z; = 0;
(ii) a Ro-tensor iff the system (2.2) is inconsistent for ¢t = 0.

Clearly, this definition 2.2 is a natural extension of the definition of Karamardian’s class
of regular matrices [31].

Definition 2.3. Let A = (a;,...;,,) € Tynn- A is said to be

(i) semi-positive iff for each x > 0 and x # 0, there exists an index k € I,, such that

x> 0 and (.Axmfl)k > 0;
(ii) strictly semi-positive iff for each x > 0 and x # 0, there exists an index k € I,
such that

x>0 and (Axm_l),~C > 0;

(iii) a P-tensor(Song and Qi [18]) iff for each x in R™ and x # 0, there exists i € I,, such
that

x; (Axm_l). > 0;
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(iv) a Pg-tensor(Song and Qi [18]) iff for every x in R" and x # 0,, there exists i € I,
such that x; # 0 and
x; (Axm_l), > 0.

1

Clearly, each Pg-tensor is certainly semi-positive. The concept of P-(Py-)tensor is intro-
duced by Song and Qi [18]. Furthermore, Song and Qi [18] studied some nice properties of
such a class of tensors. The definition of (strictly) semi-positive tensor is a natural extension
of the concept of (strictly) semi-positive (or semi-monotone) matrices [11, 32].

It follows from Definition 2.2 and 2.3 that each P-tensor must be strictly semi-positive
and every strictly semi-positive tensor is certainly both R-tensor and Ry-tensor. Now we

give serval examples to demonstrate that the above inclusions are proper.
Example 2.1. Let A = (@iy.oi) € Tonp and ay, .., = 1 for all 41,49, -+ 4y, € I,. Then

(/lxmfl) = (zy tag e,

)

for all i € I, and hence A is strictly semi-positive. However, A is not a P-tensor (for
example, x; (flxm’l)‘ =0forx=(1,-1,0,---,0)" and all i € I,,).

1

Example 2.2. Let A = (ai1i2z~3) € T3’2 and aill = ]_, 192 = —176L211 = —2, 992 — 1 and all

2 2
Ax” = (_2 . o
T+ 75
Clearly, A is not strictly semi-positive (for example, <./le2> = 0 and (.,ZIXQ) = —1 for
1

x = (1,1)7T). i

A is a Rg-tensor. In fact,

other a;,;,;;, = 0. Then

(i) if z; > 0, (fix2> = 22 — 23 = 0. Then 22 = 22, and so zo > 0, but <AX2> =
1 2
=223 + 23 = —2? < 0;

(i) if 29 > 0, <flx2> = —227 + 23 = 0. Then 2f = 323 > 0, but (flx2> =2 — 22 =
2 1
1.2

A is not a R-tensor. In fact, if z; > 0, (./ixz) +t =2?—23+t =0. Then 23 = 23+t > 0,
1

and so z3 > 0, (leQ) +t=-223+23+t=—2}+2t Takingz, =a>0,t= %aQ and
2
Ty = \/76(1. That is, x = a(1, */TE)T and ¢ = $a? solve the system (2.2).

Example 2.3. Let A = (aili?ig) € T372 and aill = —1, 122 — 1,@211 = —2, 992 — 1 and all

2 2

_ -]+

2 1 2
Ax —( - 2).
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Clearly, A is not strictly semi-positive (for example, x = (1,1) 7).

A is a R-tensor. In fact,

(i) if 1 > 0, (flx) +t=—a?+ 23+t =0. Then 2z = 21 — ¢, but (Ax?)
=202 4 x2 4t = —2? <0

, Tt =

(ii) ifxg >O (/Ix2) +t——2x%+x§+t:0. Then x%z%@%%—t) > 0, but (ﬂxz)l—i-t:

A is a Ro-tensor. In fact,

(i) if 21 > 0, (Ax?), = —2f + 23 = 0. Then 23 = 27, and so 25 > 0, but (Ax?), =
=223 + 2% = —2? < 0;

(i) if 2y > 0, (Ax?), = =227 + 23 = 0. Then 2} = {23 > 0, but (Ax?), = —af + 23 =

122 > 0.

n+1
Lemma 2.1. (2, Corollary 3.5])Let S = {x € R}™"; > 2, = 1}. Assumed that F : S —
i=1

R”*1! is continuous on S. Then there exists X € S such that

x F(x) > x"F(X) forall x€ S (2.3)
(F(x)), = mm (F(x)), =w if x>0, (2.4)
(PR}, > w if =0, 2.5)

Recall that a tensor C € T),, . is called a principal sub-tensor of a tensor A = (a;,..;,,) €
Tnn (1 <1 <mn)iff there is a set J that composed of 7 elements in I,, such that

C = (ailu.im), for all ’il,’ig, Tt ,im e J

The concept were first introduced and used in [15] for symmetric tensor. We denote by
A/ the principal sub-tensor of a tensor A € T, ,, such that the entries of A/ are indexed
by J C I, with |[J| = r (1 < r < n), and denote by x; the r-dimensional sub-vector of a
vector x € R", with the components of x; indexed by J. Note that for » = 1, the principal

sub-tensors are just the diagonal entries.

Definition 2.4. (Song and Qi [21]) Let A = (a4;..4,,) € Smn- A is said to be
(i) copositive if Az™ >0 for all x € RY;
(ii) strictly copositive if Az™ > 0 for all x € R7} \ {0}.

The concept of (strictly) copositive were first introduced and used by Song and Qi in
[21]. They showed their equivalent definition and some special structures. The following

lemma is one of the structure conclusions of (strictly) copositive in [21].
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Lemma 2.2. ([21, Corollary 4.6]) Let A = (a;,...i,,) € Smn. Then
(i) If A is copositive, then a;..; > 0 for all i € I,,.

(ii) If A is strictly copositive, then a;.., > 0 for all i € I,,.

3 Main results

Theorem 3.1. Let A = (a;,..;,,) € Tn.n be a R-tensor. Then A is a Q-tensor. That is, the
tensor complementarity problem (q,.4) (2.1) has a solution for all q € R™.

Proof. Let the mapping F : R"™ — R"*! be defined by

Ax™ 4 5 se
F(y)=< e ) (3.1)

S

where y = (x,5)", x € R}, s € Ry and e = (1,1,---,1)T € R", q € R". Obviously,

n+1
F : S — R"! is continuous on the set S = {x € R"™; 3" z; = 1}. It follows from Lemma
i=1

2.1 that there exists ¥ = (X,5)" € S such that

y' F(y) >y F(y) forall yeS (3.2)
(F¥) = min (F(y)); =w if §:>0, 3.3
(F(¥) zw if g =0 (3.4)

We claim § > 0. In fact, suppose § = 0, then the fact that 3,,; = § = 0 together with
(3.4) implies that

and so for k € I,,,
(F(y)), = (AX™ 1), =w if I} >0,

(F()), = (AX™1), > w if & =0.

That is, for t = —w > 0,
(AX™1) +t=0 if &) >0,

(AX™1) +t>0 if & =0.
This obtain a contradiction with the definition of R-tensor A, which completes the proof of

the claim.



Now we show that the tensor complementarity problem (q,.4) has a solution for all
q € R™. In fact, if g > 0, clearly z = 0 and w = Az™! + q = q solve (q,.A). Next we
consider q € R"/R?% . It follows from (3.1) and (3.3) and (3.4) that we must have

(F(§)),1 = min (F()), =@ = 8= foss > 0

1€l 41

and for ¢ € I,,

(F(y), = (A" ). + 3¢ +5=w=35 if §=a; >0,
(F(¥); = (AX™ ). + 5 +5>w=35 if gi=0;=

)

Thus for z = —%— and ¢ € I,,, we have

m—1

e

(Azm_l)i +q =0 if z >0,
(Aszl)i +q >0 if z,=0,

and hence,
z>0w=q+Az" >0, andz'w = 0.

So we obtain a feasible solution (z,w) of the tensor complementarity problem (q,.4), and

then A is a Q-tensor. The theorem is proved. O]

Corollary 3.2. Each strictly semi-positive tensor is a Q-tensor, and so is P-tensor. That
is, the tensor complementarity problem (q,.A) has a solution for all g € R™ if A is either a

P-tensor or a strictly semi-positive tensor.

Theorem 3.3. Let a Ry-tensor A(€ T),,) be semi-positive. Then A is a R-tensor, and

hence A is a Q-tensor.

Proof. Suppose A is not a R-tensor. Let the system (2.2) has a solution X > 0 and x # 0. If
t = 0, this contradicts the assumption that A is a Ry-tensor. So we must have ¢ > 0. Then

for ¢ € I,,, we have
(.Axm_l)i +t=0 if z; >0,

and hence,
(Ax™ 1) = —t <0 if z; >0,

i
which contradicts the assumption that A is semi-positive. So A is a R-tensor, and hence A
is a Q-tensor by Theorem 3.1. [

Theorem 3.4. Let A = (a;,..4,,) € Trnn with A > O (aj,..q,, > 0 for all iy---i,, € I,).
Then A is a Q-tensor if and only if a;..; > 0 for all i € I,,.



Proof. Sufficiency. If a;..; > 0 for all i € I, and A > O, then it folows from the definition
2.3 of the strictly semi-positive tensor that A is strictly semi-positive, and hence A is a
Q-tensor by Corollary 3.2.

Necessity. Suppose that there exists k € I,, such that ag.., = 0. Let q = (q1,-- ,qn)"
with ¢, < 0 and ¢; > 0 for all ¢ € [, and i # k. Since A is a Q-tensor, the tensor
complementarity problem (q,.A) has at least a solution. Let z is be a feasible solution to
(q,.A). Then

z>0, w=Az""+q>0andz'w=0. (3.5)
Clearly, z # 0. Since z > 0 and A > 0 together with ¢; > 0 for each ¢ € I, with i # k, we

must have

w; = (AZmil)i +q; = Z Aiigein Zig *** Zigy + Qi > 0 for ¢ # kand i€ I,.
iy im=1
It follows from (3.5) that
z;=0fort# k and i € I,.

Thus, we have

n

Wy = (AZmA)k +qk = Z Whigering i ** Ziy + Qb = Wk 2+ Qi =1, <0

12, im =1

since agg..,, = 0. This contradicts the fact that w > 0, so a;;..; > 0 for all ¢ € I,,. O

Corollary 3.5. Let a non-negative tensor A be a Q-tensor. Then all principal sub-tensors

of A are also Q-tensors.

Corollary 3.6. Let a non-negative tensor A be a Q-tensor. Then 0 is the unique feasible

solution to the tensor complementarity problem (q,.4) for q > 0.

Proof. Tt follows from Theorem 3.4 that a;;..; > 0 for all 7 € I,,, and hence

n

m—1 m—1
(AX )z = E Qijgevipy Liq *°* Liyy = Qg Ly + E Qijgeeip, Lig * Ly -

i, ,im=1 (i, i ) (4, i)
If x = (21, --,2,)" is any feasible solution of the tensor complementarity problem
(q,.A), then we have
x>0, w=Ax"'4+q>0and x'w=Ax"+x"'q = 0. (3.6)
Suppose x; > 0 for some ¢ € I,,. Then
w; = (.AXmil)i +q; = aii...z-xznfl + Z Qi L Liyy +q; > 0,
(i21"' ,1m)7£(7'1 ’i)
and hence, x'w = z;w; + Y. rpwy, > 0. This contradicts the fact that x'w = 0. Conse-

ki
quently, z; = 0 for all ¢ € [,. O



Proposition 3.7. Let A € S,,,, be non-negative. Then A is strictly copositive if and only
if i > 0 for all 7 € L,.

Proof. The necessity follows from Lemma 2.2. Now we show the sufficiency. Suppose A is

not strictly copositive. Then there exists x € R"} \ {0} such that
x' (Ax™7!) = Ax™ < 0.

Since x € R \ {0}, without loss of generality, we may assume z; > 0. Then by A > O, we

must have .
an.._le < Z Qi Lig * Ly = AXm < 0.
i1,~~~ ,imzl
Thus, aq1..1 < 0. The contradiction establishes the proposition. O

Corollary 3.8. Let A € S,,,, be non-negative. Then A is a Q-tensor if and only if A is

strictly copositive.
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