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Abstract

This paper deals with the class of Q-tensors, that is, a Q-tensor is a real tensor A such

that the tensor complementarity problem (q,A):

finding x ∈ Rn such that x ≥ 0,q+Axm−1 ≥ 0, and x⊤(q+Axm−1) = 0,

has a solution for each vector q ∈ Rn. Several subclasses of Q-tensors are given:

P-tensors, R-tensors, strictly semi-positive tensors and semi-positive R0-tensors. We

prove that a nonnegative tensor is a Q-tensor if and only if all of its diagonal entries

are positive, and a symmetric tensor is a Q-tensor if and only if it is strictly coposi-

tive. We also show that the zero vector is the unique feasible solution of the tensor

complementarity problem (q,A) for q ≥ 0 if A is a nonnegative Q-tensor.
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1 Introduction

Throughout this paper, we use small letters x, u, v, α, · · · , for scalars, small bold letters

x,y,u, · · · , for vectors, capital letters A,B, · · · , for matrices, calligraphic letters A,B, · · · ,
for tensors. All the tensors discussed in this paper are real. Let In := {1, 2, · · · , n}, and
Rn := {(x1, x2, · · · , xn)

⊤;xi ∈ R, i ∈ In}, Rn
+ := {x ∈ Rn; x ≥ 0}, Rn

− := {x ∈ Rn;x ≤ 0},
Rn

++ := {x ∈ Rn; x > 0}, e = (1, 1, · · · , 1)⊤, and x[m] = (xm
1 , x

m
2 , · · · , xm

n )
⊤ for x =

(x1, x2, · · · , xn)
⊤, where R is the set of real numbers, x⊤ is the transposition of a vector x,

and x ≥ 0 (x > 0) means xi ≥ 0 (xi > 0) for all i ∈ In.

Let A = (aij) be an n × n real matrix. A is said to be a Q-matrix iff the linear

complementarity problem, denoted by (q, A),

finding z ∈ Rn such that z ≥ 0,q+ Az ≥ 0, and z⊤(q+ Az) = 0 (1.1)

has a solution for each vector q ∈ Rn. We say that A is a P-matrix iff for any nonzero

vector x in Rn, there exists i ∈ In such that xi(Ax)i > 0. It is well-known that A is a

P-matrix if and only if the linear complementarity problem (q, A) has a unique solution for

all q ∈ Rn. Xiu and Zhang [1] also gave the necessary and sufficient conditions of P-tensors.

A good review of P-matrices and Q-matrices may be found in the books by Berman and

Plemmons [2], and Cottle and Pang [3].

Q-matrices and P(P0)-matrices have a long history and wide applications in mathemat-

ical sciences. Pang [4] showed that each semi-monotone R0-matrix is a Q-matrix. Pang [5]

gave a class of Q-matrices which includes N-matrices and strictly semi-monotone matrices.

Murty [6] showed that a nonnegative matrix is a Q-matrix if and only if its all diagonal

elements are positive. Morris [7] presented two counterexamples of the Q-Matrix conjec-

tures: a matrix is Q-matrix solely by considering the signs of its subdeterminants. Cuttle

[8] studied some properties of complete Q-matrices, a subclass of Q-matrices. Kojima and

Saigal [9] showed the number of solutions to a class of linear complementarity problems.

Gowda [10] proved that a symmetric semi-monotone matrix is a Q-matrix if and only if

it is an R0-matrix. Eaves [11] obtained the equivalent definition of strictly semi-monotone

matrices, a main subclass of Q-matrices.

On the other hand, motivated by the discussion on positive definiteness of multivariate

homogeneous polynomial forms [12, 13, 14], in 2005, Qi [15] introduced the concept of pos-

itive (semi-)definite symmetric tensors. In the same time, Qi also introduced eigenvalues,

H-eigenvalues, E-eigenvalues and Z-eigenvalues for symmetric tensors. It was shown that an

even order symmetric tensor is positive (semi-)definite if and only if all of its H-eigenvalues

or Z-eigenvalues are positive (nonnegative) [15, Theorem 5]. Recently, miscellaneous struc-

tured tensors are widely studied, for example, Zhang, Qi and Zhou [16] and Ding, Qi and

Wei [17] for M-tensors, Song and Qi [18] for P-(P0)tensors and B-(B0)tensors, Qi and Song

2



[19] for positive (semi-)definition of B-(B0)tensors, Song and Qi [20] for infinite and finite

dimensional Hilbert tensors, Song and Qi [21] for structure properties and an equivalent def-

inition of (strictly) copositive tensors, Chen and Qi [22] for Cauchy tensor, Song and Qi [23]

for E-eigenvalues of weakly symmetric nonnegative tensors and so on. Beside automatical

control, positive semi-definite tensors also found applications in magnetic resonance imaging

[24, 25, 26, 27] and spectral hypergraph theory [28, 29, 30].

The following questions are natural. Can we extend the concept of Q-matrices to Q-

tensors? If this can be done, are those nice properties of Q-matrices still true for Q-tensors?

In this paper, we will introduce the concept of Q-tensors (Q-hypermatrices) and will

study some subclasses and nice properties of such tensors.

In Section 2, we will extend the concept of Q-matrices to Q-tensors. Serval main subclass

of Q-matrices also are extended to the corresponding subclass of Q-tensors: R-tensor, R0-

tensor, semi-positive tensor, strictly semi-positive tensor. We will give serval examples to

verify that the class of R-(R0-)tensors properly contains strictly semi-positive tensors as a

subclass, while the class of P-tensors is a subclass of strictly semi-positive tensors. Some

basic definitions and facts also are given in this section.

In Section 3, we will study some properties of Q-tensors. Firstly, we will prove that

each R-tensor is certainly a Q-tensor and each semi-positive R0-tensor is a R-tensor. Thus,

we obtain that each P-tensor is a Q-tensor. We will show that a nonnegative tensor is a

Q-tensor if and only if its all diagonal elements are positive and a nonnegative symmetric

tensor is a Q-tensor if and only if it is strictly copositive. It will be proved that 0 is the

unique feasible solution of the tensor complementarity problem (q,A) for q ≥ 0 if A is a

non-negative Q-tensor.

2 Preliminaries

In this section, we will define the notation and collect some basic definitions and facts, which

will be used later on.

A realmth order n-dimensional tensor (hypermatrix)A = (ai1···im) is a multi-array of real

entries ai1···im , where ij ∈ In for j ∈ Im. Denote the set of all real mth order n-dimensional

tensors by Tm,n. Then Tm,n is a linear space of dimension nm. Let A = (ai1···im) ∈ Tm,n.

If the entries ai1···im are invariant under any permutation of their indices, then A is called

a symmetric tensor. Denote the set of all real mth order n-dimensional tensors by Sm,n.

Then Sm,n is a linear subspace of Tm,n. We denote the zero tensor in Tm,n by O. Let

A = (ai1···im) ∈ Tm,n and x ∈ Rn. Then Axm−1 is a vector in Rn with its ith component as

(
Axm−1

)
i
:=

n∑
i2,··· ,im=1

aii2···imxi2 · · ·xim
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for i ∈ In. Then Axm is a homogeneous polynomial of degree m, defined by

Axm := x⊤(Axm−1) =
n∑

i1,··· ,im=1

ai1···imxi1 · · ·xim .

x ∈ Rn. A tensor A ∈ Tm,n is called positive semi-definite if for any vector x ∈ Rn,

Axm ≥ 0, and is called positive definite if for any nonzero vector x ∈ Rn, Axm > 0.

Clearly, if m is odd, there is no nontrivial positive semi-definite tensors. We now give the

definition of Q-tensors, which are natural extensions of Q-matrices.

Definition 2.1. Let A = (ai1···im) ∈ Tm,n. We say that A is a Q-tensor iff the tensor

complementarity problem, denoted by (q,A),

finding x ∈ Rn such that x ≥ 0,q+Axm−1 ≥ 0, and x⊤(q+Axm−1) = 0, (2.1)

has a solution for each vector q ∈ Rn.

Definition 2.2. Let A = (ai1···im) ∈ Tm,n. We say that A is

(i) a R-tensor iff the following system is inconsistent
0 ̸= x ≥ 0, t ≥ 0

(Axm−1)i + t = 0 if xi > 0,

(Axm−1)j + t ≥ 0 if xj = 0;

(2.2)

(ii) a R0-tensor iff the system (2.2) is inconsistent for t = 0.

Clearly, this definition 2.2 is a natural extension of the definition of Karamardian’s class

of regular matrices [31].

Definition 2.3. Let A = (ai1···im) ∈ Tm,n. A is said to be

(i) semi-positive iff for each x ≥ 0 and x ̸= 0, there exists an index k ∈ In such that

xk > 0 and
(
Axm−1

)
k
≥ 0;

(ii) strictly semi-positive iff for each x ≥ 0 and x ̸= 0, there exists an index k ∈ In

such that

xk > 0 and
(
Axm−1

)
k
> 0;

(iii) a P-tensor(Song and Qi [18]) iff for each x in Rn and x ̸= 0, there exists i ∈ In such

that

xi

(
Axm−1

)
i
> 0;
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(iv) a P0-tensor(Song and Qi [18]) iff for every x in Rn and x ̸= 0,, there exists i ∈ In

such that xi ̸= 0 and

xi

(
Axm−1

)
i
≥ 0.

Clearly, each P0-tensor is certainly semi-positive. The concept of P-(P0-)tensor is intro-

duced by Song and Qi [18]. Furthermore, Song and Qi [18] studied some nice properties of

such a class of tensors. The definition of (strictly) semi-positive tensor is a natural extension

of the concept of (strictly) semi-positive (or semi-monotone) matrices [11, 32].

It follows from Definition 2.2 and 2.3 that each P-tensor must be strictly semi-positive

and every strictly semi-positive tensor is certainly both R-tensor and R0-tensor. Now we

give serval examples to demonstrate that the above inclusions are proper.

Example 2.1. Let Â = (ai1···im) ∈ Tm,n and ai1···im = 1 for all i1, i2, · · · , im ∈ In. Then(
Âxm−1

)
i
= (x1 + x2 + · · ·+ xn)

m−1

for all i ∈ In and hence Â is strictly semi-positive. However, Â is not a P-tensor (for

example, xi

(
Âxm−1

)
i
= 0 for x = (1,−1, 0, · · · , 0)⊤ and all i ∈ In).

Example 2.2. Let Ã = (ai1i2i3) ∈ T3,2 and a111 = 1, a122 = −1,a211 = −2, a222 = 1 and all

other ai1i2i3 = 0. Then

Ãx2 =

(
x2
1 − x2

2

−2x2
1 + x2

2

)
.

Clearly, Ã is not strictly semi-positive (for example,
(
Ãx2

)
1
= 0 and

(
Ãx2

)
2
= −1 for

x = (1, 1)⊤).

Ã is a R0-tensor. In fact,

(i) if x1 > 0,
(
Ãx2

)
1
= x2

1 − x2
2 = 0. Then x2

2 = x2
1, and so x2 > 0, but

(
Ãx2

)
2
=

−2x2
1 + x2

2 = −x2
1 < 0;

(ii) if x2 > 0,
(
Ãx2

)
2
= −2x2

1 + x2
2 = 0. Then x2

1 = 1
2
x2
2 > 0, but

(
Ãx2

)
1
= x2

1 − x2
2 =

−1
2
x2
2 < 0.

Ã is not a R-tensor. In fact, if x1 > 0,
(
Ãx2

)
1
+t = x2

1−x2
2+t = 0. Then x2

2 = x2
1+t > 0,

and so x2 > 0,
(
Ãx2

)
2
+ t = −2x2

1 + x2
2 + t = −x2

1 + 2t. Taking x1 = a > 0, t = 1
2
a2 and

x2 =
√
6
2
a. That is, x = a(1,

√
6
2
)⊤ and t = 1

2
a2 solve the system (2.2).

Example 2.3. Let Ā = (ai1i2i3) ∈ T3,2 and a111 = −1, a122 = 1,a211 = −2, a222 = 1 and all

other ai1i2i3 = 0. Then

Āx2 =

(
−x2

1 + x2
2

−2x2
1 + x2

2

)
.
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Clearly, Ā is not strictly semi-positive (for example, x = (1, 1)⊤).

Ā is a R-tensor. In fact,

(i) if x1 > 0,
(
Āx2

)
1
+ t = −x2

1 + x2
2 + t = 0. Then x2

2 = x2
1 − t, but

(
Āx2

)
2
+ t =

−2x2
1 + x2

2 + t = −x2
1 < 0;

(ii) if x2 > 0,
(
Āx2

)
2
+ t = −2x2

1 +x2
2 + t = 0. Then x2

1 =
1
2
(x2

2 + t) > 0, but
(
Āx2

)
1
+ t =

−x2
1 + x2

2 + t = 1
2
(x2

2 + t) > 0.

Ā is a R0-tensor. In fact,

(i) if x1 > 0,
(
Āx2

)
1
= −x2

1 + x2
2 = 0. Then x2

2 = x2
1, and so x2 > 0, but

(
Āx2

)
2
=

−2x2
1 + x2

2 = −x2
1 < 0;

(ii) if x2 > 0,
(
Āx2

)
2
= −2x2

1 + x2
2 = 0. Then x2

1 = 1
2
x2
2 > 0, but

(
Āx2

)
1
= −x2

1 + x2
2 =

1
2
x2
2 > 0.

Lemma 2.1. ([2, Corollary 3.5])Let S = {x ∈ Rn+1
+ ;

n+1∑
i=1

xi = 1}. Assumed that F : S →

Rn+1 is continuous on S. Then there exists x̄ ∈ S such that

x⊤F (x̄) ≥ x̄⊤F (x̄) for all x ∈ S (2.3)

(F (x̄))k = min
i∈In+1

(F (x̄))i = ω if xk > 0, (2.4)

(F (x̄))k ≥ ω if xk = 0. (2.5)

Recall that a tensor C ∈ Tm,r is called a principal sub-tensor of a tensorA = (ai1···im) ∈
Tm,n (1 ≤ r ≤ n) iff there is a set J that composed of r elements in In such that

C = (ai1···im), for all i1, i2, · · · , im ∈ J.

The concept were first introduced and used in [15] for symmetric tensor. We denote by

AJ
r the principal sub-tensor of a tensor A ∈ Tm,n such that the entries of AJ

r are indexed

by J ⊂ In with |J | = r (1 ≤ r ≤ n), and denote by xJ the r-dimensional sub-vector of a

vector x ∈ Rn, with the components of xJ indexed by J . Note that for r = 1, the principal

sub-tensors are just the diagonal entries.

Definition 2.4. (Song and Qi [21]) Let A = (ai1···im) ∈ Sm,n. A is said to be

(i) copositive if Axm ≥ 0 for all x ∈ Rn
+;

(ii) strictly copositive if Axm > 0 for all x ∈ Rn
+ \ {0}.

The concept of (strictly) copositive were first introduced and used by Song and Qi in

[21]. They showed their equivalent definition and some special structures. The following

lemma is one of the structure conclusions of (strictly) copositive in [21].
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Lemma 2.2. ([21, Corollary 4.6]) Let A = (ai1···im) ∈ Sm,n. Then

(i) If A is copositive, then aii···i ≥ 0 for all i ∈ In.

(ii) If A is strictly copositive, then aii···i > 0 for all i ∈ In.

3 Main results

Theorem 3.1. Let A = (ai1···im) ∈ Tm,n be a R-tensor. Then A is a Q-tensor. That is, the

tensor complementarity problem (q,A) (2.1) has a solution for all q ∈ Rn.

Proof. Let the mapping F : Rn+1
+ → Rn+1 be defined by

F (y) =

(
Axm−1 + sq+ se

s

)
, (3.1)

where y = (x, s)⊤, x ∈ Rn
+, s ∈ R+ and e = (1, 1, · · · , 1)⊤ ∈ Rn, q ∈ Rn. Obviously,

F : S → Rn+1 is continuous on the set S = {x ∈ Rn+1
+ ;

n+1∑
i=1

xi = 1}. It follows from Lemma

2.1 that there exists ỹ = (x̃, s̃)⊤ ∈ S such that

y⊤F (ỹ) ≥ ỹ⊤F (ỹ) for all y ∈ S (3.2)

(F (ỹ))k = min
i∈In+1

(F (ỹ))i = ω if ỹk > 0, (3.3)

(F (ỹ))k ≥ ω if ỹk = 0. (3.4)

We claim s̃ > 0. In fact, suppose s̃ = 0, then the fact that ỹn+1 = s̃ = 0 together with

(3.4) implies that

ω ≤ (F (ỹ))n+1 = s̃ = 0,

and so for k ∈ In,

(F (ỹ))k =
(
Ax̃m−1

)
k
= ω if x̃k > 0,

(F (ỹ))k =
(
Ax̃m−1

)
k
≥ ω if x̃k = 0.

That is, for t = −ω ≥ 0, (
Ax̃m−1

)
k
+ t = 0 if x̃k > 0,(

Ax̃m−1
)
k
+ t ≥ 0 if x̃k = 0.

This obtain a contradiction with the definition of R-tensor A, which completes the proof of

the claim.
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Now we show that the tensor complementarity problem (q,A) has a solution for all

q ∈ Rn. In fact, if q ≥ 0, clearly z = 0 and w = Azm−1 + q = q solve (q,A). Next we

consider q ∈ Rn/Rn
+. It follows from (3.1) and (3.3) and (3.4) that we must have

(F (ỹ))n+1 = min
i∈In+1

(F (ỹ))i = ω = s̃ = ỹn+1 > 0

and for i ∈ In,

(F (ỹ))i =
(
Ax̃m−1

)
i
+ s̃qi + s̃ = ω = s̃ if ỹi = x̃i > 0,

(F (ỹ))i =
(
Ax̃m−1

)
i
+ s̃qi + s̃ ≥ ω = s̃ if ỹi = x̃i = 0.

Thus for z = x̃

s̃
1

m−1
and i ∈ In, we have

(
Azm−1

)
i
+ qi = 0 if zi > 0,(

Azm−1
)
i
+ qi ≥ 0 if zi = 0,

and hence,

z ≥ 0,w = q+Azm−1 ≥ 0, and z⊤w = 0.

So we obtain a feasible solution (z,w) of the tensor complementarity problem (q,A), and

then A is a Q-tensor. The theorem is proved.

Corollary 3.2. Each strictly semi-positive tensor is a Q-tensor, and so is P-tensor. That

is, the tensor complementarity problem (q,A) has a solution for all q ∈ Rn if A is either a

P-tensor or a strictly semi-positive tensor.

Theorem 3.3. Let a R0-tensor A(∈ Tm,n) be semi-positive. Then A is a R-tensor, and

hence A is a Q-tensor.

Proof. Suppose A is not a R-tensor. Let the system (2.2) has a solution x̄ ≥ 0 and x̄ ̸= 0. If

t = 0, this contradicts the assumption that A is a R0-tensor. So we must have t > 0. Then

for i ∈ In, we have (
Axm−1

)
i
+ t = 0 if xi > 0,

and hence, (
Axm−1

)
i
= −t < 0 if xi > 0,

which contradicts the assumption that A is semi-positive. So A is a R-tensor, and hence A
is a Q-tensor by Theorem 3.1.

Theorem 3.4. Let A = (ai1···im) ∈ Tm,n with A ≥ O (ai1···im ≥ 0 for all i1 · · · im ∈ In).

Then A is a Q-tensor if and only if aii···i > 0 for all i ∈ In.
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Proof. Sufficiency. If aii···i > 0 for all i ∈ In and A ≥ O, then it folows from the definition

2.3 of the strictly semi-positive tensor that A is strictly semi-positive, and hence A is a

Q-tensor by Corollary 3.2.

Necessity. Suppose that there exists k ∈ In such that akk···k = 0. Let q = (q1, · · · , qn)⊤

with qk < 0 and qi > 0 for all i ∈ In and i ̸= k. Since A is a Q-tensor, the tensor

complementarity problem (q,A) has at least a solution. Let z is be a feasible solution to

(q,A). Then

z ≥ 0, w = Azm−1 + q ≥ 0 and z⊤w = 0. (3.5)

Clearly, z ̸= 0. Since z ≥ 0 and A ≥ 0 together with qi > 0 for each i ∈ In with i ̸= k, we

must have

wi =
(
Azm−1

)
i
+ qi =

n∑
i2,··· ,im=1

aii2···imzi2 · · · zim + qi > 0 for i ̸= k and i ∈ In.

It follows from (3.5) that

zi = 0 for i ̸= k and i ∈ In.

Thus, we have

wk =
(
Azm−1

)
k
+ qk =

n∑
i2,··· ,im=1

aki2···imzi2 · · · zim + qk = akk···kz
m−1
k + qk = qk < 0

since akk···k = 0. This contradicts the fact that w ≥ 0, so aii···i > 0 for all i ∈ In.

Corollary 3.5. Let a non-negative tensor A be a Q-tensor. Then all principal sub-tensors

of A are also Q-tensors.

Corollary 3.6. Let a non-negative tensor A be a Q-tensor. Then 0 is the unique feasible

solution to the tensor complementarity problem (q,A) for q ≥ 0.

Proof. It follows from Theorem 3.4 that aii···i > 0 for all i ∈ In, and hence(
Axm−1

)
i
=

n∑
i2,··· ,im=1

aii2···imxi1 · · ·xim = aii···ix
m−1
i +

∑
(i2,··· ,im )̸=(i,··· ,i)

aii2···imxi1 · · ·xim .

If x = (x1, · · · , xn)
⊤ is any feasible solution of the tensor complementarity problem

(q,A), then we have

x ≥ 0, w = Axm−1 + q ≥ 0 and x⊤w = Axm + x⊤q = 0. (3.6)

Suppose xi > 0 for some i ∈ In. Then

wi =
(
Axm−1

)
i
+ qi = aii···ix

m−1
i +

∑
(i2,··· ,im )̸=(i,··· ,i)

aii2···imxi1 · · ·xim + qi > 0,

and hence, x⊤w = xiwi +
∑
k ̸=i

xkwk > 0. This contradicts the fact that x⊤w = 0. Conse-

quently, xi = 0 for all i ∈ In.
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Proposition 3.7. Let A ∈ Sm,n be non-negative. Then A is strictly copositive if and only

if aii···i > 0 for all i ∈ In.

Proof. The necessity follows from Lemma 2.2. Now we show the sufficiency. Suppose A is

not strictly copositive. Then there exists x ∈ Rn
+ \ {0} such that

x⊤ (Axm−1
)
= Axm ≤ 0.

Since x ∈ Rn
+ \ {0}, without loss of generality, we may assume x1 > 0. Then by A ≥ O, we

must have

a11···1x
m
1 ≤

n∑
i1,··· ,im=1

ai1···imxi1 · · ·xim = Axm ≤ 0.

Thus, a11···1 ≤ 0. The contradiction establishes the proposition.

Corollary 3.8. Let A ∈ Sm,n be non-negative. Then A is a Q-tensor if and only if A is

strictly copositive.
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