Properties of Tensor Complementarity Problem and Some Classes of Structured Tensors

Yisheng Song,* Liqun Qi†

November 29, 2014

Abstract

This paper deals with the class of Q-tensors, that is, a Q-tensor is a real tensor A such that the tensor complementarity problem (q, A):

finding \(x \in \mathbb{R}^n \) such that \(x \geq 0, q + Ax^{m-1} \geq 0, \) and \(x^T(q + Ax^{m-1}) = 0, \)

has a solution for each vector \(q \in \mathbb{R}^n \). Several subclasses of Q-tensors are given: P-tensors, R-tensors, strictly semi-positive tensors and semi-positive R_0-tensors. We prove that a nonnegative tensor is a Q-tensor if and only if all of its diagonal entries are positive, and a symmetric tensor is a Q-tensor if and only if it is strictly copositive. We also show that the zero vector is the unique feasible solution of the tensor complementarity problem \((q, A)\) for \(q \geq 0 \) if \(A \) is a nonnegative Q-tensor.

Key words: Q-tensor, R-tensor, R_0-tensor, strictly semi-positive, tensor complementarity problem.

*Corresponding author. School of Mathematics and Information Science, Henan Normal University, XinXiang HeNan, P.R. China, 453007. Email: songyisheng1@gmail.com. This author’s work was partially supported by the National Natural Science Foundation of P.R. China (Grant No. 11171094, 11271112, 61262026), NCET Program of the Ministry of Education (NCET 13-0738), science and technology program of Jiangxi Education Committee (LDJH12088).

†Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. Email: maqilq@polyu.edu.hk. This author’s work was supported by the Hong Kong Research Grant Council (Grant No. PolyU 502510, 502111, 501212 and 501913).
1 Introduction

Throughout this paper, we use small letters x, u, v, \cdots, for scalars, small bold letters x, y, u, \cdots, for vectors, capital letters A, B, \cdots, for matrices, calligraphic letters A, B, \cdots, for tensors. All the tensors discussed in this paper are real. Let $I_n := \{1, 2, \cdots, n\}$, and

$$\mathbb{R}^n := \{(x_1, x_2, \cdots, x_n)^\top; x_i \in \mathbb{R}, i \in I_n\}, \mathbb{R}_n^+: = \{x \in \mathbb{R}^n; x \geq 0\}, \mathbb{R}_n^- := \{x \in \mathbb{R}^n; x \leq 0\}, \mathbb{R}_n^{++} := \{x \in \mathbb{R}^n; x > 0\}, e = (1, 1, \cdots, 1)^\top, \text{ and } x^{[m]} = (x_1^m, x_2^m, \cdots, x_n^m)^\top$$

for $x = (x_1, x_2, \cdots, x_n)^\top$, where \mathbb{R} is the set of real numbers, x^\top is the transposition of a vector x, and $x \geq 0$ ($x > 0$) means $x_i \geq 0$ ($x_i > 0$) for all $i \in I_n$.

Let $A = (a_{ij})$ be an $n \times n$ real matrix. A is said to be a $\textbf{Q-matrix}$ iff the linear complementarity problem, denoted by (q, A), finding $z \in \mathbb{R}^n$ such that $z \geq 0, q + Az \geq 0$, and $z^\top (q + Az) = 0 \quad (1.1)$ has a solution for each vector $q \in \mathbb{R}^n$. We say that A is a $\textbf{P-matrix}$ iff for any nonzero vector x in \mathbb{R}^n, there exists $i \in I_n$ such that $x_i(Ax)_i > 0$. It is well-known that A is a P-matrix if and only if the linear complementarity problem (q, A) has a unique solution for all $q \in \mathbb{R}^n$. Xiu and Zhang [1] also gave the necessary and sufficient conditions of P-tensors.

A good review of P-matrices and Q-matrices may be found in the books by Berman and Plemmons [2], and Cottle and Pang [3].

On the other hand, motivated by the discussion on positive definiteness of multivariate homogeneous polynomial forms [12, 13, 14], in 2005, Qi [15] introduced the concept of positive (semi-)definite symmetric tensors. In the same time, Qi also introduced eigenvalues, H-eigenvalues, E-eigenvalues and Z-eigenvalues for symmetric tensors. It was shown that an even order symmetric tensor is positive (semi-)definite if and only if all of its H-eigenvalues or Z-eigenvalues are positive (nonnegative) [15, Theorem 5]. Recently, miscellaneous structured tensors are widely studied, for example, Zhang, Qi and Zhou [16] and Ding, Qi and Wei [17] for M-tensors, Song and Qi [18] for P-(P_0)tensors and B-(B_0)tensors, Qi and Song
for positive (semi-)definition of B-(B₀) tensors, Song and Qi [20] for infinite and finite dimensional Hilbert tensors, Song and Qi [21] for structure properties and an equivalent definition of (strictly) copositive tensors, Chen and Qi [22] for Cauchy tensor, Song and Qi [23] for E-eigenvalues of weakly symmetric nonnegative tensors and so on. Beside automatical control, positive semi-definite tensors also found applications in magnetic resonance imaging [24, 25, 26, 27] and spectral hypergraph theory [28, 29, 30].

The following questions are natural. Can we extend the concept of Q-matrices to Q-tensors? If this can be done, are those nice properties of Q-matrices still true for Q-tensors?

In this paper, we will introduce the concept of Q-tensors (Q-hypermatrices) and will study some subclasses and nice properties of such tensors.

In Section 2, we will extend the concept of Q-matrices to Q-tensors. Several main subclass of Q-matrices also are extended to the corresponding subclass of Q-tensors: R-tensor, R₀-tensor, semi-positive tensor, strictly semi-positive tensor. We will give several examples to verify that the class of R-(R₀-)tensors properly contains strictly semi-positive tensors as a subclass, while the class of P-tensors is a subclass of strictly semi-positive tensors. Some basic definitions and facts also are given in this section.

In Section 3, we will study some properties of Q-tensors. Firstly, we will prove that each R-tensor is certainly a Q-tensor and each semi-positive R₀-tensor is a R-tensor. Thus, we obtain that each P-tensor is a Q-tensor. We will show that a nonnegative tensor is a Q-tensor if and only if its all diagonal elements are positive and a nonnegative symmetric tensor is a Q-tensor if and only if it is strictly copositive. It will be proved that 0 is the unique feasible solution of the tensor complementarity problem (q, A) for q ≥ 0 if A is a non-negative Q-tensor.

2 Preliminaries

In this section, we will define the notation and collect some basic definitions and facts, which will be used later on.

A real mth order n-dimensional tensor (hypermatrix) $\mathbf{A} = (a_{i_1\cdots i_m})$ is a multi-array of real entries $a_{i_1\cdots i_m}$, where $i_j \in I_n$ for $j \in I_m$. Denote the set of all real mth order n-dimensional tensors by $T_{m,n}$. Then $T_{m,n}$ is a linear space of dimension n^m. Let $\mathbf{A} = (a_{i_1\cdots i_m}) \in T_{m,n}$. If the entries $a_{i_1\cdots i_m}$ are invariant under any permutation of their indices, then \mathbf{A} is called a symmetric tensor. Denote the set of all real mth order n-dimensional tensors by $S_{m,n}$. Then $S_{m,n}$ is a linear subspace of $T_{m,n}$. We denote the zero tensor in $T_{m,n}$ by \mathbf{O}. Let $\mathbf{A} = (a_{i_1\cdots i_m}) \in T_{m,n}$ and $\mathbf{x} \in \mathbb{R}^n$. Then $\mathbf{A}\mathbf{x}^{m-1}$ is a vector in \mathbb{R}^n with its ith component as

$$(\mathbf{A}\mathbf{x}^{m-1})_i := \sum_{i_2, \ldots, i_m = 1}^n a_{i_1i_2\cdots i_m}x_{i_2}\cdots x_{i_m}$$
for $i \in I_n$. Then Ax^m is a homogeneous polynomial of degree m, defined by

$$Ax^m := x^\top (Ax^{m-1}) = \sum_{i_1, \ldots, i_m = 1}^n a_{i_1 \cdots i_m} x_{i_1} \cdots x_{i_m}.$$

$x \in \mathbb{R}^n$. A tensor $A \in T_{m,n}$ is called positive semi-definite if for any vector $x \in \mathbb{R}^n$, $Ax^m \geq 0$, and is called positive definite if for any nonzero vector $x \in \mathbb{R}^n$, $Ax^m > 0$. Clearly, if m is odd, there is no nontrivial positive semi-definite tensors. We now give the definition of Q-tensors, which are natural extensions of Q-matrices.

Definition 2.1. Let $A = (a_{i_1 \cdots i_m}) \in T_{m,n}$. We say that A is a Q-tensor iff the tensor complementarity problem, denoted by $(q; A)$, finding $x \in \mathbb{R}^n$ such that $x \geq 0, q + Ax^{m-1} \geq 0,$ and $x^\top (q + Ax^{m-1}) = 0,$ has a solution for each vector $q \in \mathbb{R}^n$.

Definition 2.2. Let $A = (a_{i_1 \cdots i_m}) \in T_{m,n}$. We say that A is

(i) a R-tensor iff the following system is inconsistent

$$\begin{cases} 0 \neq x \geq 0, \ t \geq 0 \\ (Ax^{m-1})_i + t = 0 \text{ if } x_i > 0, \\ (Ax^{m-1})_j + t \geq 0 \text{ if } x_j = 0; \end{cases}$$

(ii) a R_0-tensor iff the system (2.2) is inconsistent for $t = 0$.

Clearly, this definition 2.2 is a natural extension of the definition of Karamardian’s class of regular matrices [31].

Definition 2.3. Let $A = (a_{i_1 \cdots i_m}) \in T_{m,n}$. A is said to be

(i) semi-positive iff for each $x \geq 0$ and $x \neq 0$, there exists an index $k \in I_n$ such that $x_k > 0$ and $(Ax^{m-1})_k \geq 0$;

(ii) strictly semi-positive iff for each $x \geq 0$ and $x \neq 0$, there exists an index $k \in I_n$ such that $x_k > 0$ and $(Ax^{m-1})_k > 0$;

(iii) a P-tensor (Song and Qi [18]) iff for each x in \mathbb{R}^n and $x \neq 0$, there exists $i \in I_n$ such that $x_i (Ax^{m-1})_i > 0$;
(iv) a \mathbf{P}_0-tensor (Song and Qi [18]) iff for every \mathbf{x} in \mathbb{R}^n and $\mathbf{x} \neq 0$, there exists $i \in I_n$ such that $x_i \neq 0$ and

$$x_i \left(\mathbf{A} \mathbf{x}^{m-1} \right)_i \geq 0.$$

Clearly, each \mathbf{P}_0-tensor is certainly semi-positive. The concept of \mathbf{P}-(\mathbf{P}_0-)tensor is introduced by Song and Qi [18]. Furthermore, Song and Qi [18] studied some nice properties of such a class of tensors. The definition of (strictly) semi-positive tensor is a natural extension of the concept of (strictly) semi-positive (or semi-monotone) matrices [11, 32].

It follows from Definition 2.2 and 2.3 that each \mathbf{P}-tensor must be strictly semi-positive and every strictly semi-positive tensor is certainly both \mathbf{R}-tensor and \mathbf{R}_0-tensor. Now we give several examples to demonstrate that the above inclusions are proper.

Example 2.1. Let $\hat{\mathbf{A}} = (a_{i_1\cdots i_m}) \in T_{m,n}$ and $a_{i_1\cdots i_m} = 1$ for all $i_1, i_2, \cdots, i_m \in I_n$. Then

$$\left(\hat{\mathbf{A}} \mathbf{x}^{m-1} \right)_i = (x_1 + x_2 + \cdots + x_n)^{m-1}$$

for all $i \in I_n$ and hence $\hat{\mathbf{A}}$ is strictly semi-positive. However, $\hat{\mathbf{A}}$ is not a \mathbf{P}-tensor (for example, $x_i \left(\hat{\mathbf{A}} \mathbf{x}^{m-1} \right)_i = 0$ for $\mathbf{x} = (1, -1, 0, \cdots, 0)^\top$ and all $i \in I_n$).

Example 2.2. Let $\hat{\mathbf{A}} = (a_{i_1i_2i_3}) \in T_{3,2}$ and $a_{111} = 1, a_{122} = -1, a_{211} = -2, a_{222} = 1$ and all other $a_{i_1i_2i_3} = 0$. Then

$$\hat{\mathbf{A}} \mathbf{x}^2 = \begin{pmatrix} x_1^2 - x_2^2 \\ -2x_1^2 + x_2^2 \end{pmatrix}.$$

Clearly, $\hat{\mathbf{A}}$ is not strictly semi-positive (for example, $(\hat{\mathbf{A}} \mathbf{x}^2)_1 = 0$ and $(\hat{\mathbf{A}} \mathbf{x}^2)_2 = -1$ for $\mathbf{x} = (1, 1)^\top$).

$\hat{\mathbf{A}}$ is a \mathbf{R}_0-tensor. In fact,

(i) if $x_1 > 0$, $(\hat{\mathbf{A}} \mathbf{x}^2)_1 = x_1^2 - x_2^2 = 0$. Then $x_2 = x_1^2$, and so $x_2 > 0$, but $(\hat{\mathbf{A}} \mathbf{x}^2)_2 = -2x_1^2 + x_2^2 = -x_1^2 < 0$;

(ii) if $x_2 > 0$, $(\hat{\mathbf{A}} \mathbf{x}^2)_2 = -2x_1^2 + x_2^2 = 0$. Then $x_1^2 = \frac{1}{2}x_2^2 > 0$, but $(\hat{\mathbf{A}} \mathbf{x}^2)_1 = x_1^2 - x_2^2 = -\frac{1}{2}x_2^2 < 0$.

$\hat{\mathbf{A}}$ is not a \mathbf{R}-tensor. In fact, if $x_1 > 0$, $(\hat{\mathbf{A}} \mathbf{x}^2)_1 + t = x_1^2 - x_2^2 + t = 0$. Then $x_2^2 = x_1^2 + t > 0$, and so $x_2 > 0$, $(\hat{\mathbf{A}} \mathbf{x}^2)_2 + t = -2x_1^2 + x_2^2 + t = -x_1^2 + 2t$. Taking $x_1 = a > 0$, $t = \frac{1}{2}a^2$ and $x_2 = \frac{\sqrt{6}}{2}a$. That is, $\mathbf{x} = a(1, \frac{\sqrt{6}}{2})^\top$ and $t = \frac{1}{2}a^2$ solve the system (2.2).

Example 2.3. Let $\tilde{\mathbf{A}} = (a_{i_1i_2i_3}) \in T_{3,2}$ and $a_{111} = -1, a_{122} = 1, a_{211} = -2, a_{222} = 1$ and all other $a_{i_1i_2i_3} = 0$. Then

$$\tilde{\mathbf{A}} \mathbf{x}^2 = \begin{pmatrix} -x_1^2 + x_2^2 \\ -2x_1^2 + x_2^2 \end{pmatrix}.$$

5
Clearly, \bar{A} is not strictly semi-positive (for example, $\mathbf{x} = (1, 1)^\top$).

\bar{A} is a R-tensor. In fact,

(i) if $x_1 > 0$, $(\bar{A}\mathbf{x}^2)_1 + t = -x_1^2 + x_2^2 + t = 0$. Then $x_2^2 = x_1^2 - t$, but $(\bar{A}\mathbf{x}^2)_2 + t = -2x_1^2 + x_2^2 + t = -x_1^2 < 0$;

(ii) if $x_2 > 0$, $(\bar{A}\mathbf{x}^2)_2 + t = -2x_1^2 + x_2^2 + t = 0$. Then $x_1^2 = \frac{1}{2}(x_2^2 + t) > 0$, but $(\bar{A}\mathbf{x}^2)_1 + t = -x_1^2 + x_2^2 + t = \frac{1}{2}(x_2^2 + t) > 0$.

\bar{A} is a R_0-tensor. In fact,

(i) if $x_1 > 0$, $(\bar{A}\mathbf{x}^2)_1 = -x_1^2 + x_2^2 = 0$. Then $x_2^2 = x_1^2$, and so $x_2 > 0$, but $(\bar{A}\mathbf{x}^2)_2 = -2x_1^2 + x_2^2 = -x_1^2 < 0$;

(ii) if $x_2 > 0$, $(\bar{A}\mathbf{x}^2)_2 = -2x_1^2 + x_2^2 = 0$. Then $x_1^2 = \frac{1}{2}x_2^2 > 0$, but $(\bar{A}\mathbf{x}^2)_1 = -x_1^2 + x_2^2 = \frac{1}{2}x_2^2 > 0$.

Lemma 2.1. ([2, Corollary 3.5]) Let $S = \{\mathbf{x} \in \mathbb{R}^{n+1}_+; \sum_{i=1}^{n+1} x_i = 1\}$. Assumed that $F : S \to \mathbb{R}^{n+1}$ is continuous on S. Then there exists $\bar{\mathbf{x}} \in S$ such that

$$\mathbf{x}^\top F(\bar{\mathbf{x}}) \geq \bar{\mathbf{x}}^\top F(\bar{\mathbf{x}}) \quad \text{for all } \mathbf{x} \in S \quad (2.3)$$

$$(F(\bar{\mathbf{x}}))_{i_k} = \min_{i \in I_{n+1}} (F(\bar{\mathbf{x}}))_{i} = \omega \text{ if } x_k > 0, \quad (2.4)$$

$$(F(\bar{\mathbf{x}}))_{i_k} \geq \omega \text{ if } x_k = 0. \quad (2.5)$$

Recall that a tensor $C \in T_{m,r}$ is called a **principal sub-tensor** of a tensor $A = (a_{i_1...i_m}) \in T_{m,n}$ $(1 \leq r \leq n)$ iff there is a set J that composed of r elements in I_n such that

$$C = (a_{i_1...i_m}) \text{, for all } i_1, i_2, \cdots, i_m \in J.$$

The concept were first introduced and used in [15] for symmetric tensor. We denote by A^r_J the principal sub-tensor of a tensor $A \in T_{m,n}$ such that the entries of A^r_J are indexed by $J \subset I_n$ with $|J| = r$ $(1 \leq r \leq n)$, and denote by \mathbf{x}_J the r-dimensional sub-vector of a vector $\mathbf{x} \in \mathbb{R}^n$, with the components of \mathbf{x}_J indexed by J. Note that for $r = 1$, the principal sub-tensors are just the diagonal entries.

Definition 2.4. (Song and Qi [21]) Let $A = (a_{i_1...i_m}) \in S_{m,n}$. A is said to be

(i) **copositive** if $Ax^m \geq 0$ for all $x \in \mathbb{R}^n_+$;

(ii) **strictly copositive** if $Ax^m > 0$ for all $x \in \mathbb{R}^n_+ \setminus \{0\}$.

The concept of (strictly) copositive were first introduced and used by Song and Qi in [21]. They showed their equivalent definition and some special structures. The following lemma is one of the structure conclusions of (strictly) copositive in [21].
Lemma 2.2. ([21, Corollary 4.6]) Let \(A = (a_{i_1 \ldots i_m}) \in S_{m,n} \). Then

(i) If \(A \) is copositive, then \(a_{ii} \geq 0 \) for all \(i \in I_n \).

(ii) If \(A \) is strictly copositive, then \(a_{ii} > 0 \) for all \(i \in I_n \).

3 Main results

Theorem 3.1. Let \(A = (a_{i_1 \ldots i_m}) \in T_{m,n} \) be a R-tensor. Then \(A \) is a Q-tensor. That is, the tensor complementarity problem \((q, A)\) (2.1) has a solution for all \(q \in \mathbb{R}^n \).

Proof. Let the mapping \(F : \mathbb{R}_+^{n+1} \rightarrow \mathbb{R}_+^{n+1} \) be defined by

\[
F(y) = \begin{pmatrix} Ax^{m-1} + sq + se \\ s \end{pmatrix},
\]

where \(y = (x, s)^T, x \in \mathbb{R}_+^n, s \in \mathbb{R}_+ \) and \(e = (1, 1, \ldots, 1)^T \in \mathbb{R}^n, q \in \mathbb{R}^n \). Obviously, \(F : S \rightarrow \mathbb{R}_+^{n+1} \) is continuous on the set \(S = \{x \in \mathbb{R}_+^{n+1}; \sum_{i=1}^{n+1} x_i = 1\} \). It follows from Lemma 2.1 that there exists \(\tilde{y} = (\tilde{x}, \tilde{s})^T \in S \) such that

\[
y^T F(y) \geq \tilde{y}^T F(\tilde{y}) \text{ for all } y \in S
\]

(3.2)

\[
(F(\tilde{y}))_k = \min_{i \in I_{n+1}} (F(\tilde{y}))_i = \omega \text{ if } \tilde{y}_k > 0,
\]

(3.3)

\[
(F(\tilde{y}))_k \geq \omega \text{ if } \tilde{y}_k = 0.
\]

(3.4)

We claim \(\tilde{s} > 0 \). In fact, suppose \(\tilde{s} = 0 \), then the fact that \(\tilde{y}_{n+1} = \tilde{s} = 0 \) together with (3.4) implies that

\[
\omega \leq (F(\tilde{y}))(n+1) = \tilde{s} = 0,
\]

and so for \(k \in I_n \),

\[
(F(\tilde{y}))_k = (Ax^{m-1})_k = \omega \text{ if } \tilde{x}_k > 0,
\]

(3.5)

\[
(F(\tilde{y}))_k \geq \omega \text{ if } \tilde{x}_k = 0.
\]

(3.6)

That is, for \(t = -\omega \geq 0 \),

\[
(Ax^{m-1})_k + t = 0 \text{ if } \tilde{x}_k > 0,
\]

(3.7)

\[
(Ax^{m-1})_k + t \geq 0 \text{ if } \tilde{x}_k = 0.
\]

(3.8)

This obtain a contradiction with the definition of R-tensor \(A \), which completes the proof of the claim.
Now we show that the tensor complementarity problem \((\mathbf{q}, \mathbf{A})\) has a solution for all \(\mathbf{q} \in \mathbb{R}^n\). In fact, if \(\mathbf{q} \geq 0\), clearly \(\mathbf{z} = 0\) and \(\mathbf{w} = \mathbf{A}\mathbf{z}^{m-1} + \mathbf{q} = \mathbf{q}\) solve \((\mathbf{q}, \mathbf{A})\). Next we consider \(\mathbf{q} \in \mathbb{R}^n/\mathbb{R}_+^n\). It follows from (3.1) and (3.3) and (3.4) that we must have

\[
(F(\tilde{\mathbf{y}}))_{n+1} = \min_{i \in I_{n+1}} (F(\tilde{\mathbf{y}}))_i = \omega = \tilde{s} = \tilde{y}_{n+1} > 0
\]

and for \(i \in I_n\),

\[
(F(\tilde{\mathbf{y}}))_i = (\mathbf{A}\tilde{\mathbf{x}}^{m-1})_i + \tilde{s}q_i + \tilde{s} = \omega = \tilde{s} \quad \text{if} \quad \tilde{y}_i = \tilde{x}_i > 0,
\]

\[
(F(\tilde{\mathbf{y}}))_i = (\mathbf{A}\tilde{\mathbf{x}}^{m-1})_i + \tilde{s}q_i + \tilde{s} \geq \omega = \tilde{s} \quad \text{if} \quad \tilde{y}_i = \tilde{x}_i = 0.
\]

Thus for \(\mathbf{z} = \frac{\tilde{s}}{\tilde{s}^{m-1}}\) and \(i \in I_n\), we have

\[
(\mathbf{A}\mathbf{z}^{m-1})_i + q_i = 0 \quad \text{if} \quad z_i > 0,
\]

\[
(\mathbf{A}\mathbf{z}^{m-1})_i + q_i \geq 0 \quad \text{if} \quad z_i = 0,
\]

and hence,

\[
\mathbf{z} \geq 0, \quad \mathbf{w} = \mathbf{q} + \mathbf{A}\mathbf{z}^{m-1} \geq 0, \quad \text{and} \quad \mathbf{z}^\top \mathbf{w} = 0.
\]

So we obtain a feasible solution \((\mathbf{z}, \mathbf{w})\) of the tensor complementarity problem \((\mathbf{q}, \mathbf{A})\), and then \(\mathbf{A}\) is a Q-tensor. The theorem is proved.

Corollary 3.2. Each strictly semi-positive tensor is a Q-tensor, and so is P-tensor. That is, the tensor complementarity problem \((\mathbf{q}, \mathbf{A})\) has a solution for all \(\mathbf{q} \in \mathbb{R}^n\) if \(\mathbf{A}\) is either a P-tensor or a strictly semi-positive tensor.

Theorem 3.3. Let a \(\mathbb{R}_0\)-tensor \(\mathbf{A}(\in T_{m,n})\) be semi-positive. Then \(\mathbf{A}\) is a R-tensor, and hence \(\mathbf{A}\) is a Q-tensor.

Proof. Suppose \(\mathbf{A}\) is not a R-tensor. Let the system (2.2) has a solution \(\bar{\mathbf{x}} \geq 0\) and \(\bar{\mathbf{x}} \neq 0\). If \(t = 0\), this contradicts the assumption that \(\mathbf{A}\) is a \(\mathbb{R}_0\)-tensor. So we must have \(t > 0\). Then for \(i \in I_n\), we have

\[
(\mathbf{A}\mathbf{x}^{m-1})_i + t = 0 \quad \text{if} \quad x_i > 0,
\]

and hence,

\[
(\mathbf{A}\mathbf{x}^{m-1})_i = -t < 0 \quad \text{if} \quad x_i > 0,
\]

which contradicts the assumption that \(\mathbf{A}\) is semi-positive. So \(\mathbf{A}\) is a R-tensor, and hence \(\mathbf{A}\) is a Q-tensor by Theorem 3.1.

Theorem 3.4. Let \(\mathbf{A} = (a_{i_1\cdots i_m}) \in T_{m,n}\) with \(\mathbf{A} \succeq \mathbf{O}\) \((a_{i_1\cdots i_m} \geq 0 \text{ for all } i_1 \cdots i_m \in I_n)\). Then \(\mathbf{A}\) is a Q-tensor if and only if \(a_{ii_1\cdots i} > 0\) for all \(i \in I_n\).
Proof. Sufficiency. If \(a_{ii...i} > 0 \) for all \(i \in I_n \) and \(\mathcal{A} \geq \mathcal{O} \), then it follows from the definition 2.3 of the strictly semi-positive tensor that \(\mathcal{A} \) is strictly semi-positive, and hence \(\mathcal{A} \) is a Q-tensor by Corollary 3.2.

Necessity. Suppose that there exists \(k \in I_n \) such that \(a_{kk...k} = 0 \). Let \(\mathbf{q} = (q_1, \ldots, q_n)^\top \) with \(q_k < 0 \) and \(q_i > 0 \) for all \(i \in I_n \) and \(i \neq k \). Since \(\mathcal{A} \) is a Q-tensor, the tensor complementarity problem \((\mathbf{q}, \mathcal{A})\) has at least a solution. Let \(\mathbf{z} \) is be a feasible solution to \((\mathbf{q}, \mathcal{A})\). Then

\[
\mathbf{z} \geq 0, \quad \mathbf{w} = \mathcal{A} \mathbf{z}^{m-1} + \mathbf{q} \geq 0 \quad \text{and} \quad \mathbf{z}^\top \mathbf{w} = 0.
\]

Clearly, \(\mathbf{z} \neq \mathbf{0} \). Since \(\mathbf{z} \geq 0 \) and \(\mathcal{A} \geq \mathcal{O} \) together with \(q_i > 0 \) for each \(i \in I_n \) with \(i \neq k \), we must have

\[
w_i = (\mathcal{A} \mathbf{z}^{m-1})_i + q_i = \sum_{i_2, \ldots, i_m=1}^n a_{ii_2 \cdots i_m} z_{i_2} \cdots z_{i_m} + q_i > 0 \quad \text{for} \quad i \neq k \quad \text{and} \quad i \in I_n.
\]

It follows from (3.5) that

\[
z_i = 0 \quad \text{for} \quad i \neq k \quad \text{and} \quad i \in I_n.
\]

Thus, we have

\[
w_k = (\mathcal{A} \mathbf{z}^{m-1})_k + q_k = \sum_{i_2, \ldots, i_m=1}^n a_{k_{i_2} \cdots i_m} z_{i_2} \cdots z_{i_m} + q_k = a_{kk \cdots k} z_k^{m-1} + q_k < 0
\]

since \(a_{kk \cdots k} = 0 \). This contradicts the fact that \(\mathbf{w} \geq \mathbf{0} \), so \(a_{ii...i} > 0 \) for all \(i \in I_n \). \(\Box \)

Corollary 3.5. Let a non-negative tensor \(\mathcal{A} \) be a Q-tensor. Then all principal sub-tensors of \(\mathcal{A} \) are also Q-tensors.

Corollary 3.6. Let a non-negative tensor \(\mathcal{A} \) be a Q-tensor. Then \(\mathbf{0} \) is the unique feasible solution to the tensor complementarity problem \((\mathbf{q}, \mathcal{A})\) for \(\mathbf{q} \geq \mathbf{0} \).

Proof. It follows from Theorem 3.4 that \(a_{ii...i} > 0 \) for all \(i \in I_n \), and hence

\[
(\mathcal{A} \mathbf{x}^{m-1})_i = \sum_{i_2, \ldots, i_m=1}^n a_{ii_2 \cdots i_m} x_{i_1} \cdots x_{i_m} = a_{ii...i} x_i^{m-1} + \sum_{(i_2, \ldots, i_m) \neq (i, \ldots, i)} a_{ii_2 \cdots i_m} x_{i_1} \cdots x_{i_m}.
\]

If \(\mathbf{x} = (x_1, \ldots, x_n)^\top \) is any feasible solution of the tensor complementarity problem \((\mathbf{q}, \mathcal{A})\), then we have

\[
\mathbf{x} \geq 0, \quad \mathbf{w} = \mathcal{A} \mathbf{x}^{m-1} + \mathbf{q} \geq 0 \quad \text{and} \quad \mathbf{x}^\top \mathbf{w} = \mathcal{A} \mathbf{x}^m + \mathbf{x}^\top \mathbf{q} = 0.
\]

Suppose \(x_i > 0 \) for some \(i \in I_n \). Then

\[
w_i = (\mathcal{A} \mathbf{x}^{m-1})_i + q_i = a_{ii...i} x_i^{m-1} + \sum_{(i_2, \ldots, i_m) \neq (i, \ldots, i)} a_{ii_2 \cdots i_m} x_{i_1} \cdots x_{i_m} + q_i > 0,
\]

and hence, \(\mathbf{x}^\top \mathbf{w} = x_i w_i + \sum_{k \neq i} x_k w_k > 0 \). This contradicts the fact that \(\mathbf{x}^\top \mathbf{w} = 0 \). Consequently, \(x_i = 0 \) for all \(i \in I_n \). \(\Box \)
Proposition 3.7. Let $A \in S_{m,n}$ be non-negative. Then A is strictly copositive if and only if $a_{ii \ldots} > 0$ for all $i \in I_n$.

Proof. The necessity follows from Lemma 2.2. Now we show the sufficiency. Suppose A is not strictly copositive. Then there exists $x \in \mathbb{R}_+^n \setminus \{0\}$ such that

$$x^\top (Ax^{m-1}) = Ax^m \leq 0.$$

Since $x \in \mathbb{R}_+^n \setminus \{0\}$, without loss of generality, we may assume $x_1 > 0$. Then by $A \geq 0$, we must have

$$a_{11 \ldots} x_1^m \leq \sum_{i_1, \ldots, i_m = 1}^n a_{i_1 \ldots i_m} x_{i_1} \cdots x_{i_m} = Ax^m \leq 0.$$

Thus, $a_{11 \ldots} \leq 0$. The contradiction establishes the proposition.

Corollary 3.8. Let $A \in S_{m,n}$ be non-negative. Then A is a Q-tensor if and only if A is strictly copositive.

References

19. Qi, L., Song, Y.: An even order symmetric B tensor is positive definite. Linear Algebra Appl. 457, 303-312 (2014)

