Properties of Tensor Complementarity Problem and Some Classes of Structured Tensors

Yisheng Song, Liqun Qi^{\dagger}

November 29, 2014

Abstract

This paper deals with the class of Q -tensors, that is, a Q -tensor is a real tensor \mathcal{A} such that the tensor complementarity problem $(\mathbf{q}, \mathcal{A})$: $$
\text { finding } \mathbf{x} \in \mathbb{R}^{n} \text { such that } \mathbf{x} \geq \mathbf{0}, \mathbf{q}+\mathcal{A} \mathbf{x}^{m-1} \geq \mathbf{0} \text {, and } \mathbf{x}^{\top}\left(\mathbf{q}+\mathcal{A} \mathbf{x}^{m-1}\right)=0 \text {, }
$$ has a solution for each vector $\mathbf{q} \in \mathbb{R}^{n}$. Several subclasses of Q -tensors are given: P-tensors, R-tensors, strictly semi-positive tensors and semi-positive R_{0}-tensors. We prove that a nonnegative tensor is a Q-tensor if and only if all of its diagonal entries are positive, and a symmetric tensor is a Q-tensor if and only if it is strictly copositive. We also show that the zero vector is the unique feasible solution of the tensor complementarity problem $(\mathbf{q}, \mathcal{A})$ for $\mathbf{q} \geq \mathbf{0}$ if \mathcal{A} is a nonnegative Q -tensor. Key words: Q -tensor, R-tensor, R_{0}-tensor, strictly semi-positive, tensor complementarity problem.

AMS subject classifications (2010): 47H15, 47H12, 34B10, 47A52, 47J10, 47H09, 15A48, 47H07.

^[*Corresponding author. School of Mathematics and Information Science, Henan Normal University, XinXiang HeNan, P.R. China, 453007. Email: songyisheng1@gmail.com. This author's work was partially supported by the National Natural Science Foundation of P.R. China (Grant No. 11171094, 11271112, 61262026), NCET Programm of the Ministry of Education (NCET 13-0738), science and technology programm of Jiangxi Education Committee (LDJH12088). ${ }^{\dagger}$ Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. Email: maqilq@polyu.edu.hk. This author's work was supported by the Hong Kong Research Grant Council (Grant No. PolyU 502510, 502111, 501212 and 501913).]

1 Introduction

Throughout this paper, we use small letters x, u, v, α, \cdots, for scalars, small bold letters $\mathbf{x}, \mathbf{y}, \mathbf{u}, \cdots$, for vectors, capital letters A, B, \cdots, for matrices, calligraphic letters $\mathcal{A}, \mathcal{B}, \cdots$, for tensors. All the tensors discussed in this paper are real. Let $I_{n}:=\{1,2, \cdots, n\}$, and $\mathbb{R}^{n}:=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\top} ; x_{i} \in \mathbb{R}, i \in I_{n}\right\}, \mathbb{R}_{+}^{n}:=\left\{x \in \mathbb{R}^{n} ; x \geq \mathbf{0}\right\}, \mathbb{R}_{-}^{n}:=\left\{\mathbf{x} \in \mathbb{R}^{n} ; x \leq \mathbf{0}\right\}$, $\mathbb{R}_{++}^{n}:=\left\{\mathbf{x} \in \mathbb{R}^{n} ; x>\mathbf{0}\right\}, \mathbf{e}=(1,1, \cdots, 1)^{\top}$, and $\mathbf{x}^{[m]}=\left(x_{1}^{m}, x_{2}^{m}, \cdots, x_{n}^{m}\right)^{\top}$ for $\mathbf{x}=$ $\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\top}$, where \mathbb{R} is the set of real numbers, \mathbf{x}^{\top} is the transposition of a vector \mathbf{x}, and $\mathbf{x} \geq \mathbf{0}(\mathbf{x}>\mathbf{0})$ means $x_{i} \geq 0\left(x_{i}>0\right)$ for all $i \in I_{n}$.

Let $A=\left(a_{i j}\right)$ be an $n \times n$ real matrix. A is said to be a Q-matrix iff the linear complementarity problem, denoted by (\mathbf{q}, A),

$$
\begin{equation*}
\text { finding } \mathbf{z} \in \mathbb{R}^{n} \text { such that } \mathbf{z} \geq \mathbf{0}, \mathbf{q}+A \mathbf{z} \geq \mathbf{0} \text {, and } \mathbf{z}^{\top}(\mathbf{q}+A \mathbf{z})=0 \tag{1.1}
\end{equation*}
$$

has a solution for each vector $\mathbf{q} \in \mathbb{R}^{n}$. We say that A is a \mathbf{P}-matrix iff for any nonzero vector \mathbf{x} in \mathbb{R}^{n}, there exists $i \in I_{n}$ such that $x_{i}(A x)_{i}>0$. It is well-known that A is a P-matrix if and only if the linear complementarity problem (\mathbf{q}, A) has a unique solution for all $\mathbf{q} \in \mathbb{R}^{n}$. Xiu and Zhang [1] also gave the necessary and sufficient conditions of P-tensors. A good review of P-matrices and Q-matrices may be found in the books by Berman and Plemmons [2], and Cottle and Pang [3].

Q-matrices and $P\left(\mathrm{P}_{0}\right)$-matrices have a long history and wide applications in mathematical sciences. Pang [4] showed that each semi-monotone R_{0}-matrix is a Q-matrix. Pang [5] gave a class of Q-matrices which includes N -matrices and strictly semi-monotone matrices. Murty [6] showed that a nonnegative matrix is a Q-matrix if and only if its all diagonal elements are positive. Morris [7] presented two counterexamples of the Q-Matrix conjectures: a matrix is Q-matrix solely by considering the signs of its subdeterminants. Cuttle [8] studied some properties of complete Q-matrices, a subclass of Q-matrices. Kojima and Saigal [9] showed the number of solutions to a class of linear complementarity problems. Gowda [10] proved that a symmetric semi-monotone matrix is a Q-matrix if and only if it is an R_{0}-matrix. Eaves [11] obtained the equivalent definition of strictly semi-monotone matrices, a main subclass of Q-matrices.

On the other hand, motivated by the discussion on positive definiteness of multivariate homogeneous polynomial forms [12, 13, 14], in 2005, Qi [15] introduced the concept of positive (semi-)definite symmetric tensors. In the same time, Qi also introduced eigenvalues, H -eigenvalues, E-eigenvalues and Z-eigenvalues for symmetric tensors. It was shown that an even order symmetric tensor is positive (semi-)definite if and only if all of its H -eigenvalues or Z-eigenvalues are positive (nonnegative) [15, Theorem 5]. Recently, miscellaneous structured tensors are widely studied, for example, Zhang, Qi and Zhou [16] and Ding, Qi and Wei [17] for M-tensors, Song and Qi [18] for P-($\left.\mathrm{P}_{0}\right)$ tensors and B- $\left(\mathrm{B}_{0}\right)$ tensors, Qi and Song
[19] for positive (semi-)definition of B- $\left(\mathrm{B}_{0}\right)$ tensors, Song and Qi [20] for infinite and finite dimensional Hilbert tensors, Song and Qi [21] for structure properties and an equivalent definition of (strictly) copositive tensors, Chen and Qi [22] for Cauchy tensor, Song and Qi [23] for E-eigenvalues of weakly symmetric nonnegative tensors and so on. Beside automatical control, positive semi-definite tensors also found applications in magnetic resonance imaging $[24,25,26,27]$ and spectral hypergraph theory $[28,29,30]$.

The following questions are natural. Can we extend the concept of Q-matrices to Qtensors? If this can be done, are those nice properties of Q-matrices still true for Q-tensors?

In this paper, we will introduce the concept of Q-tensors (Q-hypermatrices) and will study some subclasses and nice properties of such tensors.

In Section 2, we will extend the concept of Q-matrices to Q-tensors. Serval main subclass of Q-matrices also are extended to the corresponding subclass of Q -tensors: R-tensor, $\mathrm{R}_{0^{-}}$ tensor, semi-positive tensor, strictly semi-positive tensor. We will give serval examples to verify that the class of $\mathrm{R}-\left(\mathrm{R}_{0^{-}}\right)$tensors properly contains strictly semi-positive tensors as a subclass, while the class of P-tensors is a subclass of strictly semi-positive tensors. Some basic definitions and facts also are given in this section.

In Section 3, we will study some properties of Q-tensors. Firstly, we will prove that each R-tensor is certainly a Q-tensor and each semi-positive R_{0}-tensor is a R-tensor. Thus, we obtain that each P-tensor is a Q-tensor. We will show that a nonnegative tensor is a Q-tensor if and only if its all diagonal elements are positive and a nonnegative symmetric tensor is a Q-tensor if and only if it is strictly copositive. It will be proved that $\mathbf{0}$ is the unique feasible solution of the tensor complementarity $\operatorname{problem}(\mathbf{q}, \mathcal{A})$ for $\mathbf{q} \geq \mathbf{0}$ if \mathcal{A} is a non-negative Q -tensor.

2 Preliminaries

In this section, we will define the notation and collect some basic definitions and facts, which will be used later on.

A real m th order n-dimensional tensor (hypermatrix) $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right)$ is a multi-array of real entries $a_{i_{1} \cdots i_{m}}$, where $i_{j} \in I_{n}$ for $j \in I_{m}$. Denote the set of all real m th order n-dimensional tensors by $T_{m, n}$. Then $T_{m, n}$ is a linear space of dimension n^{m}. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in T_{m, n}$. If the entries $a_{i_{1} \cdots i_{m}}$ are invariant under any permutation of their indices, then \mathcal{A} is called a symmetric tensor. Denote the set of all real m th order n-dimensional tensors by $S_{m, n}$. Then $S_{m, n}$ is a linear subspace of $T_{m, n}$. We denote the zero tensor in $T_{m, n}$ by \mathcal{O}. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in T_{m, n}$ and $\mathbf{x} \in \mathbb{R}^{n}$. Then $\mathcal{A} \mathbf{x}^{m-1}$ is a vector in \mathbb{R}^{n} with its i th component as

$$
\left(\mathcal{A} \mathbf{x}^{m-1}\right)_{i}:=\sum_{i_{2}, \cdots, i_{m}=1}^{n} a_{i i_{2} \cdots i_{m}} x_{i_{2}} \cdots x_{i_{m}}
$$

for $i \in I_{n}$. Then $\mathcal{A} \mathbf{x}^{m}$ is a homogeneous polynomial of degree m, defined by

$$
\mathcal{A} \mathbf{x}^{m}:=\mathbf{x}^{\top}\left(\mathcal{A} \mathbf{x}^{m-1}\right)=\sum_{i_{1}, \cdots, i_{m}=1}^{n} a_{i_{1} \cdots i_{m}} x_{i_{1}} \cdots x_{i_{m}} .
$$

$\mathbf{x} \in \mathbb{R}^{n}$. A tensor $\mathcal{A} \in T_{m, n}$ is called positive semi-definite if for any vector $\mathrm{x} \in \mathbb{R}^{n}$, $\mathcal{A} \mathbf{x}^{m} \geq 0$, and is called positive definite if for any nonzero vector $\mathrm{x} \in \mathbb{R}^{n}, \mathcal{A} \mathrm{x}^{m}>0$. Clearly, if m is odd, there is no nontrivial positive semi-definite tensors. We now give the definition of Q-tensors, which are natural extensions of Q -matrices.

Definition 2.1. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in T_{m, n}$. We say that \mathcal{A} is a \mathbf{Q}-tensor iff the tensor complementarity problem, denoted by $(\mathbf{q}, \mathcal{A})$,

$$
\begin{equation*}
\text { finding } \mathbf{x} \in \mathbb{R}^{n} \text { such that } \mathbf{x} \geq \mathbf{0}, \mathbf{q}+\mathcal{A} \mathbf{x}^{m-1} \geq \mathbf{0} \text {, and } \mathbf{x}^{\top}\left(\mathbf{q}+\mathcal{A} \mathbf{x}^{m-1}\right)=0 \text {, } \tag{2.1}
\end{equation*}
$$

has a solution for each vector $\mathbf{q} \in \mathbb{R}^{n}$.
Definition 2.2. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in T_{m, n}$. We say that \mathcal{A} is
(i) a R-tensor iff the following system is inconsistent

$$
\left\{\begin{array}{l}
0 \neq \mathbf{x} \geq 0, t \geq 0 \tag{2.2}\\
\left(\mathcal{A} \mathbf{x}^{m-1}\right)_{i}+t=0 \text { if } x_{i}>0 \\
\left(\mathcal{A} \mathbf{x}^{m-1}\right)_{j}+t \geq 0 \text { if } x_{j}=0
\end{array}\right.
$$

(ii) a \mathbf{R}_{0}-tensor iff the system (2.2) is inconsistent for $t=0$.

Clearly, this definition 2.2 is a natural extension of the definition of Karamardian's class of regular matrices [31].

Definition 2.3. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in T_{m, n}$. \mathcal{A} is said to be
(i) semi-positive iff for each $\mathbf{x} \geq 0$ and $\mathbf{x} \neq \mathbf{0}$, there exists an index $k \in I_{n}$ such that

$$
x_{k}>0 \text { and }\left(\mathcal{A} \mathbf{x}^{m-1}\right)_{k} \geq 0
$$

(ii) strictly semi-positive iff for each $\mathbf{x} \geq \mathbf{0}$ and $\mathbf{x} \neq \mathbf{0}$, there exists an index $k \in I_{n}$ such that

$$
x_{k}>0 \text { and }\left(\mathcal{A} \mathbf{x}^{m-1}\right)_{k}>0
$$

(iii) a P-tensor(Song and Qi [18]) iff for each \mathbf{x} in \mathbb{R}^{n} and $\mathbf{x} \neq \mathbf{0}$, there exists $i \in I_{n}$ such that

$$
x_{i}\left(\mathcal{A} \mathbf{x}^{m-1}\right)_{i}>0
$$

(iv) a \mathbf{P}_{0}-tensor(Song and Qi [18]) iff for every \mathbf{x} in \mathbb{R}^{n} and $\mathbf{x} \neq \mathbf{0}$, , there exists $i \in I_{n}$ such that $x_{i} \neq 0$ and

$$
x_{i}\left(\mathcal{A} \mathbf{x}^{m-1}\right)_{i} \geq 0
$$

Clearly, each P_{0}-tensor is certainly semi-positive. The concept of P - $\left(\mathrm{P}_{0}\right)$ tensor is introduced by Song and Qi [18]. Furthermore, Song and Qi [18] studied some nice properties of such a class of tensors. The definition of (strictly) semi-positive tensor is a natural extension of the concept of (strictly) semi-positive (or semi-monotone) matrices [11, 32].

It follows from Definition 2.2 and 2.3 that each P-tensor must be strictly semi-positive and every strictly semi-positive tensor is certainly both R-tensor and R_{0}-tensor. Now we give serval examples to demonstrate that the above inclusions are proper.
Example 2.1. Let $\hat{\mathcal{A}}=\left(a_{i_{1} \cdots i_{m}}\right) \in T_{m, n}$ and $a_{i_{1} \cdots i_{m}}=1$ for all $i_{1}, i_{2}, \cdots, i_{m} \in I_{n}$. Then

$$
\left(\hat{\mathcal{A}} \mathbf{x}^{m-1}\right)_{i}=\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{m-1}
$$

for all $i \in I_{n}$ and hence $\hat{\mathcal{A}}$ is strictly semi-positive. However, $\hat{\mathcal{A}}$ is not a P-tensor (for example, $x_{i}\left(\hat{\mathcal{A}} \mathbf{x}^{m-1}\right)_{i}=0$ for $\mathbf{x}=(1,-1,0, \cdots, 0)^{\top}$ and all $\left.i \in I_{n}\right)$.
Example 2.2. Let $\tilde{\mathcal{A}}=\left(a_{i_{1} i_{2} i_{3}}\right) \in T_{3,2}$ and $a_{111}=1, a_{122}=-1, a_{211}=-2, a_{222}=1$ and all other $a_{i_{1} i_{2} i_{3}}=0$. Then

$$
\tilde{\mathcal{A}} \mathbf{x}^{2}=\binom{x_{1}^{2}-x_{2}^{2}}{-2 x_{1}^{2}+x_{2}^{2}} .
$$

Clearly, $\tilde{\mathcal{A}}$ is not strictly semi-positive (for example, $\left(\tilde{\mathcal{A}} \mathrm{x}^{2}\right)_{1}=0$ and $\left(\tilde{\mathcal{A}} \mathrm{x}^{2}\right)_{2}=-1$ for $\left.\mathbf{x}=(1,1)^{\top}\right)$.
$\tilde{\mathcal{A}}$ is a R_{0}-tensor. In fact,
(i) if $x_{1}>0,\left(\tilde{\mathcal{A}} \mathrm{x}^{2}\right)_{1}=x_{1}^{2}-x_{2}^{2}=0$. Then $x_{2}^{2}=x_{1}^{2}$, and so $x_{2}>0$, but $\left(\tilde{\mathcal{A}} \mathbf{x}^{2}\right)_{2}=$ $-2 x_{1}^{2}+x_{2}^{2}=-x_{1}^{2}<0 ;$
(ii) if $x_{2}>0,\left(\tilde{\mathcal{A}} \mathbf{x}^{2}\right)_{2}=-2 x_{1}^{2}+x_{2}^{2}=0$. Then $x_{1}^{2}=\frac{1}{2} x_{2}^{2}>0$, but $\left(\tilde{\mathcal{A}} \mathbf{x}^{2}\right)_{1}=x_{1}^{2}-x_{2}^{2}=$ $-\frac{1}{2} x_{2}^{2}<0$.
$\tilde{\mathcal{A}}$ is not a R-tensor. In fact, if $x_{1}>0,\left(\tilde{\mathcal{A}} \mathbf{x}^{2}\right)_{1}+t=x_{1}^{2}-x_{2}^{2}+t=0$. Then $x_{2}^{2}=x_{1}^{2}+t>0$, and so $x_{2}>0,\left(\tilde{\mathcal{A}} \mathrm{x}^{2}\right)_{2}+t=-2 x_{1}^{2}+x_{2}^{2}+t=-x_{1}^{2}+2 t$. Taking $x_{1}=a>0, t=\frac{1}{2} a^{2}$ and $x_{2}=\frac{\sqrt{6}}{2} a$. That is, $\mathbf{x}=a\left(1, \frac{\sqrt{6}}{2}\right)^{\top}$ and $t=\frac{1}{2} a^{2}$ solve the system (2.2).
Example 2.3. Let $\overline{\mathcal{A}}=\left(a_{i_{1} i_{2} i_{3}}\right) \in T_{3,2}$ and $a_{111}=-1, a_{122}=1, a_{211}=-2, a_{222}=1$ and all other $a_{i_{1} i_{2} i_{3}}=0$. Then

$$
\overline{\mathcal{A}} \mathbf{x}^{2}=\binom{-x_{1}^{2}+x_{2}^{2}}{-2 x_{1}^{2}+x_{2}^{2}} .
$$

Clearly, $\overline{\mathcal{A}}$ is not strictly semi-positive (for example, $\left.\mathbf{x}=(1,1)^{\top}\right)$.
$\overline{\mathcal{A}}$ is a R-tensor. In fact,
(i) if $x_{1}>0,\left(\overline{\mathcal{A}} \mathbf{x}^{2}\right)_{1}+t=-x_{1}^{2}+x_{2}^{2}+t=0$. Then $x_{2}^{2}=x_{1}^{2}-t$, but $\left(\overline{\mathcal{A}} \mathbf{x}^{2}\right)_{2}+t=$ $-2 x_{1}^{2}+x_{2}^{2}+t=-x_{1}^{2}<0 ;$
(ii) if $x_{2}>0,\left(\overline{\mathcal{A}} \mathrm{x}^{2}\right)_{2}+t=-2 x_{1}^{2}+x_{2}^{2}+t=0$. Then $x_{1}^{2}=\frac{1}{2}\left(x_{2}^{2}+t\right)>0$, but $\left(\overline{\mathcal{A}} \mathrm{x}^{2}\right)_{1}+t=$ $-x_{1}^{2}+x_{2}^{2}+t=\frac{1}{2}\left(x_{2}^{2}+t\right)>0$.
$\overline{\mathcal{A}}$ is a R_{0}-tensor. In fact,
(i) if $x_{1}>0,\left(\overline{\mathcal{A}} \mathrm{x}^{2}\right)_{1}=-x_{1}^{2}+x_{2}^{2}=0$. Then $x_{2}^{2}=x_{1}^{2}$, and so $x_{2}>0$, but $\left(\overline{\mathcal{A}} \mathrm{x}^{2}\right)_{2}=$ $-2 x_{1}^{2}+x_{2}^{2}=-x_{1}^{2}<0 ;$
(ii) if $x_{2}>0,\left(\overline{\mathcal{A}} \mathbf{x}^{2}\right)_{2}=-2 x_{1}^{2}+x_{2}^{2}=0$. Then $x_{1}^{2}=\frac{1}{2} x_{2}^{2}>0$, but $\left(\overline{\mathcal{A}} \mathbf{x}^{2}\right)_{1}=-x_{1}^{2}+x_{2}^{2}=$ $\frac{1}{2} x_{2}^{2}>0$.
Lemma 2.1. ([2, Corollary 3.5])Let $S=\left\{\mathbf{x} \in \mathbb{R}_{+}^{n+1} ; \sum_{i=1}^{n+1} x_{i}=1\right\}$. Assumed that $F: S \rightarrow$ \mathbb{R}^{n+1} is continuous on S. Then there exists $\overline{\mathbf{x}} \in S$ such that

$$
\begin{align*}
& \mathbf{x}^{\top} F(\overline{\mathbf{x}}) \geq \overline{\mathbf{x}}^{\top} F(\overline{\mathbf{x}}) \text { for all } \mathbf{x} \in S \tag{2.3}\\
& (F(\overline{\mathbf{x}}))_{k}=\min _{i \in I_{n+1}}(F(\overline{\mathbf{x}}))_{i}=\omega \text { if } x_{k}>0 \tag{2.4}\\
& (F(\overline{\mathbf{x}}))_{k} \geq \omega \text { if } x_{k}=0 \tag{2.5}
\end{align*}
$$

Recall that a tensor $\mathcal{C} \in T_{m, r}$ is called a principal sub-tensor of a tensor $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in$ $T_{m, n}(1 \leq r \leq n)$ iff there is a set J that composed of r elements in I_{n} such that

$$
\mathcal{C}=\left(a_{i_{1} \cdots i_{m}}\right), \text { for all } i_{1}, i_{2}, \cdots, i_{m} \in J .
$$

The concept were first introduced and used in [15] for symmetric tensor. We denote by \mathcal{A}_{r}^{J} the principal sub-tensor of a tensor $\mathcal{A} \in T_{m, n}$ such that the entries of \mathcal{A}_{r}^{J} are indexed by $J \subset I_{n}$ with $|J|=r(1 \leq r \leq n)$, and denote by \mathbf{x}_{J} the r-dimensional sub-vector of a vector $\mathbf{x} \in \mathbb{R}^{n}$, with the components of \mathbf{x}_{J} indexed by J. Note that for $r=1$, the principal sub-tensors are just the diagonal entries.

Definition 2.4. (Song and Qi [21]) Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in S_{m, n}$. \mathcal{A} is said to be
(i) copositive if $\mathcal{A} x^{m} \geq 0$ for all $x \in \mathbb{R}_{+}^{n}$;
(ii) strictly copositive if $\mathcal{A} x^{m}>0$ for all $x \in \mathbb{R}_{+}^{n} \backslash\{0\}$.

The concept of (strictly) copositive were first introduced and used by Song and Qi in [21]. They showed their equivalent definition and some special structures. The following lemma is one of the structure conclusions of (strictly) copositive in [21].

Lemma 2.2. ([21, Corollary 4.6]) Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in S_{m, n}$. Then
(i) If \mathcal{A} is copositive, then $a_{i i \cdots i} \geq 0$ for all $i \in I_{n}$.
(ii) If \mathcal{A} is strictly copositive, then $a_{i i \cdots i}>0$ for all $i \in I_{n}$.

3 Main results

Theorem 3.1. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in T_{m, n}$ be a R-tensor. Then \mathcal{A} is a Q -tensor. That is, the tensor complementarity problem $(\mathbf{q}, \mathcal{A})(2.1)$ has a solution for all $\mathbf{q} \in \mathbb{R}^{n}$.

Proof. Let the mapping $F: \mathbb{R}_{+}^{n+1} \rightarrow \mathbb{R}^{n+1}$ be defined by

$$
\begin{equation*}
F(\mathbf{y})=\binom{\mathcal{A} \mathbf{x}^{m-1}+s \mathbf{q}+s \mathbf{e}}{s} \tag{3.1}
\end{equation*}
$$

where $\mathbf{y}=(\mathbf{x}, s)^{\top}, \mathbf{x} \in \mathbb{R}_{+}^{n}, s \in \mathbb{R}_{+}$and $\mathbf{e}=(1,1, \cdots, 1)^{\top} \in \mathbb{R}^{n}, \mathbf{q} \in \mathbb{R}^{n}$. Obviously, $F: S \rightarrow \mathbb{R}^{n+1}$ is continuous on the set $S=\left\{\mathbf{x} \in \mathbb{R}_{+}^{n+1} ; \sum_{i=1}^{n+1} x_{i}=1\right\}$. It follows from Lemma 2.1 that there exists $\tilde{\mathbf{y}}=(\tilde{\mathbf{x}}, \tilde{s})^{\top} \in S$ such that

$$
\begin{align*}
& \mathbf{y}^{\top} F(\tilde{\mathbf{y}}) \geq \tilde{\mathbf{y}}^{\top} F(\tilde{\mathbf{y}}) \text { for all } \mathbf{y} \in S \tag{3.2}\\
& (F(\tilde{\mathbf{y}}))_{k}=\min _{i \in I_{n+1}}(F(\tilde{\mathbf{y}}))_{i}=\omega \text { if } \tilde{y}_{k}>0, \tag{3.3}\\
& (F(\tilde{\mathbf{y}}))_{k} \geq \omega \text { if } \tilde{y}_{k}=0 . \tag{3.4}
\end{align*}
$$

We claim $\tilde{s}>0$. In fact, suppose $\tilde{s}=0$, then the fact that $\tilde{y}_{n+1}=\tilde{s}=0$ together with (3.4) implies that

$$
\omega \leq(F(\tilde{\mathbf{y}}))_{n+1}=\tilde{s}=0,
$$

and so for $k \in I_{n}$,

$$
\begin{aligned}
& (F(\tilde{\mathbf{y}}))_{k}=\left(\mathcal{A} \tilde{\mathbf{x}}^{m-1}\right)_{k}=\omega \quad \text { if } \quad \tilde{x}_{k}>0 \\
& (F(\tilde{\mathbf{y}}))_{k}=\left(\mathcal{A} \tilde{\mathbf{x}}^{m-1}\right)_{k} \geq \omega \quad \text { if } \quad \tilde{x}_{k}=0
\end{aligned}
$$

That is, for $t=-\omega \geq 0$,

$$
\begin{aligned}
& \left(\mathcal{A} \tilde{\mathbf{x}}^{m-1}\right)_{k}+t=0 \text { if } \tilde{x}_{k}>0 \\
& \left(\mathcal{A} \tilde{\mathbf{x}}^{m-1}\right)_{k}+t \geq 0 \quad \text { if } \quad \tilde{x}_{k}=0
\end{aligned}
$$

This obtain a contradiction with the definition of R-tensor \mathcal{A}, which completes the proof of the claim.

Now we show that the tensor complementarity $\operatorname{problem}(\mathbf{q}, \mathcal{A})$ has a solution for all $\mathbf{q} \in \mathbb{R}^{n}$. In fact, if $\mathbf{q} \geq \mathbf{0}$, clearly $\mathbf{z}=\mathbf{0}$ and $\mathbf{w}=\mathcal{A} \mathbf{z}^{m-1}+\mathbf{q}=\mathbf{q}$ solve $(\mathbf{q}, \mathcal{A})$. Next we consider $\mathbf{q} \in \mathbb{R}^{n} / \mathbb{R}_{+}^{n}$. It follows from (3.1) and (3.3) and (3.4) that we must have

$$
(F(\tilde{\mathbf{y}}))_{n+1}=\min _{i \in I_{n+1}}(F(\tilde{\mathbf{y}}))_{i}=\omega=\tilde{s}=\tilde{y}_{n+1}>0
$$

and for $i \in I_{n}$,

$$
\begin{array}{lll}
(F(\tilde{\mathbf{y}}))_{i}=\left(\mathcal{A} \tilde{\mathbf{x}}^{m-1}\right)_{i}+\tilde{s} q_{i}+\tilde{s}=\omega=\tilde{s} & \text { if } & \tilde{y}_{i}=\tilde{x}_{i}>0, \\
(F(\tilde{\mathbf{y}}))_{i}=\left(\mathcal{A} \tilde{\mathbf{x}}^{m-1}\right)_{i}+\tilde{s} q_{i}+\tilde{s} \geq \omega=\tilde{s} & \text { if } & \tilde{y}_{i}=\tilde{x}_{i}=0 .
\end{array}
$$

Thus for $\mathbf{z}=\frac{\tilde{X}}{\tilde{s}^{\frac{1}{m}-1}}$ and $i \in I_{n}$, we have

$$
\begin{aligned}
& \left(\mathcal{A} \mathbf{z}^{m-1}\right)_{i}+q_{i}=0 \text { if } z_{i}>0, \\
& \left(\mathcal{A} \mathbf{z}^{m-1}\right)_{i}+q_{i} \geq 0 \text { if } z_{i}=0,
\end{aligned}
$$

and hence,

$$
\mathbf{z} \geq \mathbf{0}, \mathbf{w}=\mathbf{q}+\mathcal{A} \mathbf{z}^{m-1} \geq \mathbf{0}, \text { and } \mathbf{z}^{\top} \mathbf{w}=0
$$

So we obtain a feasible solution (\mathbf{z}, \mathbf{w}) of the tensor complementarity problem $(\mathbf{q}, \mathcal{A})$, and then \mathcal{A} is a Q -tensor. The theorem is proved.

Corollary 3.2. Each strictly semi-positive tensor is a Q-tensor, and so is P-tensor. That is, the tensor complementarity problem $(\mathbf{q}, \mathcal{A})$ has a solution for all $\mathbf{q} \in \mathbb{R}^{n}$ if \mathcal{A} is either a P-tensor or a strictly semi-positive tensor.

Theorem 3.3. Let a R_{0}-tensor $\mathcal{A}\left(\in T_{m, n}\right)$ be semi-positive. Then \mathcal{A} is a R -tensor, and hence \mathcal{A} is a Q -tensor.

Proof. Suppose \mathcal{A} is not a R-tensor. Let the system (2.2) has a solution $\overline{\mathbf{x}} \geq 0$ and $\overline{\mathbf{x}} \neq 0$. If $t=0$, this contradicts the assumption that \mathcal{A} is a R_{0}-tensor. So we must have $t>0$. Then for $i \in I_{n}$, we have

$$
\left(\mathcal{A} \mathbf{x}^{m-1}\right)_{i}+t=0 \text { if } x_{i}>0
$$

and hence,

$$
\left(\mathcal{A} \mathbf{x}^{m-1}\right)_{i}=-t<0 \text { if } x_{i}>0,
$$

which contradicts the assumption that \mathcal{A} is semi-positive. So \mathcal{A} is a R -tensor, and hence \mathcal{A} is a Q-tensor by Theorem 3.1.

Theorem 3.4. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in T_{m, n}$ with $\mathcal{A} \geq \mathcal{O}\left(a_{i_{1} \cdots i_{m}} \geq 0\right.$ for all $\left.i_{1} \cdots i_{m} \in I_{n}\right)$. Then \mathcal{A} is a Q-tensor if and only if $a_{i i \cdots i}>0$ for all $i \in I_{n}$.

Proof. Sufficiency. If $a_{i i \cdots i}>0$ for all $i \in I_{n}$ and $\mathcal{A} \geq \mathcal{O}$, then it folows from the definition 2.3 of the strictly semi-positive tensor that \mathcal{A} is strictly semi-positive, and hence \mathcal{A} is a Q-tensor by Corollary 3.2.

Necessity. Suppose that there exists $k \in I_{n}$ such that $a_{k k \cdots k}=0$. Let $\mathbf{q}=\left(q_{1}, \cdots, q_{n}\right)^{\top}$ with $q_{k}<0$ and $q_{i}>0$ for all $i \in I_{n}$ and $i \neq k$. Since \mathcal{A} is a Q-tensor, the tensor complementarity problem $(\mathbf{q}, \mathcal{A})$ has at least a solution. Let \mathbf{z} is be a feasible solution to $(\mathbf{q}, \mathcal{A})$. Then

$$
\begin{equation*}
\mathbf{z} \geq \mathbf{0}, \mathbf{w}=\mathcal{A} \mathbf{z}^{m-1}+\mathbf{q} \geq \mathbf{0} \text { and } \mathbf{z}^{\top} \mathbf{w}=0 \tag{3.5}
\end{equation*}
$$

Clearly, $\mathbf{z} \neq \mathbf{0}$. Since $\mathbf{z} \geq \mathbf{0}$ and $\mathcal{A} \geq 0$ together with $q_{i}>0$ for each $i \in I_{n}$ with $i \neq k$, we must have

$$
w_{i}=\left(\mathcal{A} \mathbf{z}^{m-1}\right)_{i}+q_{i}=\sum_{i_{2}, \cdots, i_{m}=1}^{n} a_{i i_{2} \cdots i_{m}} z_{i_{2}} \cdots z_{i_{m}}+q_{i}>0 \text { for } i \neq k \text { and } i \in I_{n}
$$

It follows from (3.5) that

$$
z_{i}=0 \text { for } i \neq k \text { and } i \in I_{n}
$$

Thus, we have

$$
w_{k}=\left(\mathcal{A} \mathbf{z}^{m-1}\right)_{k}+q_{k}=\sum_{i_{2}, \cdots, i_{m}=1}^{n} a_{k i_{2} \cdots i_{m}} z_{i_{2}} \cdots z_{i_{m}}+q_{k}=a_{k k \cdots k} z_{k}^{m-1}+q_{k}=q_{k}<0
$$

since $a_{k k \cdots k}=0$. This contradicts the fact that $\mathbf{w} \geq \mathbf{0}$, so $a_{i i \cdots i}>0$ for all $i \in I_{n}$.
Corollary 3.5. Let a non-negative tensor \mathcal{A} be a Q -tensor. Then all principal sub-tensors of \mathcal{A} are also Q -tensors.

Corollary 3.6. Let a non-negative tensor \mathcal{A} be a Q -tensor. Then $\mathbf{0}$ is the unique feasible solution to the tensor complementarity problem $(\mathbf{q}, \mathcal{A})$ for $\mathbf{q} \geq \mathbf{0}$.

Proof. It follows from Theorem 3.4 that $a_{i i \cdots i}>0$ for all $i \in I_{n}$, and hence

$$
\left(\mathcal{A} \mathbf{x}^{m-1}\right)_{i}=\sum_{i_{2}, \cdots, i_{m}=1}^{n} a_{i i_{2} \cdots i_{m}} x_{i_{1}} \cdots x_{i_{m}}=a_{i i \cdots i} x_{i}^{m-1}+\sum_{\left(i_{2}, \cdots, i_{m}\right) \neq(i, \cdots, i)} a_{i i_{2} \cdots i_{m}} x_{i_{1}} \cdots x_{i_{m}}
$$

If $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)^{\top}$ is any feasible solution of the tensor complementarity problem $(\mathbf{q}, \mathcal{A})$, then we have

$$
\begin{equation*}
\mathbf{x} \geq \mathbf{0}, \mathbf{w}=\mathcal{A} \mathbf{x}^{m-1}+\mathbf{q} \geq \mathbf{0} \text { and } \mathbf{x}^{\top} \mathbf{w}=\mathcal{A} \mathbf{x}^{m}+\mathbf{x}^{\top} \mathbf{q}=0 \tag{3.6}
\end{equation*}
$$

Suppose $x_{i}>0$ for some $i \in I_{n}$. Then

$$
w_{i}=\left(\mathcal{A} \mathbf{x}^{m-1}\right)_{i}+q_{i}=a_{i i \cdots i} x_{i}^{m-1}+\sum_{\left(i_{2}, \cdots, i_{m}\right) \neq(i, \cdots, i)} a_{i i_{2} \cdots i_{m}} x_{i_{1}} \cdots x_{i_{m}}+q_{i}>0
$$

and hence, $\mathbf{x}^{\top} \mathbf{w}=x_{i} w_{i}+\sum_{k \neq i} x_{k} w_{k}>0$. This contradicts the fact that $\mathbf{x}^{\top} \mathbf{w}=0$. Consequently, $x_{i}=0$ for all $i \in I_{n}$.

Proposition 3.7. Let $\mathcal{A} \in S_{m, n}$ be non-negative. Then \mathcal{A} is strictly copositive if and only if $a_{i i \cdots i}>0$ for all $i \in I_{n}$.

Proof. The necessity follows from Lemma 2.2. Now we show the sufficiency. Suppose \mathcal{A} is not strictly copositive. Then there exists $\mathbf{x} \in \mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\}$ such that

$$
\mathbf{x}^{\top}\left(\mathcal{A} \mathbf{x}^{m-1}\right)=\mathcal{A} \mathbf{x}^{m} \leq 0 .
$$

Since $\mathbf{x} \in \mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\}$, without loss of generality, we may assume $x_{1}>0$. Then by $\mathcal{A} \geq \mathcal{O}$, we must have

$$
a_{11 \cdots 1} x_{1}^{m} \leq \sum_{i_{1}, \cdots, i_{m}=1}^{n} a_{i_{1} \cdots i_{m}} x_{i_{1}} \cdots x_{i_{m}}=\mathcal{A} \mathbf{x}^{m} \leq 0
$$

Thus, $a_{11 \cdots 1} \leq 0$. The contradiction establishes the proposition.
Corollary 3.8. Let $\mathcal{A} \in S_{m, n}$ be non-negative. Then \mathcal{A} is a Q -tensor if and only if \mathcal{A} is strictly copositive.

References

1. Xiu, N., Zhang, J.: A characteristic quantity of P-matrices. Appl. Math. Lett. 15, 41-46 (2002)
2. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadephia (1994)
3. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)
4. Pang, J.S.: On Q-matrices. Mathematical Programming 17, 243-247 (1979).
5. Pang, J.S.: A unification of two classes of Q-matrices. Mathematical Programming 20, 348-352 (1981).
6. Murty, K.G.: On the number of solutions to the complementarity problem and the spanning properties of complementary cones. Linear Algebra and Its Applications 5, 65-108 (1972).
7. W.D. Morris, Jr.: Counterexamples to Q-matrix conjectures. Linear Algebra and its Applications 111, 135-145 (1988).
8. Cuttle, R.W.: Completely Q-matrices. Mathematical Programming 19, 347-351 (1980).
9. Kojima, M. and Saigal, R.: On the number of solutions to a class of linear complementarity problems. Mathematical Programming 17, 136-139 (1979).
10. Seetharama Gowda, M.: On Q-matrices. Mathematical Programming 49, 139-141 (1990).
11. Eaves, B.C.: The linear complementarity problem. Management Science 17, 621-634 (1971).
12. Bose, N.K., Modaress, A.R.: General procedure for multivariable polynomial positivity with control applications. IEEE Trans. Automat. Contr. AC21, 596-601 (1976)
13. Hasan, M.A., Hasan, A.A.: A procedure for the positive definiteness of forms of evenorder. IEEE Trans. Automat. Contr. 41, 615-617 (1996)
14. Jury, E.I., Mansour, M.: Positivity and nonnegativity conditions of a quartic equation and related problems. IEEE Trans. Automat. Contr. AC26, 444-451 (1981)
15. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput. 40, 1302-1324 (2005)
16. Zhang, L., Qi, L., Zhou, G.: M-tensors and some applications. SIAM J. Matrix Anal. Appl. 35(2), 437-452 (2014)
17. Ding, W., Qi, L., Wei, Y.: M-tensors and nonsingular M-tensors. Linear Algebra Appl. 439, 3264-3278 (2013)
18. Song, Y., Qi, L.; Properties of Some Classes of Structured Tensors. to appear in: J. Optim. Theory Appl., 2014 DOI 10.1007/s10957-014-0616-5
19. Qi, L., Song, Y.: An even order symmetric B tensor is positive definite. Linear Algebra Appl. 457, 303-312 (2014)
20. Song, Y., Qi, L.; Infinite and finite dimensional Hilbert tensors. Linear Algebra Appl. 451, 1-14 (2014)
21. Song, Y., Qi, L.; Necessary and sufficient conditions for copositive tensors. to appear in: Linear and Multilinear Algebra,2013 DOI 10.1080/03081087.2013.851198.
22. Chen, H., Qi, L.: Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors. to appear in: J. Ind. Manag. Optim., arXiv:1405.6363, (2014)
23. Song, Y., Qi, L.: Spectral properties of positively homogeneous operators induced by higher order tensors. SIAM J. Matrix Anal. Appl.
24. Chen, Y., Dai, Y., Han, D., Sun, W.: Positive semidefinite generalized diffusion tensor imaging via quadratic semidefinite programming. SIAM J. Imaging Sci. 6, 1531-1552 (2013)
25. Hu, S., Huang, Z., Ni, H., Qi, L.: Positive definiteness of diffusion kurtosis imaging. Inverse Problems and Imaging 6, 57-75 (2012)
26. Qi, L., Yu, G., Wu, E.X.: Higher order positive semi-definite diffusion tensor imaging. SIAM J. Imaging Sci. 3, 416-433 (2010)
27. Qi, L., Yu, G., Xu, Y.: Nonnegative diffusion orientation distribution function. J. Math. Imaging Vision 45, 103-113 (2013)
28. Hu, S., Qi, L.: Algebraic connectivity of an even uniform hypergraph. J. Comb. Optim. 24, 564-579 (2012)
29. Li, G., Qi, L., Yu, G.: The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory. Numer. Linear Algebra Appl. 20, 1001-1029 (2013)
30. Qi, L.: H^{+}-eigenvalues of Laplacian and signless Laplacian tensors. Commun. Math. Sci. 12, 1045-1064 (2014)
31. Karamardian, S.: The complementarity problem. Mathematical Programming 2, 107129 (1972).
32. Fiedler, M. and Ptak, V.: Some generalizations of positive definiteness and monotonicity. Numerische Mathematik 9, 163-172 (1966).
