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1. Introduction

Several topics in multi-linear algebra have attracted considerable attention in recent years, espe-

cially on the eigenvalues of tensors [11–14] and higher order tensor decompositions [10]. Tensors

(or hypermatrices) generalize the concept of matrices in linear algebra. The main difficulty in tensor

problems is that they are generally nonlinear. Therefore, large amounts of results for matrices are

never pervasive for higher order tensors. However, there are still some results preserved in the case

of higher order tensors.

As an important example, some properties of spectra (or eigenvalues) in linear algebra remain true

to tensors. Qi generalizes the concept of eigenvalues to higher order tensors in [13] by defining the

tensor-vector product as

(

Axm−1
)

i
=

n
∑

i2,i3,...,im=1

aii2···imxi2 · · · xim ,

where a multi-array A is an m-order n-dimensional tensor in Cn×n×···×n and x is a vector in Cn . We

call λ as an eigenvalue of tensor A, if there exists a nonzero vector x ∈Cn such that

Axm−1 = λx[m−1],

where x[m−1] = (xm−1
1 , xm−1

2 , . . . , xm−1
n )T denotes the componentwise (m − 1)-th power of x. Further,

we call λ as an H-eigenvalue, H+-eigenvalue, or H++-eigenvalue if x ∈Rn , x ∈ Rn
+ (x> 0), or x ∈ Rn

++

(x > 0), respectively. Also, Qi [13] introduces another kind of eigenvalues for higher order tensors. We

call λ an E-eigenvalue of tensor A, if there exists a nonzero vector x ∈Cn such that

Axm−1 = λx, xTx = 1;

and we call λ a Z-eigenvalue if x ∈ Rn . There have been extensive studies and applications of both

kinds of eigenvalues for tensors.

M-matrices are an important class of matrices and have been well studied (cf. [1]). They are closely

related with spectral graph theory, the stationary distribution of Markov chains and the convergence

of iterative methods for linear equations. Zhang et al. extend M-matrices to M-tensors in [18] and

study their properties. The main result in their paper is that every eigenvalue of an M-tensor has a

positive real part, which is the same as the M-matrix.

The main motivation of this paper is that there are no less than fifty equivalent definitions of

nonsingular M-matrices [1]. We extend the other two definitions of nonsingular M-matrices, semi-

positivity and monotonicity [1], to higher order tensors. How can they be generalized into higher

order case? Are they still the equivalent conditions of higher order nonsingular M-tensors? What

properties of M-tensors can they indicate? We will answer these questions in our paper.

In this way, we obtain some important properties of M-tensors and nonsingular M-tensors. An

M-tensor is a Z-tensor. We prove that a Z-tensor is a nonsingular M-tensor if and only if it is semi-

positive. Thus, a nonsingular M-tensor has all positive diagonal entries; an M-tensor, regarded as

the limit of a sequence of nonsingular M-tensors, has all nonnegative diagonal entries. We introduce

even-order monotone tensors and establish their spectral properties. In matrix theory, a Z -matrix is a

nonsingular M-matrix if and only if it is monotone [1]. It is no longer true in the case of higher order

tensors. We show that an even-order monotone Z-tensor is an even-order nonsingular M-tensor, but

not vice versa. An example of an even-order nontrivial monotone Z-tensor is also given.

An outline of this paper is as follows. Some preliminaries about tensors and M-matrices are pre-

sented in Section 2. We investigate semi-positive Z-tensors and monotone Z-tensors in Sections 3

and 4, respectively. We discuss H-tensors, an extension of M-tensors, in Section 5. Finally, we draw

some conclusions in the last section.

2. Preliminaries

We present some preliminaries about the Perron–Frobenius theorem for nonnegative tensors and

M-matrices.
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2.1. Nonnegative tensor

Because of the difficulties in studying the properties of a general tensor, researchers focus on some

structured tensors. The nonnegative tensor is one of the most well studied tensors. A tensor is said to

be nonnegative, if all its entries are nonnegative.

The Perron–Frobenius theorem is the most famous result for nonnegative matrices (cf. [1]), which

investigates the spectral radius of nonnegative matrices. Researchers also propose the similar results

for nonnegative tensors, and refer them as the Perron–Frobenius theorem for nonnegative tensors.

This theorem also studies the spectral radius of a nonnegative tensor B,

ρ(B) = max
{

|λ|
∣

∣ λ is an eigenvalue of B
}

.

Before stating the Perron–Frobenius theorem, we briefly introduce the conceptions of irreducible

and weakly irreducible tensors.

Definition 1 (Irreducible tensor). (See [2].) A tensor B is called reducible, if there exists a non-empty

proper index subset I ⊂ {1,2, . . . ,n} such that

bi1 i2···im = 0, ∀i1 ∈ I, ∀i2, i3, . . . , im /∈ I.

Otherwise, we say B is irreducible.

Definition 2 (Weakly irreducible nonnegative tensor). (See [4].) We call a nonnegative matrix GM(B) the

representation associated to a nonnegative tensor B, if the (i, j)-th entry of GM(B) is defined to be

the summation of bii2 i3···im with indices {i2, i3, . . . , im} ∋ j. We call a tensor B weakly reducible, if its

representation GM(B) is reducible. If B is not weakly reducible, then it is called weakly irreducible.

Now with these conceptions, we can recall several results of the Perron–Frobenius theorem for

nonnegative tensors that we will use in this paper.

Theorem 1 (The Perron–Frobenius theorem for nonnegative tensors). If B is a nonnegative tensor of order m

and dimension n, then ρ(B) is an eigenvalue of B with a nonnegative eigenvector x ∈Rn
+ [16,17].

If furthermore B is strictly nonnegative, then ρ(B) > 0 [6].

If furthermoreB is weakly irreducible, then ρ(B) is an eigenvalue of B with a positive eigenvector x ∈ Rn
++

[4].

Suppose that furthermore B is irreducible. If λ is an eigenvalue with a nonnegative eigenvector, then

λ = ρ(B) [2].

2.2. M-matrix

M-matrix arises frequently in scientific computations [1], and we briefly introduce its definition

and properties in this section.

A matrix is called a Z-matrix if all its off-diagonal entries are non-positive. It is apparent that a

Z -matrix A can be written as [1]

A = sI − B,

where B is a nonnegative matrix (B > 0) and s > 0; When s > ρ(B), we call A as an M-matrix; And

further when s > ρ(B), we call A as a nonsingular M-matrix [1].

There are more than fifty conditions in the literature that are equivalent to the definition of non-

singular M-matrix. We just list eleven of them here, which will be involved in our paper (cf. [1]).

If A is a Z -matrix, then the following conditions are equivalent:

(C1) A is a nonsingular M-matrix;

(C2) A + D is nonsingular for each nonnegative diagonal matrix D;
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(C3) Every real eigenvalue of A is positive;

(C4) A is positive stable; that is, the real part of each eigenvalue of A is positive;

(C5) A is semi-positive; that is, there exists x > 0 with Ax > 0;

(C6) There exists x> 0 with Ax > 0;

(C7) A has all positive diagonal entries and there exists a positive diagonal matrix D such that AD

is strictly diagonally dominant;

(C8) A has all positive diagonal entries and there exists a positive diagonal matrix D such that DAD

is strictly diagonally dominant;

(C9) A is monotone; that is, Ax> 0 implies x> 0;

(C10) There exist an inverse-positive matrix B and a nonsingular M-matrix C such that A = BC ;

(C11) A has a convergent regular splitting; that is, A has a representation A = M − N , where M−1 > 0,

N > 0, and ρ(M−1N) < 1;

(C12) · · ·

2.3. M-tensor

Zhang et al. define the M-tensor following the definition of M-matrix [18]. In this section, we

will introduce their results for M-tensors. First, they define the Z-tensor and M-tensor as follows.

We call a tensor the unit tensor and denote it I [10], if all of its diagonal entries are 1 and all of its

off-diagonal entries are 0.

Definition 3 (Z-tensor). We call a tensor A as a Z-tensor, if all of its off-diagonal entries are non-

positive, which is equivalent to write A= sI −B, where s > 0 and B is a nonnegative tensor (B > 0).

Definition 4 (M-tensor). We call a Z-tensor A= sI −B (B > 0) as an M-tensor if s> ρ(B); We call

it as a nonsingularM-tensor if s > ρ(B).

Unlike an M-matrix, the concept of M-tensor not only depends on the tensor itself, but the eigen-

value problem associated with the tensor as well, that is, we can define other M-tensors by applying

other eigenvalues of a tensor, such as E-eigenvalues [13].

The main results in their paper show two equivalent conditions for the definition of nonsingular

M-tensor, which are the extensions of the conditions (C3) and (C4). If A is a Z-tensor, then the

following conditions are equivalent:

(D1) A is a nonsingular M-tensor;

(D2) Every real eigenvalue of A is positive;

(D3) The real part of each eigenvalue of A is positive.

2.4. Notation

We adopt the following notation in this paper. The calligraphy letters A,B,D, . . . denote the ten-

sors; the capital letters A, B, D, . . . represent the matrices; the lowercase letters a, x, y, . . . refer to

the vectors; and the Greek letters α, β,λ, . . . designate the scalars. Usually, the tensors in our paper

are of order m and dimension n. When we write A> 0, A > 0, or x> 0, we mean that every entry of

A, A, or x is nonnegative; when we write A> 0, A > 0, or x > 0, we mean that every entry of A, A,

or x is positive.

The product of a tensor A ∈Rn×n×···×n and a matrix X ∈ Rn×n on mode-k [10] is defined as

(A×k X)i1··· jk ···im =

n
∑

ik=1

ai1···ik ···imxik jk ;

then denote

AXm−1 = A×2 X ×3 · · · ×m X, and XT
1AXm−1

2 = A×1 X1 ×2 X2 ×3 · · · ×m X2;
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Finally, we introduce the “composite” of a diagonal tensor D and another tensor A as

(DA)i1 i2···im = di1 i1···i1 · ai1 i2···im ,

which indicates that (DA)xm−1 =D((Axm−1)[
1

m−1 ])m−1; the “inverse” of a diagonal tensor D without

zero diagonal entries as [10],

(

D
−1

)

i1i1···i1
= d−1

i1i1···i1
, and otherwise 0,

which indicates that (D−1D)xm−1 = (DD−1)xm−1 = Ixm−1 = x[m−1] .

3. Semi-positivity and semi-nonnegativity

In this section, we will propose an equivalent definition of nonsingular M-tensors following the

conditions (C5) and (C6) in Section 2.2.

3.1. Definitions

First, we extend the semi-positivity [1] from matrices to tensors.

Definition 5 (Semi-positive tensor). We call a tensor A as a semi-positive tensor, if there exists x > 0

such that Axm−1 > 0.

Because of the continuity of the tensor-vector product on the entries of the vector, the requirement

x > 0 in the first definition can be relaxed into x> 0. We verify this statement as follows.

Theorem 2. A tensorA is semi-positive if and only if there exists x> 0 such thatAxm−1 > 0.

Proof. Define a map TA(x) = (Axm−1)[
1

m−1 ] , then x 7→ TA(x) is continuous and bounded [3].

If A is semi-positive, then it is trivial that there is x > 0 such that Axm−1 > 0 according to the

definition.

If there exists x> 0 with Axm−1 > 0, then there must be a closed ball B(TA(x),ε) in Rn
++ , where

B(c, r) := {v | ‖v − c‖ 6 r}. Since TA is continuous, there exists δ > 0 such that TA(y) ∈ B(TA(x),ε)

for all y ∈ B(x, δ). Let d be a zero-one vector with di = 1 if xi = 0 and di = 0 if xi > 0. Take y =

x+ δ
‖d‖

d ∈ B(x, δ). Then y > 0 and TA(y) > 0. Therefore, A is semi-positive. 2

It is well known that a Z -matrix is a nonsingular M-matrix if and only if it is semi-positive [1].

Furthermore, we come to a similar conclusion for nonsingular M-tensors.

Theorem 3. A Z-tensor is a nonsingularM-tensor if and only if it is semi-positive.

The proof of this theorem will be presented at the end of this section, after studying some prop-

erties of semi-positive Z-tensors.

3.2. Semi-positive Z-tensors

The first property is about the diagonal entries of a semi-positive Z-tensor.

Proposition 4. A semi-positive Z-tensor has all positive diagonal entries.

Proof. When A is a semi-positive Z-tensor, there exists x > 0 such that Axm−1 > 0. Consider Axm−1 ,

we have
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(

Axm−1
)

i
= aii···ix

m−1
i

+
∑

(i2,i3,...,im) 6=(i,i,...,i)

aii2···imxi2 · · · xim > 0,

for i = 1,2, . . . ,n. From x j > 0 and aii2 i3···im 6 0 for (i2, i3, . . . , im) 6= (i, i, . . . , i), we can conclude that

aii···i > 0 for i = 1,2, . . . ,n. 2

Moreover we have a series of equivalent conditions of semi-positive Z-tensors, following the con-

ditions (C7), (C8), (C10), and (C11) in Section 2.2.

Proposition 5. AZ-tensorA is semi-positive if and only ifA has all positive diagonal entries and there exists

a positive diagonal matrix D such thatADm−1 is strictly diagonally dominant.

Proof. Let D = diag(d1,d2, . . . ,dn). Then ADm−1 is strictly diagonally dominant means

∣

∣aii···id
m−1
i

∣

∣ >
∑

(i2,i3,...,im) 6=(i,i,...,i)

|aii2···imdi2 · · ·dim |, i = 1,2, . . . ,n.

If A is a semi-positive Z-tensor, then we know that aii···i > 0 for i = 1,2, . . . ,n from Proposition 4,

aii2···im 6 0 for (i2, i3, . . . , im) 6= (i, i, . . . , i), and there is x > 0 with Axm−1 > 0. Let D = diag(x), it is

easy to conclude that D is positive diagonal and ADm−1 is strictly diagonally dominant.

If A has all positive diagonal entries, and there exists a positive diagonal matrix D such that

ADm−1 is strictly diagonally dominant, let x = diag(D) > 0, then Axm−1 > 0 since aii···i > 0 for i =

1,2, . . . ,n and aii2···im 6 0 for (i2, i3, . . . , im) 6= (i, i, . . . , i). Thus, A is a semi-positive tensor. 2

Proposition 6. A Z-tensor A is semi-positive if and only if A has all positive diagonal entries and there exist

two positive diagonal matrices D1 and D2 such that D1ADm−1
2 is strictly diagonally dominant.

Proof. Notice that D1ADm−1
2 is strictly diagonally dominant if and only if ADm−1

2 is strictly diago-

nally dominant in sake of the positivity of D1 ’s diagonal entries. Therefore, this proposition is a direct

corollary of Proposition 5. 2

Proposition 7. A Z-tensor A is semi-positive if and only if there exist a positive diagonal tensor D and a

semi-positive Z-tensor C withA=DC .

Proof. Let D be the diagonal tensor of A and C =D−1A. Clearly, A=DC .

If A is semi-positive Z-tensor, then D is positive diagonal and there exists x > 0 with Axm−1 > 0.

Thus, the vector Cxm−1 = D−1((Axm−1)[
1

m−1 ])m−1 is also positive. So C is also a semi-positive

Z-tensor.

If C is a semi-positive Z-tensor and D is positive diagonal, then there exists x > 0 with

Cxm−1 > 0. Then the vector Axm−1 =D((Axm−1)[
1

m−1 ])m−1 is also positive. Thus, A is a semi-positive

Z-tensor. 2

Remark 8. After we prove Theorem 3, Proposition 7 can be restated as: A Z-tensor A is a nonsingular

M-tensor if and only if there exist a positive diagonal tensor D and a nonsingular M-tensor C with

A=DC .

Proposition 9. A Z-tensor A is semi-positive if and only if there exist a positive diagonal tensor D and

a nonnegative tensor E such thatA=D − E and there exists x > 0 with (D−1E)xm−1 < x[m−1] .

Proof. Let D be the diagonal tensor of A and E =D−A. Clearly, A=D−E and D−1E = I−D−1A.

If A is a semi-positive Z-tensor, then D is positive diagonal and there exists x > 0 with

Axm−1 > 0. Then Dxm−1 > Exm−1 , and thus (D−1E)xm−1 < x[m−1] .

If there exists x > 0 with (D−1E)xm−1 < x[m−1] , then Exm−1 < Dxm−1 , thus Axm−1 > 0. Therefore,

A is a semi-positive Z-tensor. 2
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Remark 10. It follows from [17, Lemma 5.4] that a semi-positive Z-tensor can be split into A=D−E ,

where D is a positive diagonal tensor and E is a nonnegative tensor with ρ(D−1E) < 1.

3.3. Examples

Next we present some examples of nontrivial semi-positive Z-tensors.

Proposition 11. A strictly diagonally dominantZ-tensor with nonnegative diagonal entries is a semi-positive

Z-tensor.

Proof. Use e to denote the all ones vector. It is direct to show that a Z-tensor A with all nonnegative

diagonal entries is strictly diagonally dominant is equivalent to Aem−1 > 0. Since e > 0, the result

follows the definition of semi-positive Z-tensors. 2

Proposition 12. A weakly irreducible nonsingularM-tensor is a semi-positive Z-tensor.

Proof. When A is a nonsingular M-tensor, we write A = sI − B, where B > 0 and s > ρ(B). Since

A is weakly irreducible, so is B. Then there exists x > 0 such that Bxm−1 = ρ(B)x[m−1] from the

Perron–Frobenius Theorem for nonnegative tensors (cf. Theorem 1), thus

Axm−1 =
(

s − ρ(B)
)

x[m−1] > 0.

Therefore, A is a semi-positive tensor. 2

3.4. Proof of Theorem 3

Our aim is to prove the equality relation between the following two sets:

{semi-positive Z-tensors} = {nonsingularM-tensors}.

The first step is to verify the “⊆” part, which is relatively simple.

Lemma 13. A semi-positive Z-tensor is also a nonsingularM-tensor.

Proof. When A is semi-positive, there exists x > 0 with Axm−1 > 0. We write A= sI −B since A is

a Z-tensor, where B > 0. Then

min
16i6n

(Bxm−1)i

xm−1
i

6 ρ(B) 6 max
16i6n

(Bxm−1)i

xm−1
i

.

Thus, s−ρ(B) > s−max16i6n
(Bxm−1)i

xm−1
i

= min16i6n
(Axm−1)i

xm−1
i

> 0, since both x and Axm−1 are positive.

Therefore, A is a nonsingular M-tensor. 2

The second step is to prove the “⊇” part employing a partition of general nonnegative tensors into

weakly irreducible leading sub-tensors.

Lemma 14. A nonsingularM-tensor is also a semi-positive Z-tensor.

Proof. Assume that a nonsingular M-tensor A = sI − B is weakly reducible, otherwise we have

proved a weakly irreducible nonsingular M-tensor is also a semi-positive Z-tensor in Proposition 12.

Then B is also weakly reducible. Following [6, Theorem 5.2], the index set I = {1,2, . . . ,n} can be

partitioned into I = I1 ⊔ I2 ⊔ · · · ⊔ Ik (here A = A1 ⊔ A2 means that A = A1 ∪ A2 and A1 ∩ A2 = ∅) such

that
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(1) BIt It ···It is weakly irreducible,

(2) bi1 i2···im = 0 for i1 ∈ It and {i2, i3, . . . , im}* It ⊔ It+1 ⊔ · · · ⊔ Ik , t = 1,2, . . . ,k.

Without loss of generality, we can assume that

I1 = {1,2, . . . ,n1},

I2 = {n1 + 1,n1 + 2, . . . ,n2},

· · ·

Ik = {nk−1 + 1,nk−1 + 2, . . . ,n}.

We introduce the following denotations

B(t,a) := BIt Ia1 ···Iam−1

and

B(t,a)z
m−1
a := B(t,a) ×a1 za1 × · · · ×am−1 zam−1 ,

where a is an index vector of length m − 1 and z j ’s are column vectors. We also apply B[ J ] to

denote the leading sub-tensor (bi1 i2···im )i j∈ J , where J is an arbitrary index set. Since s > ρ(B) >

ρ(B[It]), the leading sub-tensors sI − B[It] are irreducible nonsingular M-tensors. Hence they are

also semi-positive, that is, there exists xt > 0 with sx
[m−1]
t −B[It]x

m−1
t > 0 for all t = 1,2, . . . ,k.

Consider the leading sub-tensor B[I1 ⊔ I2] first. For all vectors z1 of length n1 and z2 of length

n2 − n1 , we write

B[I1 ⊔ I2]

[

z1
z2

]m−1

=

[

B[I1]z
m−1
1 +

∑

a 6=(1,1,...,1) B(1,a)z
m−1
a

B[I2]z
m−1
2

]

,

where the entries of a only contain 1 and 2. Take z1 = x1 and z2 = εx2 , where ε ∈ (0,1) satisfies

ε ·
∑

a 6=(1,1,...,1)

B(1,a)x
m−1
a < sx

[m−1]
1 − B[I1]x

m−1
1 .

Since
∑

a 6=(1,1,...,1) B(1,a)z
m−1
a 6 ε(

∑

a 6=(1,1,...,1) B(1,a)x
m−1
a ), it can be ensured that B[I1]z

m−1
1 +

∑

a 6=(1,1,...,1) B(1,a)z
m−1
a < sz

[m−1]
1 . Therefore, we obtain

[

x1
εx2

]

> 0 and s

[

x1
εx2

][m−1]

− B

[

x1
εx2

]m−1

> 0,

so A[I1 ⊔ I2] = sI −B[I1 ⊔ I2] is a semi-positive Z-tensor.

Assume that A[I1 ⊔ I2 ⊔ · · · ⊔ It] is a semi-positive Z-tensor. Consider the leading sub-tensor

A[I1 ⊔ I2 ⊔ · · · ⊔ It+1] next. Substituting the index sets I1 and I2 above with I1 ⊔ I2 ⊔ · · · ⊔ It and

It+1 , respectively, we can conclude that A[I1 ⊔ I2 ⊔ · · · ⊔ It+1] is also a semi-positive Z-tensor. Thus,

by induction, we can prove that the weakly reducible nonsingular M-tensor A is a semi-positive

Z-tensor as well. 2

Combining Lemma 13 and Lemma 14, we finish the proof of Theorem 3. Thus, all the properties

of semi-positive Z-tensors we investigate above are the same with nonsingular M-tensors, and vice

versa. So the semi-positivity can be employed to study the nonsingular M-tensors.
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3.5. GeneralM-tensors

We discuss the nonsingular M-tensors above. However, the general M-tensors are also useful.

The examples can be found in the literature. For instance, the Laplacian tensor L of a hypergraph (cf.

[7,9,8,15]) is an M-tensor, but is not a nonsingular M-tensor.

An M-tensor can be written as A = sI − B, where B is nonnegative and s > ρ(B). It is easy

to verify that the tensor Aε = A + εI (ε > 0) is then a nonsingular M-tensor and A is the limit

of a sequence of Aε when ε → 0. Since all the diagonal entries of a semi-positive Z-tensor, i.e.,

a nonsingular M-tensor, are positive. Therefore, the diagonal entries of a general M-tensor, as the

limit of a sequence of nonsingular M-tensor, must be nonnegative. Thus, we prove the following

proposition.

Proposition 15. A generalM-tensor has all nonnegative diagonal entries.

The conception semi-positivity [1] can be extended as follows.

Definition 6 (Semi-nonnegative tensor). We call a tensor A as a semi-nonnegative tensor, if there exists

x > 0 such that Axm−1 > 0.

Unlike the semi-positive case, a tensor being a semi-nonnegative Z-tensor is not equivalent to

being a general M-tensor. Actually, a semi-nonnegative Z-tensor must be an M-tensor, but the

converse is not true. The proof of the first statement is analogous to Lemma 13, so we have the next

theorem.

Theorem 16. A semi-nonnegative Z-tensor is also anM-tensor.

Conversely, we can give a counterexample to show that there exists an M-tensor which is not

semi-nonnegative. Let B be a nonnegative tensor of size 2× 2× 2× 2, and the entries are as follows:

b1111 = 2, b1122 = b2222 = 1, and bi1i2 i3i4 = 0, otherwise.

Then the spectral radius of B is apparently 2. Let A= 2I −B, then A is an M-tensor with entries

a1122 = −1, a2222 = 1, and ai1i2 i3i4 = 0, otherwise.

Thus, for every positive vector x, the first component of Ax3 is always negative and the second

one is positive, which is to say that there is no such a positive vector x with Ax3 > 0. Therefore,

A is an M-tensor but is not semi-nonnegative. However, there are still some special M-tensors are

semi-nonnegative.

Proposition 17. The following tensors are semi-nonnegative:

(1) A diagonally dominant Z-tensor with nonnegative diagonal entries is semi-nonnegative;

(2) A weakly irreducibleM-tensor is semi-nonnegative;

(3) Let A = sI − B be a weakly reducible M-tensor, where B > 0 and s = ρ(B), and I1, I2, . . . , Ik be the

same as in Lemma 14. If

ρ
(

B[It]
)

{

< s, t = 1,2, . . . ,k1,

= s, t = k1 + 1,k1 + 2, . . . ,k

and the entries of B[Ik1+1 ⊔ Ik1+2 ⊔ · · · ⊔ Ik] are all zeros except the ones in the leading sub-tensors

B[Ik1+1],B[Ik1+2], . . . ,B[Ik], thenA is semi-nonnegative;

(4) A symmetricM-tensor is semi-nonnegative.

The proofs of (1)–(3) are similar with the semi-positive case and (4) is a direct corollary of (3),

therefore we omit them.
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4. Monotonicity

Following the condition (C9) in Section 2.2, we generalize monotone [1] from nonsingular

M-matrices to higher order tensors.

4.1. Definitions

Definition 7 (Monotone tensor). We call a tensor A as a monotone tensor, if Axm−1 > 0 implies x> 0.

It is easy to show that the set of all monotone tensors is not empty, since the even-order diagonal

tensors with all positive diagonal entries belong to this set. However, an odd-order tensor is never a

monotone tensor. Since when m is odd, Axm−1 > 0 implies A(−x)m−1 > 0 as well, thus we cannot

guarantee that x is nonnegative. Therefore, we refer to even-order tensors only in this section.

Sometimes we will use another equivalent definition of monotone tensor for convenience.

Lemma 18. An even-order tensorA is a monotone tensor if and only ifAxm−1 6 0 implies x6 0.

Proof. Suppose that A is a monotone tensor. Since Axm−1 6 0 and m − 1 is odd, we have

A(−x)m−1 = −Axm−1
> 0.

Then −x> 0 by the definition, which is equivalent to x6 0.

If Axm−1 6 0 implies x6 0. When Aym−1 > 0, we have

A(−y)m−1 = −Aym−1
6 0.

Therefore, −y 6 0, which is equivalent to y > 0. Thus, A is a monotone tensor. 2

4.2. Properties

We shall prove that a monotone Z-tensor is also a nonsingular M-tensor. Before that, we need

some lemmas.

Lemma 19. An even-order monotone tensor has no zero H-eigenvalue.

Proof. Let A be an even-order monotone tensor. If A has a zero H-eigenvalue, that is, there is a

nonzero vector x ∈ Rn such that Axm−1 = 0, then A(αx)m−1 = 0 as well for all α ∈ R. Thus, we

cannot ensure that αx > 0, which contradicts the definition of a monotone tensor. Therefore, A has

no zero H-eigenvalue. 2

Lemma 20. Every H+-eigenvalue of an even-order monotone tensor is nonnegative.

Proof. Let A be an even-order monotone tensor and λ be an H+-eigenvalue of A, that is, there is

a nonzero vector x ∈ Rn
+ such that Axm−1 = λx[m−1] . Then we have A(−x)m−1 = −λx[m−1] , since

m − 1 is odd. If λ < 0, then A(−x)m−1 = −λx[m−1] > 0, which indicates −x > 0 as well as x 6 0. It

contradicts that x is nonzero and nonnegative. Then λ> 0. 2

The next theorem follows directly from Lemma 19 and Lemma 20.

Theorem 21. Every H+-eigenvalue of an even-order monotone tensor is positive.

By applying this result, we can now reveal the relationship of the set of even-order monotone

Z-tensors and that of nonsingular M-tensors.
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Theorem 22. An even-order monotone Z-tensor is also a nonsingularM-tensor.

Proof. Let A be an even-order monotone Z-tensor. We write A = sI − B since A is a Z-tensor,

where B > 0. Then ρ(B) is an H+-eigenvalue of B by Perron–Frobenius theorem for nonnegative

tensors; that is, there is a nonzero vector x> 0 with Bxm−1 = ρ(B)x[m−1] . Then

Axm−1 = (sI − B)xm−1 =
(

s − ρ(B)
)

x[m−1],

which is to say that s − ρ(B) is an H+-eigenvalue of A. From Theorem 21, the H+-eigenvalue

s − ρ(B) > 0, which indicates s > ρ(B). So A is also a nonsingular M-tensor. 2

This theorem tells us that

{Monotone Z-tensors of even order} ⊆ {NonsingularM-tensors of even order}.

However, we will show that not every nonsingular M-tensor is monotone in the following sub-

section. The equivalent relation in matric situations between these two conditions is no longer true,

when the order is larger than 2.

Next, we will present some properties of monotone Z-tensors.

Proposition 23. An even-order monotone Z-tensor has all positive diagonal entries.

Proof. Let A be an even-order monotone Z-tensor. Consider Aem−1
i

(i = 1,2, . . . ,n), where ei de-

notes the vector with only one nonzero entry 1 in the i-th position. We have

(

Aem−1
i

)

i
= aii···i, i = 1,2, . . . ,n,

(

Aem−1
i

)

j
= a ji···i 6 0, j 6= i.

If aii···i 6 0, then Aem−1
i

6 0, which indicates ei 6 0 by Lemma 18, but it is impossible. So we have

aii···i > 0 for i = 1,2, . . . ,n. 2

The next proposition shows some rows of a monotone Z-tensor is strictly diagonally dominant.

Proposition 24. LetA be an even-order monotone Z-tensor. Then

aii···i >
∑

(i2,i3,...,im) 6=(i,i,...,i)

|aii2···im |

for some i ∈ {1,2, . . . ,n}.

Proof. Consider Aem−1 (i = 1,2, . . . ,n), where e denotes the all ones vector. We have

(

Aem−1
)

i
= aii···i +

∑

(i2,i3,...,im) 6=(i,i,...,i)

aii2···im = aii···i −
∑

(i2,i3,...,im) 6=(i,i,...,i)

|aii2···im |,

since aii2···im 6 0 for (i2, i3, . . . , im) 6= (i, i, . . . , i).

If aii···i 6
∑

(i2,i3,...,im)6=(i,i,...,i) |aii2···im | for all i = 1,2, . . . ,n, then Aem−1 6 0, which indicates e6 0

by Lemma 18, and it is impossible. So aii···i >
∑

(i2,i3,...,im)6=(i,i,...,i) |aii2···im | for some i. 2

Proposition 25. LetA be an even-order monotone Z-tensor. ThenA+D has all positive H+-eigenvalues for

each nonnegative diagonal tensorD.
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Proof. If A + D has a non-positive H+-eigenvalue, that is, there exists a nonzero vector x > 0 such

that (A+D)xm−1 = λx[m−1] and λ 6 0, then Axm−1 = λx[m−1] −Dxm−1 6 0, since x and D are non-

negative and λ is non-positive, which implies x6 0 from the definition of monotone Z-tensors. This

is a contradiction. Therefore, A+D has no non-positive H+-eigenvalues for all nonnegative diagonal

tensor D. 2

Furthermore, the monotone Z-tensor also has the following two equivalent definitions, following

the condition (C10) and (C11).

Proposition 26. AZ-tensorA is monotone if and only if there exist a positive diagonal tensorD and a mono-

tone Z-tensor C such thatA=DC .

Proof. Let D be the diagonal tensor of A and C =D−1A. Clearly, A=DC .

If A is a monotone Z-tensor, then D is positive diagonal and Axm−1 > 0 implies x > 0. When

Cxm−1 > 0, the vector Axm−1 = D((Cxm−1)[
1

m−1 ])m−1 is also nonnegative, thus x > 0. Since C is also

a Z-tensor, then C is a monotone Z-tensor.

If C is a monotone Z-tensor and D is positive diagonal, then Cxm−1 > 0 implies x > 0. When

Axm−1 > 0, the vector Cxm−1 = D−1((Axm−1)[
1

m−1 ])m−1 is also nonnegative, thus x > 0. So A is

a monotone Z-tensor. 2

Proposition 27. A Z-tensor A is monotone if and only if there exist a positive diagonal tensor D and a non-

negative tensor E such thatA=D − E andD−1E satisfying (D−1E)xm−1 6 x[m−1] implies x> 0.

Proof. Let D be the diagonal tensor of A and E =D−A. Clearly, A=D−E and D−1E = I−D−1A.

If A is a monotone Z-tensor, then D is positive diagonal and Axm−1 > 0 implies x > 0. When

(D−1E)xm−1 6 x[m−1] , we have Exm−1 6Dxm−1 , thus Axm−1 > 0. This indicates x> 0.

If (D−1E)xm−1 6 x[m−1] implies x > 0. When Axm−1 > 0, we have Dxm−1 > Exm−1 , thus

(D−1E)xm−1 6 x[m−1] , which indicates x > 0. Since A is also a Z-tensor, then A is a monotone

Z-tensor. 2

4.3. A counterexample

We will give a 4-order counterexample in this section to show that the set of all monotone Z-ten-

sors is a proper subset of the set of all nonsingular M-tensors, when the order is larger than 2.

The denotation of the Kronecker product [5] for A = X ⊗ Y means ai1 i2 i3 i4 = xi1 i2 · yi3 i4 . Let J =

In ⊗ In , where In denotes the n × n identity matrix. It is obvious that the spectral radius ρ(J ) = n,

since the sum of each rows of J equals n. Take

A = sI −J (s > n) and x =









1
...

1

−δ









(0 < δ < 1).

Then A is a nonsingular M-tensor and

Ax3 = sx[3] −
(

xTx
)

x = s









1
...

1

−δ3









−
(

n − 1+ δ2
)









1
...

1

−δ









=









s − n + 1− δ2

...

s − n + 1− δ2

(n − 1+ (1− s)δ2)δ









.

When δ 6

√

n−1
s−1

, the vector Ax3 is nonnegative while x is not nonnegative. Therefore, A is not

a monotone Z-tensor, although it is a nonsingular M-tensor.



3276 W. Ding et al. / Linear Algebra and its Applications 439 (2013) 3264–3278

4.4. An example

Let B = (a[2k−1]bT) ⊗ (bbT) ⊗ · · · ⊗ (bbT) be a tensor of order 2k, where a and b are nonnegative

vectors. It is direct to compute that ρ(B) = (bTa)2k−1 . Then A = sI − B (s > (bTa)2k−1) is a nonsin-

gular M-tensor. For each x, we get

Ax2k−1 = sx[2k−1] − a[2k−1]
(

bTx
)2k−1

.

When Ax2k−1 > 0, we have

s
1

2k−1 · x> a ·
(

bTx
)

,

thus

s
1

2k−1 ·
(

bTx
)

>
(

bTa
)(

bTx
)

.

Since s > (bTa)2k−1 , we can conclude bTx> 0. So x> a · (bTx) · s
− 1

2k−1 > 0, which indicates that A is

a monotone Z-tensor.

5. An extension ofM-tensors

Inspired by the conception of H-matrix [1], we can extend M-tensors to H-tensors. First, we

define the comparison tensor.

Definition 8. Let A = (ai1 i2···im ) be a tensor of order m and dimension n. We call another tensor

M(A) = (mi1 i2···im ) as the comparison tensor of A if

mi1i2···im =

{

+|ai1i2···im |, if (i2, i3, . . . , im) = (i1, i1, . . . , i1),

−|ai1i2···im |, if (i2, i3, . . . , im) 6= (i1, i1, . . . , i1).

Then we can state what is an H-tensor.

Definition 9. We call a tensor an H-tensor, if its comparison tensor is an M-tensor; we call it as a

nonsingularH-tensor, if its comparison tensor is a nonsingular M-tensor.

Nonsingular H-tensors have a property called quasi-strictly diagonally dominant, which can be

proved directly from the properties of nonsingular M-tensors. Therefore, we omit the proof.

Proposition 28. A tensorA is a nonsingularH-tensor if and only if it is quasi-strictly diagonally dominant,

that is, there exist n positive real numbers d1,d2, . . . ,dn such that

|aii···i|d
m−1
i

>
∑

(i2,i3,...,im) 6=(i,i,...,i)

|aii2···im |di2 · · ·dim , i = 1,2, . . . ,n.

Similarly to the nonsingular M-tensor, nonsingular H-tensor has other equivalent definitions.

Proposition 29. The following conditions are equivalent:

(E1) A tensorA is a nonsingularH-tensor;

(E2) There exists a positive diagonal matrix D such thatADm−1 is strictly diagonally dominant;

(E3) There exist two positive diagonal matrix D1 and D2 such that D1ADm−1
2 is strictly diagonally dominant.
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6. Conclusions

In this paper, we give the proofs or the counterexamples to show these three relations between

different sets of tensors:

{semi-positive Z-tensors} = {nonsingularM-tensors},

{semi-nonnegative Z-tensors} $ {generalM-tensors},

{even-order monotone Z-tensors}$ {even-order nonsingularM-tensors}.

Applying these relations, we investigate the properties of nonsingular and general M-tensors. Along

with the results in Zhang et al. [18], the equivalent conditions of nonsingular M-tensors until now

are listed as follows.

If A is a Z-tensor, then the following conditions are equivalent:

(D1) A is a nonsingular M-tensor;

(D2) Every real eigenvalue of A is positive [18];

(D3) The real part of each eigenvalue of A is positive [18];

(D4) A is semi-positive; that is, there exists x > 0 with Axm−1 > 0;

(D5) There exists x> 0 with Axm−1 > 0;

(D6) A has all positive diagonal entries, and there exists a positive diagonal matrix D such that

ADm−1 is strictly diagonally dominant;

(D7) A has all positive diagonal entries, and there exist two positive diagonal matrices D1 and D2

such that D1ADm−1
2 is strictly diagonally dominant;

(D8) There exist a positive diagonal tensor D and a nonsingular M-tensor C with A=DC;

(D9) There exist a positive diagonal tensor D and a nonnegative tensor E such that A = D − E and

there exists x > 0 with (D−1E)xm−1 < x[m−1] .
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