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Abstract Stimulated by odd-bipartite and even-bipartite hypergraphs, we de-
fine odd-bipartite (weakly odd-bipartie) and even-bipartite (weakly even-bipartite)
tensors. It is verified that all even order odd-bipartite tensors are irreducible
tensors, while all even-bipartite tensors are reducible no matter the parity of the
order. Based on properties of odd-bipartite tensors, we study the relationship
between the largest H-eigenvalue of a Z-tensor with nonnegative diagonal ele-
ments, and the largest H-eigenvalue of absolute tensor of that Z-tensor. When
the order is even and the Z-tensor is weakly irreducible, we prove that the
largest H-eigenvalue of the Z-tensor and the largest H-eigenvalue of the abso-
lute tensor of that Z-tensor are equal, if and only if the Z-tensor is weakly
odd-bipartite. Examples show the authenticity of the conclusions. Then, we
prove that a symmetric Z-tensor with nonnegative diagonal entries and the ab-
solute tensor of the Z-tensor are diagonal similar, if and only if the Z-tensor has
even order and it is weakly odd-bipartite. After that, it is proved that, when
an even order symmetric Z-tensor with nonnegative diagonal entries is weakly
irreducible, the equality of the spectrum of the Z-tensor and the spectrum of
absolute tensor of that Z-tensor, can be characterized by the equality of their
spectral radii.

Keywords H-eigenvalue, Z-tensor, odd-bipartite tensor, absolute tensor
MSC 90C30, 15A06

1 Introduction

Since the early work of [12] and [17], more and more researchers are interested in
studying eigenvalue problems of tensors in the past several years [1, 3, 4, 5, 6, 9,
10, 14, 15, 16, 18, 19, 20, 21, 24, 25]. In [17], two kinds of eigenvalues are defined
for real symmetric tensors: eigenvalues and E-eigenvalues. An eigenvalue (E-
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eigenvalue) with a real eigenvector (E-eigenvector) is called an H-eigenvalue
(Z-eigenvalue). When a symmetric tensor has even order, H-eigenvalues and
Z-eigenvalues always exist. An even order symmetric tensor is positive definite
(semi-definite) if and only if all of its H-eigenvalues or all of its Z-eigenvalues are
positive (nonnegative). Based upon this property, an H-eigenvalue method for
the positive definiteness (positive semi-definiteness respectively) identification
problem is developed.

The main difficulty in tensor problems is that they are generally nonlinear.
Because of the difficulties in studying the properties of a general tensor, re-
searchers focus on some structured tensors. Z-tensors are an important class
of structured tensors and have been well studied [7, 13, 26]. They are closely
related with spectral graph theory, the stationary distribution of Markov chains
and the convergence of iterative methods for linear systems.

Recently, in [10], Hu et al. considered the largest Laplacian H-eigenvalue
and the largest signless Laplacian H-eigenvalue of a k-uniform connected hyper-
graph. When the order is even and the hypergraph is odd-bipartite, they proved
that the largest Laplacian H-eigenvalue and the largest signless Laplacian H-
eigenvalue are equal. For the odd order case, it is proved that the largest
Laplacian H-eigenvalue is strictly less than the largest signless Laplacian H-
eigenvalue [10]. Later, Shao et al. [23] gave several spectral characterizations
of the connected odd-bipartite hypergraphs. They proved that the spectrum
of the Laplacian tensor and the spectrun of the signless Laplacian tensor of an
uniform hypergraph are equal if and only if the hypergraph is an even order con-
nected odd-bipartite hypergraph. Since the Laplacian tensor is a special case
of Z-tensors and the signless Laplacian tensor is a special case of the absolute
tensors of Z-tensors, questions comes naturally: what is the relation between
the largest H-eigenvalue of a general Z-tensor, and the largest H-eigenvalue of
the Z-tensor’s absolute tensor? What is the relation between spectrums of a
general Z-tensor and its absolute tensor? These constitute main motivations of
the paper.

In this article, some spectral properties of Z-tensors with nonnegative diago-
nal entries, and absolute tensors of Z-tensors are studied. The rest of this paper
is organized as follows. In Section 2, some basic notions and preliminaries of ten-
sors are presented. In Section 3, stimulated by odd-bipartite and even-bipartite
hypergraphs [9], odd-bipartite (weakly odd-bipartite) and even-bipartite (weak-
ly even-bipartite) tensors are defined. Odd-bipartite (even-bipartite) tensors are
weakly odd-bipartite (weakly even-bipartite) tensors. Examples show that the
converse, generally, may not hold. A square odd-bipartite matrix is irreducible.
For high order tensors, we prove that an even order odd-bipartite tensor is ir-
reducible, while a tensor is reducible if it is even-bipartite no matter the parity
of the order.

In Section 4, we study the relation between the largest H-eigenvalue of a Z-
tensor with nonnegative diagonal entries, and the largest H-eigenvalue of the Z-
tensor’s absolute tensor. For an even order Z-tensor with nonnegative diagonal
entries, if it is weakly irreducible, we show that the largest H-eigenvalues of the
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Z-tensor and its absolute tensor are equal if and only if the Z-tensor is weakly
odd-bipartite. For the odd order case, sufficient conditions for the equality
of these largest H-eigenvalues are given. Examples show the authenticity of
the conclusions. In Section 5, we prove that, when an even order symmetric
Z-tensor with nonnegative diagonal entries is weakly irreducible, its spectrum
and the spectrum of its absolute tensor are equal if and only if the Z-tensor is
odd-bipartite. Furthermore, it is shown that the equality of the spectrum of a
symmetric Z-tensor with nonnegative diagonal entries, and the spectrum of the
absolute tensor of that Z-tensor, can be characterized by the equality of their
spectral radii. We conclude this paper with some final remarks in Section 6.

By the end of the introduction, we add some comments on notation that will
be used in the sequel. Let Rn be the n dimensional real Euclidean space and
the set consisting of all natural numbers is denoted by N. Suppose m,n ∈ N
are two natural numbers. Denote [n] = {1, 2, · · · , n}. Vectors are denoted by
italic lowercase letters i.e. x, y, · · · , and tensors are written as calligraphic
capitals such as A ,T , · · · . The i-th unit coordinate vector in Rn is denoted
by ei. Let |V | denote the number of elements when the symbol | · | be used on
a subset V ⊆ N. If the symbol | · | is used on a tensor A = (ai1···im)16ij6n,
j = 1, · · · ,m, we get another tensor |A | = (|ai1···im |)16ij6n, j = 1, · · · ,m.
If both A = (ai1···im)16ij6n and B = (bi1···im)16ij6n, j = 1, · · · ,m, are real
mth order n dimensional tensors, then A 6 B means ai1···im 6 bi1···im for all
i1, · · · , im ∈ [n].

2 Preliminaries

In this section, we will review some basic notions of tensors. For more details,
see [17] and the references therein.

A real mth order n-dimensional tensor A = (ai1i2···im) is a multi-array of
real entries ai1i2···im , where ij ∈ [n] for j ∈ [m]. If the entries ai1i2···im are
invariant under any permutation of their indices, then tensor A is called a
symmetric tensor.

The following definition on eigenvalue-eigenvector comes from [17].

Definition 1. Let C be the complex field. A pair (λ, x) ∈ C×Cn \{0} is called
an eigenvalue-eigenvector pair of T , if they satisfy

T xm−1 = λx[m−1], (1)

where T xm−1 and x[m−1] are all n dimensional column vectors such as

T xm−1 =

 n∑
i2,··· ,im=1

tii2···imxi2 · · ·xim


16i6n

and x[m−1] = (xm−1i )16i6n.
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For real tensor T and x ∈ Rn in (1), λ is a real number since λ =
(T xm−1)j
xm−1
j

for some j with xj 6= 0. In this case, λ is called an H-eigenvalue of T and x is
its corresponding H-eigenvector [17].

Next, we present a fundamental result which will be much used in the sequel.

Proposition 1. [17] Suppose that T = a(B + bI ), where a and b are two real
numbers. Then µ is an eigenvalue (H-eigenvalue) of tensor T if and only if
µ = a(λ + b), where λ is an eigenvalue (H-eigenvalue) of tensor B. In this
case, they have the same eigenvectors (H-eigenvectors).

The spectral radius of tensor T is denoted by

ρ(T ) = max{|λ| : λ is an eigenvalue of T }.

All eigenvalues of tensor T construct the spectrum denoted by σ(T ).

3 Odd-bipartite and even-bipartite tensors

In this section, we first define odd-bipartite tensors and even-bipartite tensors.
Then, some special characteristics of this kinds of tensors are shown.

Definition 2. Assume A = (ai1···im) is a tensor with order m and dimension
n. If there is a nonempty proper index subset V ⊂ [n] such that

ai1···im 6= 0, when |V ∩ {i1, · · · , im}| is odd

and ai1···im = 0 for the others, then A is called an odd-bipartite tensor corre-
sponding to set V or A is odd-bipartite for simple.

Here, we should note that indices of an edge {i1, · · · , im} in hypergraph [9]
are different from each other, which is a notable distinction to general tensors.
So, in this paper, we define that |V ∩ {i1, · · · , im}| is the number of indices
V ∩ {i1, · · · , im}, and duplicate indices should be calculated. For example,
suppose V = {1, 2, 3} and A is a 4th order 6 dimensional tensor, then

|V ∩ {1, 1, 3, 3}| = 4, |V ∩ {1, 2, 3, 5}| = 3, |V ∩ {4, 6, 4, 5}| = 0.

Definition 3. Assume A = (ai1···im) is a tensor with order m and dimension
n. A is called weakly odd-bipartite if there is a nonempty proper index subset
V ⊂ [n] such that

ai1···im = 0, when |V ∩ {i1, · · · , im}| is even.

From Definitions 2 and 3, even-bipartite and weakly even-bipartite tensors
can be defined similarly. Furthermore, we can easily prove that, if A is odd-
bipartite (even-bipartite, respectively), then A is weakly odd-bipartite (weakly
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even-bipartite respectively), but not vice versa. For example, suppose A is a
3rd order 2 dimensional tensor with entries such that

a222 = 1 and ai1i2i3 = 0

for the others. It is easy to check that A is weakly odd-bipartite corresponding
to the index set V = {2} but not odd-bipartite corresponding to {1} or {2}.

When m is odd, for all i1, i2, · · · , im ∈ [n] and a nonempty proper in-
dex subset V ⊂ [n], it holds that |{i1, i2, · · · , im} ∩ V | is odd if and only if
|{i1, i2, · · · , im} ∩ V̄ | is even, where V̄ = [n]\V . So, by Definitions 3.1 and 3.2,
we can readily obtain the following conclusion.

Lemma 1. Let A be a tensor with order m and dimension n. Assume m is odd.
Then, A is odd-bipartite (or weakly odd-bipartite respectively) corresponding to
nonempty proper index subset V ⊂ [n] if and only if A is even-bipartite (or
weakly even-bipartite respectively) corresponding to the nonempty proper index
subset V̄ = [n]\V .

Irreducible tensors are a class of important and useful tensors, which have
been repeatedly used in Perron Frobenius Theorem for nonnegative tensors
[2, 24, 25]. Next, we will study the relation between irreducible tensors and
odd-bipartite tensors. To do this, we first list the corresponding definition
below.

Definition 4. [2] For a tensor T with order m and dimension n. We call T
is reducible if there is a nonempty proper index subset V ⊂ [n] such that

ti1i2···im = 0, ∀ i1 ∈ V, ∀ i2, i3, · · · , im /∈ V.

Otherwise we call T is irreducible.

Theorem 1. Let m be even. Assume tensor A = (ai1···im) with order m and
dimension n is odd-bipartite. Then A is irreducible.

Proof. Since A is odd-bipartite, there exists a nonempty proper index subset
V ⊂ [n] satisfying

ai1···im 6= 0, when the number |V ∩ {i1, · · · , im}| is odd. (2)

By contradiction, suppose A = (ai1···im) is reducible, then there is a nonemp-
ty proper index subset V1 ⊂ [n] such that

ai1···im = 0, ∀ i1 ∈ V1, ∀ i2, · · · , im /∈ V1. (3)

We will break the proof into four cases.
(i) If V1 ⊆ V , let i1 ∈ V1, i2, · · · , im /∈ V . Here, several indices in i2, · · · , im

may equal to each other when the number of elements in [n]\V is strictly less
than m− 1. Then, by (3) we have

ai1···im = 0,
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which contradicts (2) since |V ∩ {i1, · · · , im}| = 1 is odd.
(ii) If V ⊆ V1, let i1 ∈ V, i2, · · · , im /∈ V1. Then, by (3) one has

ai1···im = 0,

which is a contradiction with (2).
(iii) If V ∩ V1 6= ∅ and neither V ⊆ V1 nor V1 ⊆ V , let i1 ∈ V1 \

V, i2, · · · , im ∈ V \ V1. Then it follows that

ai1···im = 0,

which also contradicts (2), since |V ∩ {i1, · · · , im}| = m− 1 is a odd number.
(iv) If V ∩ V1 = ∅, let i1 ∈ V1, i2, · · · , im ∈ V . By Definition 4, we have

ai1···im = 0.

Since |V ∩ {i1, · · · , im}| = m− 1 be odd, by (2), one has

ai1···im 6= 0,

which is a contradiction.
From (i) to (iv), we conclude that A is not reducible and the desired results

follows.

If a tensor A is even-bipartite, no matter the order of A is odd or even, we
have the following result.

Theorem 2. Assume tensor A = (ai1···im) with order m and dimension n is
even-bipartite corresponding to a nonempty proper index subset V ⊆ [n]. Then
A is reducible corresponding to V .

Proof. By definitions of reducible tensors and even-bipartite tensors, the con-
clusion obviously holds.

Suppose an even order Z-tensor and its absolute tensor are defined such
that,

A = D − C , |A | = D + C , (4)

where D is a nonnegative diagonal tensor and C is a nonnegative tensor with
zero diagonal entries. From Theorem 2, if C is odd-bipartite, then tensors A
and |A | are irreducible. Combining this with Theorem 3.1 of [8] we have the
following result.

Corollary 1. Let m be even. Suppose tensor A = D − C with order m and
dimension n is defined as in (4). Then, A and its absolute tensor |A | are both
weakly irreducible if nonnegative tensor C is odd-bipartite.

By the Perron-Frobenius theorem on nonnegative tensors [2] and by Theo-
rem 4.1 of [8], the following result follows.
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Corollary 2. Let m be even. Assume tensor A is defined as in Corollary 1.
If C is odd-bipartite, the largest H-eigenvalue of |A | is ρ(|A |). Furthermore,
there exists a positive n dimensional eigenvector x ∈ Rn such that

|A |xm−1 = ρ(|A |)x[m−1].

4 The relation between the largest H-eigenvalues of a Z-tensor and its abso-
lute tensor

In this section, suppose an order m dimension n Z-tensor A with nonnegative
diagonal elements has format

A = D − C , (5)

where D is a nonnegative diagonal tensor and C is a nonnegative tensor with
zero diagonal elements. So the absolute format of A is |A | = D + C . In the
following analysis, entries of A , C and D are always defined as below

A = (ai1···im), C = (ci1···im), D = (di1···im), i1, i2, · · · , im ∈ [n].

For the sake of simple, let dii···i = di, i ∈ [n].
During this part, we mainly study the relationship between the largest H-

eigenvalue of a Z-tensor A in (5), and the largest H-eigenvalue of the absolute
tensor of A . Sufficient and necessary conditions or sufficient conditions to
guarantee the equality of these largest H-eigenvalues are shown. It should be
noted that all even order nonnegative tensors always have H-eigenvalues [24].
To proceed, we make an assumption in advance, all tensors considered in this
part always have H-eigenvalues.

The largest H-eigenvalues of A and |A | are denoted by λ(A ) and λ(|A|)
respectively. From Corollary 2, we know that λ(|A|) = ρ(|A |).

Theorem 3. Let m be even. Suppose A = D − C is defined as (5). Then,

λ(A ) = λ(|A|)

if C is odd-bipartite.

Proof. By Lemma 13 of [19], we have

λ(A ) 6 ρ(A ) 6 ρ(|A |) = λ(|A |).

Thus, in order to prove the conclusion, we only need to prove

λ(|A |) 6 λ(A ).
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Since C is odd-bipartite, there exists a nonempty proper index subset V ⊂ [n]
satisfying

ci1···im 6= 0, if |V ∩ {i1, · · · , im}| is odd,

and ci1···im = 0 for the others. So, for all entries of A , it follows that

ai1···im 6= 0, if |V ∩ {i1, · · · , im}| is odd,

and ai1···im = 0 for the others except the diagonal entries aii···i, i ∈ [n]. By
Theorem 2, we know that C , A and |A | are all irreducible tensors. From
Theorem 4.1 of [8] and Definition 1, there is a vector x ∈ Rn, x > 0 satisfying

|A |xm−1 = λ(|A |)x[m−1].

Let y ∈ Rn be defined with yi = xi whenever i ∈ V and yi = −xi for the others.
When i ∈ V , we have

(A ym−1)i =
[
(D − C )ym−1

]
i

= diy
m−1
i −

∑
i2,··· ,im∈[n] cii2···imyi2 · · · yim

= diy
m−1
i −

∑
i2,··· ,im∈[n] |V ∩ {i, i2, · · · , im}| is odd cii2···imyi2 · · · yim

= dix
m−1
i +

∑
i2,··· ,im∈[n] |V ∩ {i, i2, · · · , im}| is odd cii2···imxi2 · · ·xim

=
[
(D + C )xm−1

]
i

= λ(|A |)xm−1i

= λ(|A |)ym−1i .
(6)

Here the fourth equality follows the fact that m is even and exactly odd number
indices take negative values for each {i2, · · · , im} ⊆ [n]. When i /∈ V , we have

(A ym−1)i =
[
(D − C )ym−1

]
i

= diy
m−1
i −

∑
i2,··· ,im∈[n] cii2···imyi2 · · · yim

= diy
m−1
i −

∑
i2,··· ,im∈[n] |V ∩ {i, i2, · · · , im}| is odd cii2···imyi2 · · · yim

= −dixm−1i −
∑

i2,··· ,im∈[n] |V ∩ {i, i2, · · · , im}| is odd cii2···imxi2 · · ·xim
= −

[
(D + C )xm−1

]
i

= −λ(|A |)xm−1i

= λ(|A |)ym−1i .
(7)

Here the fourth equality follows the fact that m is even and exactly even number
indices take negative values for each {i2, · · · , im} ⊆ [n]. The last equality of
(7) follows from the definition of yi = −xi when i /∈ V . Thus, by (6), (7) and
Definition 1, λ(|A |) is an H-eigenvalue of A with H-eigenvector y. So, we have

λ(|A |) 6 λ(A ),

and the desired result follows.
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Here, in the proof of Theorem 3, odd-bipartite property of C guarantees that
|A | has a positive H-eigenvector. Actually, if the H-eigenvector is nonnegative,
one can obtain the same result. Before proving this, we first cite an useful
conclusion.

Lemma 2. [24] If A is a nonnegative tensor with order m and dimension n,
then ρ(A ) is an eigenvalue of A with a nonnegative eigenvector y 6= 0.

Theorem 4. Let m be even. Suppose A is defined as in Theorem 3. If C is
weakly odd-bipartite, then it holds that

λ(A ) = λ(|A|).

Proof. Since tensor C is weakly odd-bipartite, so there is a nonempty proper
index subset V ⊆ [n] such that

ci1···im = 0, when |{i1, · · · , im} ∩ V | is even,

and |{i1, · · · , im} ∩ V | must be an odd number for nonzero entries ci1···im 6= 0,
i1, · · · , im ∈ [n].

On the other hand, by Lemma 2, there is a nonnegative H-eigenvector x > 0
of |A | corresponding to λ(|A |) . Suppose vector y ∈ Rn be defined such that
yi = xi whenever i ∈ V and yi = −xi for the others. Then, the remaining
process is similar with the proof of Theorem 3.

Now, we will give an example to show that the conditions in Theorem 4 is
not necessary. For example, suppose 4th order 2 dimensional tensor A with
entries such that

a1111 = a2222 = 1, a1122 = −1,

and ai1i2i3i4 = 0 for the others. After calculating the largest H-eigenvalues of
A and |A |, we obtain

λ(A ) = λ(|A |) = 1.

But, the nonnegative tensor C is not weakly odd-bipartite corresponding to any
nonempty proper index subset of {1, 2}. In the following, sufficient and neces-
sary conditions for the equality of the two largest H-eigenvalues are presented,
and it is proved that the necessity of the Theorem 4 holds when the nonnegative
tensor C is weakly irreducible. Before doing this, we cite a definition.

Definition 5. [19] Assume that T is a tensor with order m and dimension
n. Construct a graph Ĝ = (V̂ , Ê), where V̂ = ∪dj=1Vj and Vj are subsets of

{1, 2, · · · , n} for j = 1, · · · , d. Suppose that ij ∈ Vj , il ∈ Vl, j 6= l. (ij , il) ∈ Ê
if and only if ti1i2···im 6= 0 for some m − 2 indices {i1, · · · , im}\{ij , il}. Then,

tensor T is called weakly irreducible if Ĝ is connected.

As observed in [8], an irreducible tensor must be always weakly irreducible.
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Theorem 5. Let A be defined as in Theorem 4. Assume C is weakly irre-
ducible. Then,

λ(A ) = λ(|A|),

if and only if C is weakly odd-bipartite.

Proof. The sufficient condition has been proved in Theorem 4, and we only
need to prove the necessary part.

Suppose x ∈ Rn is an H-eigenvector of A corresponding to λ(A ) such that∑n
i=1 x

m
i = 1. Assume y ∈ Rn be defined by yi = |xi|, for i ∈ [n]. Since m is

even, one has
∑n

i=1 y
m
i = 1. By Lemma 3.1 of [11], we have

λ(A ) = A xm = (D − C )xm

=
∑n

i=1 dix
m
i −

∑
i1,··· ,im∈[n] ci1i2···imxi1 · · ·xim

6
∑n

i=1 diy
m
i +

∑
i1,··· ,im∈[n] ci1i2···imyi1 · · · yim

= (D + C )ym 6 λ(|A |).

(8)

Hence, by the fact that λ(A ) = λ(|A |), all inequalities in equation (8) should
be equalities, which implies that y is an H-eigenvector of |A | corresponding to
λ(|A |). Since C is weakly irreducible, |A | is also weakly irreducible. According
to Theorem 4.1 of [8], it holds that y > 0 i.e., all elements in y are positive. Let
V = {i ∈ [n]| xi > 0} and V̄ = {i ∈ [n]| xi < 0}. Then V ∪ V̄ = [n]. By (8), we
obtain ∑

i1,··· ,im∈[n]

ci1i2···im(|xi1 | · · · |xim |+ xi1 · · ·xim) = 0,

which implies that

ci1i2···im(|xi1 | · · · |xim |+ xi1 · · ·xim) = 0,

for all i1, i2, · · · , im ∈ [n] since C is nonnegative. When |{i1, i2, · · · , im} ∩ V | is
even, we have

|xi1 | · · · |xim |+ xi1 · · ·xim > 0,

which implies ci1i2···im = 0. When |{i1, i2, · · · , im} ∩ V | is odd, we have

|xi1 | · · · |xim |+ xi1 · · ·xim = 0.

In this case, the value ci1i2···im may be zero or may not be zero . Thus, from
Definition 3, it follows that C is weakly odd-bipartite corresponding to set V
and the desired conclusion holds.

Next, we study the relationship between a Z-tensor and its absolute tensor in
the odd order case. In [10], Hu et al. proved that the largest H-eigenvalue of an
odd order Laplacian tensor is always strictly less than the largest H-eigenvalue
of the signless Laplacian tensor corresponding to the Laplacian tensor. By
definitions of Laplacian tensor and signless Laplacian tensor in connected hy-
pergraphs, we know that their diagonal entries are positive, and subscripts of
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each nonzero element are mutually distinct. However, general Z-tensors (5)
may not possess those advantages. Hence, for a general odd order Z-tensor
(5), the largest H-eigenvalue of A may not be strictly less than the largest
H-eigenvalue of |A | when the order is odd.

The following example shows that the largest H-eigenvalues of a Z-tensor
(5) and its absolute tensor are equal.

Example 1. Let A be a 5th order 3 dimensional tensor. Its entries are given
by

a11111 = a22222 = a33333 = 1, a11122 = a22233 = −1

and ai1i2i3i4i5 = 0 for the others. Then the H-eigenvalue problems for A and
|A | are 

x41 − x21x22 = λx41
x42 − x22x23 = λx42
x43 = λx43

and 
x41 + x21x

2
2 = λx41

x42 + x22x
2
3 = λx42

x43 = λx43

.

After calculating the equation system, we know that λ(A ) = λ(|A |) = 1.

Theorem 6. Let A be defined as (5). Assume m is odd. Suppose C is weakly
odd-bipartite corresponding to a nonempty proper index subset V ⊆ [n]. If for
all i ∈ V , it satisfies

cii2i3···im = 0, ∀ i2, i3, · · · , im ∈ [n],

then λ(A ) = λ(|A |).

Proof. By the analysis in Theorems 3-5, from Lemma 13 of [19] and Corollary
2, it follows that

λ(A ) 6 ρ(A ) 6 ρ(|A |) = λ(|A |).

Thus, we only need to prove

λ(|A |) 6 λ(A ).

Let x ∈ Rn be a nonnegative H-eigenvector of |A | corresponding to λ(|A |). So,
for all i ∈ [n], we have

(|A |xm−1)i = [(D + C )xm−1]i = λ(|A |)xm−1i . (9)

Suppose y ∈ Rn be defined as yi = −xi, i ∈ V and yi = xi, i /∈ V . By
conditions, C is weakly odd-bipartite corresponding to subset V , which means

ci1i2i3···im = 0, i1, i2, · · · , im ∈ [n]
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when |{i1, i2, i3, · · · , im} ∩ V | is even. Then, for all i ∈ [n], one has

(A ym−1)i = [(D − C )ym−1]i
= diy

m−1
i −

∑
i2,··· ,im∈[n] |V ∩ {i, i2, · · · , im}| is odd cii2···imyi2 · · · yim

= dix
m−1
i −

∑
i2,··· ,im∈[n] |V ∩ {i, i2, · · · , im}| is odd cii2···imyi2 · · · yim ,

(10)
where the third equality follows m− 1 is even and ym−1i = xm−1i . When i ∈ V ,
by the fact that cii2i3···im = 0, i2, i3, · · · , im ∈ [n], and by (9), (10), we have

(A ym−1)i = [(D − C )ym−1]i
= diy

m−1
i −

∑
i2,··· ,im∈[n] cii2···imyi2 · · · yim

= dix
m−1
i = λ(|A |)xm−1i

= λ(|A |)ym−1i .

(11)

Similarly, when i /∈ V , it holds that

(A ym−1)i = [(D − C )ym−1]i
= diy

m−1
i −

∑
i2,··· ,im∈[n] |V ∩ {i, i2, · · · , im}| is odd cii2···imyi2 · · · yim

= dix
m−1
i +

∑
i2,··· ,im∈[n] |V ∩ {i, i2, · · · , im}| is odd cii2···imxi2 · · ·xim

= dix
m−1
i + (Cxm−1)i

= [(D + C )xm−1]i
= (|A |xm−1)i = λ(|A |)xm−1i

= λ(|A |)ym−1i ,
(12)

where the third equality follows the fact that m is odd and exactly odd indices
take negative values. By (11) and (12), we know that λ(|A |) is an H-eigenvalue
of A . Hence, we have λ(|A |) 6 λ(A ) and the desired result follows.

Now, we present a example to verify the authenticity of Theorem 6.

Example 2. Set a 5th order 3 dimensional tensor A such that

a11111 = 1, a22222 = 1, a33333 = 3, a11333 = −1, a22333 = −2

and ai1i2i3i4 = 0 for the others. Let V = {3}. Then C is weakly odd-bipartite
corresponding to the set V and c3i2i3i4i5 = 0, ∀ i2, i3, i4, i5 ∈ [3].

The H-eigenvalue problems for A and |A | are to solve
x41 − x1x33 = λx41
x42 − 2x2x

3
3 = λx42

3x43 = λx43

and 
x41 + x1x

3
3 = λx41

x42 + 2x2x
3
3 = λx42

3x43 = λx43

.
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After calculating the largest H-eigenvalues of A and |A |, we obtain

λ(A ) = λ(|A |) = 3.

The next example shows that the conditions in Theorem 6 are not necessary.

Example 3. Let A be a 5th order 3 dimensional tensor. Its entries are given
by

a11111 = 1, a22222 = 2, a33333 = 4, a11122 = a11333 = −1, a22233 = −2

and ai1i2i3i4i5 = 0 for the others. Then the H-eigenvalue problems for A and
|A | are 

x41 − x21x22 − x1x33 = λx41
2x42 − 2x22x

2
3 = λx42

4x43 = λx43

and 
x41 + x21x

2
2 + x1x

3
3 = λx41

2x42 + 2x22x
2
3 = λx42

4x43 = λx43

After calculating these equation sets, we know that λ(A ) = λ(|A |) = 4, but the
nonnegative tensor C is not weakly odd-bipartite corresponding to any nonempty
proper index subset of {1, 2, 3}.

By Lemma 1 and Theorem 6, we have the following conclusion.

Corollary 3. Let A be defined as in (5). Assume m is odd. Suppose C is
weakly even-bipartite corresponding to a nonempty proper index subset V ⊆ [n].
If for all i /∈ V , it satisfies

cii2i3···im = 0, ∀ i2, i3, · · · , im ∈ [n],

then λ(A ) = λ(|A |).

5 The relation between spectrums of a symmetric Z-tensor and its absolute
tensor

In this section, we will study the relation between the spectrum of an even order
symmetric Z-tensor with nonnegative diagonal entries, and the spectrum of the
absolute tensor of the Z-tensor. It is proved that, if the symmetric Z-tensor is
weakly irreducible and odd-bipartite, then the two spectral sets equal. Further-
more, for a weakly irreducible symmetric Z-tensor with nonnegative diagonal
entries, we show that the spectral sets of the Z-tensor and its absolute tensor
equal if and only if their spectral radii equal. Before proving the conclusion,
we firstly cite the definition of diagonal similar tensors [22], which is useful in
the following analysis.
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Definition 6. Let A and B be two order m > 2 dimension n tensors. If
there exists a nonsingular diagonal matrix P of dimension n such that B =
P−(m−1)A P , then A and B are called diagonal similar.

Here, tensor B = P−(m−1)A P is defined by

bi1i2···im =
∑

j1,j2,··· ,jm∈[n]

aj1j2···jmp
m−1
i1j1

pj2i2 · · · pjmim , i1, i2, · · · , im ∈ [n].

Theorem 7. Assume order m dimension n symmetric Z-tensor A is defined
as in (5). Suppose C is weakly irreducible. Then, A and |A | are diagonal
similar if and only if m is even and C is weakly odd-bipartite.

Proof. For necessary, from Definition 6, we know that there is a nonsingular
diagonal matrix P satisfying

A = P−(m−1)|A |P,

i.e.,
D − C = P−(m−1)(D + C )P.

Since D = P−(m−1)DP , we have

−C = P−(m−1)CP,

which implies that

−ci1i2···im = ci1i2···imp
−(m−1)
i1i1

pi2i2 · · · pimim . (13)

If p11 = p22 = · · · = pnn, by (13), we get C = 0, which is a contradiction to the
fact that C is weakly irreducible. So there are at least two distinct diagonal
entries in P .

When ci1i2···im 6= 0, by (13), one has

−pmi1i1 = pi1i1pi2i2 · · · pimim . (14)

By (14), and by the fact that C is weakly irreducible, we obtain

pmii = pmjj , i, j ∈ [n],

which implies that m is even and

V = {i ∈ [n] | pii < 0} 6= ∅, Ṽ = {i ∈ [n] | pii > 0} 6= ∅.

Combining this with (13)-(14), we know that

ci1i2···im = 0, when |{i1, i2, · · · , im} ∩ V | is even.

Thus, tensor C is weakly odd-bipartite corresponding to V and the only if part
holds.
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For the if part, without loss of generality, suppose C is weakly odd-bipartite
corresponding to Ω ⊂ [n]. Let P be a diagonal matrix with i-th diagonal entries
being -1 when i ∈ Ω and 1 when i /∈ Ω. By a direct computation, one has

A = P−(m−1)|A |P.

Apparently, P is a nonsingular diagonal matrix. From Definition 6, it follows
that A and |A | are diagonal similar.

It should be noted that diagonal similar tensors have the same characteristic
polynomials, and thus they have the same spectrum (see Theorem 2.1 of [22]),
which is similar to the matrix case.

Corollary 4. Assume tensor A is defined as in Theorem 7. Let m be even.
Suppose C is odd-bipartite. Then σ(A ) = σ(|A |).

Lemma 3. [25] Let A and B be two order m dimension n tensors with |B| 6
A . Then

(1) ρ(B) 6 ρ(A ).
(2) If A is weakly irreducible and ρ(B) = ρ(A ), where λ = ρ(A )eiψ is an

eigenvalue of B with an eigenvector y, then,
(i) all the components of y are nonzero;
(ii) let U = diag(y1/|y1|, · · · , yn/|yn|) be a nonsingular diagonal matrix, we

have B = eiψU−(m−1)A U .

Theorem 8. Assume order m dimension n symmetric Z-tensor A is defined
as in (5). If C is weakly irreducible, then ρ(A ) = ρ(|A |) if and only if σ(A ) =
σ(|A |).

Proof. The sufficient condition is obvious. Now, we prove the only if part.
Suppose λ = ρ(|A |)eiψ is an eigenvalue of A . Since C is weakly irreducible,
from Lemma 3, we know that there exists a nonsingular diagonal matrix P such
that

A = eiψP−(m−1)|A |P, (15)

which means
D − C = eiψP−(m−1)(D + C )P. (16)

By the fact that all diagonal elements of C equal zero, by (16), one has

D = eiψP−(m−1)DP = eiψD ,

which implies eiψ = 1. So, by Definition 6 and (15), we know that A and
|A | are diagonal similar tensors. Thus, from Theorem 2.3 of [22], it holds that
σ(A ) = σ(|A |).
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6 Final remarks

Odd-bipartite and even-bipartite tensors are defined in this paper. Using this,
we studied the relation between the largest H-eigenvalue of a Z-tensor with
nonnegative diagonal elements, and the largest H-eigenvalue of the Z-tensor’s
absolute tensor. Sufficient and necessary conditions for the equality of these
largest H-eigenvalues are given when the Z-tensor has even order. For the odd
order case, sufficient conditions are presented. Examples are given to verify the
authenticity of the conclusions. On the other side, relation between spectral
sets of an even order symmetric Z-tensor with nonnegative diagonal entries and
its absolute tensor are studied.

In this paper, we only study the case of H-eigenvalues of Z-tensors. Do
Z-eigenvalues of Z-tensors also hold in such case? This may be an interesting
work in the future.
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