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1. Introduction

A real mth order n-dimension tensor A = (ai1···im), denoted by A ∈ R[m,n], consists 
of nm real entries:

ai1···im ∈ R,

where ij ∈ N = {1, 2, . . . , n} for j = 1, . . . , m [2,3,5,11,17]. It is obvious that a matrix is 
an order 2 tensor. Moreover, a tensor A = (ai1···im) is called symmetric [12,17] if

ai1···im = aπ(i1···im), ∀π ∈ Πm,

where Πm is the permutation group of m indices. And an mth order n-dimension tensor 
is called the unit tensor denoted by I = (δi1···im) ∈ R[m,n] [2,26], where

δi1···im =
{

1, if i1 = · · · = im,

0, otherwise.

For a tensor A ∈ R[m,n], if there are a nonzero vector x = (x1, . . . , xn)T ∈ Rn and a 
number λ ∈ R such that

Axm−1 = λx[m−1],

where

(Axm−1)i =
∑

i2,...,im∈N

aii2···imxi2 · · ·xim

and x[m−1] = (xm−1
1 , . . . , xm−1

n )T , then λ is called an H-eigenvalue of A and x is called 
a corresponding H-eigenvector of A [17]. As shown in [17], Qi used H-eigenvalues of real 
symmetric tensors to determine positive (semi-)definite tensors, that is, an even order 
real symmetric tensor is positive (semi-)definite if and only if all its H-eigenvalues are 
positive (non-negative). Here a tensor A = (ai1···im) is called positive (semi-)definite 
[22,23] if for any nonzero vector x in Rn,

Axm > (≥)0,

where Axm =
∑

i1,i2,...,im∈N

ai1i2···imxi1 · · ·xim .

Positive definiteness and semi-definiteness of real symmetric tensors have applications 
in automatical control, polynomial problems, magnetic resonance imaging and spectral 
hypergraph theory [1,3–10,18–21,23–25,27].

It is not effective by using H-eigenvalues in some cases to determine that a real sym-
metric tensor A is positive (semi-)definite because it is not easy to compute the smallest 
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H-eigenvalue of that tensor when its order and dimension are large. Hence one tries to 
give some checkable sufficient conditions [11–13,22,23,27,28]. In [23], Song and Qi intro-
duced the class of B- (B0-)tensors, which is a natural extension of B-matrices [15,16], 
to provide a checkable sufficient condition for positive (semi-)definite tensors.

Definition 1. (See [23].) Let A = (ai1···im) ∈ R[m,n]. A is called a B-tensor (B0-tensor, 
resp.) if for all i ∈ N ∑

i2,...,im∈N

aii2···im > (≥) 0

and

1
nm−1

⎛
⎝ ∑

i2,...,im∈N

aii2···im

⎞
⎠ > (≥) aij2···jm , for j2, . . . , jm ∈ N, δij2···jm = 0.

In [13], Li and Li provided the following sufficient and necessary conditions for 
B-tensors and B0-tensors, respectively.

Proposition 1. (See [13, Proposition 2].) Let A = (ai1···im) ∈ R[m,n].
(I) A is a B-tensor if and only if for each i ∈ N ,

aii···i − βi(A) > Δi(A),

where βi(A) = max
j2,...,jm∈N,
δij2...jm=0

{0, aij2···jm} and Δi(A) =
∑

i2...im∈N,
δii2...im=0

(βi(A) − aii2···im).

(II) A is a B0-tensor if and only if for each i ∈ N ,

aii···i − βi(A) ≥ Δi(A).

To give other checkable sufficient conditions for positive (semi-)definite tensors, Li 
and Li [13] proposed two new classes of tensors: quasi-double B-tensors and quasi-double 
B0-tensors, and proved that a B-tensor is a quasi-double B-tensor, that is, the class of 
quasi-double B-tensors is a generalization of B-tensors; see Proposition 4 in [13].

Definition 2. (See [13].) Let A = (ai1···im) ∈ R[m,n] with ai···i > βi(A) for all i ∈ N . A is 
called a quasi-double B- (B0-)tensor if for all i, j ∈ N , i �= j,

(ai···i − βi(A))
(
aj···j − βj(A) − Δi

j(A)
)
> (≥) (βj(A) − aji···i)Δi(A), (1)

where

Δi
j(A) = Δj(A) − (βj(A) − aji···i) =

∑
δjj2...jm=0,
δij2...jm=0

(βj(A) − ajj2···jm).
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As shown in [13,22,23,27], an even order symmetric B-tensor is positive definite, an 
even order symmetric quasi-double B-tensor is positive definite, and an even order sym-
metric B0-tensor is positive semi-definite. For quasi-double B0-tensors, Li and Li only 
give the following conjecture.

Conjecture 1. (See [13, Conjecture 1].) An even order symmetric quasi-double B0-tensor 
is positive semi-definite.

In this paper, we introduce two new classes of tensors: MB-tensors and MB0-tensors, 
prove that the class of MB-tensors (MB0-tensors) is a generalization of B-tensors and 
quasi-double B-tensor (B0-tensors and quasi-double B0-tensor, respectively), and that an 
even order symmetric MB- (MB0-)tensor is positive (semi-)definite, which provides a pos-
itive answer to Conjecture 1 in [13]. In addition, by giving some conditions to determine 
MB- (MB0-)tensors, some checkable sufficient conditions for the positive (semi-)definite-
ness of tensors are given.

2. MB-tensor and MB0-tensor

We first define MB-tensors and MB0-tensors involved with (strong) M -tensors.

Definition 3. (See [3,5,28].) Let A = (ai1···im) ∈ R[m,n]. A is called
(I) a Z-tensor if all the off-diagonal entries of A are non-positive, that is, ai1...im ≤ 0, 

for ij ∈ N , j = 1, 2, . . . , m, and δi1i2···in = 0;
(II) an (a strong) M -tensor if A is a Z-tensor with the form A = cI − B such that B

is a non-negative tensor and c ≥ (>)ρ(B), where ρ(B) is the spectral radius of B.

For a real tensor A = (ai1···im) ∈ R[m,n], we can write it as

A = B+ + C, (2)

where B+ = (bi1···im) ∈ R[m,n], C = (ci1···im) ∈ R[m,n],

bii2···im = aii2···im − βi(A) for i ∈ N,

and

cii2···im = βi(A) for i ∈ N.

Since bii2···im = aii2···im − βi(A) ≤ 0 for i, i2, . . . , in ∈ N and δii2···in = 0, we have that 
B+ is a Z-tensor.

Definition 4. Let A = (ai1···im) ∈ R[m,n], and A = B+ + C.
(I) A is called an MB-tensor if B+ is a strong M -tensor.
(II) A is called an MB0-tensor if B+ is an M -tensor.
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Obviously, an MB-tensor is an MB0-tensor, and the class of MB-tensors is a general-
ization of MB-matrices [14]. We next give the relationships of MB- (MB0-)tensors and 
the positive (semi-)definite tensors. First, recall some results on M -tensors.

Lemma 1. (See [28, Theorem 3.9].) Let A ∈ R[m,n] be a Z-tensor. Then
(I) A is a strong M -tensor if and only if τ(A) = min

λ∈σ(A)
Reλ > 0.

(II) A is an M -tensor if and only if τ(A) ≥ 0.

As shown in [28], τ(A) is the smallest H-eigenvalue of an M -tensor A. Hence, accord-
ing to Lemma 1, Zhang et al. give the following result.

Lemma 2. (See [28, Corollary 3.10].) Let A ∈ R[m,n] be a Z-tensor. Then A is an 
(a strong) M -tensor if and only if all its H-eigenvalues are (positive) non-negative.

Lemma 3. (See [28, Theorem 4.1].) Let A ∈ R[m,n] be a symmetric Z-tensor and m be
even. Then

(I) A is positive definite if and only if A a strong M -tensor.
(II) A is positive semi-definite if and only if A an M -tensor.

Remark 1. In Theorem 4.1 of [28], Zhang et al. only give the part (I) of Lemma 3. For 
the part (II), we can prove it directly by using the fact that if all its H-eigenvalues of 
a symmetric tensor A is non-negative, then A is positive semi-definite; for details, see 
Theorem 5 in [17].

Lemma 4. Let A1 = sI −B1 and A2 = sI −B2, where B1, B2 ∈ R[m,n] are non-negative. 
And let A1 ≤ A2. If A1 is an (a strong) M -tensor, then A2 is an (a strong) M -tensor.

Proof. Since A1 ≤ A2, then B1 ≥ B2. Hence by Lemma 3.2 in [26], we have ρ(B1) ≥
ρ(B2). If A1 is an M -tensor, then s ≥ ρ(B1), consequently, s ≥ ρ(B2). Hence, A2 is an 
M -tensor. Similarly, we can prove that if A1 is a strong M -tensor, then A2 is a strong 
M -tensor. �

Now by Lemma 3 and Lemma 4, we give the relationships of MB- (MB0-)tensors
and positive (semi-)definite tensors. Before that we give the definitions of P - (P0-)ten-
sors [22,23] and partially all one tensors [22]. A real tensor A ∈ R[m,n] is called a P -
(P0-)tensor if for any nonzero x in Rn,

max
i∈N

xi(Axm−1)i > (≥)0.

Suppose that A ∈ R[m,n] is a symmetric tensor, and has a principal sub-tensor AJ
r with 

J ∈ N and |J | = r(1 ≤ r ≤ n) such that all the entries of AJ
r are one, and all the other 

entries of A are zero, then A is called a partially all one tensor, and denoted by εJ . If 
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J = N , then we denote εJ simply by ε and call it an all one tensor. And an even order 
partially all one tensor is positive semi-definite; for details, see [22].

Theorem 5. Let A = (ai1···im) ∈ R[m,n] be a symmetric MB-tensor. Then either A is a 
strong M -tensor itself, or we have

A = M +
s∑

k=1

hkε
Ĵk , (3)

where M is a strong M -tensor, s is a positive integer, hk > 0 and Ĵk ⊆ N , for k =
1, 2, · · · , s.

Proof. Let Ĵ(A) = {i ∈ N : there is at least one positive off-diagonal entry in the ith
row of A}. Obviously, Ĵ(A) ⊆ N . If Ĵ(A) = ∅, then A = B+, and hence A is a strong 
M -tensor by the fact that A is an MB-tensor. The conclusion follows in the case.

Now we suppose that Ĵ(A) �= ∅, let A1 = A = (a(1)
i1···im), and let d(1)

i be the value of 
the largest off-diagonal entry in the ith row of A1, that is,

d
(1)
i = max

i2...im∈N,
δii2...im=0

a
(1)
ii2···im .

Furthermore, let Ĵ1 = Ĵ(A1), h1 = min
i∈Ĵ1

d
(1)
i and

J1 = {i ∈ Ĵ1 : d(1)
i = h1}.

Then J1 ⊆ Ĵ1 and h1 > 0.
Consider A2 = A1 − h1ε

Ĵ1 = (a(2)
i1···im). Obviously, A2 is also symmetric by the defi-

nition of εĴ1 . Note that

a
(2)
i1···im =

{
a
(1)
i1···im − h1, i1, i2, . . . , im ∈ Ĵ1

a
(1)
i1···im , otherwise,

(4)

for i ∈ J1,

βi(A2) = βi(A1) − h1 = 0, (5)

and that for i ∈ Ĵ1\J1,

βi(A2) = βi(A1) − h1 > 0. (6)

Furthermore, let

A1 = A = B+
1 + C1, A2 = B+

2 + C2 (7)
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where B+
1 = (b(1)i1···im) ∈ R[m,n], B+

2 = (b(2)i1···im) ∈ R[m,n] and

b
(1)
ii2···im = a

(1)
ii2···im − βi(A1), b

(2)
ii2···im = a

(2)
ii2···im − βi(A2) for i ∈ N.

Combining (4), (5), (6), (7) with the fact that for each j /∈ Ĵ1, βi(A2) = βi(A1), we have

B+
2 = B+

1 + h1ε
Ĵ1 .

Since A1 = A is an MB-tensor, B+
1 is a strong M -tensor. Note that B+

2 ≥ B+
1 , then 

by Lemma 4, we have that B+
2 is also a strong M -tensor, and hence A2 is a symmetric 

MB-tensor.
Now replace A1 by A2, and repeat this process. Let Ĵ(A2) = {i ∈ N : there is

at least one positive off-diagonal entry in the ith row of A2}. Then Ĵ(A2) = Ĵ1\J1. Re-
peat this process until Ĵ(As+1) = ∅. Let M = As+1. Then (3) holds. �
Theorem 6. Let A = (ai1···im) ∈ R[m,n] be a symmetric MB-tensor. If m is even, then A
is positive definite, consequently, A is a P -tensor.

Proof. If m is even, then A an even order symmetric MB-tensor. By Theorem 5, we have 
that if A itself is a symmetric strong M -tensor, then it is positive definite by Lemma 3. 
Otherwise, (3) holds with s > 0. For x ∈ Rn, by (3) and the fact that M is positive 
definite, we have

Axm = Mxm +
s∑

k=1

hkε
Ĵkxm = Mxm +

s∑
k=1

hk||xĴk
||mm ≥ Mxm > 0.

This implies that A is positive definite. Note that a symmetric tensor is a P -tensor if and 
only if it is positive definite [23], therefore A is a P -tensor. The proof is complete. �

Similar to Theorems 5 and 6, by the part (II) of Lemma 3, Lemma 4, and the fact that 
a symmetric tensor is a P0-tensor if and only it is positive semi-definite [23], we easily 
have that an even order symmetric MB0-tensor is positive semi-definite and a P0-tensor.

Theorem 7. Let A = (ai1···im) ∈ R[m,n] be a symmetric MB0-tensor. Then either A is 
an M -tensor itself, or we have

A = M +
s∑

k=1

hkε
Ĵk ,

where M is an M -tensor, s is a positive integer, hk > 0 and Ĵk ⊆ N , for k = 1, 2, · · · , s.

Theorem 8. Let A = (ai1···im) ∈ R[m,n] be a symmetric MB0-tensor. If m is even, then 
A is positive semi-definite, consequently, A is a P0-tensor.
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Since an even order real symmetric tensor is positive (semi-)definite if and only if 
all its H-eigenvalues are positive (non-negative) [17], by Theorems 6 and 8 we have the 
following results.

Corollary 1. All the H-eigenvalues of an even order symmetric MB-tensor are positive.

Corollary 2. All the H-eigenvalues of an even order symmetric MB0-tensor are non-
negative.

3. Relationships between B- (B0-)tensors, quasi-double B- (B0-)tensors and MB-
(MB0-)tensors

In [13], Li and Li gave the relationship between B-tensors and quasi-double B-tensors 
as follows.

Proposition 2. (See [13, Proposition 4].) Let A = (ai1···im) ∈ R[m,n], n ≥ 2. If A is a 
B-tensor, then A is a quasi-double B-tensor.

Now, we prove that a B0-tensor is a quasi-double B0-tensor.

Proposition 3. Let A = (ai1···im) ∈ R[m,n], n ≥ 2. If A is a B0-tensor, then A is a 
quasi-double B0-tensor.

Proof. If A is a B0-tensor, then by Proposition 1 for any i ∈ N ,

ai···i − βi(A) ≥ Δi(A),

that is,

ai···i − βi(A) − Δk
i (A) ≥ βi(A) − aik···k, for k �= i.

Obviously, for i, j ∈ N , j �= i,

ai···i − βi(A) ≥ Δi(A) ≥ 0,

and

aj···j − βj(A) − Δi
j(A) ≥ βj(A) − aji···i ≥ 0.

It is easy to see that Inequality (1) holds, i.e., A is a quasi-double B0-tensor by Defini-
tion 2. The proof is complete. �

Next, we establish the relationships between quasi-double B- (B0-)tensors and
MB- (MB0-)tensors. Before that a lemma is given.
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Lemma 9. (See [12, Theorem 2.1].) Let A = (ai1···im) ∈ C [m,n], n ≥ 2. Then

σ(A) ⊆ K(A) =
⋃

i,j∈N,
j �=i

Ki,j(A),

where σ(A) is the spectrum of A, that is, the set of all eigenvalues of A,

Ki,j(A) =
{
z ∈ C :

(
|z − ai···i| − rji (A)

)
|z − aj···j | ≤ |aij···j |rj(A)

}
and

rji (A) = ri(A) − |aij···j | =
∑

δi,i2,...,im=0,
δj,i2,...,im=0

|aii2···im |.

Theorem 10. Let A = (ai1···im) ∈ R[m,n], n ≥ 2. If A is a quasi-double B- (B0-)tensor, 
then A is an MB- (MB0-)tensor.

Proof. We first prove that a quasi-double B0-tensor is an MB0-tensor. Let

A = B+ + C

where B+ = (bi1···im) ∈ R[m,n] and

bii2···im = aii2···im − βi(A) for i ∈ N.

Since A is a quasi-double B0-tensor, we have by Definition 2 that for all i, j ∈ N , i �= j,

(ai···i − βi(A))
(
aj···j − βj(A) − Δi

j(A)
)
≥ (βj(A) − aji···i) Δi(A). (8)

Note that bii2···im = aii2···im − βi(A) ≤ 0 for δi,i2,...,im = 0, that is, B+ is a Z-tensor. 
Hence, Inequality (8) is equivalent to

bi···i(bj···j − rij(B+)) ≥ |bji···i|ri(B+) for all i, j ∈ N, i �= j.

We now prove that τ(B+) = min
λ∈σ(B+)

Reλ ≥ 0. Suppose that τ(B+) < 0, then there is 

λ0 ∈ σ(B+) such that Reλ0 = τ(B+) < 0. Since A a quasi-double B0-tensor, we have by 
Definition 2 bi···i = ai···i − βi(A) > 0, consequently, bj···j − rij(B+) ≥ 0 for j �= i. This 
implies that for all i, j ∈ N , i �= j,

|λ0 − bi···i|(|λ0 − bj···j | − rij(B+)) ≥ |Reλ0 − bi···i|(|Reλ0 − bj···j | − rij(B+))

> |bi···i|(|bj···j | − rij(B+))

= bi···i(bj···j − rij(B+))

≥ |bji···i|ri(B+),
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equivalently, λ0 /∈ Kj,i(B+) for all i, j ∈ N , i �= j. Hence, λ0 /∈ K(B+), which contradicts
Lemma 9. Therefore, τ(B+) ≥ 0. Furthermore, note that B+ is a Z-tensor, by Lemma 1
and Definition 4 we have that B+ is an M -tensor, and that A is an MB0-tensor.

Similarly, we can obtain that a quasi-double B-tensor is an MB-tensor. The proof is 
complete. �

By Proposition 2, Proposition 3 and Theorem 10, we easily get that

{B0-tensors} ⊆ {quasi-double B0-tensors} ⊆ {MB0-tensors},

and that

{B-tensors} ⊆ {quasi-double B-tensors} ⊆ {MB-tensors}.

Furthermore, as shown in [22,23,27], an odd order B- (B0-)tensor may not be a P -
(P0-)tensor, and an even order nonsymmetric B- (B0-)tensor may not be a P - (P0-)ten-
sor. Hence, we conclude that an odd order MB-tensor may not be a P -tensor, an odd 
order MB0-tensor may not be a P0-tensor, an even order nonsymmetric MB-tensor may 
not be a P -tensor, and an even order nonsymmetric MB0-tensor may not be a P0-tensor.

Since an even order symmetric MB0-tensor is positive semi-definite, and an even order 
symmetric MB-tensor is positive definite, we have immediately the following result.

Corollary 3. (I) An even order symmetric B0-tensor is positive semi-definite;
(II) An even order symmetric quasi-double B0-tensor is positive semi-definite;
(III) An even order symmetric B-tensor is positive definite;
(IV) An even order symmetric quasi-double B-tensor is positive definite.

Remark 2. The part (II) of Corollary 3 is exactly Conjecture 1 in [13].

4. Sufficient conditions for MB- (MB0-)tensors

In this section, we give some checkable sufficient conditions for MB- (MB0-)tensors, 
also for the positive (semi-)definiteness of tensors. Before that a lemma in [12] is given 
as follows.

Lemma 11. (See [12, Theorem 2.2].) Let A = (ai1···im) ∈ C [m,n], n ≥ 2. And let S be a 
nonempty proper subset of N . Then

σ(A) ⊆ KS(A) =

⎛
⎝ ⋃

i∈S,j∈S̄

Ki,j(A)

⎞
⎠⋃⎛

⎝ ⋃
i∈S̄,j∈S

Ki,j(A)

⎞
⎠ ,

where Ki,j(A) is defined as in Lemma 9.
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Theorem 12. Let A = (ai1···im) ∈ R[m,n], n ≥ 2, with

A = B+ + C

where B+ = (bi1···im) ∈ R[m,n] and

bii2···im = aii2···im − βi(A) for i ∈ N.

If bi···i > 0 for i ∈ N , and there is a nonempty proper subset S of N such that for each 
i ∈ S and each j ∈ S̄, (

bi···i − rji (B+)
)
bj···j ≥ rj(B+)|bij···j |

and

(
bj···j − rij(B+)

)
bi···i ≥ ri(B+)|bji···i|,

then A is an MB0-tensor, and positive semi-positive.

Proof. By Definition 2, we only prove that B+ is an M -tensor. Note that B+ is a Z-tensor. 
Hence, we only prove τ(B+) ≥ 0.

Suppose that τ(B+) < 0. Then there is λ0 ∈ σ(B+) such that Reλ0 = τ(B+) < 0. 
Similar to the proof of Theorem 10, we can get that for each i ∈ S and each j ∈ S̄,

|λ0 − bj···j |(|λ0 − bi···i| − rji (B+)) > |bij···j |rj(B+),

and

|λ0 − bi···i|(|λ0 − bj···j | − rij(B+)) > |bji···i|ri(B+),

that is, λ0 /∈ KS(A). This contradicts Lemma 11. Hence, τ(B+) ≥ 0, consequently, A is 
an MB0-tensor, and positive semi-positive. �

Similar to the proof of Theorem 12, by Lemma 11 we easily obtain a sufficient condition 
for MB-tensors.

Theorem 13. Let A = (ai1···im) ∈ R[m,n], n ≥ 2, with

A = B+ + C

where B+ is defined as in Theorem 12. If bi···i > 0 for i ∈ N , and there is a nonempty 
proper subset S of N such that for each i ∈ S and each j ∈ S̄,(

bi···i − rji (B+)
)
bj···j > rj(B+)|bij···j |
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and

(
bj···j − rij(B+)

)
bi···i > ri(B+)|bji···i|,

then A is an MB-tensor, and positive semi-positive.
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