$M B$-tensors and $M B_{0}$-tensors

Chaoqian Li^{a}, Liqun Qi^{b}, Yaotang Li ${ }^{\text {a,* }}$
${ }^{\text {a }}$ School of Mathematics and Statistics, Yunnan University, Kunming, PR China
b Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

A R T I C L E I N F O

Article history:

Received 25 December 2014
Accepted 24 June 2015
Available online xxxx
Submitted by R. Brualdi

MSC:

47H15
47H12
34B10
47A52
47J10
47H09
15A48
47 H 07
Keywords:
MB-tensors
$M B_{0}$-tensors
B-tensors
Quasi-double B-tensors
Positive definite

A B S T R A C T

The class of $M B-\left(M B_{0}-\right)$ tensors, which is a generation of B - $\left(B_{0}-\right)$ tensors and quasi-double $B-\left(B_{0}-\right)$ tensors, is proposed. And we prove that an even order symmetric $M B$ ($M B_{0^{-}}$)tensor is positive (semi-)definite. By giving some conditions to determine $M B$ - $\left(M B_{0^{-}}\right)$tensors, some checkable sufficient conditions for the positive (semi-)definiteness of tensors are given.
© 2015 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

A real m th order n-dimension tensor $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right)$, denoted by $\mathcal{A} \in R^{[m, n]}$, consists of n^{m} real entries:

$$
a_{i_{1} \cdots i_{m}} \in R
$$

where $i_{j} \in N=\{1,2, \ldots, n\}$ for $j=1, \ldots, m[2,3,5,11,17]$. It is obvious that a matrix is an order 2 tensor. Moreover, a tensor $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right)$ is called symmetric [12,17] if

$$
a_{i_{1} \cdots i_{m}}=a_{\pi\left(i_{1} \cdots i_{m}\right)}, \forall \pi \in \Pi_{m}
$$

where Π_{m} is the permutation group of m indices. And an m th order n-dimension tensor is called the unit tensor denoted by $\mathcal{I}=\left(\delta_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}[2,26]$, where

$$
\delta_{i_{1} \cdots i_{m}}=\left\{\begin{array}{l}
1, \text { if } i_{1}=\cdots=i_{m} \\
0, \quad \text { otherwise }
\end{array}\right.
$$

For a tensor $\mathcal{A} \in R^{[m, n]}$, if there are a nonzero vector $x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in R^{n}$ and a number $\lambda \in R$ such that

$$
\mathcal{A} x^{m-1}=\lambda x^{[m-1]}
$$

where

$$
\left(\mathcal{A} x^{m-1}\right)_{i}=\sum_{i_{2}, \ldots, i_{m} \in N} a_{i i_{2} \cdots i_{m}} x_{i_{2}} \cdots x_{i_{m}}
$$

and $x^{[m-1]}=\left(x_{1}^{m-1}, \ldots, x_{n}^{m-1}\right)^{T}$, then λ is called an H-eigenvalue of \mathcal{A} and x is called a corresponding H -eigenvector of \mathcal{A} [17]. As shown in [17], Qi used H-eigenvalues of real symmetric tensors to determine positive (semi-)definite tensors, that is, an even order real symmetric tensor is positive (semi-)definite if and only if all its H -eigenvalues are positive (non-negative). Here a tensor $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right)$ is called positive (semi-)definite $[22,23]$ if for any nonzero vector x in \mathbb{R}^{n},

$$
\mathcal{A} x^{m}>(\geq) 0
$$

where $\mathcal{A} x^{m}=\sum_{i_{1}, i_{2}, \ldots, i_{m} \in N} a_{i_{1} i_{2} \cdots i_{m}} x_{i_{1}} \cdots x_{i_{m}}$.
Positive definiteness and semi-definiteness of real symmetric tensors have applications in automatical control, polynomial problems, magnetic resonance imaging and spectral hypergraph theory [1,3-10,18-21,23-25,27].

It is not effective by using H -eigenvalues in some cases to determine that a real symmetric tensor \mathcal{A} is positive (semi-)definite because it is not easy to compute the smallest

H-eigenvalue of that tensor when its order and dimension are large. Hence one tries to give some checkable sufficient conditions [11-13,22,23,27,28]. In [23], Song and Qi introduced the class of B - ($\left.B_{0}-\right)$ tensors, which is a natural extension of B-matrices $[15,16]$, to provide a checkable sufficient condition for positive (semi-)definite tensors.

Definition 1. (See [23].) Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}$. \mathcal{A} is called a B-tensor (B_{0}-tensor, resp.) if for all $i \in N$

$$
\sum_{i_{2}, \ldots, i_{m} \in N} a_{i i_{2} \cdots i_{m}}>(\geq) 0
$$

and

$$
\frac{1}{n^{m-1}}\left(\sum_{i_{2}, \ldots, i_{m} \in N} a_{i i_{2} \cdots i_{m}}\right)>(\geq) a_{i j_{2} \cdots j_{m}}, \text { for } j_{2}, \ldots, j_{m} \in N, \delta_{i j_{2} \cdots j_{m}}=0
$$

In [13], Li and Li provided the following sufficient and necessary conditions for B-tensors and B_{0}-tensors, respectively.

Proposition 1. (See [13, Proposition 2].) Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}$.
(I) \mathcal{A} is a B-tensor if and only if for each $i \in N$,

$$
a_{i i \cdots i}-\beta_{i}(\mathcal{A})>\Delta_{i}(\mathcal{A}),
$$

where $\beta_{i}(\mathcal{A})=\max _{\substack{j_{2}, \ldots, j_{m} \in N, \delta_{i j_{2} \ldots} \ldots j_{m}=0}}\left\{0, a_{i j_{2} \cdots j_{m}}\right\}$ and $\Delta_{i}(\mathcal{A})=\sum_{\substack{i_{2} \ldots i_{m} \in N, \delta_{i i_{2}} \ldots i_{m}=0}}\left(\beta_{i}(\mathcal{A})-a_{i i_{2} \cdots i_{m}}\right)$.
(II) \mathcal{A} is a B_{0}-tensor if and only if for each $i \in N$,

$$
a_{i i \cdots i}-\beta_{i}(\mathcal{A}) \geq \Delta_{i}(\mathcal{A})
$$

To give other checkable sufficient conditions for positive (semi-)definite tensors, Li and Li [13] proposed two new classes of tensors: quasi-double B-tensors and quasi-double B_{0}-tensors, and proved that a B-tensor is a quasi-double B-tensor, that is, the class of quasi-double B-tensors is a generalization of B-tensors; see Proposition 4 in [13].

Definition 2. (See [13].) Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}$ with $a_{i \cdots i}>\beta_{i}(\mathcal{A})$ for all $i \in N$. \mathcal{A} is called a quasi-double B - $\left(B_{0^{-}}\right)$tensor if for all $i, j \in N, i \neq j$,

$$
\begin{equation*}
\left(a_{i \cdots i}-\beta_{i}(\mathcal{A})\right)\left(a_{j \cdots j}-\beta_{j}(\mathcal{A})-\Delta_{j}^{i}(\mathcal{A})\right)>(\geq)\left(\beta_{j}(\mathcal{A})-a_{j i \cdots i}\right) \Delta_{i}(\mathcal{A}), \tag{1}
\end{equation*}
$$

where

$$
\Delta_{j}^{i}(\mathcal{A})=\Delta_{j}(\mathcal{A})-\left(\beta_{j}(\mathcal{A})-a_{j i \cdots i}\right)=\sum_{\substack{\delta_{j j_{2} \ldots j_{m}}=0, \delta_{i j_{2} \ldots j_{m}=0}=0}}\left(\beta_{j}(\mathcal{A})-a_{j j_{2} \cdots j_{m}}\right) .
$$

As shown in $[13,22,23,27]$, an even order symmetric B-tensor is positive definite, an even order symmetric quasi-double B-tensor is positive definite, and an even order symmetric B_{0}-tensor is positive semi-definite. For quasi-double B_{0}-tensors, Li and Li only give the following conjecture.

Conjecture 1. (See [13, Conjecture 1].) An even order symmetric quasi-double B_{0}-tensor is positive semi-definite.

In this paper, we introduce two new classes of tensors: $M B$-tensors and $M B_{0}$-tensors, prove that the class of $M B$-tensors ($M B_{0}$-tensors) is a generalization of B-tensors and quasi-double B-tensor (B_{0}-tensors and quasi-double B_{0}-tensor, respectively), and that an even order symmetric $M B$ - ($M B_{0^{-}}$)tensor is positive (semi-)definite, which provides a positive answer to Conjecture 1 in [13]. In addition, by giving some conditions to determine $M B-\left(M B_{0^{-}}\right)$tensors, some checkable sufficient conditions for the positive (semi-)definiteness of tensors are given.

2. $M B$-tensor and $M B_{0}$-tensor

We first define $M B$-tensors and $M B_{0}$-tensors involved with (strong) M-tensors.
Definition 3. (See $[3,5,28]$.) Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}$. \mathcal{A} is called
(I) a Z-tensor if all the off-diagonal entries of \mathcal{A} are non-positive, that is, $a_{i_{1} \ldots i_{m}} \leq 0$, for $i_{j} \in N, j=1,2, \ldots, m$, and $\delta_{i_{1} i_{2} \cdots i_{n}}=0$;
(II) an (a strong) M-tensor if \mathcal{A} is a Z-tensor with the form $\mathcal{A}=c \mathcal{I}-\mathcal{B}$ such that \mathcal{B} is a non-negative tensor and $c \geq(>) \rho(\mathcal{B})$, where $\rho(\mathcal{B})$ is the spectral radius of \mathcal{B}.

For a real tensor $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}$, we can write it as

$$
\begin{equation*}
\mathcal{A}=\mathcal{B}^{+}+\mathcal{C} \tag{2}
\end{equation*}
$$

where $\mathcal{B}^{+}=\left(b_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}, \mathcal{C}=\left(c_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}$,

$$
b_{i i_{2} \cdots i_{m}}=a_{i i_{2} \cdots i_{m}}-\beta_{i}(\mathcal{A}) \text { for } i \in N \text {, }
$$

and

$$
c_{i i_{2} \cdots i_{m}}=\beta_{i}(\mathcal{A}) \text { for } i \in N
$$

Since $b_{i i_{2} \cdots i_{m}}=a_{i i_{2} \cdots i_{m}}-\beta_{i}(\mathcal{A}) \leq 0$ for $i, i_{2}, \ldots, i_{n} \in N$ and $\delta_{i i_{2} \cdots i_{n}}=0$, we have that B^{+}is a Z-tensor.

Definition 4. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}$, and $\mathcal{A}=\mathcal{B}^{+}+\mathcal{C}$.
(I) \mathcal{A} is called an $M B$-tensor if \mathcal{B}^{+}is a strong M-tensor.
(II) \mathcal{A} is called an $M B_{0}$-tensor if \mathcal{B}^{+}is an M-tensor.

Obviously, an $M B$-tensor is an $M B_{0}$-tensor, and the class of $M B$-tensors is a generalization of $M B$-matrices [14]. We next give the relationships of $M B$ - $\left(M B_{0^{-}}\right)$tensors and the positive (semi-)definite tensors. First, recall some results on M-tensors.

Lemma 1. (See [28, Theorem 3.9].) Let $\mathcal{A} \in R^{[m, n]}$ be a Z-tensor. Then
(I) \mathcal{A} is a strong M-tensor if and only if $\tau(\mathcal{A})=\min _{\lambda \in \sigma(\mathcal{A})} \operatorname{Re} \lambda>0$.
(II) \mathcal{A} is an M-tensor if and only if $\tau(\mathcal{A}) \geq 0$.

As shown in [28], $\tau(\mathcal{A})$ is the smallest H-eigenvalue of an M-tensor \mathcal{A}. Hence, according to Lemma 1, Zhang et al. give the following result.

Lemma 2. (See [28, Corollary 3.10].) Let $\mathcal{A} \in R^{[m, n]}$ be a Z-tensor. Then \mathcal{A} is an (a strong) M-tensor if and only if all its H-eigenvalues are (positive) non-negative.

Lemma 3. (See [28, Theorem 4.1].) Let $\mathcal{A} \in R^{[m, n]}$ be a symmetric Z-tensor and m be even. Then
(I) \mathcal{A} is positive definite if and only if A a strong M-tensor.
(II) \mathcal{A} is positive semi-definite if and only if A an M-tensor.

Remark 1. In Theorem 4.1 of [28], Zhang et al. only give the part (I) of Lemma 3. For the part (II), we can prove it directly by using the fact that if all its H-eigenvalues of a symmetric tensor \mathcal{A} is non-negative, then \mathcal{A} is positive semi-definite; for details, see Theorem 5 in [17].

Lemma 4. Let $\mathcal{A}_{1}=s \mathcal{I}-\mathcal{B}_{1}$ and $\mathcal{A}_{2}=s \mathcal{I}-\mathcal{B}_{2}$, where $\mathcal{B}_{1}, \mathcal{B}_{2} \in R^{[m, n]}$ are non-negative. And let $\mathcal{A}_{1} \leq \mathcal{A}_{2}$. If \mathcal{A}_{1} is an (a strong) M-tensor, then \mathcal{A}_{2} is an (a strong) M-tensor.

Proof. Since $\mathcal{A}_{1} \leq \mathcal{A}_{2}$, then $\mathcal{B}_{1} \geq \mathcal{B}_{2}$. Hence by Lemma 3.2 in [26], we have $\rho\left(\mathcal{B}_{1}\right) \geq$ $\rho\left(\mathcal{B}_{2}\right)$. If \mathcal{A}_{1} is an M-tensor, then $s \geq \rho\left(\mathcal{B}_{1}\right)$, consequently, $s \geq \rho\left(\mathcal{B}_{2}\right)$. Hence, \mathcal{A}_{2} is an M-tensor. Similarly, we can prove that if \mathcal{A}_{1} is a strong M-tensor, then \mathcal{A}_{2} is a strong M-tensor.

Now by Lemma 3 and Lemma 4, we give the relationships of $M B$ - $\left(M B_{0}-\right)$ tensors and positive (semi-)definite tensors. Before that we give the definitions of $P-\left(P_{0}\right.$) tensors [22,23] and partially all one tensors [22]. A real tensor $\mathcal{A} \in R^{[m, n]}$ is called a P -$\left(P_{0^{-}}\right)$tensor if for any nonzero x in R^{n},

$$
\max _{i \in N} x_{i}\left(\mathcal{A} x^{m-1}\right)_{i}>(\geq) 0
$$

Suppose that $\mathcal{A} \in R^{[m, n]}$ is a symmetric tensor, and has a principal sub-tensor \mathcal{A}_{r}^{J} with $J \in N$ and $|J|=r(1 \leq r \leq n)$ such that all the entries of \mathcal{A}_{r}^{J} are one, and all the other entries of \mathcal{A} are zero, then \mathcal{A} is called a partially all one tensor, and denoted by ε^{J}. If
$J=N$, then we denote ε^{J} simply by ε and call it an all one tensor. And an even order partially all one tensor is positive semi-definite; for details, see [22].

Theorem 5. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}$ be a symmetric $M B$-tensor. Then either \mathcal{A} is a strong M-tensor itself, or we have

$$
\begin{equation*}
\mathcal{A}=\mathcal{M}+\sum_{k=1}^{s} h_{k} \varepsilon^{\hat{J}_{k}} \tag{3}
\end{equation*}
$$

where \mathcal{M} is a strong M-tensor, s is a positive integer, $h_{k}>0$ and $\hat{J}_{k} \subseteq N$, for $k=$ $1,2, \cdots, s$.

Proof. Let $\hat{J}(\mathcal{A})=\{i \in N$: there is at least one positive off-diagonal entry in the i th row of $\mathcal{A}\}$. Obviously, $\hat{J}(\mathcal{A}) \subseteq N$. If $\hat{J}(\mathcal{A})=\emptyset$, then $\mathcal{A}=\mathcal{B}^{+}$, and hence \mathcal{A} is a strong M-tensor by the fact that \mathcal{A} is an $M B$-tensor. The conclusion follows in the case.

Now we suppose that $\hat{J}(\mathcal{A}) \neq \emptyset$, let $\mathcal{A}_{1}=\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}^{(1)}\right)$, and let $d_{i}^{(1)}$ be the value of the largest off-diagonal entry in the i th row of \mathcal{A}_{1}, that is,

$$
d_{i}^{(1)}=\max _{\substack{i_{2} \ldots i_{m} \in N, \delta_{i i_{2} \ldots i_{m}}=0}} a_{i i_{2} \cdots i_{m}}^{(1)}
$$

Furthermore, let $\hat{J}_{1}=\hat{J}\left(\mathcal{A}_{1}\right), h_{1}=\min _{i \in \hat{J}_{1}} d_{i}^{(1)}$ and

$$
J_{1}=\left\{i \in \hat{J}_{1}: d_{i}^{(1)}=h_{1}\right\}
$$

Then $J_{1} \subseteq \hat{J}_{1}$ and $h_{1}>0$.
Consider $\mathcal{A}_{2}=\mathcal{A}_{1}-h_{1} \varepsilon^{\hat{J}_{1}}=\left(a_{i_{1} \cdots i_{m}}^{(2)}\right)$. Obviously, \mathcal{A}_{2} is also symmetric by the definition of $\varepsilon^{\hat{J}_{1}}$. Note that

$$
a_{i_{1} \cdots i_{m}}^{(2)}=\left\{\begin{array}{cc}
a_{i_{1} \cdots i_{m}}^{(1)}-h_{1}, & i_{1}, i_{2}, \ldots, i_{m} \in \hat{J}_{1} \tag{4}\\
a_{i_{1} \cdots i_{m}}^{(1)}, & \text { otherwise }
\end{array}\right.
$$

for $i \in J_{1}$,

$$
\begin{equation*}
\beta_{i}\left(\mathcal{A}_{2}\right)=\beta_{i}\left(\mathcal{A}_{1}\right)-h_{1}=0 \tag{5}
\end{equation*}
$$

and that for $i \in \hat{J}_{1} \backslash J_{1}$,

$$
\begin{equation*}
\beta_{i}\left(\mathcal{A}_{2}\right)=\beta_{i}\left(\mathcal{A}_{1}\right)-h_{1}>0 \tag{6}
\end{equation*}
$$

Furthermore, let

$$
\begin{equation*}
\mathcal{A}_{1}=\mathcal{A}=\mathcal{B}_{1}^{+}+\mathcal{C}_{1}, \mathcal{A}_{2}=\mathcal{B}_{2}^{+}+\mathcal{C}_{2} \tag{7}
\end{equation*}
$$

where $\mathcal{B}_{1}^{+}=\left(b_{i_{1} \cdots i_{m}}^{(1)}\right) \in R^{[m, n]}, \mathcal{B}_{2}^{+}=\left(b_{i_{1} \cdots i_{m}}^{(2)}\right) \in R^{[m, n]}$ and

$$
b_{i i_{2} \cdots i_{m}}^{(1)}=a_{i i_{2} \cdots i_{m}}^{(1)}-\beta_{i}\left(\mathcal{A}_{1}\right), b_{i i_{2} \cdots i_{m}}^{(2)}=a_{i i_{2} \cdots i_{m}}^{(2)}-\beta_{i}\left(\mathcal{A}_{2}\right) \text { for } i \in N .
$$

Combining (4), (5), (6), (7) with the fact that for each $j \notin \hat{J}_{1}, \beta_{i}\left(\mathcal{A}_{2}\right)=\beta_{i}\left(\mathcal{A}_{1}\right)$, we have

$$
\mathcal{B}_{2}^{+}=\mathcal{B}_{1}^{+}+h_{1} \varepsilon^{\hat{J}_{1}} .
$$

Since $\mathcal{A}_{1}=\mathcal{A}$ is an $M B$-tensor, \mathcal{B}_{1}^{+}is a strong M-tensor. Note that $\mathcal{B}_{2}^{+} \geq \mathcal{B}_{1}^{+}$, then by Lemma 4 , we have that \mathcal{B}_{2}^{+}is also a strong M-tensor, and hence \mathcal{A}_{2} is a symmetric $M B$-tensor.

Now replace \mathcal{A}_{1} by \mathcal{A}_{2}, and repeat this process. Let $\hat{J}\left(\mathcal{A}_{2}\right)=\{i \in N$: there is at least one positive off-diagonal entry in the i th row of $\left.\mathcal{A}_{2}\right\}$. Then $\hat{J}\left(\mathcal{A}_{2}\right)=\hat{J}_{1} \backslash J_{1}$. Repeat this process until $\hat{J}\left(\mathcal{A}_{s+1}\right)=\emptyset$. Let $\mathcal{M}=\mathcal{A}_{s+1}$. Then (3) holds.

Theorem 6. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}$ be a symmetric $M B$-tensor. If m is even, then \mathcal{A} is positive definite, consequently, \mathcal{A} is a P-tensor.

Proof. If m is even, then \mathcal{A} an even order symmetric $M B$-tensor. By Theorem 5 , we have that if \mathcal{A} itself is a symmetric strong M-tensor, then it is positive definite by Lemma 3 . Otherwise, (3) holds with $s>0$. For $x \in R^{n}$, by (3) and the fact that \mathcal{M} is positive definite, we have

$$
\mathcal{A} x^{m}=\mathcal{M} x^{m}+\sum_{k=1}^{s} h_{k} \varepsilon^{\hat{J}_{k}} x^{m}=\mathcal{M} x^{m}+\sum_{k=1}^{s} h_{k}\left\|x_{\hat{J}_{k}}\right\|_{m}^{m} \geq \mathcal{M} x^{m}>0
$$

This implies that \mathcal{A} is positive definite. Note that a symmetric tensor is a P-tensor if and only if it is positive definite [23], therefore \mathcal{A} is a P-tensor. The proof is complete.

Similar to Theorems 5 and 6, by the part (II) of Lemma 3, Lemma 4, and the fact that a symmetric tensor is a P_{0}-tensor if and only it is positive semi-definite [23], we easily have that an even order symmetric $M B_{0}$-tensor is positive semi-definite and a P_{0}-tensor.

Theorem 7. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}$ be a symmetric $M B_{0}$-tensor. Then either \mathcal{A} is an M-tensor itself, or we have

$$
\mathcal{A}=\mathcal{M}+\sum_{k=1}^{s} h_{k} \varepsilon^{\hat{J}_{k}}
$$

where \mathcal{M} is an M-tensor, s is a positive integer, $h_{k}>0$ and $\hat{J}_{k} \subseteq N$, for $k=1,2, \cdots, s$.
Theorem 8. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}$ be a symmetric $M B_{0}$-tensor. If m is even, then \mathcal{A} is positive semi-definite, consequently, \mathcal{A} is a P_{0}-tensor.

Since an even order real symmetric tensor is positive (semi-)definite if and only if all its H-eigenvalues are positive (non-negative) [17], by Theorems 6 and 8 we have the following results.

Corollary 1. All the H-eigenvalues of an even order symmetric MB-tensor are positive.
Corollary 2. All the H-eigenvalues of an even order symmetric $M B_{0}$-tensor are nonnegative.

3. Relationships between $B-\left(B_{0^{-}}\right)$tensors, quasi-double B - $\left(B_{0^{-}}\right)$tensors and $M B$ ($M B_{0^{-}}$)tensors

In [13], Li and Li gave the relationship between B-tensors and quasi-double B-tensors as follows.

Proposition 2. (See [13, Proposition 4].) Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}$, $n \geq 2$. If \mathcal{A} is a B-tensor, then \mathcal{A} is a quasi-double B-tensor.

Now, we prove that a B_{0}-tensor is a quasi-double B_{0}-tensor.
Proposition 3. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}, n \geq 2$. If \mathcal{A} is a B_{0}-tensor, then \mathcal{A} is a quasi-double B_{0}-tensor.

Proof. If \mathcal{A} is a B_{0}-tensor, then by Proposition 1 for any $i \in N$,

$$
a_{i \cdots i}-\beta_{i}(\mathcal{A}) \geq \Delta_{i}(\mathcal{A}),
$$

that is,

$$
a_{i \cdots i}-\beta_{i}(\mathcal{A})-\Delta_{i}^{k}(\mathcal{A}) \geq \beta_{i}(\mathcal{A})-a_{i k \cdots k}, \text { for } k \neq i
$$

Obviously, for $i, j \in N, j \neq i$,

$$
a_{i \cdots i}-\beta_{i}(\mathcal{A}) \geq \Delta_{i}(\mathcal{A}) \geq 0
$$

and

$$
a_{j \cdots j}-\beta_{j}(\mathcal{A})-\Delta_{j}^{i}(\mathcal{A}) \geq \beta_{j}(\mathcal{A})-a_{j i \cdots i} \geq 0
$$

It is easy to see that Inequality (1) holds, i.e., \mathcal{A} is a quasi-double B_{0}-tensor by Definition 2. The proof is complete.

Next, we establish the relationships between quasi-double B - $\left(B_{0}-\right)$ tensors and $M B-\left(M B_{0}-\right)$ tensors. Before that a lemma is given.

Lemma 9. (See [12, Theorem 2.1].) Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in C^{[m, n]}, n \geq 2$. Then

$$
\sigma(\mathcal{A}) \subseteq \mathcal{K}(\mathcal{A})=\bigcup_{\substack{i, j \in N, j \neq i}} \mathcal{K}_{i, j}(\mathcal{A})
$$

where $\sigma(\mathcal{A})$ is the spectrum of \mathcal{A}, that is, the set of all eigenvalues of \mathcal{A},

$$
\mathcal{K}_{i, j}(\mathcal{A})=\left\{z \in \mathbb{C}:\left(\left|z-a_{i \cdots i}\right|-r_{i}^{j}(\mathcal{A})\right)\left|z-a_{j \cdots j}\right| \leq\left|a_{i j \cdots j}\right| r_{j}(\mathcal{A})\right\}
$$

and

$$
r_{i}^{j}(\mathcal{A})=r_{i}(\mathcal{A})-\left|a_{i j \cdots j}\right|=\sum_{\substack{\delta_{i, i_{2}, \ldots, i_{m}}=0, \delta_{j, i_{2}}, \ldots, i_{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|
$$

Theorem 10. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}$, $n \geq 2$. If \mathcal{A} is a quasi-double B - (B_{0}-)tensor, then \mathcal{A} is an $M B-\left(M B_{0}-\right)$ tensor.

Proof. We first prove that a quasi-double B_{0}-tensor is an $M B_{0}$-tensor. Let

$$
\mathcal{A}=\mathcal{B}^{+}+\mathcal{C}
$$

where $\mathcal{B}^{+}=\left(b_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}$ and

$$
b_{i i_{2} \cdots i_{m}}=a_{i i_{2} \cdots i_{m}}-\beta_{i}(\mathcal{A}) \text { for } i \in N
$$

Since \mathcal{A} is a quasi-double B_{0}-tensor, we have by Definition 2 that for all $i, j \in N, i \neq j$,

$$
\begin{equation*}
\left(a_{i \cdots i}-\beta_{i}(\mathcal{A})\right)\left(a_{j \cdots j}-\beta_{j}(\mathcal{A})-\Delta_{j}^{i}(\mathcal{A})\right) \geq\left(\beta_{j}(\mathcal{A})-a_{j i \cdots i}\right) \Delta_{i}(\mathcal{A}) \tag{8}
\end{equation*}
$$

Note that $b_{i i_{2} \cdots i_{m}}=a_{i i_{2} \cdots i_{m}}-\beta_{i}(\mathcal{A}) \leq 0$ for $\delta_{i, i_{2}, \ldots, i_{m}}=0$, that is, \mathcal{B}^{+}is a Z-tensor. Hence, Inequality (8) is equivalent to

$$
b_{i \cdots i}\left(b_{j \cdots j}-r_{j}^{i}\left(\mathcal{B}^{+}\right)\right) \geq\left|b_{j i \cdots i}\right| r_{i}\left(\mathcal{B}^{+}\right) \text {for all } i, j \in N, i \neq j .
$$

We now prove that $\tau\left(\mathcal{B}^{+}\right)=\min _{\lambda \in \sigma\left(\mathcal{B}^{+}\right)} \operatorname{Re} \lambda \geq 0$. Suppose that $\tau\left(\mathcal{B}^{+}\right)<0$, then there is $\lambda_{0} \in \sigma\left(\mathcal{B}^{+}\right)$such that $\operatorname{Re} \lambda_{0}=\tau\left(\mathcal{B}^{+}\right)<0$. Since A a quasi-double B_{0}-tensor, we have by Definition $2 b_{i \cdots i}=a_{i \cdots i}-\beta_{i}(\mathcal{A})>0$, consequently, $b_{j \cdots j}-r_{j}^{i}\left(\mathcal{B}^{+}\right) \geq 0$ for $j \neq i$. This implies that for all $i, j \in N, i \neq j$,

$$
\begin{aligned}
\left|\lambda_{0}-b_{i \cdots i}\right|\left(\left|\lambda_{0}-b_{j \cdots j}\right|-r_{j}^{i}\left(\mathcal{B}^{+}\right)\right) & \geq\left|\operatorname{Re} \lambda_{0}-b_{i \cdots i}\right|\left(\left|\operatorname{Re} \lambda_{0}-b_{j \cdots j}\right|-r_{j}^{i}\left(\mathcal{B}^{+}\right)\right) \\
& >\left|b_{i \cdots i}\right|\left(\left|b_{j \ldots j}\right|-r_{j}^{i}\left(\mathcal{B}^{+}\right)\right) \\
& =b_{i \cdots i}\left(b_{j \cdots j}-r_{j}^{i}\left(\mathcal{B}^{+}\right)\right) \\
& \geq\left|b_{j i \cdots i}\right| r_{i}\left(\mathcal{B}^{+}\right)
\end{aligned}
$$

equivalently, $\lambda_{0} \notin \mathcal{K}_{j, i}\left(\mathcal{B}^{+}\right)$for all $i, j \in N, i \neq j$. Hence, $\lambda_{0} \notin \mathcal{K}\left(\mathcal{B}^{+}\right)$, which contradicts Lemma 9. Therefore, $\tau\left(\mathcal{B}^{+}\right) \geq 0$. Furthermore, note that \mathcal{B}^{+}is a Z-tensor, by Lemma 1 and Definition 4 we have that \mathcal{B}^{+}is an M-tensor, and that \mathcal{A} is an $M B_{0}$-tensor.

Similarly, we can obtain that a quasi-double B-tensor is an $M B$-tensor. The proof is complete.

By Proposition 2, Proposition 3 and Theorem 10, we easily get that

$$
\left\{B_{0} \text {-tensors }\right\} \subseteq\left\{\text { quasi-double } B_{0} \text {-tensors }\right\} \subseteq\left\{M B_{0} \text {-tensors }\right\}
$$

and that

$$
\{B \text {-tensors }\} \subseteq\{\text { quasi-double } B \text {-tensors }\} \subseteq\{M B \text {-tensors }\} \text {. }
$$

Furthermore, as shown in $[22,23,27]$, an odd order B - $\left(B_{0^{-}}\right)$tensor may not be a P -$\left(P_{0^{-}}\right)$tensor, and an even order nonsymmetric $B-\left(B_{0^{-}}\right)$tensor may not be a $P-\left(P_{0^{-}}\right)$tensor. Hence, we conclude that an odd order $M B$-tensor may not be a P-tensor, an odd order $M B_{0}$-tensor may not be a P_{0}-tensor, an even order nonsymmetric $M B$-tensor may not be a P-tensor, and an even order nonsymmetric $M B_{0}$-tensor may not be a P_{0}-tensor.

Since an even order symmetric $M B_{0}$-tensor is positive semi-definite, and an even order symmetric $M B$-tensor is positive definite, we have immediately the following result.

Corollary 3. (I) An even order symmetric B_{0}-tensor is positive semi-definite;
(II) An even order symmetric quasi-double B_{0}-tensor is positive semi-definite;
(III) An even order symmetric B-tensor is positive definite;
(IV) An even order symmetric quasi-double B-tensor is positive definite.

Remark 2. The part (II) of Corollary 3 is exactly Conjecture 1 in [13].

4. Sufficient conditions for $M B-\left(M B_{0}-\right)$ tensors

In this section, we give some checkable sufficient conditions for $M B-\left(M B_{0^{-}}\right)$tensors, also for the positive (semi-)definiteness of tensors. Before that a lemma in [12] is given as follows.

Lemma 11. (See [12, Theorem 2.2].) Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in C^{[m, n]}, n \geq 2$. And let S be a nonempty proper subset of N. Then

$$
\sigma(\mathcal{A}) \subseteq \mathcal{K}^{S}(\mathcal{A})=\left(\bigcup_{i \in S, j \in \bar{S}} \mathcal{K}_{i, j}(\mathcal{A})\right) \bigcup\left(\bigcup_{i \in \bar{S}, j \in S} \mathcal{K}_{i, j}(\mathcal{A})\right)
$$

where $K_{i, j}(\mathcal{A})$ is defined as in Lemma 9.

Theorem 12. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}, n \geq 2$, with

$$
\mathcal{A}=\mathcal{B}^{+}+\mathcal{C}
$$

where $\mathcal{B}^{+}=\left(b_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}$ and

$$
b_{i i_{2} \cdots i_{m}}=a_{i i_{2} \cdots i_{m}}-\beta_{i}(\mathcal{A}) \text { for } i \in N
$$

If $b_{i \cdots i}>0$ for $i \in N$, and there is a nonempty proper subset S of N such that for each $i \in S$ and each $j \in \bar{S}$,

$$
\left(b_{i \cdots i}-r_{i}^{j}\left(\mathcal{B}^{+}\right)\right) b_{j \cdots j} \geq r_{j}\left(\mathcal{B}^{+}\right)\left|b_{i j \cdots j}\right|
$$

and

$$
\left(b_{j \cdots j}-r_{j}^{i}\left(\mathcal{B}^{+}\right)\right) b_{i \cdots i} \geq r_{i}\left(\mathcal{B}^{+}\right)\left|b_{j i \cdots i}\right|,
$$

then \mathcal{A} is an $M B_{0}$-tensor, and positive semi-positive.
Proof. By Definition 2, we only prove that \mathcal{B}^{+}is an M-tensor. Note that \mathcal{B}^{+}is a Z-tensor. Hence, we only prove $\tau\left(\mathcal{B}^{+}\right) \geq 0$.

Suppose that $\tau\left(\mathcal{B}^{+}\right)<0$. Then there is $\lambda_{0} \in \sigma\left(\mathcal{B}^{+}\right)$such that $\operatorname{Re} \lambda_{0}=\tau\left(\mathcal{B}^{+}\right)<0$. Similar to the proof of Theorem 10, we can get that for each $i \in S$ and each $j \in \bar{S}$,

$$
\left|\lambda_{0}-b_{j \cdots j}\right|\left(\left|\lambda_{0}-b_{i \cdots i}\right|-r_{i}^{j}\left(\mathcal{B}^{+}\right)\right)>\left|b_{i j \cdots j}\right| r_{j}\left(\mathcal{B}^{+}\right),
$$

and

$$
\left|\lambda_{0}-b_{i \cdots i}\right|\left(\left|\lambda_{0}-b_{j \cdots j}\right|-r_{j}^{i}\left(\mathcal{B}^{+}\right)\right)>\left|b_{j i \cdots i}\right| r_{i}\left(\mathcal{B}^{+}\right)
$$

that is, $\lambda_{0} \notin \mathcal{K}^{S}(\mathcal{A})$. This contradicts Lemma 11 . Hence, $\tau\left(\mathcal{B}^{+}\right) \geq 0$, consequently, \mathcal{A} is an $M B_{0}$-tensor, and positive semi-positive.

Similar to the proof of Theorem 12, by Lemma 11 we easily obtain a sufficient condition for $M B$-tensors.

Theorem 13. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in R^{[m, n]}, n \geq 2$, with

$$
\mathcal{A}=\mathcal{B}^{+}+\mathcal{C}
$$

where \mathcal{B}^{+}is defined as in Theorem 12. If $b_{i \cdots i}>0$ for $i \in N$, and there is a nonempty proper subset S of N such that for each $i \in S$ and each $j \in \bar{S}$,

$$
\left(b_{i \cdots i}-r_{i}^{j}\left(\mathcal{B}^{+}\right)\right) b_{j \cdots j}>r_{j}\left(\mathcal{B}^{+}\right)\left|b_{i j \cdots j}\right|
$$

and

$$
\left(b_{j \cdots j}-r_{j}^{i}\left(\mathcal{B}^{+}\right)\right) b_{i \cdots i}>r_{i}\left(\mathcal{B}^{+}\right)\left|b_{j i \cdots i}\right|,
$$

then \mathcal{A} is an $M B$-tensor, and positive semi-positive.

Acknowledgements

The first author's work was supported by Applied Basic Research Programs of Science and Technology Department of Yunnan Province (Grant No. 2013FD002). The second author's work was supported by the Hong Kong Research Grant Council (Grant Nos. PolyU 502510, 502111, 501212 and 501913). The third author's work was supported by the National Natural Science Foundation of China (Grant No. 11361074) and IRTSTYN.

References

[1] Y. Chen, Y. Dai, D. Han, W. Sun, Positive semidefinite generalized diffusion tensor imaging via quadratic semidefinite programming, SIAM J. Imaging Sci. 6 (2013) 1531-1552.
[2] K.C. Chang, K. Pearson, T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci. 6 (2008) 507-520.
[3] W. Ding, L. Qi, Y. Wei, M-tensors and nonsingular M-tensors, Linear Algebra Appl. 439 (2013) 3264-3278.
[4] M.A. Hasan, A.A. Hasan, A procedure for the positive definiteness of forms of even-order, IEEE Trans. Automat. Control 41 (1996) 615-617.
[5] J. He, T.Z. Huang, Inequalities for M-tensors, J. Inequal. Appl. 2014 (2014) 114.
[6] S. Hu, Z. Huang, H. Ni, L. Qi, Positive definiteness of diffusion kurtosis imaging, Inverse Probl. Imaging 6 (2012) 57-75.
[7] S. Hu, L. Qi, Algebraic connectivity of an even uniform hypergraph, J. Comb. Optim. 24 (2012) 564-579.
[8] S. Hu, L. Qi, The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph, Discrete Appl. Math. 169 (2014) 140-151.
[9] S. Hu, L. Qi, J. Shao, Cored hypergraphs, power hypergraphs and their Laplacian eigenvalues, Linear Algebra Appl. 439 (2013) 2980-2998.
[10] S. Hu, L. Qi, J. Xie, The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hyper-graph, Linear Algebra Appl. 469 (2015) 1-27.
[11] C.Q. Li, F. Wang, J.X. Zhao, Y. Zhu, Y.T. Li, Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Appl. Math. 255 (2014) 1-14.
[12] C.Q. Li, Y.T. Li, X. Kong, New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl. 21 (2014) 39-50.
[13] C.Q. Li, Y.T. Li, Double B-tensors and quasi-double B-tensors, Linear Algebra Appl. 466 (2015) 343-356.
[14] H.B. Li, T.Z. Huang, H. Li, On some subclasses of P-matrices, Numer. Linear Algebra Appl. 14 (2007) 391-405.
[15] J.M. Peña, A class of P-matrices with applications to the localization of the eigenvalues of a real matrix, SIAM J. Matrix Anal. Appl. 22 (2001) 1027-1037.
[16] J.M. Peña, On an alternative to Gerschgorin circles and ovals of Cassini, Numer. Math. 95 (2003) 337-345.
[17] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput. 40 (2005) 1302-1324.
[18] L. Qi, J. Shao, Q. Wang, Regular uniform hypergraphs, s-cycles, s-paths and their largest Laplacian H-eigenvalues, Linear Algebra Appl. 443 (2014) 215-227.
[19] L. Qi, C. Xu, Y. Xu, Nonnegative tensor factorization, completely positive tensors and an Hierarchically elimination algorithm, SIAM J. Matrix Anal. Appl. 35 (2014) 1227-1241.
[20] L. Qi, G. Yu, E.X. Wu, Higher order positive semi-definite diffusion tensor imaging, SIAM J. Imaging Sci. 3 (2010) 416-433.
[21] L. Qi, G. Yu, Y. Xu, Nonnegative diffusion orientation distribution function, J. Math. Imaging Vision 45 (2013) 103-113.
[22] L. Qi, Y.S. Song, An even order symmetric B tensor is positive definite, Linear Algebra Appl. 457 (2014) 303-312.
[23] Y. Song, L. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl. 165 (2015) 854-873.
[24] F. Wang, L. Qi, Comments on 'Explicit criterion for the positive definiteness of a general quartic form', IEEE Trans. Automat. Control 50 (2005) 416-418.
[25] F. Wang, The tensor eigenvalue methods for the positive definiteness identification problem, Doctor thesis, The Hong Kong Polytechnic University, 2006.
[26] Y. Yang, Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl. 31 (2010) 2517-2530.
[27] P. Yuan, L. You, Some remarks on P, P_{0}, B and B_{0} tensors, Linear Algebra Appl. 459 (2014) 511-521.
[28] L. Zhang, L. Qi, G. Zhou, M-tensors and some applications, SIAM J. Matrix Anal. Appl. 35 (2014) 437-452.

[^0]: * Corresponding author.

 E-mail address: liyaotang@ynu.edu.cn (Y. Li).

