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Abstract In this paper we propose a quadratically convergent algorithm for finding the
largest eigenvalue of a nonnegative homogeneous polynomial map where the Newton method
is used to solve an equivalent system of nonlinear equations. The semi-symmetric tensor is
introduced to reveal the relation between homogeneous polynomial map and its associated
semi-symmetric tensor. Based on this relation a globally and quadratically convergent algo-
rithm is established where the line search is inserted. Some numerical results of this method
are reported.
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1 Introduction

Eigenvalues for higher order tensors were introduced in [7,9,13]. Meanwhile, the Perron-
Frobenius theorem for nonnegative tensors is related to measuring higher order connectivity
in hypergraphs [1,2,6]. The Perron-Frobenius theorem is further extended to multilinear
forms and polynomial map with nonnegative coefficients [5,17]. Applications of eigenvalues
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of tensors and multivariate polynomial include signal processing [14], medical resonance
imaging [15,16], higher-order Markov chains [10], positive definiteness of even-order mul-
tivariate forms in automatic control [11]. Subsequently, an algorithm for finding the largest
eigenvalue of a nonnegative tensor, extending the Collatz’s method for nonnegative matrices,
was proposed by [10], its variations and linear convergence were studied in [8,18,19].

In this paper we consider the polynomial map P = (p1, p2, · · · , pn)T : �n → �n where
each pi is a homogeneous polynomial of degree d ≥ 1 with nonnegative coefficients. For
convenience, P is called a nonnegative homogeneous polynomial map of degree d .

Definition 1.1 Assume that P is a nonnegative homogeneous polynomial map of degree d .
We say that (λ, x) ∈ R × (Rn\{0}) is an eigenvalue-eigenvector pair of P if

P(x) = λx [d]. (1.1)

Here, x [p] = [x p
1 , x p

2 , · · · , x p
n ]T .

This definition is from [5] where a minor change is made. If we let F(x) = P(x)[1/d],
then (λ, x) ∈ R × (Rn\{0}) is an eigenvalue-eigenvector pair of P if and only if (λ[1/d], x) ∈
R × (Rn\{0}) is an eigenvalue-eigenvector pair of F .

If P is a homogeneous polynomial map of degree d , then there exists a (d + 1)-order
n-dimensional tensor A defined by

A = (ai0i1···id ), ai0i1···id ∈ �, 1 ≤ i0, i1, · · · , id ≤ n, (1.2)

such that P(x) = Axd , where

Axd =
⎛
⎝

n∑
i1i2,··· ,id=1

ai0i1i2···id xi1 xi2 · · · xid

⎞
⎠

1≤i0≤n

. (1.3)

We call A an associated tensor of P .
In addition, A is called nonnegative (or, respectively, positive) if ai0i1···id ≥ 0 (or, respec-

tively, ai0i1···id > 0). A nonnegative tensor A is called reducible if there exists a nonempty
proper index subset I ⊂ {1, 2, · · · , n} such that

Ai0i1···id = 0, ∀i0 ∈ I,∀i1, · · · id 	∈ I. (1.4)

If A is not reducible, then we call A irreducible. It is clear that if A is nonnegative, then
P = Axd is a nonnegative homogeneous polynomial map of degree d .

In [5], the Perron-Frobenius theorem is extended to a nonnegative homogeneous polyno-
mial map.

Theorem 1.1 ([5]) Let P and A be a nonnegative homogeneous polynomial map of degree
d and its associated tensor, respectively. Assume that A is irreducible. Then we have

(1) there are an unique scalar λ and a positive vector x which satisfy (1.1) and

λ = inf
y∈�n++

max
1≤i≤n

Pi (y)

yd
i

= sup
y∈�n+\{0}

min
1≤i≤n,yi 	=0

Pi (y)

yd
i

,

where Pi (y) is the i-th component of P(x).
(2) If ω ∈ C and v = (v1, · · · , vn)T ∈ Cn\{0} are such that P(v) = ωv[d], then |ω| ≤ λ.

This theorem is a combination of Corollaries 4.2 and 4.3 in [5]. In [5], the results applied
to a more general condition, called the weak irreducibility condition. Here we only state them
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under the irreducibility condition. The definitions of irreducibility and weak irreducibility of
a polynomial map may refer to [5].

In [5], an algorithm for finding the largest eigenvalue of a nonnegative polynomial map was
also proposed by Friedland, Gauber and Han. We call it the FGH method for short. Local linear
convergence of the FGH method was established in [5]. In this paper we want to study the
relation between a nonnegative homogenous polynomial Axd and its corresponding tensor
A, and propose a quadratically convergent algorithm for finding the largest eigenvalue of
that nonnegative homogeneous polynomial map. The semi-symmetric tensor is introduced
to reveal the relation between a homogeneous polynomial map and its associated tensor,
while the property of semi-symmetric tensor gives a sound foundation for a new method for
computing the eigenvalues of a homogenous polynomial map or a tensor.

This paper is organized as follows. We discuss the relation between a homogenous poly-
nomial map and its associate semi-symmetric tensor in Sect. 2. A Newton algorithm for
computing the largest eigenvalue of a nonnegative homogenous polynomial map is proposed
in Sect. 3. We establish quadratical and global convergence of the algorithm in Sect. 4. In
Sect. 5, we give some preliminary numerical test results.

Let �n+ = {x ∈ �n | x ≥ 0}, �n++ = {x ∈ �n | x > 0}. Denote x ◦ y as the product of x
and y by x ◦ y = (x1 y1, · · · , xn yn)T where x, y ∈ �n . The tensor A is called symmetric if
its entries are invariant under any permutation of their indices, i.e.

a j0 j1··· jd = ai0i1···id ,

j0 j1 · · · jd is any permutation of i0i1 · · · id , 1 ≤ i0, i1, · · · , id ≤ n. A nonnegative tensor
A is called primitive [3] if there exists a positive integer k such that F (k)(x) ∈ �n++ for
any nonzero x ∈ �n+ where F (1)(x) ≡ F(x) ≡ (Axd)[1/d], F (k)(x) = F(F (k−1)(x)) for
k = 2, 3, · · · .

2 A nonnegative homogeneous polynomial map and its associated tensor

In this section, we discuss the relation between a nonnegative homogeneous polynomial map
and its associated tensor.

Example 2.1 Let P(x) = Ax3, where A = (ai jkl) is defined by

a1111 = a2222 = 2, a3333 = 3;
a1112 = 1, a1121 = −2, a1211 = 1;
a1113 = 2, a1131 = −1, a1311 = 0;
a2123 = −3, a2132 = 2, a2321 = 5;
ai jkl = 0 elsewhere.

Then

P(x) =
⎛
⎝

2x3
1 + x2

1 x3

2x3
2 + 4x1x2x3

3x3
3

⎞
⎠ .

The above example shows that P is nonnegative although its associated tensor A is not
nonnegative.

In order to reveal the relation of a nonnegative homogeneous polynomial map and its
associated tensor, a semi-symmetric tensor is introduced in the following.
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Definition 2.1 Assume that d ≥ 1. An (d +1)-order n-dimensional tensor A is called semi-
symmetric if its entries are invariant under any permutation of their backward d indices,
i.e.

ai0 j1 j2··· jd = ai0i1···id , (2.1)

1 ≤ i0 ≤ n, j1 · · · jd is any permutation of i1 · · · id , 1 ≤ i1, · · · , id ≤ n.

From the definition, it is easy to see that a semi-symmetric tensor is the same as the
symmetric tensor except the first subscript, a symmetric tensor is semi-symmetric, matrix is
always semi-symmetric.

In order to describe semi-symmetric tensors, we denote �k,d by

�k,d = {(ik, ik+1, · · · id) : ik ≤ ik+1 ≤ · · · ≤ id , ik, ik+1, · · · id = 1, 2, · · · , n}, (2.2)

and define the set of all permutations of (ik · · · id) by

Cik ···id = { jk jk+1 · · · jd | : ( jk jk+1 · · · jd) is a permutations of (ik · · · id)}, (2.3)

for (ik · · · id) ∈ �k,d . For a semi-symmetric tensor, only entries with subscripts i0i1 · · · id for
i0 = 1, 2, · · · , n and all (i1 · · · id) ∈ �1,d need to be given, other entries can be determined
by (2.1).

Lemma 2.1 Let P be a homogeneous polynomial map of degree d. Then there is an unique
(d + 1)-order n-dimensional semi-symmetric tensor As such that

P(x) = As xd . (2.4)

Proof Each component in P is a homogeneous polynomial of d degree which includes

ud =
(

d + n − 1
n − 1

)
(2.5)

different monomials, all these monomials of degree d are ordered in a ud -dimensional vector
by the graded lexicographic order in the following

r(x) = (xd
1 , x (d−1)

1 x2, · · · , x (d−1)
1 xn, · · · , xd

n )T . (2.6)

It is noted that ud is also the cardinal number of �1d defined in (2.2). Let the coefficients of
all monomials in Pi be mi j , j = 1, 2, · · · , ud , i = 1, · · · , n. Then

P(x) = Mr(x), (2.7)

where M = (mi j ) ∈ Rn×ud . Now we define (d + 1)-order n-dimensional semi-symmetric
tensor As where

aii1···id = mi j

|Ci1···id |
, (2.8)

i1 · · · id ∈ �1,d , |Ci1···id | is the cardinal number of Ci1···id defined in (2.3), j corresponds
with the grlex order of i1 · · · id ∈ �1,d , j = 1, 2, · · · , ud . Other entries of As are determined
by (2.1). Hence we have
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(As xd)i =
n∑

j1=1

n∑
j2=1

· · ·
n∑

jd=1

ai j1··· jd x j1 · · · x jd

=
n∑

i1=1

n∑
i2=i1

· · ·
n∑

id=id−1

|Ci1···id |aii1···id xi1 · · · xid

=
∑

(i1i2···id )∈�1d

|Ci1···id |aii1···id xi1 · · · xid

= eT
i Mr(x) = Pi (x), (2.9)

for i = 1, · · · , n. In (2.9), the second equality is obtained by combing same monomials with
the same coefficient, and the fourth equality is from (2.6) and (2.8).

Now we prove the uniqueness. Let Ã be semi-symmetric such that Ãxd = P(x). Since
Ã is semi-symmetric, for i1 · · · id ∈ �1,d , j is the grlex order of i1 · · · id ∈ �1,d , ãi i1···id is
also determined by (2.8). Hence Ã = As . �


Afterward we call As in (2.4) the associated semi-symmetric tensor. From the definition
of a nonnegative polynomial map and (2.7), we know that P is nonnegative if and only if
the coefficients of P(x), mi j ≥ 0, i = 1, · · · , n; j = 1, · · · , ud which implies by (2.8) that
As ≥ 0. Hence P is nonnegative if and only if its associated semi-symmetric tensor As is
nonnegative.

Example 2.1 (continued) Let As be the associated semi-symmetric tensor of P . Then

ã1111 = ã2222 = 2, ã3333 = 3;
ã1113 = ã1131 = ã1311 = 1

|C113| = 1

3
;

ã2123 = ã2132 = ã2213 = ã2231 = ã2312 = ã2321 = 4

|C113| = 4

6
= 2

3
;

ãi jkl = 0 elsewhere.

It is noted that A is neither nonnegative nor semi-symmetric, while P and its associated
semi-symmetric tensor As are nonnegative.

Hence, by means of nonnegative homogenous polynomial map we can extend nonnegative
tensor in the following.

Definition 2.2 An (d + 1)-order n-dimensional tensor A is called semi-nonnegative, if P is
nonnegative where P(x) = Axd .

The following is a corollary of Theorem 1.1.

Corollary 2.1 Assume that (d + 1)-order n-dimensional tensor A is semi-nonnegative, and
that P is weakly irreducible where P(x) = Axd . Then the pair (x∗, λ∗) in Eq. (1.1) satisfy
(1) and (2) in Theorem 1.1.

In the next section, we propose an algorithm for computing the largest eigenvalue of
nonnegative homogenous polynomial map.

3 Algorithm for finding the largest eigenvalue of a nonnegative homogenous
polynomial map

In this section, we propose an algorithm for computing the largest eigenvalue of a nonnegative
homogenous polynomial map.

123



632 J Glob Optim (2015) 61:627–641

Let U be the (d + 1)-order n-dimensional unit tensor whose entries are

ui1i2···id =
{

1, if i1 = i2 = · · · = id ,

0, otherwise.
(3.1)

Let P be a nonnegative homogeneous polynomial map of degree d , A be the associated
semi-symmetric tensor of P . Then

P(x) + t x [d] = (A + tU)xd , (3.2)

where t > 0.

Lemma 3.1 Let P be a nonnegative homogeneous polynomial map of degree d, A be the
associated semi-symmetric tensor, t > 0, and P(x) + t x [d] = (A + tU)x [d].
(1) If A is irreducible, then (A + tU) is primitive.
(2) If λ is the largest eigenvalue of (A + tU), then λ − t is the largest eigenvalue of P.

Proof This lemma follows from Corollary 3 in [13] and Theorem 2.4 in [8]. �

We choose σ > 0, define F : Rn+1++ �→ Rn+1

F(x, λ) =
⎛
⎜⎝

P(x) + σ x [d] − λx [d]

1
d+1

(
1 −

n∑
i=1

xd+1
i

)
⎞
⎟⎠ , (3.3)

where P is nonnegative homogeneous of degree d, and get an important relation between the
solution of F(x, λ) and the largest eigenvalue of P .

Lemma 3.2 Let P and A be nonnegative homogeneous of degree d and its associated semi-
symmetric tensor, respectively. Assume that A is irreducible. Then there is a pair (λ∗, x∗) > 0
where λ∗ is the largest eigenvalue of P and (λ∗, x∗) satisfies (1.1), and thus there are λ̃∗ > 0
and x̃∗ > 0 such that F(x̃∗, λ̃∗) = 0.

On the contrary, if there are λ̃ > 0 and x̃ > 0 such that F(x̃, λ̃) = 0, then (λ̃ − σ) is the
largest eigenvalue of P.

Proof From Theorem 1.1, it follows that there exists a pair (λ∗, x∗) > 0 where λ∗ is the
largest eigenvalue of P and (λ∗, x∗) satisfies (1.1). Let

c =
n∑

i=1

(x∗
i )d+1, x̃ = x∗

d+1
√

c
.

Then from (3.3) and direct computation we have that (x̃, λ∗ +σ) satisfies F(x̃, λ∗ +σ) = 0.
Assume that there exist λ̃ > 0 and x̃ > 0 such that F(x̃, λ̃) = 0. Then from the first

equation of (3.3), we have
Ax̃d = (λ̃ − σ)x̃ [d], (3.4)

i.e. (λ̃ − σ, x̃) satisfies (1.1). Because A is the associated semi-symmetric tensor of P , by
Lemma 3.1

P(x̃) = Ax̃d .

Combining with (3.4) we have

P(x̃) = (λ̃ − σ)x̃ [d].

According to the assumption, A is irreducible. From Lemma 2.2 in [10], it follows that
λ̃ − σ > 0 which implies that λ̃ − σ is the largest eigenvalue of P from Theorem 1.1. �
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Based on Lemma 3.2, the problem for finding the largest eigenvalue of P is equivalent
to solving (3.3). In the computation, P(x) is replaced by As xd where As is the associated
semi-symmetric tensor of P . The computation of the Jacobian of of F(x, λ) is determined
in the following lemma.

Lemma 3.3 The Jacobian of F(x, λ) is

F ′(x, λ) =
(

d
(
(σU + As)xd−1 − λ diag(x [d−1])

) −x [d]
−(x [d])T 0

)
, (3.5)

where

(As x (d−1))i j =
n∑

i2,··· ,id=1

ai ji2···id xi2 · · · xid , i, j = 1, · · · , n.

Proof From direct computation, we have

(Axd)i =
n∑

i1,i2,··· ,id=1

aii1i2···id xi1 · · · xid

=
∑

i1i2···id∈�1,d

|ci1i2···id |aii1i2···id xi1 · · · xid

=
d∑

k=0

∑

i1i2···id∈�
j,k
1,d

|ci1i2···id |aii1i2···id xi1 · · · xid , (3.6)

where �
j,k
1,d is a subset of �1,d , and its entries include k j’s, k = 0, 1, · · · , d; j = 1, · · · , n.

In (3.6), the second equality is obtained by the same deduction as (2.9). We compute the
partial derivative and obtain that

∂(Axd)i

∂x j
=

d∑
k=1

∑

i1i2···id∈�
j,k
1,d

|ci1i2···id |aii1i2···id

∂(xi1 · · · xid )

∂x j

=
d−1∑
k=0

∑

i2···id∈�
j,k
2,d

|c j
i2···id

|ai ji2···id (k + 1)(xi2 · · · xid ), (3.7)

where |c j
i2···id

| = |c ji2···id |, and the position of the first subscript j may be changed so that the

permutation of subscripts satisfies the order in �1,d . Let i2 · · · id ∈ �
j,k
2,d , β j,k be the number

of permutation i2 · · · id deleting k j’s. Then

(k + 1)|c j
i2···id

| = (k + 1)Ck+1
d β j,k = dCk

d−1β j,k = d|ci2···id |.
Substituting in (3.7) with the above equality, we have

∂(Axd)i

∂x j
=

d−1∑
k=0

∑

i2···id∈�
j,k
2,d

d|ci2···id |ai ji2···id xi2 · · · xid

= d(Axd−1)i j ,

for i, j = 1, · · · , n. Hence we obtain (3.5) by the simple computation of other elements in
F ′(x, λ). �
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It is noted that the expression of
∂(Axd)i

∂x j
will be complex if A is not semi-symmetric.

Hence the property of semi-symmetric benefits the computation of Jacobian matrix. In the
following, we give Newton method to find λ∗ > 0 and x∗ > 0 such that F(x∗, λ∗) = 0.

Algorithm 3.1 Newton Method

Step 0. Choose initial values. Choose x1 ∈ �n+, λ0 > σ > 0, let k = 1.
Step 1. Determine (�xk,�λk) by solving

F(xk, λk) + F ′(xk, λk)

(
�xk

�λk

)
= 0, (3.8)

where F(xk, λk) and F ′(xk, λk) are defined by (3.3) and (3.5).
Step 2. Compute new iterate point,

(xk+1, λk+1) = (xk, λk) + (�xk,�λk).

Step 3. Check termination condition. If ‖F(xk+1, λk+1)‖2 = 0, then stop and set
(x∗, λ∗) = (xk+1, λk+1) ; otherwise k = k + 1, go to Step 1.

4 Convergence of algorithm

Now we discuss convergence of Algorithm 3.1. It is easy to see F(x, λ) is continuously
differentiable in Rn+1++ . From Lemma 3.2 we know that there exists an (x∗, λ∗) in Rn+1+ such
that F(x∗, λ∗) = 0. The following conclusion is important for the feasibility and convergence
of Algorithm 3.1.

Lemma 4.1 Assume that P is nonnegative and its associated semi-symmetric tensor As is
irreducible, F(x, λ) is defined by (3.3), (x∗, λ∗) ∈ Rn+1++ such that F(x∗, λ∗) = 0. Then
F ′(x∗, λ∗) is nonsingular.

Proof Let P(x) = As xd . Then from Lemma 2.1, As is nonnegative.
Let (zT , t)T ∈ Rn+1 and

0 = F ′(x∗, λ∗)
(

z
t

)
=

(
d

([(σU + As)x∗(d−1)]T − λ∗diag(x∗[d−1])
)

z − t x∗[d]
−(x∗[d])T z

)
,

(4.1)
where the second equality is determined by (3.5).

Multiplying the first equation by x∗ in left-side, we have

d
(
(σU + As)x∗d − λ∗x∗[d])T

z − t
n∑

i=1

(x∗
i )d+1 = 0.

Because F(x∗, λ∗) = 0, i.e. (σU + As)x∗d = λ∗x∗[d] and x∗ > 0, we have t = 0.
Substituting into the first equation of (4.1), we have

((σU + As)x∗(d−1) − λ∗diag(x∗[d−1]))z = 0. (4.2)

Let Q = (σU + As)x∗(d−1) − λ∗diag(x∗[d−1]). Before proving z = 0, we prove that
Q is irreducible. If Q is not irreducible, then there exists a nonempty proper index subset
I ⊂ {1, 2, · · · , n} such that

qi j = 0, ∀i ∈ I, ∀ j 	∈ I. (4.3)
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The off-diagonal elements of Q are those of As x∗(d−1), i.e.

qi j =
n∑

i2···id

ai ji2···id x∗
i2

· · · x∗
id

, ∀i 	= j.

By As ≥ 0 and x∗ > 0, (4.3) means that

ai ji2···id = 0, ∀i ∈ I, ∀ j 	∈ I, i2, · · · , id = 1, · · · , n,

which contradicts the fact that As is irreducible (see (1.4)).
The diagonal elements of Q may be not positive, however there exists a positive number

δ > 0 such that (δE + Q) ≥ 0, where E is unit matrix. Meanwhile, δE + Q is irreducible,
and by (4.2)

(δE + Q)z = δz.

If z 	= 0, then according to Perron-Frobenius theorem of a nonnegative irreducible matrix,
z > 0 or z < 0. However the second equation of (4.1) means zT x∗[d] = 0, thus z = 0.

Hence (z, t) = 0 which implies that F ′(x∗, λ∗) is nonsingular. �

Lemma 4.2 Assume (x∗, λ∗) ∈ Rn+1++ such that F(x∗, λ∗) = 0. Then there exists a constant
c1 > 0 such that

‖F ′(x, λ) − F ′(x∗, λ∗)‖ ≤ c1‖(x, λ) − (x∗, λ∗)‖, ∀(x, λ) ∈ D

where D is the neighborhood of (x∗, λ∗).

Proof From the definition, we have

F ′(x, λ) − F ′(x∗, λ∗)

=
(

d{(Ax (d−1)− Ax∗(d−1)) −(λdiag(x [d−1]) − λ∗diag(x∗[d−1]))} x∗[d] − x [d]
(x∗[d] − x [d])T 0

)
.

(4.4)

By direct computation, we obtain that

Ax (d−1)− Ax∗(d−1)

= Ax (d−1)− Ax (d−2)x∗ + Ax (d−2)x∗ − · · · + Axx∗(d−2) − Ax∗(d−1)

= [Ax (d−2) + Ax (d−3)x∗ + · · · + Ax∗(d−2)](x − x∗), (4.5)

x∗[d] − x [d]

= x∗[d] − x∗[d−1] ◦ x + x∗[d−1] ◦ x − · · · + x [d−1] ◦ x∗ − x [d]

= diag(x∗[d−1] + x∗[d−2] ◦ x + · · · + x [d−1])(x∗ − x), (4.6)

and

λdiag(x [d−1]) − λ∗diag(x∗[d−1])
= λdiag(x [d−1]) − λ∗diag(x [d−1]) + λ∗diag(x [d−1]) − λ∗diag(x∗[d−1])
= (λ − λ∗)diag(x [d−1]) + λ∗diag(x [d−1] − x∗[d−1]),
= (λ − λ∗)diag(x [d−1]) + λ∗diag(x [d−2] + x [d−3] ◦ x∗ + · · · + x∗[d−2])diag(x − x∗).

(4.7)

Substituting into (4.4) with (4.5)–(4.7), we obtain the conclusion of this lemma from basic
property of matrix and vector norm. �
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Denote wk = (xk, λk), pk = (�xk,�λk). The quadratic convergence of Algorithm 3.1
is given below.

Theorem 4.1 Let P and A be a nonnegative homogeneous map of degree d and its associated
semi-symmetric tensor, respectively. Assume that A is irreducible. Then we have the following
conclusions.

(1) There is an open set S which contains w∗ = (x∗, λ∗) such that for any w0 ∈ S the
iterates wk generated by Algorithm 3.1 are well-defined, remain in S and converge to
w∗.

(2) There is a constant β > 0 such that

‖wk+1 − w∗‖ ≤ β‖wk − w∗‖2, k = 0, 1, 2, · · · .

Proof The conclusion in this theorem is obtained by Lemmas 4.1 and 4.2, Theorem 2.1 in
[4].

In order to obtain a globally convergent algorithm, we use the global technique in Algo-
rithm 3.1. A merit function f (x) = 1

2‖F(x)‖2 is chosen, pk is modified such that

− pT
k ∇ f (wk) ≥ δ‖pk‖‖∇ f (wk)‖, (4.8)

a line search is used to find a steplength tk ∈ (0, 1] such that

f (wk + tk pk) ≤ f (wk) + ρtk∇ f (wk)
T pk, (4.9)

∇ f (wk + tk pk)
T pk ≥ σ̄∇ f (wk)

T pk, (4.10)

and
wk + tk pk ∈ �n+1++ , (4.11)

where ρ ∈ (0, 0.5), σ̄ ∈ (ρ, 1), δ ∈ (0, 1).

Algorithm 4.1 Global Newton method

Step 0. Choose initial values. Choose ρ ∈ (0, 0.5), σ̄ ∈ (ρ, 1), δ ∈ (0, 1), ε ≥ 0, w1 ∈
�n+1++ , where w

(1)
n+1 > σ > 0, k = 1.

Step 1. Find pk = (�xk,�λk) by solving (3.8). If (4.8) is not satisfied, then choose τk

and compute
pk = −((F ′

k)
T F ′

k + τk I )−1∇ f (wk), (4.12)

such that (4.8) is satisfied.
Step 2. Find a steplength tk ∈ (0, 1] satisfying (4.9),(4.10) and (4.11). Set

wk+1 = wk + tk pk . (4.13)

Step 3 Check termination condition. If f (wk+1) ≤ ε, then set (x∗, λ∗) = wk+1 and stop;
otherwise k = k + 1, go to Step 1.

Remark In Step 1, if (4.8) is not satisfied, then the technique in [12, pages 264–265] is used
to choose τk . According to Lemma 3.1 in [12], it is not difficult to find a tk which can satisfy
(4.9),(4.10) and (4.11).

In order to discuss the global convergence, we define the level set

L(w0) = {w| f (w) ≤ f (w0)}
for w0 ∈ Rn+1.
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Theorem 4.2 Suppose that F ′(w) is Lipschitz continuous in L(w0). Then we have

lim
k→∞ ∇ f (wk) = 0.

Proof This theorem follows Theorem 3.2 in [12] and the condition (4.8).

Theorem 4.3 Let P be nonnegative and its associated semi-symmetric tensor As be irre-
ducible, F : �n+1++ → �n+1 be defined by (3.3), w0 ∈ �n+1++ . Assume that F ′(w) is Lipschitz
continuous in L(w0), tk = 1 is admissible and (4.8) is satisfied for all k greater than a certain
index k0, F ′(w∗) is nonsingular where w∗ is a limited point of {wk} generated by Algorithm
4.1. Then {wk} quadratically converges to w∗.

Proof By Theorem 4.2, we have

lim
k→∞ ∇ f (wk) = 0,

where ∇ f (wk) = F ′(wk)F(wk). Hence, {wk} is convergent. Let w∗ be the limited point.
Because F ′(w∗) is nonsingular, we obtain

lim
k→∞ F(wk) = 0.

From the assumption, we know that there exists k0 such that tk = 1 is admissible and
(4.8) is satisfied for all k ≥ k0. This means that wk can be generated by Algorithm 3.1 for
k > k0. The conclusion is obtained by Theorem 4.1. �


5 Numerical test

In this section, we present some preliminary numerical tests. We use Algorithm 4.1 to compute
some randomly generated problems. The computation was done on a personal computer
(Pentium IV, 1.83GHz,512MB) running Matlab 7.0.

Because it is difficult to find test problems in the literature, we generate some problems
by the random approaches for testing the performance of Algorithm 4.1. In the following
problems, let P(x) = Axd ∈ �n where d is odd.

TP I and TP II are generated from some similar problems in [8].
TP I (special case) P(x) = Axd is defined as

p(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(a1 + γ )xd
1 + 0.5

(
n∑

i=1

bi xi

n∑
i=1

ci xi

) d−1
2

(
c1

n∑
i=1

bi xi + b1

n∑
i=1

ci xi

)

· · · · · ·

(a j + γ )xd
j + 0.5

(
n∑

i=1

bi xi

n∑
i=1

ci xi

) d−1
2

(
c j

n∑
i=1

bi xi + b j

n∑
i=1

ci xi

)

· · · · · ·

(an + γ )xd
n + 0.5

(
n∑

i=1

bi xi

n∑
i=1

ci xi

) d−1
2

(
cn

n∑
i=1

bi xi + bn

n∑
i=1

ci xi

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.1)

where ai , bi , ci (i = 1, · · · , n) are random number in [0, 1], γ > 0 is a parameter.
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Table 1 Results of Problem I

TPI Algorithm 4.1 Power algorithm
d n γ iter term cpu iter term cpu

3 20 10 8 8.1564e−6 0.0110 7 4.3884e−7 0.0050
3 20 102 9 1.1396e−13 0.0094 14 4.2976e−6 0.0060
3 20 103 8 6.8536e−6 0.0069 57 9.7904e−6 0.0113
3 20 104 9 0.00 0.0060 171 9.5596e−6 0.0335
3 60 102 10 3.6380e−12 0.0329 9 1.0862e−6 0.0160
3 60 103 10 7.2760e−12 0.0172 10 3.9026e−6 0.0063
3 60 104 10 3.6380e−12 0.0132 22 4.1141e−6 0.0115
3 60 105 10 3.7774e−10 0.0123 160 9.7867e−6 0.0740
3 100 103 10 2.1849e−7 0.0198 9 7.8849e−7 0.0088
3 100 104 10 2.2774e−7 0.0186 13 2.9888e−6 0.0110
3 100 105 10 2.8368e−7 0.0184 43 6.4058e−6 0.0335
3 100 106 10 2.4005e−7 0.0192 291 9.7326e−6 0.2133

TP II (special case) P(x) = Axd is defined as

p(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(a1 + γ )xd
1 + 0.5

(
n∑

i=1

bi xi

) d+1
2

x
d−1

2
1 + 0.5

(
n∑

i=1

x
d+1

2
i

) (
n∑

i=1

bi xi

) d−1
2

b1

· · · · · ·

(a j + γ )xd
j + 0.5

(
n∑

i=1

bi xi

) d+1
2

x
d−1

2
j + 0.5

(
n∑

i=1

x
d+1

2
i

) (
n∑

i=1

bi xi

) d−1
2

b j

· · · · · ·

(an + γ )xd
n + 0.5

(
n∑

i=1

bi xi

) d+1
2

x
d−1

2
n + 0.5

(
n∑

i=1

x
d+1

2
i

) (
n∑

i=1

bi xi

) d−1
2

bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.2)
where ai , bi (i = 1, · · · , n) are random number in [0, 1], γ > 0 is a parameter.

TP III (general case)
p(x) = Mr(x) + γ xd , (5.3)

where p(x) is homogeneous polynomial map with the degree d , M = (mi j ) ∈ �n×ud , ud is
defined in (2.5), mi j (i = 1, · · · , n; j = 1, · · · , ud) are random numbers in [0, 1], γ > 0 is
a parameter.

Algorithm 4.1 and the power algorithm in [5] are used to solve these problems. Tables 1, 2
and 3 list the numerical results of TP I-III where d, n are the number of dimension and order in
tensor, γ is chosen from 10 to 107, iter is the number of iterations, cpu is cpu time in seconds.
In order to compare these two methods, we choose the same initial point x0 = (1, · · · , 1)T ,

and the same termination conditions

‖λk − λk+1‖ ≤ 10−5, ‖P(xk+1) − λk+1x [d]
k+1‖2 ≤ 10−5.

If the termination conditions are not satisfied in 500 iteration, then the algorithm stops. In
addition, term is the last value of ‖λk − λk+1‖.

The results reported in Tables 1, 2 and 3 show that Algorithm 4.1 performs well for these
test problems. Although γ changes a lot, there is only subtle changes in the number of
iterations of Algorithm 4.1. When γ is relative small, the number of iteration of the Power
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Table 2 Results of Problem II

TPII Algorithm 4.1 Power algorithm
d n γ iter term cpu iter term cpu

3 20 10 9 3.5135e−8 0.0081 14 9.2605e−6 0.0065
3 20 102 9 6.5457e−8 0.0075 30 9.6946e−6 0.0088
3 20 103 9 5.9262e−8 0.0062 211 9.8138e−6 0.0359
3 20 104 9 3.0865e−8 0.0065 >500
3 60 10 9 4.5475e−13 0.0257 15 9.6892e−6 0.0097
3 60 102 9 6.8212e−13 0.0130 17 5.0157e−6 0.0112
3 60 103 9 6.4213e−13 0.0112 38 7.6581e−6 0.0111
3 60 104 9 1.8190e−12 0.0110 178 9.3875e−6 0.0430
3 100 10 9 1.6151e−8 0.0288 16 6.6040e−6 0.0212
3 100 102 9 1.1550e−8 0.0142 16 7.1325e−6 0.0105
3 100 103 9 1.5506e−8 0.0147 25 6.5653e−6 0.0103
3 100 104 9 1.4251e−8 0.0148 84 9.9054e−6 0.0333
7 100 104 10 9.6392e−7 0.0226 25 9.9586e−6 0.0111
7 100 105 11 9.3132e−10 0.0467 29 6.2184e−6 0.0223
7 100 106 11 1.8626e−9 0.0277 34 6.0468e−6 0.0166
7 100 107 11 3.7253e−9 0.0200 87 7.8995e−6 0.0355

Table 3 Results of Problem III

TPIII Algorithm 4.1 Power algorithm
d n γ iter term cpu iter term cpu

3 20 102 8 4.5475e−13 0.1833 9 3.7559e−6 0.0806
3 20 103 8 1.3188e−11 0.1864 27 6.9269e−6 0.2029
3 20 104 8 2.3481e−7 0.1919 164 9.5877e−6 1.2369
3 20 105 9 1.3097e−10 0.2127 > 500
3 40 102 8 9.2580e−8 2.2022 6 5.0420e−6 0.8786
3 40 103 8 8.8839e−7 2.1601 11 2.5065e−6 1.5659
3 40 104 8 8.9635e−6 2.1639 35 8.0440e−6 4.8113
3 40 105 9 4.8021e−10 2.4448 225 9.6221e−6 32.228
3 60 102 9 1.4522e−11 17.6957 6 1.7072e−7 8.3350
3 60 103 9 1.0914e−11 17.7530 8 1.8095e−6 11.4625
3 60 104 9 6.8556e−15 17.6028 18 3.6666e−06 25.2876
3 60 105 9 1.1059e−9 17.7278 87 8.6087e−6 123.5715

algorithm is the same as or a little more than that of Algorithm 4.1, and uses less time.
While γ increases, the Power algorithm needs more than two times of number of iteration
for Algorithm 4.1, and uses more time.

From Corollary 5.2 in [5], it follows that the Power algorithm slowly converges, when λ
r

approaches to 1, where r is the maximal modulus of the eigenvalues of p(x) distinct from
λ. From TPI-III, it is easy to see that as γ is larger and larger, λ

r is very close to 1. Hence,
it is not strange that the Power algorithm needs more time and more number of iterations to
solve TPI-III when γ is large.

Table 4 lists the numerical result of two algorithms which solves TPIII when d = 3, n =
40, γ = 10,000, which show the quadratic convergence of Algorithm 4.1 and linear conver-
gence of the Power algorithm.
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Table 4 Convergent rate k Algorithm 4.1 Power algorithm
term term

1 2.6880e+3 1.5818e+4
2 2.2477e+3 2.6090e+1
3 2.0965e+3 1.6462e+1
4 2.0965e+3 1.0412e+1
5 9.6079e+2 6.5965e+0
6 1.0508e+2 4.1832e+0
7 5.8060e−1 2.5645e+0
8 8.9635e−6 1.6851e+0
9 1.0700e+0
10 6.7950e−1
15 7.0301e−2
20 7.3150e−3
25 4.7758e−4
30 4.9415e−5
35 8.0440e−6

6 Comments

In this paper we propose a quadratically convergent algorithm for computing the largest
eigenvalue of a nonnegative homogeneous polynomial map where the Newton method is
used to solve an equivalent system of nonlinear equations. The semi-symmetric tensor is
introduced to reveal the relation between homogeneous polynomial map and its associated
semi-symmetric tensor. The technique of computation may be used to find the other eigen-
values of a nonnegative homogeneous polynomial map or a nonnegative tensor.
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