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Abstract. Circulant tensors naturally arise from stochastic process and spec-
tral hypergraph theory. The joint moments of stochastic processes are symmet-

ric circulant tensors. The adjacency, Laplacian and signless Laplacian tensors

of circulant hypergraphs are also symmetric circulant tensors. The adjacency,
Laplacian and signless Laplacian tensors of directed circulant hypergraphs are

circulant tensors, but they are not symmetric in general. In this paper, we

study spectral properties of circulant tensors and their applications in spec-
tral hypergraph theory and stochastic process. We show that in certain cases,

the largest H-eigenvalue of a circulant tensor can be explicitly identified. In

particular, the largest H-eigenvalue of a nonnegative circulant tensor can be
explicitly identified. This confirms the results in circulant hypergraphs and di-

rected circulant hypergraphs. We prove that an even order circulant B0 tensor

is always positive semi-definite. This shows that the Laplacian tensor and the
signless Laplacian tensor of a directed circulant even-uniform hypergraph are

positive semi-definite. If a stochastic process is mth order stationary, where
m is even, then its mth order moment, which is a circulant tensor, must be

positive semi-definite. In this paper, we give various conditions for an even

order circulant tensor to be positive semi-definite.

1. Introduction. Circulant matrices are Topelitz matrices. They form an impor-
tant class of matrices in linear algebra and its applications [5, 9, 29]. As a natural
extension of circulant matrices, circulant tensors naturally arise from stochastic
process and spectral hypergraph theory.

Denote [n] := {1, · · · , n}. A real mth order n-dimensional tensor (hypermatrix)
A = (aj1···jm) is a multi-array of real entries aj1···jm , where jl ∈ [n] for l ∈ [m]. Let

2010 Mathematics Subject Classification. Primary: 15A18, 15A69.
Key words and phrases. Circulant tensors, circulant hypergraphs, directed circulant hyper-

graphs, eigenvalues of tensors, positive semi-definiteness.
The second author’s work was supported by the Hong Kong Research Grant Council (Grant

No. PolyU 502510, 502111, 501212 and 501913).
∗Corresponding author: Liqun Qi.

1227

http://dx.doi.org/10.3934/jimo.2016.12.1227


1228 ZHONGMING CHEN AND LIQUN QI

A = (aj1···jm) be a real mth order n-dimensional tensor. If for jl ∈ [n− 1], l ∈ [m],
we have

aj1···jm = aj1+1···jm+1,

then we say that A is an mth order Toeplitz tensor. If for jl, kl ∈ [n], kl = jl + 1
mod(n), l ∈ [m], we have

aj1···jm = ak1···km , (1)

then we say that A is an mth order circulant tensor. Clearly, a circulant tensor is
a Toeplitz tensor. By the definition, all the diagonal entries of a Toeplitz tensor are
the same. Thus, we may say the diagonal entry of a Toeplitz or circulant tensor.
In fact, if A = (aj1···jm) is a Toeplitz tensor, we have that for jl ∈ [n], l ∈ [m],

aj1···jm = aj1+k···jm+k, ∀ 0 ≤ k ≤ min{n− j1, · · · , n− jm}.

When m = 3, the definition of Toeplitz tensors is consistent with Definition 3.1 of
[1]. Tensors which are circulant with respect to two modes were studied in [27].
Note that the circulant tensors considered here are circulant with respect to all the
modes.

We denote by Tm,n the set of all real mth order n-dimensional tensors. Then Tm,n
is a linear space of dimension nm. Denote the set of all real mth order n-dimensional
circulant tensors by Cm,n. Then Cm,n is a linear subspace of Tm,n, with dimension
nm−1. Let A = (aj1···jm) ∈ Tm,n. If the entries aj1···jm are invariant under any
permutation of their indices, then A is called a symmetric tensor. Denote the
set of all real symmetric mth order n-dimensional tensors by Sm,n. Then Sm,n is a
linear subspace of Tm,n.

Let A = (aj1...jm) ∈ Tm,n and x ∈ <n. Then Axm is a homogeneous polynomial
of degree m, defined by

Axm =

n∑
j1,...,jm=1

aj1...jmxj1 . . . xjm .

Assume that m is even. If Axm ≥ 0 for all x ∈ <n, then we say that A is
positive semi-definite. If Axm > 0 for all x ∈ <n,x 6= 0, then we say that A is
positive definite. Clearly, if m is odd, there is no nontrivial positive semi-definite
tensors. The definition of positive semi-definite tensors was first introduced in [21]
for symmetric tensors. Here we extend that definition to any tensors in Tm,n. To
the best of our knowledge, positive semi-definite tensors and their corresponding
homogeneous polynomials have applications in automatical control [21], magnetic
resonance imaging [3, 10, 25, 26] and spectral hypergraph theory [11, 16, 22].

In this paper, we study spectral properties of circulant tensors and their appli-
cations in spectral hypergraph theory and stochastic process. In the next section,
we study the applications of circulant tensors in stochastic process and spectral hy-
pergraph theory. In particular, we study what are the concerns of the properties of
circulant tensors in these applications. If a stochastic process is mth order station-
ary, where m is even, then its mth order moment, which is a circulant tensor, must
be positive semi-definite. Hence, in the following three sections, we give various
conditions for an even order circulant tensor to be positive semi-definite.

It is well-known that a circulant matrix is generated from the first row vector of
that circulant matrix [5, 9, 29]. We may also generate a circulant tensor in this way.
In Section 3, we define the root tensor A1 ∈ Tm−1,n and the associated tensor
Ā1 ∈ Tm−1,n for a circulant tensor A ∈ Cm,n. We show that A is generated from
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A1. It is also well-known that the eigenvalues and eigenvectors of a circulant matrix
can be written explicitly [5, 9, 29]. After reviewing the definitions of eigenvalues and
H-eigenvalues of a tensor in Tm,n, we show that for any circulant tensors A ∈ Cm,n
with any m ≥ 2, including circulant matrices in C2,n, the same n independent
vectors are their eigenvectors. For a circulant tensor A ∈ Cm,n, we introduce a one
variable polynomial fA(t) as its associated polynomial. Using fA(t), we may find
the n eigenvalues λk(A) for k = 0, · · · , n−1, corresponding to these n eigenvectors.
We call these n eigenvalues the native eigenvalues of that circulant tensor A. In
particular, the first native eigenvalue λ0(A), which is equal to the sum of all the
entries of the root tensor, is an H-eigenvalue ofA. We show that when the associated
tensor is a nonnegative tensor, λ0(A) is the largest H-eigenvalue of A. This confirms
the results in circulant hypergraphs and directed circulant hypergraphs.

In Section 4, we study positive semi-definiteness of an even order circulant tensor.
Recently, it was proved in [24] that an even order symmetric B0 tensor is positive
semi-definite, and an even order symmetric B tensor is positive definite. In this
section, for any tensor A ∈ Tm,n, we define a symmetric tensor B ∈ Sm,n as its
symmetrization, and denote it sym(A). An even order tensor is positive semi-
definite or positive definite if and only if its symmetrization is positive semi-definite
or positive definite, respectively. We show that the symmetrization of a circulant B0

tensor is still a circulant B0 tensor, and the symmetrization of a circulant B tensor
is still a circulant B tensor. This implies that an even order circulant B0 tensor is
always positive semi-definite, and an even order circulant B tensor is always positive
definite. Thus, the Laplacian tensor and the signless Laplacian tensor of a directed
circulant even-uniform hypergraph are positive semi-definite. Some other sufficient
conditions for positive semi-definiteness of an even order circulant tensor are also
given in that section.

In Section 5, we study positive semi-definiteness of even order circulant tensors
with special root tensors. When the root tensor A1 is a diagonal tensor, we show
that in this case, the n native eigenvalues are indeed all the eigenvalues of that
circulant tensor A, with some adequate multiplicities and more eigenvectors. We
give all such eigenvectors explicitly. Then we present some conditions for an even
order circulant tensor with a diagonal root tensor to be positive semi-definite. When
the root tensor A1 itself is a circulant tensor, we call A a doubly circulant tensor.
We show that when m is even and A1 is a doubly circulant tensor itself, if the
root tensor of A1 is positive semi-definite, then A is also positive semi-definite.
An algorithm for determining positive semi-definiteness of an even order circulant
tensor with a diagonal root tensor, and its numerical experiments are also presented.

Throughout this paper, we assume that m,n ≥ 2. We use small letters x, u, v, α,
· · · , for scalers, small bold letters x,y,u, · · · , for vectors, capital letters A,B, · · · ,
for matrices, calligraphic letters A,B, · · · , for tensors. We reserve the letter i for the
imaginary unit. Denote 1j ∈ <n as the jth unit vector for j ∈ [n], 0 the zero vector

in <n, 1 the all 1 vector in <n, and 1̂ the alternative sign vector (1,−1, 1,−1, · · · )> ∈
<n. We call a tensor in Tm,n the identity tensor of Tm,n, and denote it I if all of
its diagonal entries are 1 and all of its off-diagonal entries are 0.

2. Applications in stochastic process and hypergraphs. In this section, we
study stochastic process, circulant hypergraphs and directed circulant hypergraphs.
We show that circulant tensors naturally arise from these applications. We study
what are the concerns on the properties of circulant tensors in these applications.
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2.1. Stochastic process. For a vector-valued random variable x = (x1, . . . , xn),
the joint moment of x is defined as the expected value of their product:

Mom(x1, · · · , xn) = E{x1x2 · · ·xn}.

The mth order moment of the stochastic vector x = (x1, . . . , xn) is a mth order
n-dimensional tensor, defined by

Mm(x) = [Mom(xi1 , · · · , xim)]
n
i1,··· ,im=1 .

By definition, we have: (i) Mm(x) is symmetric; (ii) when m = 2, M2(x) is the
covariance matrix of the stochastic vector x with mean 0; (iii) if y = A>x with
A ∈ <n×N , then Mm(y) = Mm(x)Am, where the product is defined in Section 3.

On the other hand, a discrete stochastic process x = {xk, k = 1, 2, · · · } is called
mth order stationary if for any points t1, · · · , tm ∈ Z+, the joint distribution of

{xt1 , · · · , xtm}

is the same as the joint distribution of

{xt1+1, · · · , xtm+1}.

A stochastic process is stationary if it is mth order stationary for any positive integer
m. It is well-known that a Markov chain is a stationary process if the initial state
is chosen according to the stationary distribution. We can see that the mth order
moment of a mth order stationary stochastic process x, Mm(x), is a mth order
Toeplitz tensor with infinite dimension. In practice, it may be difficult to handle
this case. Instead, a stochastic process x = {xk, k = 1, 2, · · · } can be approximated
by a stochastic process with period n, xn = {xnk , k = 1, 2, · · · }, where xnk = xnj if

k = j mod(n). For example, x1 = {x1, x1, x1, x1, · · · } and x2 = {x1, x2, x1, x2, · · · }.
We can see that the mth order moment of xn can be expressed by a mth order
n-dimensional tensor Mm(xn) since

Mom(xni1 , · · · , x
n
im) = Mom(xnj1 , · · · , x

n
jm),

where ik = jk mod(n) for k ∈ [m]. If the stochastic process x is mth order sta-
tionary, the mth order moment of the approximation with period n, Mm(xn), is a
circulant tensor of order m and dimension n.

Given a stochastic process xn with period n, by Theorem 7.1 of Chapter 9 [28],
one can derive that xn is the second order stationary if and only if M2(xn) is
positive semi-definite. In general, Mm(xn) is positive semi-definite when the order
m is even.

Proposition 1. For a stochastic process xn with period n, Mm(xn) is positive
semi-definite when m is even.

Proof. For any α ∈ <n, we have

Mm(xn)αm =

n∑
i1,··· ,im=1

αi1 · · ·αimMom(xni1 , · · · , x
n
im)

= Mom

(
n∑

i1=1

αi1x
n
i1 , · · · ,

n∑
im=1

αimx
n
im

)

= E

{(
n∑
i=1

αix
n
i

)m}
.
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Then, Mm(xn)αm ≥ 0 since m is even, which means Mm(xn) is positive semi-
definite.

This shows that positive semi-definiteness of curculant tensors is important. In
this paper, we will study conditions of positive semi-definiteness of circulant tensors.

2.2. Circulant hypergraphs. In the recent years, a number of papers appeared
in spectral hypergraph theory via tensors [4, 11, 12, 13, 14, 16, 19, 22, 23, 31, 30].

A hypergraph G is a pair (V,E), where V = [n] is the set of vertices and E is
a set of subsets of V . The elements of E are called edges. An edge e ∈ E has the
form e = (j1, · · · , jm), where jl ∈ V for l ∈ [m] and jl 6= jk if l 6= k. The order
of j1, · · · , jm is irrelevant for an edge. Given an integer m ≥ 2, a hypergraph G is
said to be m-uniform if |e| = m for all e ∈ E, where |e| denotes number of vertices
in the edge e. The degree of a vertex j ∈ V is defined as d(j) = |E(j)|, where
E(j) = {e ∈ E : j ∈ e}. If for all j ∈ V , the degrees d(j) have the same value d,
then G is called a regular hypergraph, or a d-regular hypergraph to stress its degree
d.

An m-uniform hypergraph G = (V,E) with V = [n] is called a circulant hy-
pergraph if G has the following property: if e = (j1, · · · , jm) ∈ E, kl = jl + 1
mod(n), l ∈ [m], then ē = (k1, · · · , km) ∈ E. Clearly, a circulant hypergraph is a
regular hypergraph.

For an m-uniform hypergraph G = (V,E) with V = [n], the adjacency tensor
A = A(G) is a tensor in Sm,n, defined by A = (aj1···jm),

aj1···jm =
1

(m− 1)!

{
1 if (j1, · · · , jm) ∈ E
0 otherwise.

The degree tensor D = D(G) of G, is a diagonal tensor in Sm,n, with its jth di-
agonal entry as d(j). The Laplacian tensor and the signless Laplacian tensor of G
are defined by L(G) = D(G) − A(G) and Q(G) = D(G) + A(G), which were ini-
tially introduced in [22], and studied further in [12, 14, 23]. The adjacency tensor,
the Laplacian tensor and the signless Laplacian tensors of a uniform hypergraph are
symmetric. The adjacency tensor and the signless Laplacian tensor are nonnegative.
The Laplacian tensor and the signless Laplacian tensor of an even-uniform hyper-
graph are positive semi-definite [22]. It is known [22] that the adjacency tensor,
the Laplacian tensor and the signless Laplacian tensor of a uniform hypergraph al-
ways have H-eigenvalues. The smallest H-eigenvalue of the Laplacian tensor is zero
with an H-eigenvector 1. The largest H-eigenvalues of the adjacency tensor and the
signless Laplacian tensor of a d-regular hypergraph are d and 2d respectively [22].

Clearly, the adjacency tensor, the Laplacian tensor and the signless Laplacian
tensor of a circulant hypergraph are symmetric circulant tensors.

2.3. Directed circulant hypergraphs. Directed hypergraphs have found appli-
cations in imaging processing [6], optical network communications [17], computer
science and combinatorial optimization [7]. However, unlike spectral theory of undi-
rected hypergraphs, it is almost blank for spectral theory of directed hypergraphs.

A directed hypergraph G is a pair (V,A), where V = [n] is the set of vertices and
A is a set of ordered subsets of V . The elements of A are called arcs. An arc e ∈ A
has the form e = (j1, · · · , jm), where jl ∈ V for l ∈ [m] and jl 6= jk if l 6= k. The
order of j2, · · · , jm is irrelevant. But the order of j1 is special. The vertex j1 is called
the tail of the arc e. It must be in the first position of the arc. The other vertices
j2, · · · , jm are called the heads of the arc e. Similar to m-uniform hypergraphs, we
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have m-uniform directed hypergraphs. The degree of a vertex j ∈ V is defined as
d(j) = |A(j)|, where A(j) = {e ∈ A : j is a tail of e}. If for all j ∈ V , the degrees
d(j) have the same value d, then G is called a directed regular hypergraph, or a
directed d-regular hypergraph.

Similarly, an m-uniform directed hypergraph G = (V,A) with V = [n] is called a
directed circulant hypergraph if G has the following property: if e = (j1, · · · ,
jm) ∈ A, kl = jl+1 mod(n), l ∈ [m], then ē = (k1, · · · , km) ∈ A. Clearly, a directed
circulant hypergraph is a regular directed hypergraph.

For an m-uniform directed hypergraph G = (V,A) with V = [n], the adjacency
tensor A = A(G) is a tensor in Tm,n, defined by A = (aj1···jm),

aj1···jm =
1

(m− 1)!

{
1 if (j1, · · · , jm) ∈ A
0 otherwise.

Then, the degree tensor D = D(G) of G, is a diagonal tensor in Tm,n, with its jth
diagonal entry as d(j). The Laplacian tensor and the signless Laplacian tensor of
G are defined by L(G) = D(G)−A(G) and Q(G) = D(G) +A(G).

The adjacency tensor, the Laplacian tensor and the signless Laplacian tensors
of a uniform directed hypergraph are not symmetric in general. The adjacency
tensor and the signless Laplacian tensor are still nonnegative. In general, we do not
know if the Laplacian tensor and the signless Laplacian tensor of an even-uniform
directed hypergraph are positive semi-definite or not. We may still show that the
smallest H-eigenvalue of the Laplacian tensor of an m-uniform directed hypergraph
is zero with an H-eigenvector 1, and the largest H-eigenvalues of the adjacency
tensor and the signless Laplacian tensor of a directed d-regular hypergraph are d
and 2d respectively.

Clearly, the adjacency tensor, the Laplacian tensor and the signless Laplacian
tensor of a directed circulant hypergraph are circulant tensors. In general, they are
not symmetric.

3. Eigenvalues of a circulant tensor. It is well-known that the other row vectors
of a circulant matrix are rotated from the first row vector of that circulant matrix
[5, 9, 29]. We may also regard a circulant tensor in this way. In order to do this, we

introduce row tensors for a tensor A = (aj1···jm) ∈ Tm,n. Let Ak = (a
(k)
j1···jm−1

) ∈
Tm−1,n be defined by a

(k)
j1···jm−1

≡ akj1···jm−1
. We call Ak the kth row tensor of A

for k ∈ [n]. Let A be a circulant tensor. Then we see that the row tensors Ak for

k = 2, · · · , n, are generated from A1 = (αj1···jm−1
), where αj1···jm−1

≡ a
(1)
j1···jm−1

.

We call A1 the root tensor of A. We see that c0 = α1···1 is the diagonal entry of
A. The off-diagonal entries of A are generated by the other entries of A1. Thus,
we define Ā1 = (ᾱj1···jm−1) ∈ Tm−1,n by ᾱ1···1 = 0 and ᾱj1···jm−1 = αj1···jm−1 if

(j1, · · · , jm−1) 6= (1, · · · , 1), and call Ā1 the associated tensor of A.
We may further quantify this generating operation. Let A = (aj1···jm) ∈ Tm,n

and Q = (qjk) ∈ T2,n. Then as in [21], B = (bk1···km) ≡ AQm is defined by

bk1···km =

n∑
j1,··· ,jm=1

aj1···jmqj1k1 · · · qjmkm ,
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for k1, · · · , km ∈ [n]. Now we denote P = (pjk) ∈ T2,n as a permutation matrix
with pjj+1 = 1 for j ∈ [n− 1], pn1 = 1 and pjk = 0 otherwise, i.e.,

P =



0 1 · · · 0 0
0 0 1 0
... 0 0

. . .
...

0
. . .

. . . 1
1 0 · · · 0 0

 . (2)

Then, from the definition of circulant tensors, we have the following proposition.

Proposition 2. Suppose that A ∈ Cm,n and P is defined by (2). Then for k ∈ [n],
we have

Ak+1 = AkPm−1,

where An+1 ≡ A1.

We may also use the definition of circulant tensors to prove the following propo-
sition. As the proof is simple, we omit the proof here.

Proposition 3. Suppose that A ∈ Tm,n and P is defined by (2). Then the following
three statements are equivalent.

(a). A ∈ Cm,n.
(b). APm = A.
(c). For any C ∈ C2,n, ACm ∈ Cm,n.

We may denote a circulant matrix C ∈ C2,n as

C =



c0 c1 · · · cn−2 cn−1

cn−1 c0 c1 cn−2

... cn−1 c0
. . .

...

c2
. . .

. . . c1
c1 c2 · · · cn−1 c0

 . (3)

It is well-known [5, 9, 29] that the eigenvectors of C are given by

vk =
(
1, ωk, ω

2
k, · · · , ωn−1

k

)>
, (4)

where ωk = e
2πik
n for k + 1 ∈ [n], with corresponding eigenvalues λk = fC(ωk),

where fC is the associated polynomial of C, defined by

fC(t) = c0 + c1t+ · · ·+ cn−1t
n−1.

We may also extend this result to circulant tensors. Note that v0 = 1 is a real
vector.

For A = (aj1···jm) ∈ Tm,n and x = (x1, · · · , xn)> ∈ Cn, let Axm−1 be a vector
in Cn whose jth component is defined as

(Axm−1)j =

n∑
j2,...,jm=1

ajj2...jmxj2 . . . xjm ,

and let x[m−1] = (xm−1
1 , . . . , xm−1

n )>. If Axm−1 = λx[m−1] for some λ ∈ C and
x ∈ Cn \ {0}, then λ is called an eigenvalue of A and x is called an eigenvector
of A, associated with λ. If x is real, then λ is also real. In this case, they are
called an H-eigenvalue and an H-eigenvector respectively. The largest modulus of
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the eigenvalues of A is called the spectral radius of A, and denoted as ρ(A).
The definition of eigenvalues was first given in [21] for symmetric tensors. It was
extended to tensors in Tm,n in [2].

Suppose that A ∈ Cm,n. Let its root tensor be A1 = (αj1···jm−1
). Define the

associated polynomial fA by

fA(t) =

n∑
j1,··· ,jm−1=1

αj1···jm−1
tj1+···+jm−1−m+1. (5)

Theorem 3.1. Suppose that A ∈ Cm,n, its root tensor is A1 = (αj1···jm−1), and

its associated tensor is Ā1 = (ᾱj1···jm−1). Denote the diagonal entry of A by c0 =
a1···1 = α1···1. Then any eigenvalue λ of A satisfies the following inequality:

|λ− c0| ≤
n∑

j1,··· ,jm−1=1

∣∣ᾱj1···jm−1

∣∣ . (6)

Furthermore, the vectors vk, defined by (4), are eigenvectors of A, with correspond-
ing eigenvalues λk = λk(A) = fA(ωk), where fA is the associated polynomial of A,
defined by (5). In particular, A always has an H-eigenvalue

λ0 = λ0(A) =

n∑
j1,··· ,jm−1=1

αj1···jm−1 , (7)

with an H-eigenvector 1, and when n is even,

λn
2

= λn
2

(A) =

n∑
j1,··· ,jm−1=1

αj1···jm−1
(−1)j1+···+jm−1−m+1 (8)

is also an H-eigenvalue of A with an H-eigenvector 1̂.

Proof. By the definition of circulant tensors and Theorem 6(a) of [21], all the ei-
genvalues of A satisfy (6). Let Aj be the jth row tensor of A for j ∈ [n]. Let P be
defined by (2) and k+ 1 ∈ [n]. It is easy to verify that Pvk = ωkvk. To prove that
(vk, λk) is an eigenpair of A, it suffices to prove that for j ∈ [n],

Ajvm−1
k = λkω

(j−1)(m−1)
k . (9)

We prove (9) by induction. By the definition of the associate polynomial, we see
that (9) holds for j = 1. Assume that (9) holds for j − 1. By Proposition 2, we
have

Ajvm−1
k = Aj−1P

m−1vm−1
k

= Aj−1(Pvk)m−1

= Aj−1(ωkvk)m−1

= ωm−1
k Aj−1v

m−1
k

= ωm−1
k λkω

(j−2)(m−1)
k

= λkω
(j−1)(m−1)
k .

This proves (9). The other conclusions follow from this by the definition of H-
eigenvalues and H-eigenvectors. The proof is completed.

However, unlike a circulant matrix, these n pairs of eigenvalues and eigenvectors
are not the only eigenpairs of a circulant tensor when m ≥ 3. We may see this from
the following example.
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Example 1. A circulant tensor A = (ajkl) ∈ C3,3 is generated from the following
root tensor

A1 =

 a b c
b c d
c d b

 , (10)

where a = 5.91395, b = 2.47255, c = 2.92646, d = 8.49514. By Theorem 3.1, we see
that it has eigenvalues λ0 = 39.1013, λ1 = 14.8057 + 1.1793i and λ2 = 14.8057 −
1.1793i. Using the polynomial system solver Nsolve available in Mathematica,
provided by Wolfram Research Inc., Version 8.0, 2010, we may verify that these three
eigenvalues are indeed eigenvalues of A. However, we found that A has three more
eigenvalues λ3 = 4.92535, λ4 = −2.08688 + 13.6795i and λ5 = −2.08688− 13.6795i.

Thus, for a circulant tensor A, we call the n eigenvalues λk(A) for k + 1 ∈ [n],
provided by Theorem 3.1, the native eigenvalues of A, call λ0(A) the first native
eigenvalue of A, and call λn

2
(A) the alternative native eigenvalue of A when

n is even.
We now show that the first native eigenvalue λ0(A) plays a special role in certain

cases.

Theorem 3.2. Suppose that A ∈ Cm,n, and its associated tensor is Ā1 =
(ᾱj1···jm−1). If Ā1 is a nonnegative tensor, then the first native eigenvalue λ0(A) is

the largest H-eigenvalue of A. If Ā1 is a non-positive tensor, then the first native
eigenvalue λ0(A) is the smallest H-eigenvalue of A.

Proof. By Theorem 3.1, we have

λ0(A) = c0 +

n∑
j1,··· ,jm−1=1

ᾱj1···jm−1 .

By this and (6), the conclusions hold.

We may apply this theorem to the adjacency, Laplacian and signless Laplacian
tensors of a circulant hypergraph or a directed circulant hypergraph. Then we
see that the smallest H-eigenvalue of the Laplacian tensor is zero, the largest H-
eigenvalue of the adjacency tensor is d, the largest H-eigenvalue of the signless
Laplacian tensor is 2d, where d is the common degree of the circulant hypergraph
or the directed circulant hypergraph. These confirm the results in Section 2.

When n is even, the alternative native eigenvalue λn
2

(A) also plays a special role
in certain cases. In order to study the role of the alternative native eigenvalue,
we introduce alternative and negatively alternative tensors. We call a tensor B =
(bj1···jm) ∈ Tm,n an alternative tensor, if bj1···jm(−1)

∑m
k=1 jk−m ≥ 0. We call B

negatively alternative if −B is alternative.
Then, by definition, we have the following proposition.

Proposition 4. Suppose B ∈ Tm,n and let Bk be the kth row tensor of B for k ∈ [n].
Then B ∈ Tm,n is alternative if and only if Bk is alternative when k is odd and Bk
is negatively alternative when k is even. In particular, B1 is alternative if B is
alternative.

Proof. By definition, we have for k ∈ [n],

bkj1···jm−1
(−1)

∑m−1
l=1 jl+k−m = bkj1···jm−1

(−1)
∑m−1
l=1 jl−m+1(−1)k−1 ≥ 0.
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It means that when k is odd,

b
(k)
j1···jm−1

(−1)
∑m−1
l=1 jl−m+1 ≥ 0

and when k is even,

b
(k)
j1···jm−1

(−1)
∑m−1
l=1 jl−m+1 ≤ 0.

So the proof is completed.

However, when A is circulant, A may be not alternative even if A1 is alternative.
A simple counter-example can be given as follows.

Example 2. A circulant tensor A = (ajk) ∈ C3,2 is given by

A1 =

(
1 −1
−1 3

)
, A2 =

(
3 −1
−1 1

)
.

We can see thatA1 andA2 are alternative but by Proposition 4, A is not alternative.

On the other hand, when m and n are even, we can see that a circulant tensor
is alternative if and only if its root tensor is alternative.

Proposition 5. Suppose A ∈ Cm,n, where m and n are even. Then, A is (nega-
tively) alternative if and only if its root tensor A1 is (negatively) alternative.

Proof. By Proposition 4, we only prove that A is alternative if its root tensor A1

is alternative. Let Ak be the kth row tensor of A for k ∈ [n]. We first show that
A2 is negatively alternative since A1 is alternative. For any j1, · · · , jm−1 ∈ [n], let
s be the number of the indexes that are equal to 1. Without loss of generality, we
assume j1 = · · · = js = 1. By Proposition 2, we have

a
(2)
j1···jm−1

(−1)
∑m−1
l=1 jl−m+1

= a
(2)
j1···jm−1

(−1)
∑m−1
l=s+1(jl−1)

= a
(1)
n···njs+1−1···jm−1−1(−1)

∑m−1
l=s+1(jl−1)

= a
(1)
n···njs+1−1···jm−1−1(−1)ns+

∑m−1
l=s+1(jl−1)−m+1(−1)m−1−ns

≤ 0.

The last inequality holds because A1 is alternative and m − 1 − ns is odd for any
s ∈ [m − 1] ∪ {0} since m and n are even. By induction, one can obtain that Ak
is alternative when k is odd and Ak is negatively alternative when k is even, which
means that A is alternative by Proposition 4.

Theorem 3.3. Let n be even. Suppose that A ∈ Cm,n, and its associated tensor
is Ā1 = (ᾱj1···jm−1). If Ā1 is an alternative tensor, then the alternative native

eigenvalue λn
2

(A) is the largest H-eigenvalue of A. If Ā1 is a negatively alternative
tensor, then the alternative native eigenvalue λn

2
(A) is the smallest H-eigenvalue

of A.

Proof. Let n be even. By Theorem 3.1, we have

λn
2

(A) = c0 +

n∑
j1··· ,jm−1=1

ᾱj1···jm−1
(−1)

∑m−1
k=1 jk−m+1.

By this and (6), the conclusions hold.

Note that the native eigenvalues other than λ0(A) and λn
2

(A) are in general not
H-eigenvalues.



CIRCULANT TENSORS WITH APPLICATIONS 1237

4. Positive semi-definiteness of even order circulant tensors. Let jl ∈ [n]
for l ∈ [m]. Define the generalized Kronecker symbol [21, 24] by

δj1···jm =

{
1 if j1 = · · · = jm,
0 otherwise.

Suppose that A = (aj1···jm) ∈ Tm,n. We say that A is a B0 tensor if for all j ∈ [n]

n∑
j2,··· ,jm=1

ajj2···jm ≥ 0 (11)

and
1

nm−1

n∑
j2,··· ,jm=1

ajj2···jm ≥ ajk2···km , if δjk2···km = 0. (12)

If strict inequalities hold in (11) and (12), then A is called a B tensor [24]. The
definitions of B and B0 tensors are generalizations of the definition of B matrix [20].
It was proved in [24] that an even order symmetric B tensor is positive definite and
an even order symmetric B0 tensor is positive semi-definite. We may apply this
result to even order symmetric circulant B0 or B tensors. What we wish to show is
that an even order circulant B tensor is positive definite and an even order circulant
B0 tensor is positive semi-definite, i.e., we do not require the tensor to be symmetric
here. In this way, we may apply our result to directed circulant hypergraphs. The
tool for realizing this is symmetrization.

By the definition of circulant tensors, it is easy to see that for A = (aj1···jm) ∈
Cm,n, A is a circulant B0 tensor if and only if

n∑
j1,··· ,jm=1

aj1···jm ≥ 0 (13)

and
1

nm

n∑
j1,··· ,jm=1

aj1···jm ≥ max{ak1···km : δk1···km = 0}. (14)

If strict inequalities hold in (13) and (14), then A is a circulant B tensor.
It was established in [21] that an even order real symmetric tensor has always

H-eigenvalues, and it is positive semi-definite (positive definite) if and only if all
of its H-eigenvalues are nonnegative (positive). This is not true in general for a
non-symmetric tensor. In order to use the first native eigenvalue or the alternative
eigenvalue of a nonsymmetric circulant tensor to check its positive semi-definiteness,
we may also use symmetrization.

We now link a general tensor A ∈ Tm,n to a symmetric tensor B ∈ Sm,n.
Let A ∈ Tm,n. Then there is a unique symmetric tensor B ∈ Sm,n such that

for all x ∈ <n, Axm = Bxm. We call B the symmetrization of A, and denote it
sym(A). Thus, when m is even, a tensor A ∈ Tm,n is positive semi-definite (positive
definite) if and only if all of the H-eigenvalues of sym(A) are nonnegative (positive).

We call an index set (k1, · · · , km) a permutation of another index set (j1, · · · , jm)
if (k1, · · · , km) is a rearrangement of (j1, · · · , jm), denote this operation by σ, and
denote σ(j1, · · · , jm) = (k1, · · · , km). Denote the set of all distinct permutations of
an index set (j1, · · · , jm), by Σ(j1, · · · , jm). Note that |Σ(j1, · · · , jm)|, the cardinal-
ity of Σ(j1, · · · , jm), is variant for different index sets. For example, if j1 = · · · = jm,
then |Σ(j1, · · · , jm)| = 1; but if all of j1, · · · , jm are distinct, |Σ(j1, · · · , jm)| = m!.
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Let A = (aj1···jm) ∈ Tm,n and sym(A) = B = (bj1···jm). Then it is not difficult
to see that

bj1···jm =

∑
σ∈Σ(j1,··· ,jm) aσ(j1,··· ,jm)

|Σ(j1, · · · , jm)|
. (15)

For any A ∈ Tm,n, we use D(A) to denote a diagonal tensor in Tm,n, whose diagonal
entries are the same as those of A.

With this preparation, we are now ready to prove the following theorem.

Theorem 4.1. Let A = (aj1···jm) ∈ Tm,n. Then we have the following conclusions:
(a). D(A) = D(sym(A)).
(b). If A − D(A) are nonnegative (or non-positive or alternative or negatively

alternative, respectively), then sym(A)−D(sym(A)) are also nonnegative (or non-
positive or alternative or negatively alternative, respectively).

(c). The symmetrization of a Toeplitz tensor is still a Toeplitz tensor. The
symmetrization of a circulant tensor is still a circulant tensor.

(d). The symmetrization of a circulant B0 tensor is still a circulant B0 tensor.
The symmetrization of a circulant B tensor is still a circulant B tensor.

(e). Suppose that A ∈ Cm,n. Then we have

λ0(A) = λ0(sym(A)).

If the associated tensor of a circulant tensor is nonnegative (or non-positive), then
the associated tensor of the symmetrization of a circulant tensor is also nonnegative
(or non-positive).

(f). Suppose A ∈ Cm,n, where m and n are even. Then, we have

λn
2

(A) = λn
2

(sym(A)).

Proof. We have (a) and (b) from (15) directly.
(c). Let A = (aj1···jm) ∈ Tm,n be a Toeplitz tensor, and sym(A) = B = (bj1···jm).

By (15), for jl ∈ [n− 1], l ∈ [m],

bj1···jm =

∑
σ∈Σ(j1,··· ,jm) aσ(j1,··· ,jm)

|Σ(j1, · · · , jm)|

=

∑
σ∈Σ(j1+1,··· ,jm+1) aσ(j1+1,··· ,jm+1)

|Σ(j1 + 1, · · · , jm + 1)|
= bj1+1···jm+1.

Thus, sym(A) = B is a Toeplitz tensor. When A is a circulant tensor, we may
prove that sym(A) is a circulant tensor similarly.

(d). Let A = (aj1···jm) ∈ Cm,n and sym(A) = B = (bj1···jm). By (c), B ∈ Cm,n.
Suppose now that A ia B0 tensor. By (15) and (13), we have

n∑
j1,··· ,jm=1

bj1···jm =

n∑
j1,··· ,jm=1

aj1···jm ≥ 0.

By (15) and (14), we have

1

nm

n∑
j1,··· ,jm=1

bj1···jm ≥ 1

nm

n∑
j1,··· ,jm=1

aj1···jm ≥ max{ak1···km : δk1···km = 0}

≥ max{bk1···km : δk1···km = 0}.

Thus, B is also a B0 tensor. Similarly, if A is a B tensor, then B is also a B tensor.
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(e). Let A ∈ Cm,n. The equality λ0(A) = λ0(sym(A)) holds because

λ0(A) =
1

n
Avm0 =

1

n
sym(A)vm0 = λ0(sym(A)).

The last conclusion follows from (b).
(f). For k + 1 ∈ [n], let ωk and vk be defined in (4). By Theorem 3.1, one can

obtain

λk(A)v>k v
[m−1]
k = Avmk = sym(A)vmk = λk(sym(A))v>k v

[m−1]
k .

By simple computation, we have

v>k v
[m−1]
k =

n∑
j=1

ω
m(j−1)
k =

{
1−ωnmk
1−ωmk

= 0 if ωmk 6= 1,

m if ωmk = 1.

In particular, since m and n are even, we have ωmn
2

= (−1)m = 1. It follows that

λn
2

(A) = λn
2

(sym(A)).

In fact, from the proof of Theorem 4.1, we can see that λk(A) = λk(sym(A))
if ωmk = 1. And the equality λ0(A) = λ0(sym(A)) holds since ω0 = 1. Note that
when m is odd, the equality λn

2
(A) = λn

2
(sym(A)) may not hold. See Example 2.

By computation, sym(A) ∈ C3,2 is generated by the root tensor

sym(A)1 =

(
1 1/3

1/3 1/3

)
.

We can see that λ1(A) = 6 and λ1(sym(A)) = 2/3. On the other hand, we can also
see that λ0(A) = λ0(sym(A)) = 2 and λ1(A) is the largest H-eigenvalue of A since
A1 is alternative.

We now have the following corollaries.

Corollary 1. An even order circulant B0 tensor is positive semi-definite. An even
order circulant B tensor is positive definite.

Proof. Suppose that A is an even order circulant B0 tensor. Then by (d) of Theorem
4.1, B = sym(A) is also an even order circulant B0 tensor. Since B is symmetric,
by [24], it is positive semi-definite. Since A is positive semi-definite if and only if
sym(A) is positive semi-definite. The other conclusion holds similarly.

Note that an even order B0 tensor may not be positive semi-definite. Let

A =

(
10 10
1 1

)
.

Then A is a B0 tensor. Let x = (1,−9)>. Then x>Ax = −8. Thus, A is not
positive semi-definite.

In the next corollary, we stress that we may use (13) and (14) instead of (11) and
(12) to check an even order circulant tensor is positive semi-definite or not. The
conditions (13) and (14) contain less number of inequalities than (11) and (12).

Corollary 2. Suppose that A = (aj1···jm) ∈ Cm,n and m is even. If (13) and (14)
hold, then A is positive semi-definite. If strict inequalities hold in (13) and (14),
then A is positive definite.

We may apply these two corollaries to directed circulant hypergraphs.

Corollary 3. The Laplacian tensor and the signless Laplacian tensor of a directed
circulant even-uniform hypergraph are positive semi-definite.
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As positive semi-definiteness of the Laplacian tensor and the signless Laplacian
tensor of an even-uniform hypergraph plays an important role in spectral hyper-
graph theory [11, 12, 13, 14, 16, 22, 31, 30], The above result will be useful in the
further research for directed circulant hypergraphs.

We may have some other corollaries of Theorem 4.1 as follows.

Corollary 4. Suppose that m is even. If the associated tensor of a circulant tensor
A is non-positive, then A is positive semi-definite if and only if λ0(A) is nonnega-
tive.

Corollary 5. Suppose that m and n are even, A ∈ Cm,n, and its associated tensor
Ā1 is negatively alternative. Then A is positive semi-definite if and only if λn

2
(A) ≥

0.

Proof. By definition, we can see that the associate tensor Ā1 is the root tensor of
A−D(A). By Proposition 5, one can derive that A−D(A) is negatively alternative
since m and n are even. By Theorem 4.1 (b), it follows that sym(A)−D(sym(A))
is also negatively alternative. Again, by Proposition 5, ¯sym(A)1 is also negatively
alternative. By Theorem 3.3, in this case, λn

2
(sym(A)) is the smallest H-eigenvalue

of sym(A). By Theorem 4.1 (e), we have λn
2

(A) = λn
2

(sym(A)). The conclusion
follows now.

Corollary 6. Suppose that m is even. Suppose that A ∈ Cm,n is positive semi-
definite, and its diagonal entry is c0. Then c0 ≥ 0 and λ0(A) ≥ 0. If furthermore
that n is even, then λn

2
(A) ≥ 0.

We may further establish a sufficient condition for positive semi-definiteness of
an even order circulant tensor.

Theorem 4.2. Suppose that m is even, A = (aj1···jm) ∈ Cm,n, the diagonal entry
of A is c0, and the associated tensor of A is Ā1 = (ᾱj1···jm−1

). If A is diagonally
dominated, i.e.,

c0 ≥
n∑

j1,··· ,jm−1=1

|ᾱj1···jm−1 |, (16)

then A is positive semi-definite. If strict inequality holds in (16), then A is positive
definite.

Proof. Let A−D(A) = (bj1···jm) ∈ Cm,n. Then A ∈ Cm,n is diagonally dominated
if and only if

c0 ≥
1

n

n∑
j1,··· ,jm=1

|bj1···jm |.

On the other hand, suppose that (16) holds. Let sym(A) − D(sym(A)) =
(cj1···jm) ∈ Cm,n. By the definition of symmetrization, it follows that

c0 ≥ 1
n

∑n
j1,··· ,jm=1 |bj1···jm |

= 1
n

∑
j1≤···≤jm

∑
σ∈Σ(j1,··· ,jm) |bσ(j1,··· ,jm)|

≥ 1
n

∑
j1≤···≤jm

∣∣∣∑σ∈Σ(j1,··· ,jm) bσ(j1,··· ,jm)

∣∣∣
= 1

n

∑
j1≤···≤jm |Σ(j1, · · · , jm)| |cj1···jm |

= 1
n

∑
j1≤···≤jm

∑
σ∈Σ(j1,··· ,jm) |cσ(j1,··· ,jm)|

= 1
n

∑n
j1,··· ,jm=1 |cj1···jm |,
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which means that sym(A) ∈ Cm,n is also a diagonally dominated tensor. By Theo-
rem 3 of [24], we can derive that all the H-eigenvalues of sym(A) are nonnegative.
So A is positive semi-definite. Similarly, if strict inequality holds in (16), we may
prove that A is positive definite.

Note that Corollary 2 does not imply Theorem 4.2, and Theorem 4.2 does not
imply Corollary 2. Thus, they are two different sufficient conditions for positive
semi-definiteness of even order circulant tensors.

5. Circulant tensors with special root tensors. In this section, we consider
conditions for positive semi-definiteness of even order circulant tensors with special
root tensors, including diagonal root tensors and circulant root tensors.

5.1. Circulant tensors with diagonal root tensors. Suppose that A ∈ Cm,n
and A1 is its root tensor. Assume that A1 = (αj1···jm−1

) is a diagonal tensor,
with αj1···jm−1

= cj−1 if j1 = · · · = jm−1 = j ∈ [n], and αj1···jm−1
= 0 otherwise.

In this case, we may give all the eigenvalues and eigenvectors (up to some scaling
constants) explicitly. Such a circulant tensor may be one of the simple cases of
circulant tensors. We study its properties such that we can understand more about
circulant tensors.

Theorem 5.1. Let circulant matrix C be defined by (3). With the above assump-
tions, the n native eigenvalues λk of A are all possible eigenvalues of A. They are
exactly the n eigenvalues of the circulant matrix C. For k+1 ∈ [n], each eigenvalue

λk has the following eigenvectors ykl = (1, ηkl, η
2
kl, · · · , η

n−1
kl )>, where ηkl = e

2πkli
n(m−1)

for l + 1 ∈ [m− 1].

Proof. Let y = (y1, · · · , yn)> ∈ Cn \ {0} and λ be an eigenpair of A. Define
cj−n = cj for j ∈ [n]. Then for j ∈ [n], we have

λym−1
j =

(
Aym−1

)
j

=

n∑
l=1

cl−jy
m−1
l . (17)

Let x = (ym−1
1 , ym−1

2 , · · · , ym−1
n )>. Then we see that (17) is equivalent to λx = Cx,

i.e., (λ,x) form an eigenpair of circulant matrix C. Now the conclusion can be
derived easily.

It is easy to see that A, the circulant tensor with a diagonal root tensor discussed
above, is symmetric if and only if cj = 0 for j ∈ [n − 1]. Thus, in general, such a
circulant tensor is not symmetric.

Now we discuss positive semi-definiteness of a circulant tensor with a diagonal
root tensor. First, by direct derivation, we have the following result.

Proposition 6. Let A ∈ Cm,n have a diagonal root tensor as described above. Then
for any x = (x1, · · · , xn)> ∈ <n,

Axm = x>Cx[m−1] ≡
n∑

j,l=1

cl−jxjx
m−1
l = c0

n∑
l=1

xml +

n∑
j,l=1
j 6=l

cl−jxjx
m−1
l , (18)

where C is the circulant matrix defined by (3).

Example 3. Let m = 4 and n = 2. Let c0 = c1 = 1. Then by Proposition 6,

Ax4 = x4
1 + x3

1x2 + x1x
3
2 + x4

2 = (x1 + x2)2(x2
1 − x1x2 + x2

2) ≥ 0

for any x ∈ <2. Thus, A is positive semi-definite.
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By (7) and (8), we have

λ0(A) =

n−1∑
j=0

cj , (19)

and when n is even,

λn
2

(A) =

n−1∑
j=0

cj(−1)j(m−1).

In particular, when m is also even, we have

λn
2

(A) =

n−1∑
j=0

cj(−1)j . (20)

Let c = (c1, · · · , cn−1)> ∈ <n−1. Let k ≤ n
2 . We say that c is k-alternative

if n = 2pk for some integer p, c(2q−1)k ≥ 0 and c2qk ≤ 0 for q ∈ [p] and cj = 0

otherwise. When n = 2pk, let 1̂(k) be a vector in <n such that 1̂
(k)
j = 1 for

(2q− 2)k+ 1 ≤ j ≤ (2q− 1)k and 1̂
(k)
j = −1 for (2q− 1)k+ 1 ≤ j ≤ 2qk, for q ∈ [p].

In the following, we give some necessary conditions, sufficient conditions, nec-
essary and sufficient conditions for an even order circulant tensor with a diagonal
root tensor to be positive semi-definite.

Theorem 5.2. Let A ∈ Cm,n have a diagonal root tensor as described at the
beginning of this section. Suppose that m is even. Then, we have the following
conclusions:

(a). If A is positive semi-definite, then c0 ≥ 0 and λ0(A) ≥ 0. If furthermore n
is even, then λn

2
(A) ≥ 0.

(b). If

c0 ≥
n−1∑
j=1

|cj |, (21)

then A is positive semi-definite.
(c). If c is non-positive, then A is positive semi-definite if and only if (21) holds.
(d). If n = 2pk for some positive integers p and k, and c is k-alternative, then

A is positive semi-definite if and only if (21) holds.

Proof. (a). This follows from Corollary 6.
(b). This follows from Theorem 4.2.
(c). If c is non-positive, then the associated tensor of A is non-positive. By

Corollary 4, A is positive semi-definite if and only if

λ0(A) =

n∑
j=0

cj ≥ 0.

Since c is non-positive and c0 ≥ 0, the above inequality holds if and only if (21)
holds. This proves (c).

(d). Suppose that n = 2pk for some positive integers p and k, and c is k-
alternative. Then (21) holds in this case. By (b), A is positive semi-definite. On

the other hand, if (21) does not hold, Let x = 1̂(k) in (18). We have Axm < 0, i.e.,
A is not positive semi-definite. This proves (d). The theorem is proved.
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Are there some other cases such that (21) is also a sufficient and necessary con-
dition such that A is positive semi-definite?

Suppose that m is even. Can we give all the H-eigenvalues of sym(A) explicitly?
If so, we may determine A is positive semi-definite or not. Otherwise, can we
construct an algorithm to find the global optimal value of one of the following two
minimization problems when m is even? The two minimization problems are as
follows:

min c0

n∑
l=1

xml +

n∑
j,l=1
j 6=l

cl−jxjx
m−1
l

subject to

n∑
j=1

x2
j = 1,

(22)

and

min c0

n∑
l=1

xml +

n∑
j,l=1
j 6=l

cl−jxjx
m−1
l

subject to

n∑
j=1

xmj = 1.

(23)

By Proposition 6, A is positive semi-definite if and only if the global optimal value of
(22) or (23) is nonnegative. In Subsection 5.3, we will give an algorithm to determine
positive semi-definiteness of an even order circulant tensor with a diagonal root
tensor.

5.2. Doubly circulant tensors. Let A ∈ Cm,n. If its root tensor A1 itself is a
circulant tensor, by Propositions 2 and 3, we see that all the row tensors of A are
duplicates of A1, i.e., Ak = A1 for k ∈ [n]. We call such a circulant tensor A a
doubly circulant tensor.

Let A be an even order doubly circulant tensor. Suppose that A11 ∈ Tm−2,n

is the root tensor of A1. A natural question is that if there is a relation between
A11 and A in terms of the positive semi-definiteness, i.e., if A11 is positive semi-
definite, is A also positive semi-definite? And if A is positive semi-definite, is A11

also positive semi-definite? Unfortunately, the answers to these two questions are
both “no”. See the following example.

Example 4. Let A11 = diag{d1, d2}. Then, for any x ∈ <2, we have

Ax4 = (x1 + x2)A1x
3

= (x1 + x2)[d1(x3
1 + x3

2) + d2(x2
1x2 + x2

2x1)]

= (x1 + x2)2[d1x
2
1 + (d2 − d1)x1x2 + d1x

2
2].

Case 1. d1 = 1, d2 = 5. A11 is positive semi-definite. However, A is not positive
semi-definite since Ax4 < 0 for x = (1,−2)>.
Case 2. d1 = 1, d2 = −0.5. A is positive semi-definite since Ax4 = (x1 +x2)2[x2

1−
1.5x1x2 + x2

2] ≥ 0. However, A11 is not positive semi-definite since d2 < 0.

However, we may answer this question positively if A1 is also doubly circulant.
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Proposition 7. If A ∈ Tm,n is a doubly circulant tensor and A1 is its root tensor,
then for any x ∈ <n, we have

Axm =

n∑
k=1

xkA1x
m−1.

On the other hand, if m is even and A1 is doubly circulant, then we have the
following conclusions:

(a). A is doubly circulant.
(b). If A11 is positive semi-definite, then A is positive semi-definite.
(c). If A is positive semi-definite, then for any x ∈ <n satisfying

∑n
k=1 xk 6= 0,

we have

A11x
m−2 ≥ 0,

where A11 is the root tensor of A1.

Proof. If A is doubly circulant, then we have Ak = A1 for k ∈ [n]. It follows that
for any x ∈ <n, one can obtain

Axm =

n∑
k=1

xkA1x
m−1.

On the other hand, if A1 is doubly circulant, then we have A is doubly circulant by
definition and

Axm =

n∑
k=1

xkA1x
m−1 =

(
n∑
k=1

xk

)2

A11x
m−2,

where A11 is the root tensor of A1. The conclusions (a)-(c) follow immediately.

5.3. An algorithm and numerical tests. In Subsection 5.1, we show that
a circulant tensor with a diagonal root tensor is positive semi-definite if and only
if the global optimal value of (22) or (23) is nonnegative. In this subsection, we
present an algorithm to solve the minimization problem (22). Here, m is even, and
the norm ‖ · ‖ in this section is the 2-norm.

Suppose A ∈ Cm,n. The minimization problem

min Axm

subject to ‖x‖ = 1,
(24)

can be equivalent to be written as

min Ax1 · · ·xm

subject to

m∑
j=1

Ajx
j = 0

‖xk‖ = 1, k ∈ [m],

(25)

where

A1 =


Im
...
...
−Im

 , A2 =


−Im
Im
...
...

 , · · · , Am =


...
...
−Im
Im

 .
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Denote f(x1, · · · ,xm) := Ax1 · · ·xm. Then the augmented Lagrangian function of
(25) Lβ(x1, · · · ,xm, λ) is defined as

Lβ(x1, · · · ,xm, λ) = f(x1, · · · ,xm)− λ>
 m∑
j=1

Ajx
j

+
β

2

∥∥∥∥∥∥
m∑
j=1

Ajx
j

∥∥∥∥∥∥
2

,

with the given constant β > 0.
We use the alternating direction method of multipliers to solve (25).

Algorithm 1. Alternating direction method of multipliers for circulant tensors
Step 0. Given ε > 0, w0 = [(x1)0, · · · , (xm)0, λ0] ∈ Rn × · · · × Rn × Rmn and set
k = 0.
Step 1. Generate wk+1 from wk, i.e., for j ∈ [m]

(xj)k+1 = arg min
x>x=1

Lβ [(x1)k+1, · · · , (xj−1)k+1,x, (xj+1)k, · · · , (xm)k, λk] (26)

and

λk+1 = λk − β
m∑
j=1

Aj(x
j)k+1.

Step 2. If ‖wk+1 −wk‖ < ε, stop. Otherwise, k := k + 1, go to Step 1.

Note that the subproblem (26) is exactly equivalent to a convex quadratic pro-
gramming on the unit ball, i.e.,

min x>x + b>x

subject to ‖x‖ = 1,

with a given vector b. It is well known that it has a closed form solution. So this
algorithm is easily implemented.

Under certain condition, the convergence of the algorithm has also been proved,
see [8, 15, 18]. Though the sequence generated from the algorithm may converge
to a KKT point, the following numerical results show that the iterative sequence
converges to the global minimal solution with a high probability if we choose the
initial point randomly. Note that all the diagonal elements of the root tensor are
generated randomly in [−10, 10].

Example 5. A circulant tensor A ∈ C4,3 is generated from a diagonal root tensor
with c0 = −4.75046, c1 = 3.58365 and c2 = 8.252.

Example 6. A circulant tensor A ∈ C4,4 is generated from a diagonal root tensor
with c0 = 3.30134, c1 = −9.68746, c2 = 2.31954 and c3 = 7.60276.

In the implementation of Algorithm 1, we set the parameters β = 1.2 and ε =
10−6. And the initial point is generated randomly. All codes were written by Matlab
R2012b and all the numerical experiments were done on a laptop with Intel Core
i5-2430M CPU 2.4GHz and 1.58GB memory. The numerical results are reported in
Table 1. In the table, k̄, t̄ and λ̄ denote the average number of iteration, average
time and average value derived after 100 experiments. λ∗ means the global minimal
solution derived by the polynomial system solver Nsolve available in Mathematica,
provided by Wolfram Research Inc., Version 8.0, 2010. The frequency of success is
also recorded. If ‖λ − λ∗‖ ≤ 10−5, we say that the algorithm can find the global
minimal solution of (22) successfully.
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Table 1. Numerical results for Example 5 and Example 6

k̄ t̄ λ̄ λ∗ Frequency of success

Example 5 62.73 0.35607 -6.39448 -6.39448 100%
Example 6 92.49 0.52795 -1.79658 -1.79658 100%

From Table 1, we can see that the alternative direction method of multiplies
can be efficient for solving the minimization problem (22) in some cases. We also
test some problems with larger scale. However, it may be hard to verify the value
derived by the algorithm since the solver Nsolve could not work for larger scale
problems.
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