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SUMMARY

In this paper, some important spectral characterizations of symmetric nonnegative tensors are analyzed. In
particular, it is shown that a symmetric nonnegative tensor has the following properties: (i) its spectral radius
is zero if and only if it is a zero tensor; (ii) it is weakly irreducible (respectively, irreducible) if and only
if it has a unique positive (respectively, nonnegative) eigenvalue–eigenvector; (iii) the minimax theorem is
satisfied without requiring the weak irreducibility condition; and (iv) if it is weakly reducible, then it can
be decomposed into some weakly irreducible tensors. In addition, the problem of finding the largest eigen-
value of a symmetric nonnegative tensor is shown to be equivalent to finding the global solution of a convex
optimization problem. Subsequently, algorithmic aspects for computing the largest eigenvalue of symmetric
nonnegative tensors are discussed. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Let < be the real field. In this paper, we consider an m-order n-dimensional tensorA consisting of

nm entries in <:

AD .ai1i2:::im/, ai1i2:::im 2<, 1 6 i1, i2, : : : , im 6 n. (1.1)

A is called nonnegative (or, respectively, positive) if ai1i2:::im > 0 (or, respectively, ai1i2:::im > 0).

WhenmD 2,A is a matrix. Whenm > 3,A is called a higher-order tensor. Tensors play an impor-

tant role in physics, engineering, and mathematics. Applications of tensors include data analysis and

mining, information science, signal and image processing, and computational biology, and so on.

See [1–3] and references therein.

To an n-dimensional column vector x D Œx1,x2, : : : ,xn�T 2 <n, real or complex, we define an

n-dimensional column vector:

Axm 1 WD

0

@

n
X

i2,:::,imD1

ai i2:::imxi2 � � �xim

1

A

16i6n

. (1.2)

Definition 1.1

Let A be an m-order n-dimensional tensor and C be the set of all complex numbers. Assume that

Axm 1 is not identical to 0. We say that .�,x/ 2 C � .Cnnf0g/ is an eigenvalue–eigenvector of

A if

Axm 1 D �xŒm 1�. (1.3)
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914 G. ZHOU, L. QI AND S.-Y. WU

Here, xŒ˛� D Œx˛
1 ,x

˛
2 , : : : ,x˛

n�T .

This definition was introduced in [4–6]. Unlike matrices, eigenvalue problems for high-order ten-

sors are nonlinear. Applications of eigenvalues of high-order tensors include medical resonance

imaging [7, 8], higher-order Markov chains [9], positive definiteness of even-order multivariate

forms in automatical control [10], and best-rank one approximation in data analysis [1, 11, 12],

and so on.

Recently, eigenvalue problems for high-order tensors have gained special attention in the realm of

numerical multilinear algebra. In particular, the Perron–Frobenius theorem for eigenvalues of non-

negative tensors has been established in [4, 13, 14]. Friedland, Gaubert, and Han [15] established

the Perron–Frobenius theorem for homogeneous monotone maps. The Perron–Frobenius theorem

for nonnegative tensors is related to measuring higher-order connectivity in linked objects [16] and

hyper-graphs [17–19]. Subsequently, on the basis of the minimax theorem for nonnegative tensors

in [4], Ng, Qi, and Zhou [9] proposed a power-type method for computing the largest eigenvalue

and the corresponding eigenvector for nonnegative tensors. This method is an extension of a method

of Collatz [20, 21] for calculating the spectral radius of a nonnegative matrix. The convergence of

the Ng–Qi–Zhou method [9] for primitive (respectively weakly primitive) nonnegative tensors has

been established in [22] (respectively, [15]). In [23–25], the authors proposed an updated version

of the Ng–Qi–Zhou method [9], and it has been proven that this algorithm is always convergent for

any irreducible nonnegative tensor. Recently, it has been shown in [26] that this algorithm is conver-

gent for any weakly irreducible nonnegative tensor. Furthermore, global linear convergence of the

Ng–Qi–Zhou method and its updated version has been studied in [24, 26, 27].

The main purpose of this paper is to analyze some important spectral characterizations of sym-

metric nonnegative tensors. After some preliminaries on nonnegative tensors in Section 2, we give

in Section 3 some important properties of the largest eigenvalue of a symmetric nonnegative tensor

A, including (i) the spectral radius of A is 0 if and only if A D 0; (ii) A is weakly irreducible

if and only if A has a unique positive eigenvalue–eigenvector; (iii) A is irreducible if and only if

A has a unique nonnegative eigenvalue–eigenvector; (iv) if A is weakly reducible, then A can be

decomposed into some weakly irreducible tensors; and (v) the minimax theorem is satisfied with-

out requiring the weak irreducibility condition. Some counterexamples are given to show that these

properties may not be satisfied if tensorA is not symmetric. In addition, we show that the problem

of finding the largest eigenvalue for symmetric tensors is equivalent to finding the global solution of

a convex optimization problem. Subsequently, we discuss in Section 4 some algorithmic aspects for

the largest eigenvalue of any symmetric nonnegative tensor.

Throughout this paper, we use<n (Cn) to denote the n-dimensional real (complex) space, respec-

tively. Let Pn D fx 2 <n W xi > 0, 1 6 i 6 ng and int.Pn/ D fx 2 <n W xi > 0, 1 6 i 6 ng.

Matrices are denoted by italic capitals (A,B, : : :), and high-order tensors are written as calligraphic

capitals (A,B, : : :).

2. PRELIMINARIES

In this section, we gather some definitions and results about nonnegative matrices and nonnegative

tensors, which will be used in the following sections.

2.1. Nonnegative matrices

Let M be an n � n nonnegative matrix. The graph associated to M (see Chapter 2, [21]), G.M /,

is the directed graph with vertices 1, 2, : : : ,n and an edge from i to j if and only if M ij 6D 0. A

directed graph is said to be strongly connected if there is a directed path between any two distinct

vertices. The matrix M is called irreducible if the graph G.M / is strongly connected. We say that

M is primitive if the graph G.M / is strongly connected and the greatest common divisor of the

lengths of its circuits is equal to one. An irreducible matrix with a nonzero main diagonal is primi-

tive (Corollary 3.2, [28]). Let �.M / denote the spectrum ofM , the set of all eigenvalues ofM . The

spectral radius ofM , denoted by �.M /, is the maximum distance of an eigenvalue from the origin,

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:913–928
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LARGEST EIGENVALUE OF A SYMMETRIC NONNEGATIVE TENSOR 915

that is, �.M / D maxfj�j W � 2 �.M /g. The classical Perron–Frobenius theorem for nonnegative

matrices may be stated as follows (see Chapter 2, [21]).

Theorem 2.1

If M is an irreducible nonnegative matrix, then M has an eigenvector u 2 int.Pn/, unique up to

a scale multiple, whose associated eigenvalue is the spectral radius of M , �.M /. Moreover, �.M /

is a simple root of the characteristic equation of M . Furthermore, if the nonnegative matrix M is

primitive, then

�.M / > j�j, 8� 2 �.M /nf�.M /g.

2.2. Nonnegative tensors

Let A be an m-order n-dimensional nonnegative tensor. The spectral radius of A is defined as

�.A/Dmax fj�j W � is an eigenvalue ofAg.

Definition 2.2 ([4])

An m-order n-dimensional tensor A is called reducible if there exists a nonempty proper index

subset I � f1, 2, : : : ,ng such that

ai1i2:::im D 0, 8i1 2 I , 8i2, : : : , im … I .

IfA is not reducible, then we callA irreducible.

LetA be an m-order n-dimensional nonnegative tensor. The graph associated toA, G.A/, is the

directed graph with vertices 1, 2, : : : ,n and an edge from i to j if and only if ai i2:::im 6D 0 for some

il D j , l D 2, 3, : : : ,m.

Definition 2.3 ([15])

An m-order n-dimensional tensorA is called weakly irreducible if G.A/ is strongly connected. If

G.A/ is strongly connected and the greatest common divisor of the lengths of its circuits is equal to

1, thenA is called weakly primitive.

We have the following proposition.

Proposition 2.1 ([15])

If the nonnegative tensorA is irreducible, thenA is weakly irreducible. FormD 2,A is irreducible

if and only ifA is weakly irreducible.

Let I be the m-order n-dimensional unit tensor whose entries are

Ii1i2:::im D

�

1 if i1 D i2 D : : :D im,

0 otherwise.
(2.4)

Proposition 2.2 ([26])

If the nonnegative tensorA is weakly irreducible, thenAC I is weakly primitive.

LetA be a nonnegative tensor. For any vector x 2Pn, we define the following sequence fA
.k/xg:

A.1/x DA.x/m 1, ´.1/ D
�

A.1/x
�Œ 1

m 1 �

A.2/x DA
�

´.1/
�m 1

, ´.2/ D
�

A.2/x
�Œ 1

m 1 �

...

A.k/x DA
�

´.k 1/
�m 1

, ´.k/ D
�

A.k/x
�Œ 1

m 1 �
, k > 2.

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:913–928
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916 G. ZHOU, L. QI AND S.-Y. WU

Definition 2.4 ([22])

A nonnegative tensorA is primitive if there exists a positive integer k such thatA.k/x 2 int.Pn/

for any nonzero x 2Pn.

Clearly, positive tensors and essentially positive tensors [22, 29] are primitive. A primitive

nonnegative tensorA is irreducible, but the converse is false [22]. We have the following result.

Theorem 2.2 ([22, 23])

SupposeA is an irreducible nonnegative tensor. Let BDAC I . Then,

(i) B is primitive.

(ii) If � is the largest eigenvalue of B and u is a positive eigenvector of B associated with �,

then �  1 is the largest eigenvalue of A, and u is a positive eigenvector of A associated

with � 1.

In [4, 15], the Perron–Frobenius theorem and the well-known Collatz [20] minimax theorem for

nonnegative matrices have been extended to nonnegative tensors, and further results for Perron–

Frobenius theorem for nonnegative tensors have been given in [30, 31]. In the following, we state

these results for reference.

Theorem 2.3

LetA be a nonnegative tensor of order m and dimension n and �.A/ be the spectral radius ofA.

(i) [30] �.A/ is an eigenvalue ofA with a nonnegative eigenvector.

(ii) [15] IfA is weakly irreducible, thenA has a positive eigenvector u 2 int.Pn/, unique up to

a scale multiple, whose associated eigenvalue is �.A/.

(iii) [4] If A is irreducible, then A has a positive eigenvector u 2 int.Pn/ whose associated

eigenvalue is �.A/. Moreover, if � is an eigenvalue with nonnegative eigenvector, then

�D �.A/, and the nonnegative eigenvector is unique up to a multiplicative constant.

2.3. The Ng–Qi–Zhou algorithm

In this subsection, we state a power-type algorithm for calculating the largest eigenvalue of a

nonnegative tensor A by applying the algorithm proposed by Ng, Qi, and Zhou in [9] to ten-

sor B D A C I and establish the Q-linear convergence of this power algorithm under a weak

irreducibility condition. This algorithm has been studied in [23].

For any nonnegative column vector x 2<n, we define � WPn ! P1 by

�.x/D

n
X

iD1

xi . (2.5)

Algorithm 2.1

Step 0. Choose x.1/ 2 int.Pn/. Let BDAC I , and set k WD 1.

Step 1. Compute

y.k/ DB
�

x.k/
�m 1

,

�k Dminx
.k/

i
>0

 

y.k/
�

i
�

x
.k/
i

�m 1
,

N�k Dmaxx
.k/

i
>0

 

y.k/
�

i
�

x
.k/
i

�m 1
.
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LARGEST EIGENVALUE OF A SYMMETRIC NONNEGATIVE TENSOR 917

Step 2. If N�k D �k , then let �D
N�k , and stop. Otherwise, compute

x.kC1/ D

 

y.k/
�Œ 1

m 1 �

�

�

 

y.k/
�Œ 1

m 1 �
� ,

replace k by kC 1, and go to Step 1.

Let

F.x/DBxm 1, G.x/D F.x/Œ
1

m 1 � and H.x/D
G.x/

� .G.x//
. (2.6)

Clearly, the sequence fx.k/g generated by Algorithm 2.1 satisfies

x.kC1/ DH.x.k//, k D 1, 2, : : : , (2.7)

and �.x.k//D 1 for all k D 1, 2, � � � .

Theorem 2.4 ([22, 23])

Suppose the nonnegative tensorA is irreducible and (�.A/; u) is a positive eigenvalue–eigenvector

of A satisfying �.u/ D 1. Then, starting from any x.1/ 2 Pnf0g, Algorithm 2.1 produces a value

of � and a corresponding eigenvector u in a finite number of steps or generates three convergent

sequences f�kg, f
N�kg, and fx

.k/g such that limk!1 �k D limk!1
N�k D � and limk!1 x.k/ D u.

Furthermore, �.A/D � 1.

Theorem 2.5 ([15, 26])

Suppose the nonnegative tensor A is weakly irreducible and (�.A/, u) is a positive eigenvalue–

eigenvector of A satisfying �.u/ D 1. Then, starting from any x.1/ 2 int.P/, Algorithm 2.1

generates a sequence fx.k/g, which converges to the vector u.

Proof

By Proposition 2.2, B is weakly primitive. Hence, from Corollary 5.1 [15] and the result (ii) of

Theorem 2.2, this theorem holds. �

Next, we give the Q-linear convergence of Algorithm 2.1.

Theorem 2.6

LetA, B, and fx.k/g be as in Theorem 2.5. IfA is weakly irreducible, then the sequence fx.k/g is

convergent, and the convergence rate of fx.k/g is Q-linear, that is, there exists a vector norm k � k

such that

lim sup
k!1

kx.kC1/  uk

kx.k/  uk
< 1.

Theorem 2.6 can be proved in a similar argument as in Corollary 5.2 [15], so we omit it. In

Theorem 2.6, we establish the Q-linear convergence of Algorithm 2.1 under the weak irreducibility

condition. A power algorithm for polynomial eigenvalue problems has been recently introduced in

[15], and the R-linear convergence of the power algorithm has been established under theweak prim-

itivity condition. In addition, it is shown recently in [26] that Algorithm 2.1 is globally R-linearly

convergent for weakly irreducible nonnegative tensors.

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:913–928
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3. SYMMETRIC NONNEGATIVE TENSORS

In this section, we give some important properties of symmetric nonnegative tensors; see

Theorems 3.1–3.5. In addition, we show that the largest eigenvalue of a symmetric nonnegative

tensor connects with the global solution of a convex polynomial optimization problem.

Tensor A is called symmetric if its entries ai1 i2:::im are invariant under any permutation of their

indices fi1, i2, : : : , img [6]. Let f .x/, an mth degree homogeneous polynomial form of n variables,

be defined by

f .x/ WDAxm D

n
X

i1,i2,:::,imD1

ai1 i2:::imxi1xi2 � � �xim . (3.8)

By simple computation,

rf .x/ WDmAxm 1 Dm

0

@

n
X

i2,:::,imD1

ai i2:::imxi2 � � �xim

1

A

16i6n

. (3.9)

We consider the following constrained optimization problem:

max f .x/

s.t
Pn

iD1 xm
i D 1

x > 0.
(3.10)

A generalized form of Problem (3.10) has been extensively studied in [32], and it is shown in

[32] that this generalized optimization problem can be used for solving some hardly tractable

combinational optimization problems such as the labeling problem.

Lemma 3.1

Suppose the nonnegative tensor A is symmetric. If x is a local solution of Problem (3.10), then

.f .x/,x/ is a nonnegative eigenvalue–eigenvector ofA.

Proof

If x is a local solution of Problem (3.10), then, by Theorem 12.1 of [33], there exist c 2 < and

´ 2<n such that

Axm 1 D cxŒm 1�  ´, (3.11)

xi´i D 0, xi > 0, ´i > 0, i D 1, 2, : : : ,n, (3.12)

n
X

iD1

xm
i D 1. (3.13)

From (3.11)–(3.13), we have

f .x/DAxm D xT .Axm 1/D cxT .xŒm 1�/ xT ´D c

n
X

iD1

xm
i D c.

For i D 1, 2, : : : ,n, by (3.12), ´i D 0 if xi > 0. If xi D 0, by (3.11), .Axm 1/i D  ´i . Because

.Axm 1/i > 0 and ´i > 0, we obtain ´i D 0. Hence, ´i D 0 for all i D 1, 2, : : : ,n. There-

fore, from (3.11), Axm 1 D cxŒm 1�, which implies that .f .x/,x/ D .c,x/ is a nonnegative

eigenvalue–eigenvector ofA. �

Definition 3.5

.�,x/ is called a KKT pair of Problem (3.10) if it satisfies

Axm 1 D �xŒm 1�,

n
X

iD1

xm
i D 1, � > 0, x > 0. (3.14)

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:913–928
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LARGEST EIGENVALUE OF A SYMMETRIC NONNEGATIVE TENSOR 919

Clearly, .�,x/ is a KKT pair of Problem (3.10) if and only if .�,x/ is a nonnegative

eigenvalue–eigenvector ofA.

Theorem 3.1

LetA be a symmetric nonnegative tensor. Then, �.A/D 0 if and only ifAD 0.

Proof

Clearly, if A D 0, then �.A/ D 0. Suppose A 6D 0. Then, there exists x 2 <n satisfying
Pn

iD1 xm
i D 1 such that f .x/ D Axm > 0. This means that there exists y 2 <n satisfying

f .y/ > 0 such that y is a local solution of Problem (3.10). By Lemma 3.1, .f .y/,y/ is a nonnega-

tive eigenvalue–eigenvector ofA. Hence, �.A/ > f .y/ > 0. Therefore, if �.A/D 0, thenAD 0.

This completes the proof. �

Remark 1

Theorem 3.1 is not true if A is not symmetric. Consider a three-order two-dimensional tensor F

given by f121 D 1 and 0 elsewhere. By simple computation, we obtain �.F/ D 0, but F 6D 0. In

[26], it is shown that �.T / > 0 if the nonnegative tensor T is strictly nonnegative. In Theorem 3.1,

it is shown that if the nonnegative tensor T is symmetric and T 6D 0, then �.T / > 0.

Definition 3.6 ([32])

A homogeneous polynomial function f .x/ defined in (3.8) is called reducible if there exists a

nonempty proper index subset I � f1, 2, : : : ,ng such that

f .x/D f1.xI /C f2.xJ /,

where J D f1, 2, : : : ,ngnI , f1.xI /, and f2.xJ / are homogeneous polynomial functions, respec-

tively. If f .x/ is not reducible, then we call f .x/ irreducible.

We have the following result.

Lemma 3.2

Let f .x/ andA be as in (3.8). Then,A is weakly irreducible if and only if f .x/ is irreducible.

Proof

Suppose A is weakly irreducible, and assume to the contrary that f .x/ is reducible. Then, there

exists a partition fI ,J g of f1, 2, : : : ,ng such that f .x/ D f1.xI / C f2.xJ /. This implies that

ai1i2:::im D 0 if i1 2 I and some ij 2 J , j D 2, 3, : : : ,m,, and ai1i2:::im D 0 if i1 2 J , and some

ij 2 I , j D 2, 3, : : : ,m. Hence, the graph associated toA, G.A/, is not strongly connected because

there is not an edge for any i 2 I and j 2 J , which contradicts the weak irreducibility ofA.

Now we suppose f .x/ is irreducible and assume to the contrary that A is weakly reducible. By

Definition 2.3, the graph associated toA, G.A/, is not strongly connected. Then, there exists a par-

tition fI ,J g of f1, 2, : : : ,ng such that there is not an edge for any i 2 I and j 2 J . This implies that

ai1i2:::im D 0 if there exist some ik 2 I and ij 2 J , k 6D j , k, j D 1, 2, : : : ,m. Hence, by (3.8), f .x/

can be written as the sum of two functions f1.xI / and f2.xJ /, which contradicts the irreducibility

of f .x/. �

Let A be a nonnegative tensor of order m and dimension n, and I � f1, 2, : : : ,ng. We define

AI D .di1i2:::im/, ij 2 I , j D 1, 2, : : : ,m, a tensor induced fromA, by

di1i2:::im D ai1i2:::im , ij 2 I , j D 1, 2, : : : ,m.

Let jI j be the number of elements of I . Then,AI is a tensor of order m and dimension jI j.

By using Lemma 3.2, it is easy to obtain that ifA is weakly reducible, then there exists a partition

fI1, I2, : : : , Ikg of f1, 2, : : : ,ng such that the function f .x/ defined in (3.8) can be written as

f .x/D

k
X

jD1

fj .xIj
/, (3.15)

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:913–928
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where for each j D 1, 2, : : : , k, fj .xIj
/ is irreducible or it is a zero function. Moreover, for each

j D 1, 2, : : : , k, the corresponding induced tensorAIj
is either weakly irreducible or a zero tensor.

From this observation, we have the following theorem.

Theorem 3.2

Let A be a symmetric nonnegative tensor of order m and dimension n. Suppose A is weakly

reducible. Then, we have the following results.

(1) There exists a partition fI1, I2, : : : , Ikg of f1, 2, : : : ,ng such that each induced tensorAIi
, i D

1, 2, : : : , k is either weakly irreducible or a zero tensor.

(2) There exists an n� n permutation matrix P such that

P.Axm 1/D

2

6

6

6

4

AI1
.xI1

/m 1

AI2
.xI2

/m 1

...

AIk
.xIk

/m 1

3

7

7

7

5

. (3.16)

(3) The eigenvalues ofAIi
, i D 1, 2, : : : , k are the eigenvalues ofA. If .�,x/ 2 C � .Cnnf0g/ is

an eigenvalue–eigenvector ofA, then � is an eigenvalue of someAIi
, 1 6 i 6 k.

(4) �.A/Dmax16i6k �.AIi
/.

Proof

It follows from (3.15) that (1) holds, and then (2) is satisfied. By (3.16), we can easily obtain that

(3) holds. Hence, (4) is satisfied. �

By Theorem 3.2, we have the following minimax theorem for symmetric nonnegative tensors,

without the weak irreducibility condition.

Theorem 3.3

Assume thatA is a symmetric nonnegative tensor of order m and dimension n. Then,

Minx2int.P/Max16i6n

.Axm 1/i

xm 1
i

D �.A/DMaxx2Pnf0gMinxi 6D0,16i6n

.Axm 1/i

xm 1
i

. (3.17)

Proof

It has been proven in [4, 15] that (3.17) holds if A is weakly irreducible or it is irreducible. Now

we will show that (3.17) also holds if A is weakly reducible. By using Theorem 3.2, if A is

weakly reducible, then there exists a partition fI1, I2, : : : , Ikg of f1, 2, : : : ,ng such that each induced

tensor AIi
, i D 1, 2, : : : , k is either weakly irreducible or a zero tensor. Moreover, without loss of

generality, we suppose

Axm 1 D

2

6

6

6

4

AI1
.xI1

/m 1

AI2
.xI2

/m 1

...

AIk
.xIk

/m 1

3

7

7

7

5

. (3.18)

For each i D 1, 2, : : : , k, by Corollary 4.2 [15], we obtain

MinxIi
>0Maxj2Ii

.AIi
.xIi

/m 1/j

xm 1
j

D �.AIi
/DMaxxIi

>0,xIi
6D0Minxj 6D0,j2Ii

.AIi
.xIi

/m 1/j

xm 1
j

.

(3.19)

Note that (3.19) holds for a zero tensor. For each x 2 int.P/, by the left equality of (3.19), we have

Maxj2Ii

.AIi
.xIi

/m 1/j

xm 1
j

> �.AIi
/, i D 1, 2, : : : , k.

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:913–928
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So, by (3.18) and the statement (4) of Theorem 3.2,

Max16i6n

.Axm 1/i

xm 1
i

> max
16i6k

�.AIi
/D �.A/. (3.20)

Let uIi
.> 0/ be an eigenvector ofAIi

with the associated eigenvalue �.AIi
/, k D 1, 2, : : : , k, and

define uD .uIi
, 1 6 i 6 k/. Clearly, we obtain

Max16i6n

.Aum 1/i

um 1
i

D �.A/. (3.21)

It follows from (3.20) and (3.21) that the left equality of (3.17) is satisfied. We now prove that the

right equality of (3.17) holds. For each x 2Pnf0g, by the right equality of (3.19), we have

Minxj 6D0,j2Ii

.AIi
.xIi

/m 1/j

xm 1
j

6 �.AIi
/, for some 1 6 i 6 k.

So, by (3.18) and the statement (4) of Theorem 3.2,

Minxi 6D0,16i6n

.Axm 1/i

xm 1
i

6 �.AIi
/ 6 �.A/. (3.22)

Let vIj
.> 0/ be an eigenvector ofAIj

with the associated eigenvalue �.AIj
/D �.A/, and define

v 2<n by vi D .vIj
/i if i 2 Ij and zero otherwise. Clearly, we obtain

Minvi 6D0,16i6n

.Avm 1/i

vm 1
i

D �.A/. (3.23)

It follows from (3.22) and (3.23) that the right equality of (3.17) is satisfied. So we completes

the proof. �

Remark 2

Theorem 3.3 does not hold if A is not symmetric. Consider a three-order two-dimensional tensor

S given by s111 D 2, s122 D s222 D 1 and zero elsewhere. By simple computation, we obtain

�.S/D 2 with associated eigenvector x D .1, 0/T . However, the left equality of (3.17) is not satis-

fied for tensor S. Recently, it has been shown in Theorems 5.2 and 5.3 of [30] that the right equality

of (3.17) is satisfied for any nonnegative tensor and the left equality of (3.17) holds under the con-

dition that the nonnegative tensor A has a positive eigenvector corresponding to some eigenvalue.

Theorem 3.3 shows that (3.17) is satisfied for any nonnegative symmetric tensor.

Lemma 3.3

Let A and AIi
, i D 1, 2, : : : , k be as in Theorem 3.2. Then, the following two statements are

equivalent.

(a) AIi
, i D 1, 2, : : : , k are weakly irreducible and �.AI1

/D �.AI2
/D : : :D �.AIk

/.

(b) A has a positive eigenvector u 2 int.Pn/ whose associated eigenvalue is �.A/.

Proof

By Theorem 3.2, without loss of generality, we suppose that (3.18) holds. Assume that (a) holds.

Then, for each i D 1, 2, : : : , k, AIi
has a positive eigenvalue–eigenvector (�.AIi

/,uIi
). From

Theorem 3.2, we obtain �.A/ D �.AI1
/ D �.AI2

/ D : : : D �.AIk
/. Let u D .uIi

, i D

1, 2, : : : , k/ 2 <n be formed by uIi
, i D 1, 2, : : : , k. Then, by (3.18), (�.A/,u) is a positive

eigenvalue–eigenvector ofA.

Now, we suppose that (b) holds. Then, by (3.18), (�.A/,uIi
) is a positive eigenvalue–eigenvector

ofAIi
, i D 1, 2, : : : , k. Hence,AIi

, i D 1, 2, : : : , k are not zero tensors, and (a) is satisfied. �
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Theorem 3.4

Let A be a symmetric nonnegative tensor of order m and dimension n. Then, the following two

statements are equivalent.

(i) A is weakly irreducible.

(ii) A has a positive eigenvector u 2 int.Pn/, unique up to a scale multiple, whose associated

eigenvalue is �.A/.

Proof

If A is weakly irreducible, then, by Theorem 2.3, (ii) holds. Now we suppose that (ii) holds and

assume to the contrary that A is weakly reducible. By Theorem 3.2 and Lemma 3.3, there exists

a partition fI1, I2, : : : , Ikg of f1, 2, : : : ,ng such that each induced tensor AIi
, i D 1, 2, : : : , k is

weakly irreducible, and �.A/ D �.AIi
/, 1 6 i 6 k. Moreover, without loss of generality, we

suppose that (3.18) holds. For each i D 1, 2, : : : , k, AIi
has a positive eigenvalue–eigenvector

(�.AIi
/,uIi

). Let u D .uIi
, i D 1, 2, : : : , k/ 2 <n be formed by uIi

, i D 1, 2, : : : , k, and

v D .i � uIi
, i D 1, 2, : : : , k/ 2 <n. Then, by (3.18), (�.A/,u) and (�.A/, v) are positive

eigenvalue–eigenvectors of A, and clearly there does not exist a constant c 6D 0 such that u D cv,

which contradicts (ii). So we complete the proof. �

Remark 3

Theorem 3.4 does not hold ifA is not symmetric. Consider a three-order two-dimensional tensorD

given by d122 D d222 D 1 and zero elsewhere. By simple computation, we obtainD with a positive

eigenvector x D .1, 1/T , unique up to a scale multiple, whose associated eigenvalue is 1. However,

D is weakly reducible.

Theorem 3.5

Let A be a symmetric nonnegative tensor of order m and dimension n. Then, the following two

statements are equivalent.

(a)A is irreducible.

(b) Problem (3.10) has a unique KKT pair .�,x/, and � and x are positive.

Proof

IfA is irreducible, then, by the statement (iii) of Theorem 2.3 and Definition 3.5, (b) holds.

Now we suppose that (b) holds and assume to the contrary thatA is reducible, that is, there exists

a nonempty proper index subset I � f1, 2, : : : ,ng such that

ai1i2:::im D 0, 8i1 2 I , 8i2, : : : , im 2 J , J D f1, 2, : : : ,ngnI . (3.24)

Let AJ be the induced tensor from A and x D .0I ,xJ / 2 <n. Then, it follows from (3.24) that

there exists a permutation matrix P such that

P.Axm 1/D

�

0I

AJ .xJ /m 1

�

. (3.25)

By the statement (i) of Theorem 2.3, AJ has a nonnegative eigenvalue–eigenvector .l ,x�J /

such that

AJ .x�J /m 1 D l.x�J /Œm 1�,
X

i2J

.x�i /m D 1, l > 0, x�J > 0.

Let x� D .0I ,x
�
J /. Then, clearly, .l ,x�/ is a nonnegative eigenvalue–eigenvector of A, which

contradicts with (b). This completes the proof. �

Remark 4

The statement (b) of Theorem 3.5 does not hold for weakly irreducible tensors. Consider a three-

order two-dimensional tensor Q given by q111 D 1, q222 D 2, q112 D q121 D q211 D 1 and
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DOI: 10.1002/nla



LARGEST EIGENVALUE OF A SYMMETRIC NONNEGATIVE TENSOR 923

zero elsewhere. By simple computation, we obtain Q is weakly irreducible and it has a positive

eigenvector x D .1, 1/T with associated eigenvalue 3. However, Q also has an eigenvalue 2 with

corresponding eigenvector y D .0, 1/T . This also means that Problem (3.10) may have more than

one KKT pairs for weakly irreducible tensors. In addition, in a similar argument as in Theorem 3.5,

we can prove that a nonnegative tensor (not necessarily symmetric) A is irreducible if and only if

the following system has a unique solution .�,x/:

Axm 1 D �xŒm 1�,

n
X

iD1

xm
i D 1, � > 0,x > 0,

and � > 0,x > 0.

3.1. Convex optimization reformulation

In this subsection, we show that the largest eigenvalue of a symmetric nonnegative tensor is linked

to a convex polynomial optimization problem.

Theorem 3.6

Suppose nonnegative tensor A is symmetric. If x� is a global solution of Problem (3.10), then

f .x�/ is the largest eigenvalue of A with corresponding eigenvector x�. In addition, if � is the

largest eigenvalue of A associated with the eigenvector x� satisfying
Pn

iD1.x�i /m D 1, then x� is

a global solution of Problem (3.10).

Proof

It follows from Lemma 3.1 that if x� is a global solution of Problem (3.10), then f .x�/ is an eigen-

value ofA with corresponding eigenvector x�. Assume to the contrary that f .x�/ is not the largest

eigenvalue of A and �.> f .x�// is the largest eigenvalue of A associated with the nonnegative

eigenvector y satisfying
Pn

iD1 ym
i D 1. Then, we obtain

Aym 1 D �y Œm 1�, (3.26)

n
X

iD1

ym
i D 1. (3.27)

From (3.11) and (3.13), we have

f .y/DAym D yT
 

Aym 1
�

D �yT
�

y Œm 1�
�

D �

n
X

iD1

ym
i D � > f .x�/.

This is a contradiction because x� is a global solution of Problem (3.10). In a similar argument,

we can prove that if � is the largest eigenvalue of A associated with the eigenvector x� satisfying
Pn

iD1.x�i /m D 1, then x� is a global solution of Problem (3.10). �

In the following, we will show that Problem (3.10) can be reformulated as a convex optimization

problem and moreover, Problem (3.10) has a unique positive solution ifA is weakly irreducible.

Lemma 3.4

Suppose the nonnegative tensor A is symmetric and weakly irreducible. Then, Problem (3.10) has

a unique solution x� and x� 2 int.Pn/.

Proof

BecauseA is weakly irreducible, f .x/ is an irreducible polynomial function. By Theorem 5.4 [32],

this theorem holds. �
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Lemma 3.5

Suppose the nonnegative tensorA is symmetric and weakly irreducible. Then, � is the largest eigen-

value of A associated with the eigenvector x� satisfying
Pn

iD1.x�i /m D 1 if and only if x� is the

unique solution of Problem (3.10) and �D f .x�/.

Proof

By Lemma 3.4 and Theorem 3.6, this lemma holds. �

Let y D
 

xm
1 ,x

m
2 , : : : ,xm

n

�T
. Then, f .x/ can be converted into a homogeneous polynomial

form of y , and we denote it by g.y/. Hence, Problem (3.10) can be formulated as the following

optimization problem:

max g.y/

s.t
Pn

iD1 y i D 1

y > 0.

(3.28)

Theorem 3.7

Suppose the nonnegative tensorA is symmetric. Then, g.y/ in Problem (3.28) is a concave function

on int.Pn/.

Proof

By Theorem 5.2 [32], this theorem holds. �

By Theorem 3.7, Problem (3.28) can be converted into the following convex optimization

problem:

min  g.y/

s.t
Pn

iD1 y i D 1

y > 0.

(3.29)

Theorem 3.8

Suppose the nonnegative tensor A is symmetric. Then, Problem (3.29) is a convex optimization

problem. Furthermore, if A is weakly irreducible, then Problem (3.29) has a unique solution y�

and y� 2 int.Pn/.

Proof

By Lemma 3.5 and Theorem 3.7, this theorem holds. �

4. ALGORITHMS FOR THE SPECTRAL RADIUS FOR SYMMETRIC

NONNEGATIVE TENSORS

In this section, we discuss two algorithms for computing the spectral radius for symmetric nonneg-

ative tensors. One is a power type algorithm based on Theorem 3.2, and the other is a geometric

programming (GP) method due to Theorem 3.3.

4.1. Power type algorithm

Given a symmetric nonnegative tensor A of order m and dimension n, we first propose a proce-

dure to compute a partition fI1, I2, : : : , Ikg of f1, 2, : : : ,ng such that each induced tensorAIi
, i D

1, 2, : : : , k is either weakly irreducible or a zero tensor. This procedure is based on Definition 2.3

that the graph of a weakly irreducible tensor is strongly connected.

Procedure 1

1. Let J1 D f1, 2, : : : ,ng and set j D 1.

2. If Jj D ;, then stop. Otherwise, choose an element i1 from Jj , and let Ij WD fi1g.
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3. Check all elements ai1i2:::im such that id 2 Jj , d D 2, 3, : : : ,m. If all these elements are zero,

then let JjC1 WD Jj nIj , set j WD j C 1, and go to Step 2. Otherwise, for all nonzero elements

ai1i2:::im and all d D 2, 3, : : : ,m, Ij WD Ij [ fid g if id 62 Ij . Let K WD fi1g.

4. If Ij nK D ;, then let JjC1 WD Jj nIj , set j WD j C 1, and go to Step 2. Otherwise, go to

Step 5.

5. Choose an ik 2 Ij nK, and check all elements aik i2:::im such that id 2 Jj , d D 2, 3, : : : ,m.

For all nonzero elements aik i2:::im and all d D 2, 3, : : : ,m, Ij WD Ij [ fid g if id 62 Ij . Let

K WDK [ fikg, and go to Step 4.

Procedure 1 can be implemented easily in a computer programming such as MATLAB. To

show how Procedure 1 works, we consider the three-order four-dimensional tensor M given by

m222 D 2,m333 D m444 D 1,m443 D m434 D m344 D 1, and zero elsewhere. By Procedure 1, a

partition of f1, 2, 3, 4g, can be obtained by the following steps:

Step 1: Let J1 WD f1, 2, 3, 4g and j WD 1.

Step 2: Choose 1 from J1, and let I1 WD f1g.

Step 3: Check all elements m1i2i3 , i2 2 J1, j3 2 J1. Because they are all zero, let J2 WD J1nI1 D

f2, 3, 4g and j WD 2.

Step 4: Choose 2 from J2, and let I2 WD f2g.

Step 5: Check all elements m2i2i3 , i2 2 J2, j3 2 J2, and we have m222 ¤ 0. So let I2 WD I2 and

K WD f2g.

Step 6: Because I2nK D ;, let J3 WD J2nI2 D f3, 4g and j WD 3.

Step 7: Choose 3 from J3, and let I3 WD f3g.

Step 8: Check all elementsm3i2i3 , i2 2 J3, j3 2 J3, and we havem344 ¤ 0. So let I3 WD I3[f4g D

f3, 4g and K WD f3g.

Step 9: Because I3nK D f4g, we choose 4 from I3nK and check all elementsm4i2i3 , i2 2 J3, j3 2

J3. We have m443 ¤ 0 and m434 ¤ 0. Let I3 WD I3 and K WDK [ f4g D f3, 4g.

Step 10: Because I3nK D ;, let J4 WD J3nI3. Because J4 D ;, we stop the procedure and obtain

I1 D f1g, I2 D f2g and I3 D f3, 4g, which is a partition of f1, 2, 3, 4g.

We now state a power-type algorithm for the largest eigenvalue ofA as follows.

Algorithm 4.1

Step 1. By using Procedure 1, compute a partition fI1, I2, : : : , Ikg of f1, 2, : : : ,ng such that each

induced tensorAIi
, i D 1, 2, : : : , k is either weakly irreducible or a zero tensor.

Step 2. For i D 1, 2, � � � , k, do

IfAIi
is a zero tensor, then let �.i/ D 0. Otherwise, compute the largest eigenvalue �.i/ of

AIi
and a corresponding eigenvector u.i/ by using Algorithm 2.1

End

Step 3. Output �.A/Dmax16i6k �.i/. Suppose �.A/D �.i/, and let u be defined by

uj D .u.i//j if j 2 Ii . Otherwise, uj D 0.

Then, u is an eigenvector associated with the largest eigenvalue �.A/.

By Theorems 2.4 and 2.5, Algorithm 2.1 can produce the largest eigenvalue and its associated

eigenvector for weakly irreducible nonnegative tensors. Therefore, in Step 2 of Algorithm 4.1,

the largest eigenvalue �.i/ of AIi
and a corresponding eigenvector u.i/ can be obtained by using

Algorithm 2.1 becauseAIi
is weakly irreducible. By Theorem 3.2, any weakly reducible symmetric

nonnegative tensor can be decomposed into some weakly irreducible tensors. Hence, Algorithm 4.1

can produce the largest eigenvalue and its associated eigenvector for any symmetric nonnegative

tensor. To show this, we report our numerical results as follows.

Algorithms 2.1 and 4.1 are implemented in MATLAB (R2008b), and all the numerical compu-

tations are conducted using an Intel 3.20-GHz computer with 2 GB of RAM. All test tensors are
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Table I. Numerical results of Algorithms 4.1 and 2.1.

Problem Algorithm 4.1 Algorithm 2.1

n np k err � cpu(s) k err � cpu(s)

30 2 9 1.57e-006 51.39 0.11 100 2.24e-001 51.39 0.41
60 2 8 1.11e-007 200.12 0.38 100 9.47e-002 200.07 2.17
90 2 6 9.84e-007 451.40 0.92 100 1.43e-001 450.67 4.77
120 2 6 7.11e-007 802.00 2.13 100 1.69e-001 800.57 9.30
150 2 6 3.14e-007 1251.52 4.08 100 1.17e-001 1250.29 18.73
180 2 6 1.64e-007 1799.09 7.25 100 1.33e-001 1797.24 59.20
210 2 6 1.36e-007 2448.70 11.72 100 6.88e-002 2447.93 114.67
240 2 6 9.42e-008 3198.34 17.50 100 4.11e-002 3198.15 171.98
270 2 6 6.49e-008 4050.56 25.08 100 5.77e-002 4049.77 248.80
300 2 6 7.51e-008 5001.54 34.33 100 8.02e-002 4999.91 341.02
30 3 12 2.53e-006 50.75 0.09 100 2.34e-001 50.62 0.42
60 3 12 1.53e-007 201.60 0.42 100 9.90e-002 201.35 2.17
90 3 9 1.80e-006 450.26 1.05 100 1.17e-001 449.42 4.75
120 3 9 1.13e-006 803.34 2.31 100 2.04e-001 801.02 9.38
150 3 9 3.32e-007 1253.10 4.52 100 1.70e-001 1250.41 18.36
180 3 9 1.97e-007 1797.85 7.95 100 4.30e-002 1797.52 63.23
210 3 9 1.42e-007 2449.32 12.72 100 6.34e-002 2448.21 114.52
240 3 9 1.26e-007 3205.06 19.06 100 1.72e-001 3200.43 171.83
270 3 9 7.07e-008 4057.06 27.23 100 1.15e-001 4053.68 250.78
300 3 9 4.66e-008 5005.00 37.36 100 7.68e-002 5002.75 341.73

randomly generated with order d D 3. Throughout the computational experiments, we use the vec-

tor of ones as a starting point for Algorithm 2.1, and we terminate it when one of the following

conditions is satisfied:

.1/ k > 100I .2/ N�k  �k 6 10 6I or .3/ kx.k/  H
�

x.k/
�

k1 6 10 6.

Our numerical results are summarized in Table I. In this table, n is the dimension of the randomly

generated tensor, and np denotes the number of the partition of f1, 2, : : : ,ng. k denotes the number of

total iterations needed for Algorithm 2.1, and cpu(s) denotes the total computer time in seconds used

to solve the problem. � is the largest eigenvalue obtained by these algorithms with a corresponding

eigenvector xf , and err D kAxf
m 1  �x

Œm 1�

f
k1. The results reported in Table I clearly show

that the performance of Algorithm 4.1 is better than Algorithm 2.1 for weakly reducible tensors.

Algorithm 4.1 is able to produce the largest eigenvalue for all these randomly generated reducible

tensors within 12 iterations. However, Algorithm 2.1 fails to give the largest eigenvalue within 100

iterations for most of test problems.

4.2. Geometric programming method

Let A be a symmetric nonnegative tensor of order m and dimension n. By Theorem 3.3, clearly,

�.A/ can be obtained by solving the following optimization problem:

Minx2int.P/Max16i6n

 

Axm 1
�

i

xm 1
i

. (4.30)

Let

�DMax16i6n

 

Axm 1
�

i

xm 1
i

Then, we have

 

Axm 1
�

i
6 �xm 1

i , i D 1, 2, : : : ,n,
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which can also be written as

n
X

i2,:::,imD1

ai i2:::imxi2 � � �xim� 1x1 m
i 6 1, i D 1, 2, : : : ,n.

Hence, (4.30) can be reformulated into the following problem:

.GP / Min �

s.t.

n
X

i2,:::,imD1

ai i2:::imxi2 � � �xim� 1x1 m
i 6 1, i D 1, 2, : : : ,n

x 2 int.P/.

(4.31)

Problem (GP) is a GP, which is extensively studied in [34,35]. The standard barrier-based interior-

point method for convex optimization can be applied to (GP) in a straightforward way with a

polynomial-time complexity; see [35].

We conclude this paper with a remark on these two algorithms. Recently, GP method has been

discussed in [31] for computing the largest eigenvalue for nonnegative tensors, and it is shown

in [31, 36] that the performance of power type method is better than that of the GP method. The

advantage of the GP method is that it has a polynomial-time complexity.
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