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SUMMARY

This paper is contributed to a fast algorithm for Hankel tensor–vector products. First, we explain the neces-
sity of fast algorithms for Hankel and block Hankel tensor–vector products by sketching the algorithm for
both one-dimensional and multi-dimensional exponential data fitting. For proposing the fast algorithm, we
define and investigate a special class of Hankel tensors that can be diagonalized by the Fourier matrices,
which is called anti-circulant tensors. Then, we obtain a fast algorithm for Hankel tensor–vector products
by embedding a Hankel tensor into a larger anti-circulant tensor. The computational complexity is about
O.m2n logmn/ for a square Hankel tensor of order m and dimension n, and the numerical examples also
show the efficiency of this scheme. Moreover, the block version for multi-level block Hankel tensors is
discussed. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Hankel structures arise frequently in signal processing [1]. Besides Hankel matrices, tensors with
different Hankel structures are also applied. As far as we know, the term ‘Hankel tensor’ was first
introduced by Luque and Thibon [2]. And Badeau and Boyer [3] discussed the higher-order singu-
lar value decompositions (HOSVD) of some structured tensors including Hankel tensors in detail.
Moreover, Papy et al. employed Hankel tensors and other Hankel-type tensors in exponential data
fitting [4–6]. De Lathauwer [7] also concerned the ‘separation’ of signals that can be modeled as
sums of exponentials (or more generally, as exponential polynomials) by Hankel tensor approaches.
As to the properties of Hankel tensors, Qi [8, 9] recently investigated the spectral properties of
Hankel tensor largely via the generating function. Song and Qi [10] also proposed some spectral
properties of Hilbert tensors, which are special Hankel tensors.

An mth-order tensor H 2 Cn1�n2�����nm is called a Hankel tensor if

Hi1i2:::im D �.i1 C i2 C � � � C im/

for all ik D 0; 1; : : : ; nk � 1 (k D 1; 2; : : : ; m). We call H a square Hankel tensor when
n1 D n2 D � � � D nm. Note that the degree of freedom of a Hankel tensor is dH WD n1 C n2 C

*Correspondence to: Liqun Qi, Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung
Hom, Kowloon, Hong Kong.

†E-mail: liqun.qi@polyu.edu.hk

Copyright © 2015 John Wiley & Sons, Ltd.



FAST HANKEL TENSOR–VECTOR PRODUCTS 815

� � � C nm � m C 1. Thus, a vector h of length dH, which is called the generating vector of H,
defined by

hk D �.k/; k D 0; 1; : : : ; dH � 1

can completely determine this Hankel tensor H when the tensor size is fixed. Further, when the
entries of h can be written as

hk D

Z C1
�1

tkf .t/dt;

then we call f .t/ the generating function of H. The generating function of a square Hankel tensor
is essential for studying its eigenvalues, positive semi-definiteness, and copositiveness [8].

Fast algorithms for Hankel or Toeplitz matrix-vector products involving fast Fourier transforms
(FFT) are well known [11–16]. However, the topics on Hankel tensor computations are seldom
discussed. We propose an analogous fast algorithm for Hankel tensor–vector products, which has its
application to exponential data fitting. We first introduce Papy et al.’s algorithm for one-dimensional
(1D) exponential data fitting briefly and extend it to multi-dimensional case in Section 2, in which
the Hankel and block Hankel tensor–vector products are dominant steps in the sense of efficiency.
Then, in Section 3 we define the anti-circulant tensor, which can be diagonalized by the Fourier
matrices, and study its properties carefully. In Section 4, we propose a fast algorithm for Hankel and
block Hankel tensor–vector products by embedding them into a larger anti-circulant and block anti-
circulant tensors, respectively. Finally, we employ some numerical examples to show the efficiency
of our scheme in Section 5.

2. EXPONENTIAL DATA FITTING

We begin with one of the sources of Hankel tensors and see where we need fast Hankel tensor–vector
products. Exponential data fitting is very important in many applications in scientific computing
and engineering, which represents the signals as a sum of exponentially damped sinusoids. The
computations and applications of exponential data fitting are generally studied, and the readers who
are interested in these topics can refer to [17–19].

Papy et al. [5, 6] introduced a higher-order tensor approach into exponential data fitting by con-
necting it with the Vandermonde decomposition of a Hankel tensor. As stated in [5], their algorithm
is a higher-order variant of the Hankel total least squares (TLS) method. And Hankel TLS is a mod-
ification of the famous estimation of signal parameters via rotation invariance techniques (ESPRIT)
algorithm [20, 21] by employing the TLS [22] instead of the least squares, which enhances the
robustness because the TLS is a type of errors-in-variables regression. Furthermore, Papy et al. con-
cluded from numerical experiments in their papers that the Hankel tensor approach can perform
better for some difficult situations than the classical one based on Hankel matrices, although there
is no exact theory on how to choose the optimal size of the Hankel tensor.

In order to understand the necessity of fast algorithms for Hankel and block Hankel tensors, we
sketch Papy et al.’s algorithm in this section and simply extend it to multi-dimensional exponential
data fitting.

2.1. The one-dimensional case

Assume that we obtain a 1D noiseless signal with N complex samples ¹xnºN�1nD0 , and this signal is
modeled as a sum of K exponentially damped complex sinusoids, that is,

xn D

KX
kD1

ak exp.{'k/ exp ..�˛k C {!k/n�t/ ;
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where { D
p
�1, �t is the sampling interval and the amplitudes ak , the phases 'k , the damping

factors ˛k , and the pulsations !k are the parameters of the model that are required to estimate. The
signal can also be expressed as

xn D

KX
kD1

ck´
n
k;

where ck D ak exp.{'k/ and ´k D exp ..�˛k C {!k/�t/. Here, ck is called the kth complex
amplitude including the phase, and ´k is called the kth pole of the signal. A part of the aim of
exponential data fitting is to estimate the poles ¹´kºKkD1 from the data ¹xnºN�1nD0 . After fixing the
poles, we can obtain the complex amplitudes by solving a Vandermonde system.

Denote vector x D .x0; x1; : : : ; xN�1/
>. We first construct a Hankel tensor H of a fixed size

I1 � I2 � � � � � Im with the generating vector x; for example, when m D 3, the Hankel tensor H is

HW;W;1 D

266664
x0 x1 � � � xI2�2 xI2�1

x1 : :
:
: :
:

: :
: :::

::: : :
:
: :
:

: :
:

xI1CI2�3
xI1�1 xI1 � � � xI1CI2�3 xI1CI2�2

377775 ;

HW;W;2 D

266664
x1 x2 � � � xI2�1 xI2

x2 : :
:
: :
:

: :
: :::

::: : :
:
: :
:

: :
:

xI1CI2�2
xI1 xI1C1 � � � xI1CI2�2 xI1CI2�1

377775 ;
:::

:::
:::

:::
:::

:::

HW;W;I3 D

266664
xI3�1 xI3 � � � xI2CI3�3 xI2CI3�2

xI3 : :
:

: :
:

: :
: :::

::: : :
:

: :
:

: :
:

xI1CI2CI3�4
xI1CI3�2 xI1CI3�1 � � � xI1CI2CI3�4 xI1CI2CI3�3

377775 :

(1)

The order m can be chosen arbitrarily, and the size Ip of each dimension should be no less than K
and satisfy I1CI2C� � �CIm�mC1 D N1. Papy et al. verified that the Vandermonde decomposition
of H is

H D C �1 Z>1 �2 Z>2 � � � �m Z>m;

where C is a diagonal tensor with diagonal entries ¹ckºKkD1, each Zp is a Vandermonde matrix

Z>p D

266664
1 ´1 ´21 � � � ´

Ip�1
1

1 ´2 ´22 � � � ´
Ip�1
2

:::
:::

:::
:::

:::

1 ´K ´2K � � � ´
Ip�1

K

377775 ;

and T �p M denotes the mode-p product [23] of T 2 Cn1�n2�����nm and M 2 Cnp�lp defined by

.T �p M/i1:::ip�1jp ipC1:::im D

npX
ipD1

ti1:::ip�1ip ipC1:::immipjp :

So, the target will be attained if we obtain the Vandermonde decomposition of this Hankel tensor H.

Copyright © 2015 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:814–832
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In [5], the Vandermonde matrices are estimated by applying the TLS to the factor matrices in the
HOSVD [23, 24] of the best rank-.R;R; : : : ; R/ approximation [23, 25] of H. Here, ifK is known,
then R D K. Otherwise, when K is unknown, R should be chosen to be much larger than a guess
of K. Therefore, computing the HOSVD of the best low-rank approximation of a Hankel tensor is
a main part in exponential data fitting.

De Lathauwer et al. [25] proposed an effective algorithm called higher-order orthogonal iterations
(HOOI) for this purpose. There are other algorithms with faster convergence such as [26, 27] pro-
posed, and one can refer to [23] for more details. Nevertheless, HOOI is still very popular, because
it is so simple and effective in applications. Thus, Papy et al. chose HOOI in [5].

The original HOOI algorithm for general tensors is displayed as follows, and the result S �1
U>1 �2 U

>
2 � � � �m U

>
m is the best rank-.R1; R2; : : : ; Rm/ approximation of A.

Algorithm 2.1
HOOI for the best rank .R1; R2; : : : ; Rm/ approximation of A 2 CI1�I2�����Im .

Initialize Up 2 CIp�Rp .p D 1; 2; : : : ; m/ by the HOSVD of A
Repeat

for p D 1 W m
Up  Rp leading left singular vectors of

Unfoldp.A �1 NU1 � � �1�p NUp � � � �m NUm/
end

Until convergence
S D A �1 NU1 �2 NU2 � � � �m NUm.

Here, Unfoldp.�/ denotes the mode-p unfolding of a tensor [22], and A �1 NU1 � � �1�p NUp � � � �m
NUm means that we skip the pth item. There are plenty of tensor–matrix products in the previous

algorithm, which can be complemented by tensor–vector products. For instance, the tensor–matrix
product

.A �2 NU2 � � � �m NUm/W;i2;:::;im D A �2 . NU2/W;i2 � � � �m . NUm/W;im ;

and others are the same. Therefore, if all the Hankel tensor–vector products can be computed by
a fast algorithm, then the efficiency must be highly raised when we invoke the HOOI algorithm in
exponential data fitting.

Papy et al. also studied the multi-channel case and the decimative case of exponential data fitting
in [5, 6] using higher-order approaches. The tensors arise from these cases are not exactly Hankel
tensors but have some Hankel structures. A tensor is called partially Hankel tensor, if the lower-
order subtensors are all Hankel tensors when some indexes are fixed. For instance, the tensor H
from the multi-channel or decimative exponential data fitting is third order, and H.W; W; k/ are Hankel
tensors for all k, so we call H a third-order .1; 2/-Hankel tensor. The HOOI algorithm will be
applied to some partially Hankel tensors. Hence, the fast tensor–vector products for partially Hankel
tensors are also required to discuss.

2.2. The multi-dimensional case

Papy et al.’s method can be extended to multi-dimensional exponential data fitting as well, which
involves the block tensors. Similarly to block matrices, a block tensor is understood as a tensor
whose entries are also tensors. The size of each block is called the level-1 size of the block tensor,
and the size of the block-entry tensor is called the level-2 size. Furthermore, a level-d block tensor
can be regarded as a tensor whose entries are level-.d � 1/ block tensor.

We take the two-dimensional (2D) exponential data fitting [28, 29] as an example to illustrate our
block tensor approach. Assume that there is a 2D noiseless signal with N1 � N2 complex samples
¹xn1n2ºn1D0;1;:::;N1�1

n2D0;1;:::;N2�1

, which is modeled as a sum of K exponential items,

Copyright © 2015 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:814–832
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xn1n2 D

KX
kD1

ak exp.{'k/ exp
�
.�˛1;k C {!1;k/n1�t1 C .�˛2;k C {!2;k/n2�t2

�
;

where the meanings of parameters are the same as those of 1D signals. Also, this 2D signal can be
rewritten into a compact form:

xn1n2 D

KX
kD1

ck´
n1
1;k
´
n2
2;k
:

Our aim is still to estimate the poles ¹´1;kºKkD1 and ¹´2;kºKkD1 of the signal from the samples. We
shall see shortly that the extended Papy et al.’s algorithm can also be regarded as a modified version
of the 2D ESPRIT method [28].

Denote matrix X D .xn1n2/N1�N2 . Then, we map the data X into a block Hankel tensor with
Hankel blocks (BHHB tensor) H of level-1 size I1�I2�� � ��Im and level-2 size J1�J2�� � ��Jm.
The sizes Ip and Jp of each dimension should be no less than K and satisfy that I1 C I2 C � � � C
Im �mC 1 D N1 and J1 C J2 C � � � C Jm �mC 1 D N2. First, we construct Hankel tensors Hj

of size I1 � I2 � � � � � Im with the generating vectors X.W; j / for j D 0; 1; : : : ; N2 � 1 as shown
in (1). Then, in block sense, we construct block Hankel tensors H of size J1 � J2 � � � � � Jm with
the block generating vectors ŒH0;H1; : : : ;HN2�1�

>; for example, when m D 3, the slices in block
sense of BHHB tensor H are

H.b/
W;W;1 D

266664
H0 H1 � � � HJ2�2 HJ2�1

H1 : :
:
: :
:

: :
: :::

::: : :
:
: :
:

: :
: HJ1CJ2�3

HJ1�1 HJ1 � � � HJ1CJ2�3 HJ1CJ2�2

377775 ;

H.b/
W;W;2 D

266664
H1 H2 � � � HJ2�1 HJ2

H2 : :
:

: :
:

: :
: :::

::: : :
:

: :
:

: :
: HJ1CJ2�2

HJ1 HJ1C1 � � � HJ1CJ2�2 HJ1CJ2�1

377775 ;
:::

:::
:::

:::
:::

:::
:::

H.b/
W;W;J3
D

266664
HJ3�1 HJ3 � � � HJ2CJ3�3 HJ2CJ3�2

HJ3
: :
:

: :
:

: :
: :::

::: : :
:

: :
:

: :
: HJ1CJ2CJ3�4

HJ1CJ3�2 HJ1CJ3�1 � � � HJ1CJ2CJ3�4 HJ1CJ2CJ3�3

377775 :

(2)

Then, the BHHB tensor H has the level-2 Vandermonde decomposition

H D C �1
�
Z2;1˝KR

Z1;1
�>
�2
�
Z2;2˝KR

Z1;2
�>
� � � �m

�
Z2;m˝KR

Z1;m
�>
;

where C is a diagonal tensor with diagonal entries ¹ckºKkD1, each Z1;p or Z2;p is a Vandermonde
matrix

Z>1;p D

266664
1 ´1;1 ´21;1 � � � ´

Ip�1
1;1

1 ´1;2 ´21;2 � � � ´
Ip�1
1;2

:::
:::

:::
:::

:::

1 ´1;K ´21;K � � � ´
Ip�1

1;K

377775 ; Z>2;p D
266664
1 ´2;1 ´22;1 � � � ´

Jp�1
2;1

1 ´2;2 ´22;2 � � � ´
Jp�1
2;2

:::
:::

:::
:::

:::

1 ´2;K ´22;K � � � ´
Jp�1

2;K

377775 ;

Copyright © 2015 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:814–832
DOI: 10.1002/nla



FAST HANKEL TENSOR–VECTOR PRODUCTS 819

and the notation ‘˝
KR

’ denotes the Khatri–Rao product [22, Chapter 12.3] of two matrices with the
same column sizes, that is,

Œa1; a2; : : : ; an�˝KR
Œb1;b2; : : : ;bn� D Œa1 ˝ b1; a2 ˝ b2; : : : ; an ˝ bn�:

So, the target will be attained, if we obtain the level-2 Vandermonde decomposition of this BHHB
tensor H.

We can use HOOI as well to compute the best rank-.K;K; : : : ; K/ approximation of the BHHB
tensor H

H D S �1 U>1 �2 U>2 � � � �m U>m ;

where S 2 CK�K�����K is the core tensor and Up 2 C.IpJp/�K has orthogonal columns. Then, Up
and Z2;p˝KR

Z1;p have the common column space; that is, there is a nonsingular matrix T such that

Z2;p˝KR
Z1;p D UpT:

Denote

A1" D
h
A>0WI�2;W; A

>
I;2I�2;W; : : : ; A

>
.J�1/I WJI�2;W

i>
;

A1# D
h
A>1WI�1;W; A

>
IC1;2I�1;W; : : : ; A

>
.J�1/IC1WJI�1;W

i>
;

A2" D A0W.J�1/I�1;W;

A2# D AI WJI�1;W;

for matrix A 2 C.IJ /�K . Then, it is easy to verify that�
Z2;p˝KR

Z1;p
�1"

D1 D
�
Z2;p˝KR

Z1;p
�1#

;
�
Z2;p˝KR

Z1;p
�2"

D2 D
�
Z2;p˝KR

Z1;p
�2#

;

where D1 is a diagonal matrix with diagonal entries ¹´1;kºKkD1 and D2 is a diagonal matrix with
diagonal entries ¹´2;kºKkD1. Then, we have

U 1"p
�
TD1T

�1
�
D U 1#p ; U 2"p

�
TD2T

�1
�
D U 2#p :

Therefore, if two matrices W1 and W2 satisfy that

U 1"p W1 D U
1#
p ; U 2"p W2 D U

2#
p ;

then W1 and W2 share the same eigenvalues with D1 and D2, respectively. Equivalently, the
eigenvalues ofW1 andW2 are exactly the poles of the first and second dimension, respectively. Fur-
thermore, we also choose the TLS as in [5] for solving the two previous equations, because the noise
on both sides should be taken into consideration.

Unlike the 2D ESPRIT method, we obtain the poles of both dimensions by introducing only one
BHHB tensor rather than constructing two related BHHB matrices. Hence, the matrices W1 and W2
have the same eigenvectors. This information is useful for finding the assignment of the poles; that
is, the eigenvalues of W1 and W2 with a same eigenvector are assigned into a pair.

Recall that Algorithm 2.1 is also called for BHHB tensors in 2D exponential data fitting. Thus,
the fast algorithm for BHHB tensor–vector products is also essential for this situation. Moreover,
when we deal with the exponential data fitting problems of higher dimensions, that is, 3D and 4D,
higher-level block Hankel tensors will be naturally involved. Therefore, it is also required to derive
a unified fast algorithm for higher-level block Hankel tensor–vector products.

Copyright © 2015 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:814–832
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3. ANTI-CIRCULANT TENSORS

The fast algorithm for Hankel tensor–vector products is based on a class of special Hankel tensors
called anti-circulant tensor. Thus, we introduce and investigate the anti-circulant tensors at first.

Circulant matrix [30] is famous, which is a special class of Toeplitz matrices [11, 13]. The first
column entries of a circulant matrix shift down when moving right, as shown in the following
three-by-three example 24c0 c2 c1c1 c0 c2

c2 c1 c0

35 :
If the first column entries of a matrix shift up when moving right, as shown in the following24c0 c1 c2c1 c2 c0

c2 c0 c1

35 ;
then it is a special Hankel matrix, which is called an anti-circulant matrix, or a left circulant matrix,
or a retrocirculant matrix [30, Chapter 5]. Naturally, we generalize the anti-circulant matrix to the
tensor case. A square Hankel tensor C of orderm and dimension n is called an anti-circulant tensor,
if its generating vector h satisfies that

hk D hl ; if k � l .modn/:

Thus, the generating vector is periodic and displayed as

h D

0B@h0; h1; : : : ; hn�1„ ƒ‚ …
c>

; hn; hnC1; : : : ; h2n�1„ ƒ‚ …
c>

; : : : ; h.m�1/n; : : : ; hm.n�1/„ ƒ‚ …
c.0Wn�m/>

1CA
>

:

Because the vector c, which is exactly the ‘first’ column C.W; 0; � � � ; 0/, contains all the informa-
tion about C and is more compact than the generating vector, we call it the compressed generating
vector of the anti-circulant tensor. For instance, a 3 � 3 � 3 anti-circulant tensor C is unfolded by
mode-1 into

Unfold1.C/ D

24 c0 c1 c2c1 c2 c0
c2 c0 c1

ˇ̌̌̌
ˇ̌ c1 c2 c0c2 c0 c1
c0 c1 c2

ˇ̌̌̌
ˇ̌ c2 c0 c1c0 c1 c2
c1 c2 c0

35 ;
and its compressed generating vector is c D Œc0; c1; c2�

>. Note that the degree of freedom of an
anti-circulant tensor is always n no matter how large its order m will be.

3.1. Diagonalization

One of the essential properties of circulant matrices is that every circulant matrix can be diag-
onalized by the Fourier matrix [30], where the Fourier matrix of size n is defined as Fn D�
exp

�
�2�{

n
jk
��
j;kD0;1;:::;n�1

. Actually, the Fourier matrix is exactly the Vandermonde matrix for
the roots of unity, and it is also a unitary matrix up to the normalization factor

FnF
�
n D F

�
n Fn D nIn;

where In is the identity matrix of n� n and F �n is the conjugate transpose of Fn. We will show that
anti-circulant tensors also have a similar property, which brings much convenience for both analysis
and computations.

Copyright © 2015 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2015; 22:814–832
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In order to describe this property, we recall the definition of mode-p tensor–matrix product first.
In this paper, it should be pointed out that the tensor–matrix products are slightly different with some
standard notations [23, 24] just for easy use and simple descriptions. In the standard notation system,
two indices in ‘Mij ’ should be exchanged. There are some basic properties of the tensor–matrix
products:

1. A �p Mp �q Mq D A �q Mq �p Mp , if p ¤ q,
2. A �p Mp1 �p Mp2 D A �p .Mp1Mp2/,
3. A �p Mp1 CA �p Mp2 D A �p .Mp1 CMp2/,
4. A1 �p M CA2 �p M D .A1 CA2/ �p M .

Particularly, when A is a matrix, the mode-1 and mode-2 products can be written as

A �1M1 �2M2 DM
>
1 AM2:

Notice that M>1 AM2 is totally different with M �1AM2! (M>1 is the transpose of M1.) We will also
adopt some notations from Qi’s paper [31, 32] that

Axm�1 D A �2 x � � � �m x;

Axm D A �1 x �2 x � � � �m x:

We are now ready to state our main result about anti-circulant tensors.

Theorem 3.1
A square tensor of order m and dimension n is an anti-circulant tensor if and only if it can be
diagonalized by the Fourier matrix of size n, that is,

C D DFmn WD D �1 Fn �2 Fn � � � �m Fn;

where D is a diagonal tensor and diag.D/ D ifft.c/. Here, ‘ifft’ is a Matlab-type symbol, an
abbreviation of inverse FFT (IFFT).

Proof
It is direct to verify that a tensor that can be expressed as DFmn is anti-circulant. Thus, we only need
to prove that every anti-circulant tensor can be written into this form. And this can be carried out
constructively.

First, assume that an anti-circulant tensor C could be written into DFmn . Then, how do we obtain
the diagonal entries of D from C? Because

diag.D/ D D1m�1 D
1

nm

�
C
�
F �n
�m�

1m�1 D
1

nm
NFn

�
C
�
F �n 1

�m�1�
D
1

n
NFn
�
Cem�10

�
D
1

n
NFnc;

where 1 D Œ1; 1; : : : ; 1�>, e0 D Œ1; 0; : : : ; 0�>, NFn is the conjugate of Fn, and c is the compressed
generating vector of C, then the diagonal entries of D can be computed by an IFFT

diag.D/ D ifft.c/:

Finally, it is enough to check that C D DFm with diag.D/ D ifft.c/ directly. Therefore, every
anti-circulant tensor is diagonalized by the Fourier matrix of proper size. �
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From the expression C D DFmn , we have a corollary about the spectra of anti-circulant tensors.
The definitions of tensor Z-eigenvalues and H-eigenvalues follow the ones in [31, 32].

Corollary 3.2
An anti-circulant tensor C of order m and dimension n with the compressed generating vector c
has a Z-eigenvector/H-eigenvector 1p

n
1, and the corresponding Z-eigenvalue is n

m�2
2 1>c, and the

corresponding H-eigenvalue is nm�21>c. When n is even, it has another Z-eigenvector 1p
n
e1, wheree1 D Œ1;�1; : : : ; 1;�1�>, and the corresponding Z-eigenvalue is n

m�2
2 e1>c; moreover, this is also an

H-eigenvector if m is even, and the corresponding H-eigenvalue is nm�2e1>c.

Proof
It is easy to check that

C1m�1 D F>n
�
D.Fn1/m�1

�
D nm�1F>n

�
Dem�10

�
D nm�1D1;1;:::;1 � F>n e0

D nm�2
�
e>0 NFnc

�
1 D

�
nm�21>c

�
1:

The proof of the rest part is similar, so we omit it. �

3.2. Singular values

Lim [33] defined the tensor singular values as8̂<̂
:

A �2 u2 �3 u3 � � � �m um D 'p1.u1/ � �;
A �1 u1 �3 u3 � � � �m um D 'p2.u2/ � �;
: : : : : : : : : : : : : : :

A �1 u1 �2 u2 � � � �m�1 um�1 D 'pm.um/ � �;

where � > 0 and u>
l
'pl .ul/ D kulk

pl
pl D 1 for l D 1; 2; : : : ; m. When p1 D p2 D � � � D pm D 2,

'2.u/ D Nu and the singular values are unitarily invariant.
Consider the singular values of anti-circulant tensors. Let C D DFm be an anti-circulant tensor.

There exists a permutation matrix P such that the diagonal entries of DPm are arranged in descend-
ing order by their absolute values, then C D .DPm/

�
.FP />

�m
. Denote � is a diagonal matrix

satisfying that �m
kk
D sgn ..DPm/kk/, where sgn.�/ denotes the signum function, that is,

sgn.�/ D

²
�=j�j; � ¤ 0;
0; � D 0:

Hence, it is easy to understand that tensor C can be rewritten into C D eD.V >/m, where eD D jDPmj
is a nonnegative diagonal tensor with ordered diagonal entries and V D FP� is a unitary matrix. If
¹� Iu1;u2; : : : ;umº is a singular value and the corresponding singular vectors of C, then®

� IV >u1; V >u2; : : : ; V >um
¯

is a singular value and the associated singular vectors of eD and vice versa. Therefore, we need
only to find the singular values and singular vectors of a diagonal tensor eD. Let d1 > d2 > � � � >
dn > 0 be the diagonal entries of eD and wl D V >ul for l D 1; 2; : : : ; m. Then, the previous
equations become 8̂<̂

:
dk.w2/k.w3/k : : : .wm/k D . Nw1/k � �;
dk.w1/k.w3/k : : : .wm/k D . Nw2/k � �;
: : : : : : : : : : : : : : :

dk.w1/k.w2/k : : : .wm�1/k D . Nwm/k � �;

k D 1; 2; : : : ; n:
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From the previous equations, we have for k D 1; 2; : : : ; n,

dk.w1/k.w2/k : : : .wm/k D j.w1/kj
2 � � D j.w2/kj

2 � � D � � � D j.wm/kj
2 � �:

Then, jw1j D jw2j D � � � D jwmj WD q D Œq1; q1; : : : ; qn�
> when � ¤ 0. Denote K D ¹k W qk ¤

0º. Then, dkqm�2k
D � . Because q is normalized, we have dk > 0 and

P
k2K.�=dk/

2
m�2 D 1.

Thus, the singular value is

� D

 X
k2K

d
� 2
m�2

k

!�m�22
;

and the singular vectors are determined by

qk D

²
.�=dk/

1
m�2 ; k 2 K;

0; otherwise,
and sgn.w1/ksgn.w2/k : : : sgn.wm/k D 1:

Therefore, if d1 > � � � > dr > drC1 D � � � D dn D 0, then the anti-circulant tensor C has
at most 2r � 1 nonzero singular values when m > 2, because the index set K can be chosen
as an arbitrary subset of ¹1; 2; : : : ; nº. As to the zero singular value, the situation is a little more
complicated. It is directly verified that the previous equations hold for some k if there are two of
¹.w1/k; .w2/k; : : : ; .wm/kº equal to zero. Furthermore, for k D r C 1; r C 2; : : : ; n, the kth entries
of wl ’s can also be chosen such that

sgn.w1/ksgn.w2/k : : : sgn.wm/k D 1:

One can easily prove that the largest singular value of a nonnegative diagonal tensor is

d1 D max �.eD/
D max

®
jeD �1 w1 � � � �m wmj W kw1k2 D � � � D kwmk2 D 1

¯
:

So, we also have that the largest singular value of an anti-circulant tensor

d1 D max �.C/
D max ¹jC �1 u1 � � � �m umj W ku1k2 D � � � D kumk2 D 1º ;

and the maximum value can be attained when u1 D u2 D � � � D um D NV e0. Recall the definition of
the tensor Z-eigenvalues [31] ²

Cxm�1 D �x;
x>x D 1;

where x 2 Rn, then � D Cxm. So, the maximum absolute value of an anti-circulant tensor’s
Z-eigenvalues is bounded by the largest singular value, that is,

	Z.C/ WD ¹j�j W � is a Z-eigenvalue of Cº 6 d1:

Particularly, when the anti-circulant tensor C is further nonnegative, which is equally that its
compressed generating vector c is nonnegative, it can be verified that

ifft.c/1 D max
k
jifft.c/kj

where ifft.c/k denotes the kth entry of ifft.c/. So, the singular vectors corresponding to the largest
singular value are u1 D u2 D � � � D um D 1p

n
1. Note that 1p

n
1 is also a Z-eigenvector of C

(Corollary 3.2). Therefore, the Z-spectral radius of a nonnegative anti-circulant tensor is exactly its
largest singular value.
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3.3. Block tensors

Block structures arise in a variety of applications in scientific computing and engineering [1, 34].
We have utilized the block tensors to multi-dimensional data fitting in Section 2.2.

If a block tensor can be regarded as a Hankel tensor or an anti-circulant tensor with tensor entries,
then we call it a block Hankel tensor or a block anti-circulant tensor, respectively. Moreover, its gen-
erating vector h.b/ or compressed generating vector c.b/ in block sense is called the block generating
vector or block compressed generating vector, respectively. For instance, the block-entry vector
ŒH0;H1; : : : ;HN2�1�

> is the block generating vector of H in Section 2.2. Recall the definition of
Kronecker product [22]

A˝ B D

26664
A11B A12B � � � A1qB
A21B A22B � � � A2qB
:::

:::
: : :

:::

Ap1B Ap2B � � � ApqB

37775 ;
where A and B are two matrices of arbitrary sizes. Then, it can be proved following Theorem 3.1
that a block anti-circulant tensor C can be block-diagonalized by FN ˝ I , that is,

C D D.b/.FN ˝ I /m;

where D.b/ is a block diagonal tensor with diagonal blocks c.b/ �1
�
1
N
NFN ˝ I

�
and NFN is the

conjugate of FN .
Furthermore, when the blocks of a block Hankel tensor are also Hankel tensors, we call it a BHHB

tensor. Then, its block generating vector can be reduced to a matrix, which is called the generating
matrix H of a BHHB tensor

H D
�
h0;h1; : : : ;hN1C���CNm�m

�
2 C.n1Cn2C���Cnm�mC1/�.N1CN2C���CNm�mC1/;

where hk is the generating vector of the kth Hankel block in h.b/. For instance, the data matrix X is
exactly the generating matrix of the BHHB tensor H in Section 2.2. Similarly, when the blocks of a
block anti-circulant tensor are also anti-circulant tensors, we call it a block anti-circulant tensor with
anti-circulant blocks, or BAAB tensor for short. Its compressed generating matrix C is defined by

C D Œc0; c1; : : : ; cN�1� 2 Cn�N ;

where ck is the compressed generating vector of the kth anti-circulant block in the block compressed
generating vector c.b/. We can also verify that a BAAB tensor C can be diagonalized by FN ˝ Fn,
that is,

C D D.FN ˝ Fn/m;

where D is a diagonal tensor with diagonal diag.D/ D 1
nN

vec. NFnC NFN /, which can be computed
by 2D IFFT (IFFT2). Here, vec.�/ denotes the vectorization operator [22].

We can even define higher-level block Hankel tensors. For instance, a block Hankel tensor with
BHHB blocks is called a level-3 block Hankel tensor, and it is easily understood that a level-3
block Hankel tensor has the generating tensor of order 3. Generally, a block Hankel or anti-circulant
tensor with level-.k-1/ block Hankel or anti-circulant blocks is called a level-k block Hankel
or anti-circulant tensor, respectively. Furthermore, a level-k block anti-circulant tensor C can be
diagonalized by Fn.k/ ˝ Fn.k�1/ ˝ � � � ˝ Fn.1/ , that is,

C D D .Fn.k/ ˝ Fn.k�1/ ˝ � � � ˝ Fn.1//m ;

where D is a diagonal tensor with diagonal that can be computed by multi-dimensional IFFT.
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4. FAST HANKEL TENSOR–VECTOR PRODUCT

General tensor–vector products without structures are very expensive for the high order and the
large size that a tensor could be of. For a square tensor A of order m and dimension n, the compu-
tational complexity of a tensor–vector product Axm�1 or Axm is O.nm/. However, because Hankel
tensors and anti-circulant tensors have very low degrees of freedom, it can be expected that there is
a much faster algorithm for Hankel tensor–vector products. We focus on the following two types of
tensor–vector products

y D A �2 x2 � � � �m xm and ˛ D A �1 x1 �2 x2 � � � �m xm;

which will be extremely useful to applications.
The fast algorithm for anti-circulant tensor–vector products is easy to derive from Theorem 3.1.

Let C D DFmn be an anti-circulant tensor of order m and dimension n with the compressed
generating vector c. Then, for vectors x2; x3; : : : ; xm 2 Cn, we have

y D C �2 x2 � � � �m xm D Fn .D �2 Fnx2 � � � �m Fnxm/ :

Recall that diag.D/ D ifft.c/ and Fnv D fft.v/, where ‘fft’ is a Matlab-type symbol, an abbreviation
of fast Fourier transform. So, the fast procedure for computing the vector y is

y D fft .ifft.c/: � fft.x2/: � � � � : � fft.xm// ;

where u:�v multiplies two vectors element-by-element. Similarly, for vectors x1; x2; : : : ; xm 2 Cn,
we have

˛ D C �1 x1 �2 x2 � � � �m xm D D �1 Fnx1 �2 Fnx2 � � � �m Fnxm;

and the fast procedure for computing the scalar ˛ is

˛ D ifft.c/> .fft.x1/: � fft.x2/: � � � � : � fft.xm// :

Because the computational complexity of either FFT or IFFT is O.n logn/, both two types of
anti-circulant tensor–vector products can be obtained with complexity O ..mC 1/n logn/, which is
much faster than the product of a general n-by-n matrix with a vector.

For deriving the fast algorithm for Hankel tensor–vector products, we embed a Hankel tensor into
a larger anti-circulant tensor. Let H 2 Cn1�n2�����nm be a Hankel tensor with the generating vector
h. Denote CH as the anti-circulant tensor of orderm and dimension dH D n1Cn2C� � �Cnm�mC1
with the compressed generating vector h. Then, we will find out that H is in the ‘upper left frontal’
corner of CH as shown in Figure 1. Hence, we have

Figure 1. Embed a Hankel tensor into an anti-circulant tensor.
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CH �2
�

x2
0

	
� � � �m

�
xm
0

	
D

�
H �2 x2 � � � �m xm




	
;

CH �1
�

x1
0

	
� � � �m

�
xm
0

	
D H �1 x1 � � � �m xm

so that the Hankel tensor–vector products can be realized by multiplying a larger anti-circulant
tensor by some augmented vectors. Therefore, the fast procedure for computing y D H�2 x2 � � ��m
xm is 8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:
exp D

264x>p ; 0; 0; : : : ; 0„ ƒ‚ …
dH�np

375
>

; p D 2; 3; : : : ; m;

ey D fft .ifft.h/: � fft.ex2/: � � � � : � fft.exm// ;
y Dey.0 W n1 � 1/;

and the fast procedure for computing ˛ D H �1 x1 �2 x2 � � � �m xm is8̂̂̂̂
<̂
ˆ̂̂:
exp D

264x>p ; 0; 0; : : : ; 0„ ƒ‚ …
dH�np

375
>

; p D 1; 2; : : : ; m;

˛ D ifft.h/> .fft.ex1/: � fft.ex2/: � � � � : � fft.exm// :
Moreover, the computational complexity is O ..mC 1/dH log dH/. When the Hankel tensor is
a square tensor, the complexity is at the level O.m2n logmn/, which is much smaller than the
complexity O.nm/ of non-structured products.

Apart from the low computational complexity, our algorithm for Hankel tensor–vector products
has two advantages. One is that this scheme is compact; that is, there is no redundant element in the
procedure. It is not required to form the Hankel tensor explicitly. Just the generating vector is needed.
Another advantage is that our algorithm treats the tensor as an ensemble instead of multiplying the
tensor by vectors mode by mode.

For BAAB and BHHB cases, we also have fast algorithms for the tensor–vector products. Let C
be a BAAB tensor of orderm with the compressed generating matrix C 2 Cn�N . Because C can be
diagonalized by FN ˝ Fn, that is,

C D D.FN ˝ Fn/m;

we have for vectors x2; x3; : : : ; xm 2 CnN

y D C �2 x2 � � � �m xm D .FN ˝ Fn/ .D �2 .FN ˝ Fn/x2 � � � �m .FN ˝ Fn/xm/ :

Recall the vectorization operator and its inverse operator

vec.A/ D
�
A>W;0; A

>
W;1; : : : ; A

>
W;N�1

�>
2 CnN ;

vec�1n;N .v/ D
�
v0Wn�1; vnW2n�1; : : : ; v.N�1/nWNn�1

�
2 Cn�N ;

for matrix A 2 Cn�N and vector v 2 CnN , and the relation holds

.B ˝ A/v D vec
�
A � vec�1n;N .v/ � B

>
�
:
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So, .FN ˝ Fn/xp D vec
�
Fn � vec�1n;N .xp/ � FN

�
can be computed by FFT2. Then, the fast

procedure for computing y D C �2 x2 � � � �m xm is8̂<̂
:
Xp D vec�1n;N .xp/; p D 2; 3; : : : ; m;

Y D fft2 .ifft2.C /: � fft2.X2/: � � � � : � fft2.Xm// ;

y D vec.Y /;

and the fast procedure for computing ˛ D C �1 x1 �2 x2 � � � �m xm is´
Xp D vec�1n;N .xp/; p D 1; 2; : : : ; m;

˛ D hifft2.C /; fft2.X1/: � fft2.X2/: � � � � : � fft2.Xm/i ;

where hA;Bi denotes

hA;Bi D
X
j;k

AjkBjk :

For a BHHB tensor H with the generating matrixH , we do the embedding twice. First, we embed
each Hankel block into a larger anti-circulant block and then we embed the block Hankel tensor with
anti-circulant blocks into a BAAB tensor CH in block sense. Notice that the compressed generating
matrix of CH is exactly the generating matrix of H. Hence, we have the fast procedure for computing
y D H �2 x2 � � � �m xm8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

QXp D

"
vec�1np ;Np .xp/ O

O O

#μ
„ ƒ‚ …
N1CN2C���CNm�mC1

n1Cn2C���Cnm�mC1; p D 2; 3; : : : ; m;

QY D fft2
�
ifft2.H/: � fft2. QX2/: � � � � : � fft2. QXm/

�
;

y D vec
�
QY .0 W n1 � 1; 0 W N1 � 1/

�
:

Sometimes in applications, there is no need to do the vectorization in the last line, and we just keep it
as a matrix for later use. We also have the fast procedure for computing ˛ D H�1x1�2x2 � � ��mxm8̂̂̂̂

<̂
ˆ̂̂:
QXp D

�
vec�1np ;Np .xp/ O

O O

	³
„ ƒ‚ …
N1CN2C���CNm�mC1

n1Cn2C���Cnm�mC1; p D 1; 2; : : : ; m;

˛ D
˝
ifft2.H/; fft2. QX1/: � fft2. QX2/: � � � � : � fft2. QXm/

˛
:

Similarly, we can also derive the fast algorithms for higher-level block Hankel tensor–vector
products using the multi-dimensional FFT.

5. NUMERICAL EXAMPLES

In this section, we will verify the effect of our fast algorithms for Hankel and block Hankel tensor–
vector products by several numerical examples.

We first construct

� third-order square Hankel tensors of size n � n � n (n D 10; 20; : : : ; 100), and
� third-order square BHHB tensors of level-1 size n1 � n1 � n1 and level-2 size n2 � n2 � n2

(n1; n2 D 5; 6; : : : ; 12).
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Figure 2. The average running time of tensor–vector products. (a) Hankel tensors; (b) block Hankel tensor
with Hankel blocks (BHHB) tensors.

Then, compute the tensor–vector products H�2 x2 �3 x3 using both our fast algorithm and the non-
structured algorithm directly based on the definition. The average running times of 1000 products
are shown in Figure 2. From the results, we can see that the running time of our algorithm increases
far more slowly than that of the non-structured algorithm just as the theoretical analysis. Moreover,
the difference in running times is not only the low computational complexity but also the absence
of forming the Hankel or BHHB tensors explicitly in our algorithm.

Next, we shall apply our algorithm to the problems from exponential data fitting in order to show
its efficiency, several of which are borrowed from [5, 6]. We do the experiments for both the 1D
case and the 2D case:

� A 1D signal is modeled as

xn D exp ..�0:01C 2�{0:20/n/C exp ..�0:02C 2�{0:22/n/C en;

where en is a complex white Gaussian noise.
� A 2D signal is modeled as

xn1n2 D exp ..�0:01C 2�{0:20/n1/ � exp ..�0:02C 2�{0:18/n2/

C exp ..�0:02C 2�{0:22/n1/ � exp ..�0:01 � 2�{0:20/n2/C en1n2 ;

where en1n2 is a 2D complex white Gaussian noise.
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Figure 3. The average running time of higher-order orthogonal iterations. (a) Hankel tensors; (b) block
Hankel tensor with Hankel blocks (BHHB) tensors.

The third-order approach is accepted for both cases. We test the running times of the rank-.2; 2; 2/
approximation because these signals both have two peaks. Moreover, we will illustrate the HOSVDs
of these Hankel and BHHB tensors, which show that Papy et al.’s algorithm and our extended
multi-dimensional version can also work when the number of peaks is unknown.

Figure 3 shows the comparison of these two algorithms’ speeds. It provides a similar trend with
the one in Figure 2, because the tensor–vector product plays a dominant role in the HOOI procedure.
Therefore, when the speed of tensor–vector products is largely increased by exploiting the Hankel
or block Hankel structure, we can handel much larger problems than before.

Then, we fix the size of the Hankel and BHHB tensors. The Hankel tensor for 1D exponential
data fitting is of size 15� 15� 15, and the BHHB tensor for 2D exponential data fitting is of level-1
size 5 � 5 � 5 and level-2 size 6 � 6 � 6. Assume that we do not know the number of peaks. Then,
we compute the HOSVD of the best rank-.10; 10; 10/ approximation

H � S �1 U>1 �2 U>2 �3 U>3 ;

where the core tensor S is of size 10�10�10. Figure 4 displays the Frobenius norm of S.k; W; W/ for
k D 1; 2; : : : ; 10. We can see that the first two of them are apparently larger than the others. (The
others should be zero when the signal is noiseless, but here, we add a noise at 10�4 level.) Thus, we
can directly conclude that the number of peaks is two. Furthermore, our fast algorithm enables us to
accept a much wild guess rather than to be anxious for the running time.
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Figure 4. The Frobenius norms of slices of the core tensor. (a) Hankel tensors; (b) block Hankel tensor with
Hankel blocks (BHHB) tensors.

6. CONCLUSIONS

We propose a fast algorithm for Hankel tensor–vector products, which reduces the computational
complexity from O.nm/ to O.m2n logmn/ comparing with the algorithm without exploiting the
Hankel structure. This fast algorithm is derived by embedding the Hankel tensor into a larger anti-
circulant tensor, which can be diagonalized by the Fourier matrices. The fast algorithm for higher-
level block Hankel tensors is also described. Furthermore, the fast Hankel and BHHB tensor–vector
products can largely accelerate the Papy et al.’s algorithm for 1D exponential data fitting and our
generalized algorithm for multi-dimensional case, respectively. It should be pointed out that our
algorithm can also analogously be applied to higher-dimensional case although we only introduce
the 1D and 2D cases for examples. The numerical experiments show the efficiency and effectiveness
of our algorithms. Finally, this fast scheme should be introduced into every algorithm that involves
Hankel or higher-level block Hankel tensor–vector products to improve its performance.
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