Subject Description Form

Subject Title Power Electronics Credit Value 3 Level 4 Pre-requisite / Co- requisite / Exclusion Basic knowledge in electric circuit theory and electronic circuits Objectives To enable students to gain knowledge and understanding in the following aspects: 1. Fundamentals of power electronics. 2. The concepts and operating principles of power electronics systems. Sustainable development is one of the emerging societal objectives in China and the world at large. The knowledge & experience gained from this subject provide some of the technical fundamentals to address this kind of development. Intended Subject Learning Outcomes Upon completion of the subject, students will be able to: Category A: Professional/academic knowledge and skills 1. Understand the fundamental principles and applications of power electronics. 2. Solve problems and design switching regulators according to specifications. 3. Use computer-aided techniques for the design of power converter circuits. 4. Appreciate the latest development in power electronics. Category B: Attributes for all-roundedness 5. Communicate effectively. 6. Think critically and creatively. 7. Assimilate new technological development in related field. Subject Synopsis/ Indicative Syllabus Syllabus: 1. Introduction to Power Electronics Overview of power electronics systems: applications and areas of future development. 2. Basic Switching Regulator Topologies Basic operations. Critical inductance criterion. Continuous- and discontinuous-conduction m	Subject Code	EIE4402					
Level 4 Pre-requisite / Co- requisite / Exclusion Basic knowledge in electric circuit theory and electronic circuits Objectives To enable students to gain knowledge and understanding in the following aspects: Fundamentals of power electronics. The concepts and operating principles of power electronics circuits. Design procedures and techniques of power electronics systems. Sustainable development is one of the emerging societal objectives in China and the world at large. The knowledge & experience gained from this subject provide some of the technical fundamentals to address this kind of development. Intended Subject Learning Outcomes Upon completion of the subject, students will be able to: Category A: Professional/academic knowledge and skills Understand the fundamental principles and applications of power electronics circuits. Solve problems and design switching regulators according to specifications. Use computer-aided techniques for the design of power converter circuits. Appreciate the latest developments in power electronics. Category B: Attributes for all-roundedness Communicate effectively. Think critically and creatively. Assimilate new technological development in related field. Subject Synopsis/ Indicative Syllabus Introduction to Power Electronics Overview of power electronics systems: applications and areas of future development. Basic operations. Critical inductance criterion. Continuous- and discontinuous-conduction modes. Practical considerations. Merits	Subject Title	Power Electronics					
Pre-requisite / Co- requisite / Exclusion Basic knowledge in electric circuit theory and electronic circuits Objectives To enable students to gain knowledge and understanding in the following aspects: Fundamentals of power electronics. The concepts and operating principles of power electronics circuits. Design procedures and techniques of power electronics systems. Sustainable development is one of the emerging societal objectives in China and the world at large. The knowledge & experience gained from this subject provide some of the technical fundamentals to address this kind of development. Intended Subject Learning Outcomes Upon completion of the subject, students will be able to: Category A: Professional/academic knowledge and skills Understand the fundamental principles and applications of power electronics circuits. Solve problems and design switching regulators according to specifications. Use computer-aided techniques for the design of power converter circuits. Appreciate the latest developments in power electronics. Category B: Attributes for all-roundedness Communicate effectively. Think critically and creatively. Assimilate new technological development in related field. Subject Synopsis/ Indicative Syllabus Introduction to Power Electronics Overview of power electronics systems: applications and areas of future development. Basic Switching Regulator Topologies Basic operations. Critical inductance criterion. Continuous- and discontinuous-conduction modes. Practical considerations. Merits and drawbacks.	Credit Value	3					
requisite / Exclusion Objectives To enable students to gain knowledge and understanding in the following aspects: Fundamentals of power electronics. The concepts and operating principles of power electronics circuits. Design procedures and techniques of power electronics systems. Sustainable development is one of the emerging societal objectives in China and the world at large. The knowledge & experience gained from this subject provide some of the technical fundamentals to address this kind of development. Intended Subject Learning Outcomes Upon completion of the subject, students will be able to: Category A: Professional/academic knowledge and skills Understand the fundamental principles and applications of power electronics circuits. Solve problems and design switching regulators according to specifications. Use computer-aided techniques for the design of power converter circuits. Appreciate the latest developments in power electronics. Category B: Attributes for all-roundedness Communicate effectively. Think critically and creatively. Assimilate new technological development in related field. Subject Synopsis/ Introduction to Power Electronics Overview of power electronics systems: applications and areas of future development. Basic Operations. Critical inductance criterion. Continuous- and discontinuous-conduction modes. Practical considerations. Merits and drawbacks. Mathematical Modelling of Switching Regulators	Level	4					
aspects: 1. Fundamentals of power electronics. 2. The concepts and operating principles of power electronics circuits. 3. Design procedures and techniques of power electronics circuits. 3. Design procedures and techniques of power electronics circuits. 3. Design procedures and techniques of power electronics circuits. 3. Design procedures and techniques of power electronics circuits. 3. Design procedures and techniques of power electronics circuits. 3. Sustainable development is one of the emerging societal objectives in China and the world at large. The knowledge & experience gained from this subject provide some of the technical fundamentals to address this kind of development. Intended Subject Learning Outcomes Upon completion of the subject, students will be able to: Category A: Professional/academic knowledge and skills 1. Understand the fundamental principles and applications of power electronics. 2. Solve problems and design switching regulators according to specifications. 3. Use computer-aided techniques for the design of power converter circuits. 4. Appreciate the latest developments in power electronics. Category B: Attributes for all-roundedness 5. Communicate effectively. 7. Assimilate new technological development in related field. Subject Synopsis/ Indicative Syllabus 1. Introduction to Power Electronics Overview of power electronics systems: applications and areas of future development.		Basic knowledge in electric circuit theory and electronic circuits					
2. The concepts and operating principles of power electronics circuits. 3. Design procedures and techniques of power electronics systems. Sustainable development is one of the emerging societal objectives in China and the world at large. The knowledge & experience gained from this subject provide some of the technical fundamentals to address this kind of development. Intended Subject Learning Outcomes Upon completion of the subject, students will be able to: Category A: Professional/academic knowledge and skills 1. Understand the fundamental principles and applications of power electronics circuits. 2. Solve problems and design switching regulators according to specifications. 3. Use computer-aided techniques for the design of power converter circuits. 4. Appreciate the latest developments in power electronics. Category B: Attributes for all-roundedness 5. Communicate effectively. 6. Think critically and creatively. 7. Assimilate new technological development in related field. Syllabus: 1. Introduction to Power Electronics Overview of power electronics systems: applications and areas of future development. 2. Basic Switching Regulator Topologies Basic operations. Critical inductance criterion. Continuous- and discontinuous-conduction modes. Practical considerations. Merits and drawbacks. 3. Mathematical Modelling of Switching Regulators Small-signal approximation for linearity. Applications of approximation techniques. Switching regulator transfer functions and salient features. <th>Objectives</th> <th colspan="6"></th>	Objectives						
and the world at large. The knowledge & experience gained from this subject provide some of the technical fundamentals to address this kind of development. Intended Subject Learning Outcomes Upon completion of the subject, students will be able to: Category A: Professional/academic knowledge and skills 1. Understand the fundamental principles and applications of power electronics circuits. 2. Solve problems and design switching regulators according to specifications. 3. Use computer-aided techniques for the design of power converter circuits. 4. Appreciate the latest developments in power electronics. Category B: Attributes for all-roundedness 5. Communicate effectively. 6. Think critically and creatively. 7. Assimilate new technological development in related field. Subject Synopsis/ Indicative Syllabus Syllabus: 1. Introduction to Power Electronics Overview of power electronics systems: applications and areas of future development. 2. Basic Switching Regulator Topologies Basic operations. Critical inductance criterion. Continuous- and discontinuous-conduction modes. Practical considerations. Merits and drawbacks. 3. Mathematical Modelling of Switching Regulators Small-signal approximation for linearity. Applications of approximation techniques. Switching regulator transfer functions and salient features. 4. Switching Regulators with Transformer Isolation Flyback converter. Forward converter. Half- and full-bridge converters. Push-pull converter. Areas of application.		2. The concepts and operating principles of power electronics circuits.					
Learning Outcomes Category A: Professional/academic knowledge and skills 1. Understand the fundamental principles and applications of power electronics circuits. 2. Solve problems and design switching regulators according to specifications. 3. Use computer-aided techniques for the design of power converter circuits. 4. Appreciate the latest developments in power electronics. Category B: Attributes for all-roundedness 5. 5. Communicate effectively. 6. Think critically and creatively. 7. Assimilate new technological development in related field. Subject Synopsis/ Indicative Syllabus Syllabus: 1. Introduction to Power Electronics Overview of power electronics systems: applications and areas of future development. 2. Basic Operations. Critical inductance criterion. Continuous- and discontinuous-conduction modes. Practical considerations. Merits and drawbacks. 3. Mathematical Modelling of Switching Regulators Small-signal approximation for linearity. Applications of approximation techniques. Switching regulator transfer functions and salient features. 4. Switching Regulators with Transformer Isolation Flyback converter. Forward converter. Half- and full-bridge converters. Push-pull converter. Areas of application.		and the world at large. The knowledge & experience gained from this subject provide some of the technical fundamentals to address this kind of					
7. Assimilate new technological development in related field. Subject Synopsis/ Indicative Syllabus Syllabus: 1. Introduction to Power Electronics Overview of power electronics systems: applications and areas of future development. 2. Basic Switching Regulator Topologies Basic operations. Critical inductance criterion. Continuous- and discontinuous-conduction modes. Practical considerations. Merits and drawbacks. 3. Mathematical Modelling of Switching Regulators Small-signal approximation for linearity. Applications of approximation techniques. Switching regulator transfer functions and salient features. 4. Switching Regulators with Transformer Isolation Flyback converter. Forward converter. Half- and full-bridge converters. Push-pull converter. Areas of application.		 <u>Category A: Professional/academic knowledge and skills</u> 1. Understand the fundamental principles and applications of power electronics circuits. 2. Solve problems and design switching regulators according to specifications. 3. Use computer-aided techniques for the design of power converter circuits. 4. Appreciate the latest developments in power electronics. <u>Category B: Attributes for all-roundedness</u> 					
Indicative Syllabus 1. Introduction to Power Electronics Overview of power electronics systems: applications and areas of future development. 2. Basic Switching Regulator Topologies Basic operations. Critical inductance criterion. Continuous- and discontinuous-conduction modes. Practical considerations. Merits and drawbacks. 3. Mathematical Modelling of Switching Regulators Small-signal approximation for linearity. Applications of approximation techniques. Switching regulator transfer functions and salient features. 4. Switching Regulators with Transformer Isolation Flyback converter. Forward converter. Half- and full-bridge converters. Push-pull converter. Areas of application.		 Think critically and creatively. Assimilate new technological development in related field. 					
 Classical control design. Bode plot and Nyquist stability criterion. Voltage- and current-mode controls. Magnetic Components 		 Introduction to Power Electronics Overview of power electronics systems: applications and areas of future development. Basic Switching Regulator Topologies Basic operations. Critical inductance criterion. Continuous- and discontinuous-conduction modes. Practical considerations. Merits and drawbacks. Mathematical Modelling of Switching Regulators Small-signal approximation for linearity. Applications of approximation techniques. Switching regulator transfer functions and salient features. Switching Regulators with Transformer Isolation Flyback converter. Forward converter. Half- and full-bridge converters. Push-pull converter. Areas of application. Feedback Control Design Classical control design. Bode plot and Nyquist stability criterion. Voltage- and current-mode controls. 					

	7 Latest Dovelopment in	Dowor Flootro	nico					
	7. <u>Latest Development in Power Electronics</u>							
	Laboratory Experiments:							
	 Computer-aided design of switching regulator. Design of a closed-loop controlled power converter circuit. 							
Teaching/ Learning Methodology	Teaching and Learning Method	Intended Subject Learning Outcome	Remarks					
	Lectures, supplemented with interactive questions and answers, and short quizzes	1, 2, 3, 4, 5, 6, 7	In lectures, students are introduced to the <i>knowledge</i> of the subject, and <i>comprehension</i> is strengthened with interactive Q&A and short quizzes. They will be able to <i>explain</i> and <i>generalize</i> knowledge in the design of power converter circuits.					
	Tutorials where design problems are discussed, and are given to students for them to solve	1, 2, 5, 6	In tutorials, students <i>apply</i> what they have learnt in analyzing the cases and solving the problems given by the tutor. They will <i>analyze</i> the given information, <i>compare</i> and <i>contrast</i> different scenarios and propose solutions or alternatives.					
	Laboratory sessions, where students will perform a mini-project by computer simulations and experimental verifications. They will have to write a report on their mini-projects.	1, 2, 3, 4, 5, 6, 7	Students <i>acquire</i> hands-on experience in using CAD tools in power converter design, and <i>apply</i> what they have learnt in lectures/tutorials to do a mini- project on the design of a power converter circuit.					
	Assignment/Homework	1, 2, 3, 5, 6	Through working assignment and homework, students will develop a firm understanding and <i>comprehension</i> of the <i>knowledge</i> taught. They will <i>analyze</i> given information and <i>apply</i> knowledge in solving problem. For some design type of questions, they will have to <i>synthesize</i> solutions by <i>evaluating</i> different alternatives.					

Assessment Methods in Alignment with	
Intended Learning	
Outcomes	

Specific Assessment Methods/Tasks	% Weighting	Intended Subject Learning Outcomes to be Assessed (Please tick as appropriate)						
		1	2	3	4	5	6	7
1. Continuous Assessment (total 50%)								
• 1 Assignment	15%	✓	~	~		~	✓	
Laboratory works and reports	20%	~	~	~	~	~	~	~
Mid-semester test	15%	✓	✓			~	✓	
2. Examination	50%	~	~		~	~	✓	~
Total	100 %		•	•	•			•

The continuous assessment consists of assignments, quizzes, and two tests.

Explanation of the appropriateness of the assessment methods in assessing the intended learning outcomes:

Specific Assessment Methods/Tasks	Remark
Assignment/ Homework	Assignment/Homework and case study reports are given to students to assess their competence level o <i>knowledge</i> and <i>comprehension</i> , ability to <i>analyze</i> given information, ability to <i>apply</i> knowledge and skills in new situation, ability to <i>synthesize</i> structure and ability to evaluate given data to make judgment The criteria (i.e. <i>what</i> to be demonstrated) and leve (i.e. the <i>extent</i>) of achievement will be graded according to six levels: (A+ and A), Good (B+ and B) Satisfactory (C+ and C), Marginal (D) and Failure (F) These will be made known to the students before ar assignment/homework is given. Feedback about thei performance will be given promptly to students to help them improvement their learning.
Laboratory works (mini-project) and report	Students will be required to perform a mini-project and submit a report. The emphasis is on assessing their ability to use CAD tools effectively to perform <i>power supply design</i> and <i>hands-on skills</i> on hardware design and prototyping. Expectation and grading criteria will be given as in the case of assignment/homework.
Mid-semester test	There will be a mid-semester test to evaluate students' achievement of all the learning outcomes and give feedback to them for prompt improvement Expectation and grading criteria will be given as in the case of assignment/homework.
Examination	There will be an end-of-semester examination to assess students' achievement of all the learning outcomes. These are mainly summative in nature Expectation and grading criteria will be given as in the case of assignment/homework.

Student Study Effort	Class contact (time-tabled):					
Expected	Lecture	24 Hours				
	Tutorial/Laboratory/Practice Classes	18 hours				
	Other student study effort:					
	 Lecture: preview/review of notes; homework/assignment; preparation for test/quizzes/examination 	36 Hours				
	Tutorial/Laboratory/Practice Classes: preview of materials, revision and/or reports writing	27 Hours				
	Total student study effort:	105 Hours				
Reading List and References	 Reference Books: R.W. Erickson, D. Maksimovic, <i>Fundamentals of Power Electronics</i>, 2nd ed., Kluwer Academic Publishers, 2001. M.K. Kazimierczuk, <i>Pulse-width Modulated DC-DC Power Converters</i>, Wiley, 2008. A.I. Pressman, K. Billings, T. Morey, <i>Switching Power Supply Design</i>, 3rd ed., McGraw-Hill, 2009. C. Basso, <i>Switch-Mode Power Supplies Spice Simulations and Practical Designs</i>, McGraw-Hill, 2008. N.S. Nise, <i>Control System Engineering</i>, 6th ed., Wiley, 2010. R.C. Dorf, R.H. Bishop, <i>Modern Control Systems</i>, 12th ed., 2010 					
Last Updated	Jan 2019					
Prepared by	Dr K.H. Loo					