
Subject Description Form

Subject Code EIE3320 (for BEng in EIE, BSc in IMT and HD in EIE)

Subject Title Object-Oriented Design and Programming

Credit Value 3

Level 3

Pre-requisite For BEng in EIE and BSc in IMT:
ENG2002 Computer Programming

For HD in EIE:
EIE2264 Computer Programming/EIE2111 Computer Programming

Co-requisite/
Exclusion

Nil

Objectives This subject will provide students with the principles of object-oriented software
design and programming from the perspective of Java implementation and UML.
Students are expected to learn the concepts of and practical approaches to
object-oriented analysis, design and programming using UML and Java.

Intended Subject
Learning Outcomes

Upon completion of the subject, students will be able to:

Category A: Professional/academic knowledge and skills
1. Understand the principles of object oriented design.
2. Apply Java in object oriented software development.
3. Apply UML in object oriented software modeling.
4. Apply object oriented approach to developing computer software.

Category B: Attributes for all-roundedness
5. Learn independently and be able to search for the information required in

solving problems.
6. Present ideas and findings effectively.
7. Think critically.
8. Work in a team and collaborate effectively with others.

Subject Synopsis/
Indicative Syllabus

Syllabus:

1. Introduction to Software Engineering
 Software products; software processes; software process models;

2. Java Programming Basic
 Java technologies; Java platform; Java language basic: variables, operators,

expressions, statements, blocks, control flow, methods, arrays.

3. Object-Oriented Programming with Java
 Objects and classes; class definition; fields, constructors and methods; object

interaction; grouping objects; array and collections; designing classes;
inheritance and polymorphism; managing inheritance: creating subclasses
and super-classes, hiding member variables, overriding methods.
Interfaces and packages.

4. Data Structures with Java
 Implementation-dependent structures such as array and linked list;

Implementation-independent structures such as stack, queue, list, map,
tree, graph; Fundamental algorithms such as searching and sorting.

5. Unified Modelling Language (UML)
 Purposes of modelling. Structural Modelling: classes, relationships, class

Diagrams, interfaces, packages, and object diagrams. Behavioural
modelling interactions and use case diagrams. Architectural modelling:

components, deployment, and collaborations. Mapping UML diagrams to
Java Code.

Laboratory Experiment:

 Students will be requested to use integrated development environment (IDE)

to write and debug Java programs during tutorial and lab sessions.

Teaching/ Learning
Methodology

Teaching and
Learning Method

Intended
Subject
Learning
Outcome

Remarks

Lectures 1, 2, 3 fundamental principles and key
concepts of the subject are delivered to
students

Quizzes/Tests 1, 2, 3 students’ knowledge on understanding
of certain topics can be easily
estimated, and the corresponding
teaching time will be adjusted
accordingly

Assignments 2,4,5,7 Programming exercises are used to
reinforce the knowledge taught in
lectures.

Laboratory
sessions

2,3,4,5,6,7,8

Students will need to design, develop,
test, and document Java programs.

Assessment
Methods in
Alignment with
Intended Subject
Learning Outcomes

Specific
Assessment
Methods/ Task

%
Weighting

Intended Subject Learning
Outcomes to be Assessed
(Please tick as appropriate)

 1 2 3 4 5 6 7 8
1. Continuous
 Assessment
 (Total: 100%)

• Assignments 8%    

• Lab reports 20%       

• Knowledge Tests/
Quizzes

32%  

• Practical Tests 40%  

Total 100%

The continuous assessment consists of programming assignments, laboratory
reports, knowledge tests/quizzes and practical tests.

Explanation of the appropriateness of the assessment methods in
assessing the intended learning outcomes:

Specific Assessment
Methods/Tasks

Remark

Knowledge
Tests/Quizzes

Short questions will be used to test and enhance
students’ understanding about the topics covered
in lectures.

End-of-chapter problems will be used to evaluate
students’ ability in applying concepts and skills
learnt in the classroom.

Assignments Students will be asked to write Java programs and
test the programs. Students will need to think
critically and creatively in order to come up with a
good solution for an existing problem.

Lab reports Each group of students are required to produce a
written report for the Laboratory sessions. Students
will be assessed based on the quality of their
programs and the clarity of their reports.
Students will be asked to work as a team to
develop a Java application. Each of them will be
responsible for part of the software. They will also
need to use UML diagram to illustrate the structure
of their programs. Students will need to think
critically and creatively in order to come up with a
good solution for an existing problem.

Practical Tests Students will be given programming problems and
asked to write Java programs to solve the
problems.

Student Study Effort
Expected

Class contact (time-tabled):

• Lecture 26 Hours

• Tutorial/Laboratory/Practice Classes 13 hours

Other student study effort:

• Lecture: preview/review of notes;
homework/assignment; preparation for
test/quizzes/examination

36 Hours

• Tutorial/Laboratory/Practice Classes: preview of
materials, revision and/or reports writing

30 Hours

Total student study effort: 105 Hours

Reading List and
References

Reference Books:
1. G. Booch, I. Jacobson and J. Rumbaugh, The Unified Modeling Language

User Guide, 2nd ed., Addison-Wesley, 2005.
2. D.J. Barnes and M. Kolling, Objects First with Java: A Practical Introduction

using BlueJ, 5th ed., Prentice-Hall, 2012.
3. Nell Dale, Daniel T. Joyce, and Chip Weems. Object-Oriented Data

Structures Using Java (4th. ed.). Jones and Bartlett Publishers, Inc., USA.
2018.

4. H.M. Deitel and P.J. Deitel, Java: How To Program (Early Objects), 10th ed.,
Prentice-Hall, 2014.

5. J. Lewis and W. Loftus, Java Software Solutions, 8th Edition, Pearson, 2015.
6. J. Rumbaugh, I. Jacobson and G. Booch, The Unified Modeling Language

Reference Manual, 2nd ed., Addison-Wesley, 2004.

Last Updated July 2020

Prepared by Dr Pauli Lai and Mr Richard Pang

