

Subject Description Form

Subject Code EIE2111

Subject Title Computer Programming

Credit Value 6

Level 2

Pre-requisite/
Co-requisite/
Exclusion

Nil

Objectives 1. To introduce the fundamental concepts of computer programming.
2. To equip students with sound skills in C/C++ programming language.
3. To equip students with techniques for developing structured computer

programs.
4. To demonstrate the techniques for implementing engineering applications

using computer programs.

Intended Subject
Learning Outcomes

Upon completion of the subject, students will be able to:

Category A: Professional/academic knowledge and skills
1. Familiarize with at least one C/C++ programming environment.
2. Be proficient in using the basic constructs of C/C++, such as variables and

expressions, looping, arrays and pointers, to develop a computer program.
3. Able to develop a structured and documented computer program.
4. Understand the fundamentals of object-oriented programming and be able

to apply it in computer program development.
5. Able to apply the computer programming techniques to solve practical

engineering problems.

Category B: Attributes for all-roundedness
6. Solve problems by using systematic approaches.
7. Write technical reports and present the findings.
8. Learn team working skills.

Subject Synopsis/
Indicative Syllabus

Syllabus:

1. Introduction to programming
 Software components of a computer – Operating system, directories, files.

Evolution of programming languages. Programming environment – Compiler,
linker and loader. Building the first program – Hello World.

2. Bolts and Nuts of C/C++
 Preprocessor, program codes, functions, comments. Variables and constants.

Expressions and statements. Operators.

3. Program Flow Control
 If, else, switch, case. Looping – for, while, do. Functions, parameters passing,

return values. Local and global variables. Scope of variables.

4. Program Design and Debugging
Structured program design. Improving program readability. Flow chart.
Modular programming – static library. Programming bugs, errors, mistakes
and code rot. Exceptions and debugging. Case study: Using Visual C++
debugger.

5. Basic Object Oriented Programming
 Objects and classes. Encapsulation. Private versus public. Implementing class

methods. Constructors and destructors.

6. Pointer and Array
 The stack and free store. Create and delete objects in free store. Pointer

arithmetic. Passing function arguments by pointer. Returning values by
pointer. Array of Objects. Multidimensional array. Array and pointer. Array of
pointers. Pointer of array. Character array – Strings. Command line
processing.

7. Dynamic Data Structures
 Linked list. Basic operations. Other dynamic data structures (stacks, queues

and trees).

8. File Processing
 Files and streams. Create a sequential file. Read data from a sequential file.

Updating sequential files. Create a random-access file. Write data to a
random-access file. Read data from a random-access file.

9. Graphical User Interface (GUI)
 Introduction to C#. Some Simple GUI programs. C# with C++. Read/write

text files by using C#. Multiple Forms. Windows Graphical Device Interface
(GDI).

10. Using C/C++ in Engineering Applications
 Solving numerical problems using C/C++.

Teaching/ Learning
Methodology

Teaching and

Learning Method

Intended

Subject

Learning

Outcome

Remarks

Lectures 1, 2, 3, 4,
5

Fundamental principles and key

concepts of the subject are delivered to

the students

Laboratory 1, 2, 3, 4,
5, 6

Students will be able to clarify concepts

and to have a deeper understanding of

the lecture material.

Problems are given to be solved.

Assessment
Methods in
Alignment with
Intended Learning
Outcomes

Specific
Assessment
Methods/Tasks

%
Weighting

Intended Subject Learning Outcomes
to be Assessed (Please tick as
appropriate)

1 2 3 4 5 6 7 8

Continuous
Assessment

 Quizzes 8%

 Laboratory
Exercises

10%

 Assignments 10%

 Mini-project 30%

 Tests 42%

Total 100%

For this subject, students need to go through two 2-hours programming tests in
which students will be asked, within the allowed time period, to develop a set of
computer programs using C/C++ programming language to solve a problem.
These two tests are worth 42% of the total marks.

Besides, students need to finish a mini-project in this subject. Students are
expected to spend not less than 35 hours of self-studying in order to finish the
mini-project. The mini-project is worth 30% of the total marks.

The remaining 28% of marks are allotted to assignments, quizzes and
laboratory exercises that will be given during and after the classes.

Explanation of the appropriateness of the assessment methods in
assessing the intended learning outcomes:

Specific Assessment

Methods/Tasks

Remark

Laboratory
Exercises/Quizzes

Students will be able to clarify concepts and to

have a deeper understanding of the lecture

material.

Problems are given to be solved.

Assignments Students will be able to clarify concepts and to

have a deeper understanding of the lecture

material.

Problems are given to be solved.

Mini-Project Students will be able to clarify concepts and to

have a deeper understanding of the lecture

material.

Problems are given to be solved.

Tests Evaluate students’ ability in applying computer

programming skills learned in classes.

Problems are given to be solved.

Student Study
Effort Expected

Class contact (time-tabled):

 Lecture/Tutorial/Laboratory/Practice Classes 78 Hours

Other student study effort:

 Lecture: preview/review of notes;
homework/assignment; preparation for
test/quizzes/examination

78 Hours

 Tutorial/Laboratory/Practice Classes: preview of
materials, revision and/or reports writing

78 Hours

Total student study effort: 234 Hours

Reading List and
References

Textbooks:

1. H.M. Deitel and P.J. Deitel, C++ How To Program, 10th ed., Prentice-Hall,

2017.

Reference Books:

1. K. Gregory, Microsoft® Visual C++® .NET 2003 Kick Start, Sams

Publishing, 2003.
2. H.M. Deitel, P.J. Deitel, J.P. Liperi and C.H. Yaeger, Visual C++.NET How

to Program, Prentice-Hall, 2004.

Last Updated October 2019

Prepared by Dr Lawrence Cheung

