Skip to main content Start main content

RISUD EFA Final Progress Research Salon - Towards a Smart System for Post-Windstorm Tree Debris Cleanup and Transportation Network Restoration in Hong Kong (只有英文版本)

研究院/研究中心講座

RISUD EFA Research Salon_20250514
  • 日期

    2025年5月14日

  • 主辦單位

    Research Institute for Sustainable Urban Development (RISUD)

  • 時間

    15:00 - 16:00

  • 地點

    Z412, 4/F, Block Z, PolyU 地圖  

摘要

This project presents innovative tools for enhancing urban infrastructure and traffic management in Hong Kong. We integrate multi-source urban data to develop an AI-enabled parking vacancy prediction framework. A large-scale traffic simulation tool models traffic dynamics and simulates vehicle trajectories, using data-driven calibration to replicate real conditions and assess emergent events. We propose a deep learning-based framework, TCNSurv, for predicting failures in civil infrastructure by integrating survival and time series analysis. Additionally, a deep reinforcement learning framework manages traffic through coordinated ramp metering and perimeter control. Lastly, a multi-agent reinforcement learning approach optimizes emergency vehicle dispatching during typhoons. These advancements enhance intelligent urban management in Hong Kong.

您的瀏覽器不是最新版本。如果繼續瀏覽本網站,部分頁面未必能夠正常運作。

建議您更新至最新版本或選用其他瀏覽器。您可以按此連結查看其他相容的瀏覽器。