Ph.D (Applied Mathematics): University of Alberta, Canada 2007
M.S. (Mathematics): Central China Normal University, China, 2001
B.S. (Mathematical Education): Central China Normal University, China, 1998
Research Interests
Mathematical modeling and analysis on chemotaxis
Traveling waves in reaction-diffusion system
Mathematical Physics
Selected Publications
Z. Wang, Z. Xiang and P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differential Equations, 260:2225-2258, 2016.
H. Jin and Z. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260:162-196, 2016.
M. Ma and Z. Wang, Global bifurcation and stability of steady states for a reaction-diffusion-chemotaxis model with volume-filling effect, Nonlinearity, 28: 2639-2660, 2015.
M. Mei, H. Peng and Z. Wang,Asymptotic profile of a parabolic-hyperbolic system with boundary effect arising from tumor angiogenesis, J. Differential Equations, 259: 5168-5191, 2015.
M. Ma and Z. Wang, Global bifurcation and stability of steady states for a reaction-diffusion-chemotaxis model with volume-filling effect, Nonlinearity, 28: 2639-2660, 2015.M. Ma and Z. Wang, Global bifurcation and stability of steady states for a reaction-diffusion-chemotaxis model with volume-filling effect, Nonlinearity, 28: 2639-2660, 2015.
J. Li. T. Li and Z. Wang,Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity, Math. Models Methods Appl. Sci., 24(14): 2819-2849, 2014.
Y.S. Tao and Z. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23: 1-36, 2013.
M.J. Ma, C.H. Ou and Z. Wang, Stationary solutions of a volume filling chemotaxis model with logistic growth and their stability, SIAM J. Appl. Math., 72: 740-766, 2012.
Z. Wang, M. Winkler and D. Wrzosek, Global regularity vs. infinite-time singularity formation in a chemotaxis model with volume filling effect and degenerate diffusion, SIAM J. Math. Anal., 44: 3502-3525, 2012.
T. Li and Z. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70: 1522-1541, 2009.
Z. Wang and T. Hillen,Classical solutions and pattern formation for a volume filling chemotaxis model, Chaos 17, 037108, 2007.