Structural optimization of high-rise commercial buildings using high performance Q690 to Q960 steel materials

presented by Dr. Ivan W. H. Lau
Chinese National Engineering Research Centre for Steel Construction (Hong Kong Branch)
The Hong Kong Polytechnic University
Outline of Presentation

1) Background
 1.1 Global Trend of Tall Building Construction
 1.2 Challenges and Research Motivations
 1.3 Scope and Objectives of Current Study
 1.4 Representative Projects
 1.5 Implementation Plans

2) Case Studies – IFC2
 2.1 Overview and Assumptions
 2.2 Floor System
 2.3 Lateral Load Resisting System
 2.4 Summary

3) Prototype Studies – Mega Braced System
 3.1 Overview
 3.2 Cost Breakdown
 3.4 Summary
Background
Global Trend of Tall Building Construction

Countries
➢ China and U.S.A. are the two countries with the largest numbers of tall buildings.
➢ Before 1990s, U.S.A. led the number of tall buildings built.
➢ Since 2000s, China surpassed the U.S. and became the country with the most tall buildings.

Cities
➢ Hong Kong, New York City and Dubai are the top three cities in term of the number of tall buildings.
➢ The number of tall buildings in these developed cities are only steadily increased.
➢ Meanwhile, the total number of tall buildings increased in developing cities, particularly in China and Asia, due to urbanization.
Background
Challenges and Research Motivation

CHALLENGES
➢ Increasing height and number

➢ BUT additional COST of increasing height is not linear.

Current Practice (HK/China/Asia)
Concrete construction
➢ Local practice
➢ Material availability
➢ Good cost-strength ratio

Composite and Steel Construction?
➢ Utilize material choice (concrete vs steel)
➢ Faster Erection
➢ Lighter
➢ Prefabricated
➢ Small member members
➢ Tensile Slim and Lighter

Is the approach effective in both COST and TIME?

Cost Effective?
Time Saving?
Practical Construction?
Aesthetic?
Scope and Objective of Current Study

Objective of current study

• To maximize the benefits of composite and steel construction
• To investigate the potential applications of high strength steel material

Scope of current study

• Effective structural forms and layouts
 • Compare popular structural forms (lateral load resisting systems)
 • Investigate structural layouts
• Element sizing structural cost optimisation
 • Predefined Structural Systems
 • Design variables: element sizes and type
• Cost effectiveness comparisons
 • Material choices
 • Element design
 • Construction
Representative Projects

Engineering and Optimisation Projects

- Samsung Tower Palace III (79 storey building) in South Korea
 - One of representative buildings listed in *Outrigger Design Technical Guide (2017)*

Notable Projects

<table>
<thead>
<tr>
<th>Notable Projects</th>
<th>Building Height</th>
<th>Construction Material</th>
<th>Structural Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kowloon Mega Tower</td>
<td>474 m</td>
<td>Composite Steel and Concrete</td>
<td>Outrigger Braced System</td>
</tr>
<tr>
<td>Two International Finance Center</td>
<td>420 m</td>
<td>Composite Steel and Concrete</td>
<td>Outrigger Braced System</td>
</tr>
<tr>
<td>URA Project K11, Tsimshatsui</td>
<td>274 m</td>
<td>Composite Steel and Concrete</td>
<td>Outrigger Braced System</td>
</tr>
<tr>
<td>Sorrento Tower 1</td>
<td>255 m</td>
<td>Concrete</td>
<td>Coupled Shear Wall and Frame</td>
</tr>
<tr>
<td>The Harbourside Development</td>
<td>242 m</td>
<td>Concrete</td>
<td>Coupled Shear Wall and Frame</td>
</tr>
<tr>
<td>(3 towers)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Victory Arch Development</td>
<td>230 m</td>
<td>Concrete</td>
<td>Coupled Shear Wall and Frame</td>
</tr>
<tr>
<td>(2 towers)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park Central Development</td>
<td>173 m</td>
<td>Concrete</td>
<td>Coupled Shear Wall and Frame</td>
</tr>
<tr>
<td>(10 towers)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambridge House Development</td>
<td>161 m</td>
<td>Composite Steel and Concrete</td>
<td>Outrigger Braced System</td>
</tr>
<tr>
<td>Housing Authority Standard Housing Blocks (Harmony, Concord and New Cruciform Blocks)</td>
<td>125 m</td>
<td>Concrete</td>
<td>Coupled Shear Wall</td>
</tr>
</tbody>
</table>

Source: Keynote paper “Advances in Structural Optimization of tall Buildings in Hong Kong” at Third China-Japan-Korea Joint Symposium
Implementation Plans

1) Research Studies

<table>
<thead>
<tr>
<th>Phase</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
</table>
| Phase A | **Analyze the potential applications** of composite construction and high strength steel to define the main scope of works.**
InVESTIGATE the cost efficiency of high strength steel applications for tall buildings in Hong Kong. | Complete |
| Phase B | **Quantify and validate the cost efficiency** of steel and composite structural system | In-Progress |
| Phase C | **Develop an optimization platform** to quantify and utilize the application of high strength steel material and composite construction | In-Progress |

2) Publications

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Publish a technical guide “Structural Optimization on Design of Tall Buildings”</td>
</tr>
<tr>
<td></td>
<td>Summarize the results and recommendations in a technical conference paper.</td>
</tr>
</tbody>
</table>
Case Studies (IFC2)
Structural Systems using Composite or Steel Construction

Lateral Load Resisting System
- Tall buildings are slender structures, whose design are governed by wind loads and effects.
- Wind deflection is stiffness-control.
- High strength steel (e.g. S690, S960) has no advantage over normal strength steel due to the same Modulus of Elasticity (E).

Gravity Load System
- Members are designed based on gravity loads only.
- Members may be strength-control if the serviceability requirements (e.g. beam deflection) are met.

Example
Outrigger System for wind load resistance

Composite Floor System

Second Tallest Building in Hong Kong
Height = 420m
No of stories = 88
Structural System = Outrigger systems
Choosing Structural Systems
- Effective Lateral Load Resisting Systems
- Stiffness-control members vs Strength-control members

Lateral Load Resisting System

Gravity Load System

Approaches
- Perform optimization to determine the choices of Lateral Load Resisting Systems
- Utilize the advantages of smaller steel or composite sections
- Design for lighter structures

Approaches
- Utilize the strength advantages of High Strength Steel material.
- Provide composite elements (e.g. columns) to replace concrete elements.
Summary

Cost Assumption

Assumptions

- **Construction Cost**

<table>
<thead>
<tr>
<th>Items</th>
<th>Unit Value (HK$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete (including reinforcement and formwork)</td>
<td></td>
</tr>
<tr>
<td>Grade C45</td>
<td>HK$ 3,000/m³</td>
</tr>
<tr>
<td>Grade C60</td>
<td>HK$ 3,500/m³</td>
</tr>
<tr>
<td>Structural Steel</td>
<td></td>
</tr>
<tr>
<td>Grade S355</td>
<td>HK$ 11,000 / tonne</td>
</tr>
<tr>
<td>Grace S690</td>
<td>HK$ 12,500 / tonne</td>
</tr>
<tr>
<td>Grade S960</td>
<td>HK$ 14,000 / tonne</td>
</tr>
</tbody>
</table>

- **Floor Area Saving #**

<table>
<thead>
<tr>
<th>Items</th>
<th>Unit Value (HK$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office Floor Rental</td>
<td>HK$ 4,700 / ft²</td>
</tr>
<tr>
<td></td>
<td>(HK$ 50,600 / m²)</td>
</tr>
</tbody>
</table>
Floor System

Structural Optimisation

- After the study of different buildings, the cost savings of floor system potentially leads to 10-15% savings by using high strength steel material.
Floor System

Upper Zone (65/F – 89/F)

Lower Zone (9/F – 64/F)
Lateral Load Resisting System

<table>
<thead>
<tr>
<th>Floor Zone</th>
<th>Type</th>
<th>Area (cm²)</th>
<th>for Strength</th>
<th>for Stiffness</th>
<th>for Stiffness</th>
<th>x times</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-77</td>
<td>Q</td>
<td>Typical</td>
<td>1783</td>
<td>7166</td>
<td>5383</td>
<td>4.02</td>
</tr>
<tr>
<td>64-67</td>
<td>P</td>
<td>Outrigger</td>
<td>1831</td>
<td>6617</td>
<td>4786</td>
<td>3.61</td>
</tr>
<tr>
<td>57-64</td>
<td>N</td>
<td>Typical</td>
<td>2382</td>
<td>7060</td>
<td>4678</td>
<td>2.96</td>
</tr>
<tr>
<td>55-57</td>
<td>M</td>
<td></td>
<td>3264</td>
<td>11586</td>
<td>8322</td>
<td>3.55</td>
</tr>
<tr>
<td>52-R3</td>
<td>K</td>
<td></td>
<td>3465</td>
<td>9153</td>
<td>8088</td>
<td>3.00</td>
</tr>
<tr>
<td>47-52</td>
<td>J</td>
<td>Typical</td>
<td>3854</td>
<td>11530</td>
<td>7676</td>
<td>2.99</td>
</tr>
<tr>
<td>36-37</td>
<td>H</td>
<td>Typical</td>
<td>4789</td>
<td>13730</td>
<td>8584</td>
<td>3.09</td>
</tr>
<tr>
<td>33-35</td>
<td>F</td>
<td></td>
<td>5838</td>
<td>17876</td>
<td>12039</td>
<td>3.06</td>
</tr>
<tr>
<td>R2-33</td>
<td>E</td>
<td>Outrigger</td>
<td>5394</td>
<td>16678</td>
<td>11284</td>
<td>3.09</td>
</tr>
<tr>
<td>30-31</td>
<td>D</td>
<td>Typical</td>
<td>6638</td>
<td>17681</td>
<td>11042</td>
<td>2.66</td>
</tr>
<tr>
<td>09-21</td>
<td>B</td>
<td>Typical</td>
<td>6894</td>
<td>17910</td>
<td>11016</td>
<td>2.60</td>
</tr>
<tr>
<td>04-09</td>
<td>A</td>
<td></td>
<td>7594</td>
<td>19410</td>
<td>12676</td>
<td>3.00</td>
</tr>
</tbody>
</table>
Concluding Remarks
Cost Breakdown Comparisons

<table>
<thead>
<tr>
<th></th>
<th>Normalized cost summary (IFC2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Original (Normalized as 100%)</td>
</tr>
<tr>
<td>Structural System</td>
<td>Composite outrigger structure</td>
</tr>
<tr>
<td>Column Sizes</td>
<td>100%</td>
</tr>
<tr>
<td>Total “Cost” Benefits</td>
<td>100%</td>
</tr>
</tbody>
</table>
Prototype Study
Building Information and Setup

Floor Plan (Composite Floor System)

Outer Core:
- Typical Floor (60 m x 60 m)
 - Dead Load = 3.1 kPa
 - SDL = 1.6 kPa
 - Live Load = 3 kPa
- Mechanical Floor
 - Dead Load = 3.7 kPa
 - SDL = 1.6 kPa
 - Live Load = 7.5 kPa

Inner Core:
- All Floor (30 m x 30 m)
 - Dead Load = 3.1 kPa
 - SDL = 2.5 kPa
 - Live Load = 5 kPa

Elevation (Mega Braced System)
- Typical floor height = 4.167 m
- Mechanical floor
 - Occupy 3 stories
 - Located at every 32 floor

<table>
<thead>
<tr>
<th>Height</th>
<th>No. of Floors</th>
</tr>
</thead>
<tbody>
<tr>
<td>267m</td>
<td>64</td>
</tr>
<tr>
<td>333m</td>
<td>80</td>
</tr>
<tr>
<td>400m</td>
<td>96</td>
</tr>
<tr>
<td>467m</td>
<td>112</td>
</tr>
<tr>
<td>533m</td>
<td>128</td>
</tr>
</tbody>
</table>
Choice of Lateral Load Resisting System

Popular choices

- Shear Wall System
- Mega Braced Frame System
- Tubular System
- Outrigger System
 - Good Balance of Usage and Design

Current Study (for effective system)

- Mega Braced Frame System + Interior Gravity Systems
 - Known as one of the most effective systems to resist wind loads
 - Minimize the material cost for stiffness control members
 - Maximize the strength-control member applications
 - Composite or Steel Columns are used to minimize column sizes
 - Columns are heavily loaded as gravity columns to maximize the benefits of high strength steel.
Summary
Cost Breakdown (In Progress)

Mega Braced System

- Grouping by Member Types (with levels)
 - Designation example (C1_L0108 represents “C1” members from Level 01 to Level 08)
 - Columns (C1 typical, C2, etc.)
 - Beams (B1 typical, B2, etc.)
 - Bracing (X1 typical, X2, etc.)

- Cost Breakdown (minimum information)
 - No of members
 - Member size (weight)
 - Total weight (per group)
 - Total weight (per type)
 - Pie Chart (e.g. Column ~ 30% weight)
 - Bar chart