A new stochastic equilibrium problem for two stage games

Daniel Ralph
(Judge Business School
University of Cambridge)

Yves Smeers
(CORE, Université catholique de Louvain)

2nd International Conference on Nonlinear Programming with Applications
Beijing, Chinese Academy of Sciences
7–9 April 2008.
Motivation:
What is impact of risk on investment of a firm?
Think of a market, for example wholesale electricity.

- Investment, e.g., in generation capacity, occurs ahead of production and trading.
- Production and sales may go on for decades. But financial instruments — like options to hedge against low prices (low revenue) in future — are often limited to 1 or 2 years at most. → market is incomplete in that not all risks are traded

How can we model this from point of view of firm?

- A firm, even a bank, is necessarily risk averse.
- Corporate finance theory models the entire market (assuming liquid, complete markets etc) → risk neutral probabilities. Whatever an individual’s risk profile, it cannot beat the market; the market is efficient.
- Risk neutral prob. are exogenous— “read” from market data.
Investment and risk

Think of a market, for example wholesale electricity.

- Investment, e.g., in generation capacity, occurs ahead of production and trading.
- Production and sales may go on for decades. But financial instruments — like options to hedge against low prices (low revenue) in future — are often limited to 1 or 2 years at most. → market is incomplete in that not all risks are traded.

How can we model this from point of view of firm?

- A firm, even a bank, is necessarily risk averse.
- Corporate finance theory models the entire market (assuming liquid, complete markets etc) → risk neutral probabilities. Whatever an individual’s risk profile, it cannot beat the market; the market is efficient.
- Risk neutral prob. are exogenous— “read” from market data.

D Ralph A new two stage stochastic equilibrium model
Risk neutral probabilities are endogenous

Our approach cannot look like standard corporate finance
- Use game with N players rather than amorphous “market”
- Use coherent risk measures, e.g. cV@R, to model risk aversion, not risk neutral expectations
- Players’ interactions in market determine their risk neutral probabilities ... which are endogenous.

Our model is rather simple, only two stages:
- Stage one is investment, stage two is production and sales.
- Main task is to establish existence of equilibrium
- Give some theory behind computational model & analysis of European electricity market [Ehrenmann-Smeers-07]
- Future: How do changes in financial products (completeness) affect equilibrium?
What is impact of risk on investment of a firm?
Notation motivation: deterministic two stage game
Coherent risk measures
Stochastic two stage game
Full stochastic equilibrium model

Risk neutral probabilities are endogenous

Our approach cannot look like standard corporate finance
- Use game with N players rather than amorphous “market”
- Use coherent risk measures, e.g. $cV@R$, to model risk aversion, not risk neutral expectations
- Players’ interactions in market determine their risk neutral probabilities ... which are endogenous.

Our model is rather simple, only two stages:
- Stage one is investment, stage two is production and sales.
- Main task is to establish existence of equilibrium
- Give some theory behind computational model & analysis of European electricity market [Ehrenmann-Smeers-07]
- Future: How do changes in financial products (completeness) affect equilibrium?
Contents

1. What is impact of risk on investment of a firm?
2. Notation motivation: deterministic 2 stage investment game
3. Coherent risk measures
4. Stochastic two stage game
 - Costing an uncertain future
 - Hedging: A financial market in risk
5. Full stochastic equilibrium model
Section 2

Notation motivation:
A deterministic two stage investment game
Deterministic spot market (game)

Simple **spot market** of N players & 1 commodity (electricity):
- Player i chooses production level $z_i \geq 0$ to max profit, given:
 - production cost function $c_i(z_i)$
 - production capacity $x_i \geq 0$
 - spot market price $\lambda \geq 0$:

$$\max_{z_i} \lambda z_i - c_i(z_i) \quad \text{subject to} \quad 0 \leq z_i \leq x_i. \quad (1)$$

In **perfect competition**, λ comes out of market clearing condition, given total demand $d > 0$:

$$0 \leq \sum_i z_i - d \quad \perp \quad \lambda \geq 0. \quad (2)$$

Note. Rewrite as min-max over $\lambda \geq 0$ and $z = (z_1, \ldots, z_N)$ to get unique equilibrium quantities z and price λ if
- each c_i is smooth & strictly convex with $c_i(0) = 0$
- total capacity exceeds demand: $\sum_i x_i > d$... Slater CQ
Deterministic spot market (game)

Simple **spot market** of \(N \) players & 1 commodity (electricity):
- Player \(i \) chooses production level \(z_i \geq 0 \) to max profit, given:
 - production cost function \(c_i(z_i) \)
 - production capacity \(x_i \geq 0 \)
 - spot market price \(\lambda \geq 0 \):

\[
\max_{z_i} \lambda z_i - c_i(z_i) \quad \text{subject to} \quad 0 \leq z_i \leq x_i.
\] \((1) \)

In **perfect competition**, \(\lambda \) comes out of market clearing condition, given total demand \(d > 0 \):

\[
0 \leq \sum_i z_i - d \quad \perp \quad \lambda \geq 0.
\] \((2) \)

Note. Rewrite as min-max over \(\lambda \geq 0 \) and \(z = (z_1, \ldots, z_N) \) to get unique equilibrium quantities \(z \) and price \(\lambda \) if
- each \(c_i \) is smooth & strictly convex with \(c_i(0) = 0 \)
- total capacity exceeds demand: \(\sum_i x_i > d \) ... *Slater CQ*
First stage investment in capacity

The spot market is the second stage of the game. In the first stage Player \(i\) invests in production capacity \(x_i\):

- investment cost function \(k_i(x_i)\)
- capacity payment \(\nu \geq 0\) ... to encourage investment

Switch from “max profit” to “min cost”: Over both stages, Player \(i\) solves

\[
\min_{x_i, z_i} k_i(x_i) - \nu x_i + c_i(z_i) - \lambda z_i \\
\text{subject to } 0 \leq x_i \\
0 \leq z_i \leq x_i. \tag{3}
\]

Capacity payment \(\nu\) must clear the capacity market:

\[
0 \leq \sum_i x_i - d \perp \nu \geq 0. \tag{4}
\]

The **two stage investment game** is described by (2)–(4).
First stage investment in capacity

The spot market is the second stage of the game. In the first stage Player i invests in production capacity x_i:

- investment cost function $k_i(x_i)$
- capacity payment $\nu \geq 0$... to encourage investment

Switch from “max profit” to “min cost”: Over both stages, Player i solves

$$\min_{x_i, z_i} \quad k_i(x_i) - \nu x_i + c_i(z_i) - \lambda z_i$$

subject to

$$0 \leq x_i$$
$$0 \leq z_i \leq x_i.$$ \hfill (3)

Capacity payment ν must clear the capacity market:

$$0 \leq \sum_i x_i - d \perp \nu \geq 0.$$ \hfill (4)

The **two stage investment game** is described by (2)–(4).
Reduction to single stage game

Player i’s optimization problem is equivalent to

$$\min_{x_i \geq 0} \ k_i(x_i) - \nu x_i + h_i(x_i, \lambda)$$

(5)

where cost of capital in scenario ω is

$$h_i(x_i, \lambda) = \inf_{z_i \in [0, x_i]} \{ c_i(z_i) - \lambda z_i \}.$$

Assume \exists unique spot market equilibrium $z(x)$, $\lambda(x)$ if $\sum_i x_i \geq d$. Then

$$h_i(x_i, \lambda(x)) = c_i(z_i(x)) - \lambda(x)z_i(x).$$

But perfect competition \Rightarrow Player i does not anticipate its effect on spot price λ ... or other players’ actions.

\Rightarrow Reduced (single stage) game given by clearing capacity market (4), players’ problems (5), and $\lambda = \lambda(x)$.

Notes. 1. (5) is not an MPEC ... two stage game not an EPEC!

2. In general, h_i may be convex and smooth or nonsmooth in x_i.
Reduction to single stage game

Player i’s optimization problem is equivalent to

$$\min_{x_i \geq 0} k_i(x_i) - \nu x_i + h_i(x_i, \lambda)$$

(5)

where **cost of capital** in scenario ω is

$$h_i(x_i, \lambda) = \inf_{z_i \in [0, x_i]} \{c_i(z_i) - \lambda z_i\}.$$

Assume \exists unique spot market equilibrium $z(x), \lambda(x)$ if $\sum_i x_i \geq d$. Then

$$h_i(x_i, \lambda(x)) = c_i(z_i(x)) - \lambda(x)z_i(x).$$

But perfect competition \Rightarrow Player i does not anticipate its effect on spot price λ . . . or other players’ actions.

\Rightarrow **Reduced (single stage) game** given by clearing capacity market (4), players’ problems (5), and $\lambda = \lambda(x)$.

Notes. 1. (5) is not an MPEC . . . two stage game not an EPEC!

2. In general, h_i may be convex and smooth or nonsmooth in x_i.

What is impact of risk on investment of a firm?

Notation motivation: deterministic two stage game

Coherent risk measures

Stochastic two stage game

Full stochastic equilibrium model
Reduction to single stage game

Player i’s optimization problem is equivalent to

$$\min_{x_i \geq 0} k_i(x_i) - \nu x_i + h_i(x_i, \lambda)$$ \hspace{1cm} (5)$$

where **cost of capital** in scenario ω is

$$h_i(x_i, \lambda) = \inf_{z_i \in [0, x_i]} \{c_i(z_i) - \lambda z_i\}.$$

Assume \exists unique spot market equilibrium $z(x), \lambda(x)$ if $\sum_i x_i \geq d$. Then

$$h_i(x_i, \lambda(x)) = c_i(z_i(x)) - \lambda(x)z_i(x).$$

But perfect competition \Rightarrow Player i does not anticipate its effect on spot price λ . . . or other players’ actions.

\Rightarrow **Reduced (single stage) game** given by clearing capacity market (4), players’ problems (5), and $\lambda = \lambda(x)$.

Notes. 1. (5) is not an MPEC . . . two stage game not an EPEC!

2. In general, h_i may be convex and smooth or nonsmooth in x_i.

Section 3

Coherent risk measures
Cost of future (random) outcomes

Think of $Y \in L_p(\Omega)$ as vector $(Y_\omega)_{\omega \in \Omega}$ of future outcomes or costs, each $Y_\omega \in \mathbb{R}$. Here $p \in (1, \infty]$,

$$\|Y\| = \left(\int_\Omega |Y_\omega|^p d\omega\right)^{1/p}$$

... where $d\omega$ means $dP(\omega)$

So $1_{\Omega} = (1)_{\omega \in \Omega} \in L_p(\Omega)$, in fact $\int_\Omega d\omega = 1$.

What is cost (or value) of Y at the time of investment?

Simplest answer: use expectation under probability measure, defined as dual element $\Pi \in L_q(\Omega)$, where $1/p + 1/q = 1$, s.t.

$$\Pi_\omega \geq 0 \text{ a.e.} \quad \text{and} \quad \Pi 1_{\Omega} = \int_\Omega \Pi_\omega dP(\omega) = 1.$$

Denote $\Pi Y = \int_\Omega \Pi_\omega Y_\omega dP(\omega)$ as expectation $\mathbb{E}_\Pi[Y]$.

\rightarrow investment game over two stage stochastic programs.

Alternative: coherent risk measure — risk function for short — $\rho : L_p(\Omega) \rightarrow \mathbb{R} \cup \infty$ is more general, recommended in finance, see [Artzner-et-al-99]. Risk functions include straight expectations.

D Ralph A new two stage stochastic equilibrium
Cost of future (random) outcomes

Think of $Y \in L_p(\Omega)$ as vector $(Y_\omega)_{\omega \in \Omega}$ of future outcomes or costs, each $Y_\omega \in \mathbb{IR}$. Here $p \in (1, \infty]$,

$$\|Y\| = \left(\int_{\Omega} |Y_\omega|^p d\omega\right)^{1/p}$$

... where $d\omega$ means $dP(\omega)$

So $1 = (1)_{\omega \in \Omega} \in L_p(\Omega)$, in fact $\int_{\Omega} d\omega = 1$.

What is cost (or value) of Y at the time of investment?

Simplest answer: use expectation under probability measure, defined as dual element $\Pi \in L_q(\Omega)$, where $1/p + 1/q = 1$, s.t.

$$\Pi_\omega \geq 0 \text{ a.e.} \quad \text{and} \quad \Pi \mathbb{1} = \int_{\Omega} \Pi_\omega dP(\omega) = 1.$$

Denote $\Pi Y = \int_{\Omega} \Pi_\omega Y_\omega dP(\omega)$ as expectation $\mathbb{E}_\Pi[Y]$.

\longrightarrow investment game over two stage stochastic programs.

Alternative: coherent risk measure — risk function for short — $\rho : L_p(\Omega) \rightarrow \mathbb{IR} \cup \infty$ is more general, recommended in finance, see [Artzner-et-al-99]. Risk functions include straight expectations.
Cost of future (random) outcomes

Think of \(Y \in L_p(\Omega) \) as vector \((Y_\omega)_{\omega \in \Omega}\) of future outcomes or costs, each \(Y_\omega \in \mathbb{R} \). Here \(p \in (1, \infty] \),

\[
\|Y\| = \left(\int_\Omega |Y_\omega|^p d\omega \right)^{1/p} \quad \text{... where } d\omega \text{ means } dP(\omega)
\]

So \(1 = (1)_{\omega \in \Omega} \in L_p(\Omega) \), in fact \(\int_\Omega d\omega = 1 \).

What is cost (or value) of \(Y \) at the time of investment?

Simplest answer: use expectation under probability measure, defined as dual element \(\Pi \in L_q(\Omega) \), where \(1/p + 1/q = 1 \), s.t.

\[
\Pi_\omega \geq 0 \text{ a.e.} \quad \text{and} \quad \Pi 1 = \int_\Omega \Pi_\omega dP(\omega) = 1.
\]

Denote \(\Pi Y = \int_\Omega \Pi_\omega Y_\omega dP(\omega) \) as expectation \(\mathbb{E}_\Pi[Y] \).

\(\rightarrow \) investment game over two stage stochastic programs.

Alternative: coherent risk measure — risk function for short — \(\rho : L_p(\Omega) \to \mathbb{R} \cup \{\infty\} \) is more general, recommended in finance, see [Artzner-et-al-99]. Risk functions include straight expectations.
Cost of future (random) outcomes

Think of $Y \in L_p(\Omega)$ as vector $(Y_\omega)_{\omega \in \Omega}$ of future outcomes or costs, each $Y_\omega \in \mathbb{R}$. Here $p \in (1, \infty]$,

$$\|Y\| = \left(\int_\Omega |Y_\omega|^p d\omega \right)^{1/p}$$

... where $d\omega$ means $dP(\omega)$

So $1 = (1)_{\omega \in \Omega} \in L_p(\Omega)$, in fact $\int_\Omega d\omega = 1$.

What is cost (or value) of Y at the time of investment?

Simplest answer: use expectation under probability measure, defined as dual element $\Pi \in L_q(\Omega)$, where $1/p + 1/q = 1$, s.t.

$$\Pi_\omega \geq 0 \text{ a.e.} \quad \text{and} \quad \Pi 1 = \int_\Omega \Pi_\omega dP(\omega) = 1.$$

Denote $\Pi Y = \int_\Omega \Pi_\omega Y_\omega dP(\omega)$ as expectation $\mathbb{E}_\Pi[Y]$.

\rightarrow investment game over two stage stochastic programs.

Alternative: coherent risk measure — risk function for short — $\rho : L_p(\Omega) \rightarrow \mathbb{R} \cup \infty$ is more general, recommended in finance, see [Artzner-et-al-99]. Risk functions include straight expectations.
Coherent risk measures

In general, ρ is risk function if for all $Y, Y' \in L_p(\Omega)$ and $\alpha \in \mathbb{R}$:

- **proper**: $\rho(Y) > -\infty$
- **sublinear**: $\rho(Y + Y') \leq \rho(Y) + \rho(Y')$
- **positive homogeneous**: $\rho(\alpha Y) = \alpha \rho(Y)$ for $\alpha > 0$
- **monotone**: $\rho(Y) \leq \rho(Y')$ if $Y_\omega \leq Y'_\omega$ a.e.
- **translation invariant**: $\rho(Y + \alpha \mathbb{1}) = \rho(Y) + \alpha$

To these we add the property of being lower semicontinuous (lsc).

Classical result [Hörmander 54]: ρ is proper, sublinear, positive homogeneous and lsc $\iff \rho = \sigma_D$, the support function of a nonempty, closed, convex set D in $L_q(\Omega)$, where

$$\sigma_D(Y) = \sup_{\zeta \in D} \zeta Y.$$

Refinement [Shapiro-Ruczinski-06]: ρ is lsc risk function $\iff \rho = \sigma_D$ for nonempty, closed, convex set D of probability meas.
Coherent risk measures

In general, ρ is risk function if for all $Y, Y' \in L_p(\Omega)$ and $\alpha \in \mathbb{R}$:

- **proper**: $\rho(Y) > -\infty$
- **sublinear**: $\rho(Y + Y') \leq \rho(Y) + \rho(Y')$
- **positive homogeneous**: $\rho(\alpha Y) = \alpha \rho(Y)$ for $\alpha > 0$
- **monotone**: $\rho(Y) \leq \rho(Y')$ if $Y_\omega \leq Y'_\omega$ a.e.
- **translation invariant**: $\rho(Y + \alpha 1_1) = \rho(Y) + \alpha$

To these we add the property of being lower semicontinuous (lsc).

Classical result [Hörmander 54]: ρ is proper, sublinear, positive homogeneous and lsc \iff $\rho = \sigma_D$, the support function of a nonempty, closed, convex set D in $L_q(\Omega)$, where

$$\sigma_D(Y) = \sup_{\zeta \in D} \zeta Y.$$

Refinement [Shapiro-Ruczinski-06]: ρ is lsc risk function \iff $\rho = \sigma_D$ for nonempty, closed, convex set D of probability meas.
Coherent risk measures

In general, ρ is risk function if for all $Y, Y' \in L_p(\Omega)$ and $\alpha \in \mathbb{R}$:

- **proper**: $\rho(Y) > -\infty$
- **sublinear**: $\rho(Y + Y') \leq \rho(Y) + \rho(Y')$
- **positive homogeneous**: $\rho(\alpha Y) = \alpha \rho(Y)$ for $\alpha > 0$
- **monotone**: $\rho(Y) \leq \rho(Y')$ if $Y_\omega \leq Y'_\omega$ a.e.
- **translation invariant**: $\rho(Y + \alpha \mathbb{1}) = \rho(Y) + \alpha$

To these we add the property of being lower semicontinuous (lsc).

Classical result [Hörmander 54]: ρ is proper, sublinear, positive homogeneous and lsc $\iff \rho = \sigma_D$, the support function of a nonempty, closed, convex set D in $L_q(\Omega)$, where

$$\sigma_D(Y) = \sup_{\zeta \in D} \zeta Y.$$

Refinement [Shapiro-Ruczinski-06]: ρ is lsc risk function $\iff \rho = \sigma_D$ for nonempty, closed, convex set D of probability meas.
Risk aversion vs risk neutrality

Example

Conditional value at risk, $cV@R$, is one of best known risk functions [Rockafellar-Uryasev-02].
$cV@R_{\Pi,\beta}(Y)$ is (roughly) Π-expectation of all but $\beta\%$ of lowest outcomes of Y.
Thus $cV@R_{\Pi,\beta}(Y) \geq E_{\Pi}[Y] \rhd cV@R$ is risk averse.

Generally say risk measure $\rho = \sigma_D$ is **risk neutral** if D is a singleton $\{\Pi\}$, and **risk averse** otherwise.

[Rucz.-Shap.-06, Example 7] shows that $cV@R_{\Pi,\beta} = \sigma_D$ where D is set of probability measures Π' such that $\Pi'_\omega \leq \Pi_\omega/(1 - \beta)$ a.e.

Note also that risk measures combine robust optimization with stochastic programming (c.f. Nemirovsky et al).
Risk aversion vs risk neutrality

Example

Conditional value at risk, $cV@R$, is one of best known risk functions [Rockafellar-Uryasev-02].
$cV@R_{\Pi,\beta}(Y)$ is (roughly) Π-expectation of all but $\beta\%$ of lowest outcomes of Y.
Thus $cV@R_{\Pi,\beta}(Y) \geq \mathbb{E}_\Pi[Y] \quad cV@R$ is risk averse.

Generally say risk measure $\rho = \sigma_D$ is risk neutral if D is a singleton $\{\Pi\}$, and risk averse otherwise.

[Rucz.-Shap.-06, Example 7] shows that $cV@R_{\Pi,\beta} = \sigma_D$ where D is set of probability measures Π' such that $\Pi'_\omega \leq \Pi_\omega/(1 - \beta)$ a.e.

Note also that risk measures combine robust optimization with stochastic programming (c.f. Nemirovsky et al)
Section 4

Stochastic two stage game

Subsection 4.1
Costing an uncertain future
Costing uncertain spot market outcomes

For each spot scenario ω, Player i’s spot market cost is

$$G_{i\omega}(z_i, \lambda) = c_{i\omega}(z_i) - \lambda z_i.$$

We may choose a different $z_i = Z_{i\omega}$ in each scenario, and the spot price may vary: $\lambda = \Lambda_{\omega}$.

Future outcomes are listed as $G_i(Z_i, \Lambda) = (G_{i\omega}(Z_{i\omega}, \Lambda_{\omega}))_{\omega \in \Omega}$.

Player i minimizes investment & spot market cost:

$$\min_{x_i, Z_i} k_i(x_i) - \nu x_i + \rho_i(G_i(Z_i, \Lambda))$$

subject to

$$0 \leq x_i$$

$$0 \leq Z_i \leq x_i$$

(6)

Spot market clearing condition is given pointwise over scenarios,

$$0 \leq \sum_i Z_{i\omega} - D_\omega \perp \Lambda_{\omega} \geq 0 \text{ a.e.}$$

(7)

where $D = (D_\omega)_\omega$ is vector of nonnegative demands.
Costing uncertain spot market outcomes

For each spot scenario ω, Player i’s spot market cost is

$$G_{i\omega}(z_i, \lambda) = c_{i\omega}(z_i) - \lambda z_i.$$

We may choose a different $z_i = Z_{i\omega}$ in each scenario, and the spot price may vary: $\lambda = \Lambda_{\omega}$.

Future outcomes are listed as $G_i(Z_i, \Lambda) = (G_{i\omega}(Z_{i\omega}, \Lambda_{\omega}))_{\omega \in \Omega}$.

Player i minimizes investment & spot market cost:

$$\min_{x_i, Z_i} k_i(x_i) - \nu x_i + \rho_i(G_i(Z_i, \Lambda))$$

subject to

$$0 \leq x_i$$

$$0 \leq Z_i \leq x_i \mathbb{1}$$

(6)

Spot market clearing condition is given pointwise over scenarios,

$$0 \leq \sum_i Z_{i\omega} - D_{\omega} \perp \Lambda_{\omega} \geq 0 \quad \text{a.e.}$$

(7)

where $D = (D_{\omega})_{\omega}$ is vector of nonnegative demands.
Costing uncertain spot market outcomes

For each spot scenario ω, Player i’s spot market cost is
\[G_{i\omega}(z_i, \lambda) = c_{i\omega}(z_i) - \lambda z_i. \]
We may choose a different $z_i = Z_{i\omega}$ in each scenario, and the spot price may vary: $\lambda = \Lambda_\omega$.
Future outcomes are listed as $G_i(Z_i, \Lambda) = (G_{i\omega}(Z_{i\omega}, \Lambda_\omega))_{\omega \in \Omega}$.
Player i minimizes investment & spot market cost:
\[
\min_{x_i, Z_i} \quad k_i(x_i) - \nu x_i + \rho_i(G_i(Z_i, \Lambda))
\]
subject to
\[
0 \leq x_i \\
0 \leq Z_i \leq x_i \mathbb{1}
\]
(6)

Spot market clearing condition is given pointwise over scenarios,
\[
0 \leq \sum_i Z_{i\omega} - D_\omega \quad \perp \quad \Lambda_\omega \geq 0 \quad \text{a.e.}
\]
(7)
where $D = (D_\omega)_\omega$ is vector of nonnegative demands.
To be sure of meeting spot demand, assume D is bounded and let $d = \sup D$ ignoring zero measure sets

$$d = \text{ess sup } D_\omega < \infty.$$

Clearing capacity market is same as before,

$$0 \leq \sum_{i=1}^{N} x_i - d \perp \nu \geq 0. \tag{8}$$

Two stage stochastic game given by (6), (7) & (8)
Reduction to single stage stochastic game

Cost of capital (or investment) in spot scenario ω is

$$H_{i\omega}(x_i, \lambda) = \inf_{z_i \in [0, x_i]} G_{i\omega}(z_i, \lambda)$$ \hspace{1cm} (9)

Define vector of spot capital cost $H_i(x_i, \Lambda) = (H_{i\omega}(x_i, \Lambda_\omega))_\omega$.

Assume (1), when $\sum_i x_i \geq d$, that each spot scenario ω has unique equilibrium $Z_{\omega}(x) \in \mathbb{R}^N$, $\Lambda_{\omega}(x) \geq 0$, with $Z(x), \Lambda(x) \in L_\infty(\Omega)$.

Proposition (Pointwise decomposition)

$Z_i(x)$ is a global solution of $\min_{0 \leq Z_i \leq x_i} \rho_i(G_i(Z_i, \Lambda(x)))$.

This is based on an interchangeability principle, see [Rucz.-Shap.-06, Proposition 4], c.f. [Rock.-Wets-88].
Reduction to single stage stochastic game

Cost of capital (or investment) in spot scenario ω is

$$H_{i\omega}(x_i, \lambda) = \inf_{z_i \in [0, x_i]} G_{i\omega}(z_i, \lambda)$$ \hspace{1cm} (9)

Define vector of spot capital cost $H_i(x_i, \Lambda) = (H_{i\omega}(x_i, \Lambda_\omega))_\omega$.

Assume (1), when $\sum_i x_i \geq d$, that each spot scenario ω has unique equilibrium $Z_\omega(x) \in \mathbb{R}^N$, $\Lambda_\omega(x) \geq 0$, with $Z(x), \Lambda(x) \in L_\infty(\Omega)$.

Proposition (Pointwise decomposition)

$Z_i(x)$ is a global solution of $\min_{0 \leq Z_i \leq x_i} \rho_i(G_i(Z_i, \Lambda(x)))$.

This is based on an interchangeability principle, see [Rucz.-Shap.-06, Proposition 4], c.f. [Rock.-Wets-88].
Recall the game where each player has a two stage stochastic problem (6), plus clearing of spot & capacity markets (7) & (8).

This reduces to the **single stage stochastic game**

$$\min_{x_i \geq 0} k_i(x_i) - \nu x_i + \rho_i(H_i(x_i, \Lambda))$$

with capacity market condition (8) and $\Lambda = \Lambda(x)$.

(As in simple deterministic game, Player i doesn’t anticipate its effect on price or other players.)

Main point: have reduced infinite dimensional game to finite dimensions.
Single stage stochastic game

Recall the game where each player has a two stage stochastic problem (6), plus clearing of spot & capacity markets (7) & (8).

This reduces to the single stage stochastic game

\[\min_{x_i \geq 0} k_i(x_i) - \nu x_i + \rho_i(H_i(x_i, \Lambda)) \]

with capacity market condition (8) and \(\Lambda = \Lambda(x) \).

(As in simple deterministic game, Player \(i \) doesn’t anticipate its effect on price or other players.)

Main point: have reduced infinite dimensional game to finite dimensions.
Section 4

Stochastic two stage game

Subsection 4.2

Hedging: A financial market in risk
Options trading to hedge against low prices

Players want to **hedge** against a low spot price. So financial traders offer a list of **strike prices** $\Lambda^O = (\Lambda^O_\theta)_{\theta \in \Theta}$ where Θ is another measure space.

- Anyone can buy any amount of any **option** θ.
- If the spot price is λ, one unit of the option pays $(\Lambda^O_\theta - \lambda)_+ = \max\{\Lambda^O_\theta - \lambda, 0\}$
- This is a hedge against price falling below Λ^O_θ.

Player i buys/sells $W_{i\theta}$ of option θ where $W_i = (W_{i\theta})_{\theta \in \Theta} \in L_{p'}(\Theta)$ and $p' \in (1, \infty]$.

In spot scenario ω, given investments $\sum_i x_i \geq d$, Player i is paid

$$P^O_\omega(x)W_i = \int_{\Theta} (\Lambda^O_\theta - \Lambda_\omega(x))_+ W_{i\theta} d\theta$$

This defines linear mapping $P^O(x) : L_{p'}(\Theta) \rightarrow L_\infty(\Omega)$.

D Ralph A new two stage stochastic equilibrium model
Options trading to hedge against low prices

Players want to **hedge** against a low spot price. So financial traders offer a list of **strike prices** \(\Lambda^O = (\Lambda^O_\theta)_{\theta \in \Theta} \) where \(\Theta \) is another measure space.

- Anyone can buy any amount of any **option** \(\theta \).
- If the spot price is \(\lambda \), one unit of the option pays
 \[(\Lambda^O_\theta - \lambda)_+ = \max \{ \Lambda^O_\theta - \lambda, 0 \} \]
- This is a hedge against price falling below \(\Lambda^O_\theta \).

Player \(i \) buys/sells \(W_{i\theta} \) of option \(\theta \) where \(W_i = (W_{i\theta})_{\theta \in L_{p'}(\Theta)} \) and \(p' \in (1, \infty] \).

In spot scenario \(\omega \), given investments \(\sum_i x_i \geq d \), Player \(i \) is paid

\[
P^O_\omega(x) W_i = \int_{\Theta} (\Lambda^O_\theta - \Lambda_\omega(x))_+ W_{i\theta} d\theta
\]

This defines linear mapping \(P^O(x) : L_{p'}(\Theta) \rightarrow L_{\infty}(\Omega) \).
Pricing options

The cost (market price) for options is a nonnegative vector $C^O = (C^O_\theta)_\theta \in L_{q'}(\Theta)$ where $1/p' + 1/q' = 1$.

What determines the cost of options? Develop equilibrium conditions to find out!

First, Player i’s (reduced) problem now looks like

$$
\min_{x_i \geq 0, W_i \in L_{p'}(\Theta)} k_i(x_i) - \nu x_i + C^O W_i \\
+ \rho_i(H_i(x_i, \Lambda) - P^O W_i)
$$

where $\Lambda = \Lambda(x)$ and $P^O = P^O(x)$.

We also have conservation of cash:

$$
\sum_{i=1}^{N} W_i = 0.
$$
The cost (market price) for options is a nonnegative vector
\[C^O = (C^O_\theta)_{\theta} \in L_{q'}(\Theta) \text{ where } 1/p' + 1/q' = 1. \]

What determines the cost of options? Develop equilibrium conditions to find out!

First, Player \(i \)'s (reduced) problem now looks like

\[
\begin{align*}
\min_{x_i \geq 0, \, W_i \in L_{p'}(\Theta)} \quad & k_i(x_i) - \nu x_i + C^O W_i \\
& + \rho_i(H_i(x_i, \Lambda) - P^O W_i)
\end{align*}
\]

where \(\Lambda = \Lambda(x) \) and \(P^O = P^O(x) \).

We also have conservation of cash:

\[
\sum_{i=1}^{N} W_i = 0.
\]

D Ralph

A new two stage stochastic equilibrium model
Optimality conditions for Player i

Assume (II) smoothness of k_i and H_i with respect to x_i, Player i’s optimality condition for (10) is

$$\Pi_i \in \partial \rho_i(H_i(x_i, \Lambda) - P^O W_i)$$

(12)

$$0 \leq \nabla x_i k_i(x_i) - \nu + \Pi_i \nabla x_i H(x_i, \Lambda) \perp x_i \geq 0$$

(13)

$$C^O = \Pi_i P^O.$$

(14)

Note each Π_i is a probability measure . . . a risk neutral probability for Player i.

The full equilibrium conditions also require: clearing capacity market (8), $\Lambda = \Lambda(x)$, $P^O = P^O(x)$, and cash conservation (11).
Assume (II) smoothness of \(k_i \) and \(H_i \) with respect to \(x_i \), Player \(i \)'s optimality condition for (10) is

\[
\Pi_i \in \partial \rho_i \left(H_i(x_i, \Lambda) - P^O W_i \right)
\]

\[
0 \leq \nabla x_i k_i(x_i) - \nu + \Pi_i \nabla x_i H(x_i, \Lambda) \perp \quad x_i \geq 0
\]

\[
C^O = \Pi_i P^O.
\]

Note each \(\Pi_i \) is a probability measure . . . a risk neutral probability for Player \(i \).

The full equilibrium conditions also require: clearing capacity market (8), \(\Lambda = \Lambda(x) \), \(P^O = P^O(x) \), and cash conservation (11).
Full stochastic equilibrium model
Existence of equilibrium

Assume (III) that

1. (a) all player’s risk functions have form \(cV@R_{\Pi_i, \beta_i} \) for same \(\Pi \) but possibly different \(\beta_i \in (0, 1) \)
 (b) \(\Pi_\omega \geq \epsilon \) a.e. for some \(\epsilon > 0 \)

2. some technical conditions, e.g., \(PO(x) : L_{p'}(\Theta) \to L_\infty(\Omega) \)
 has closed range in \(L_1(\Omega) \) whenever \(\sum_i x_i \geq d \).

Assumption (III) part 1 requires overlap in sets \(D_i \) where \(\rho_i = \sigma_{D_i} \): players’ risk profiles are similar enough to avoid **arbitrage**.
(The conjecture holds if there are only finitely many options.)

Let \(E(x) \) be set of

\[
(\Pi_1 \nabla_{x_1} H_1(x_1, \Lambda), \ldots, \Pi_N \nabla_{x_N} H_N(x_N, \Lambda)) \in \mathbb{R}^N
\]

where \(\Lambda = \Lambda(x) \), \(PO = PO(x) \), and ((11)) & (12) hold.
Existence of equilibrium

Assume (III) that

1. (a) all player’s risk functions have form $cV@R_{II_i},\beta_i$ for same Π but possibly different $\beta_i \in (0, 1)$
 (b) $\Pi_\omega \geq \epsilon$ a.e. for some $\epsilon > 0$

2. some technical conditions, e.g., $P^O(x) : L_{p'}(\Theta) \to L_{\infty}(\Omega)$ has closed range in $L_1(\Omega)$ whenever $\sum_i x_i \geq d$.

Assumption (III) part 1 requires overlap in sets D_i where $\rho_i = \sigma_{D_i}$: players’ risk profiles are similar enough to avoid arbitrage.
(The conjecture holds if there are only finitely many options.)

Let $E(x)$ be set of

$$\left(\Pi_1 \nabla x_1 H_1(x_1, \Lambda), \ldots, \Pi_N \nabla x_N H_N(x_N, \Lambda) \right) \in \mathbb{R}^N$$

where $\Lambda = \Lambda(x)$, $P^O = P^O(x)$, and ((11)) & (12) hold.
Existence of equilibria

Conjecture

The set mapping $\mathcal{E} : \mathbb{R}^N \rightarrow \mathbb{R}^N$ is upper semicontinuous and has nonempty, compact, convex values.

This allows us to convert the optimality conditions (12)-(14) and capacity market condition (8) into a standard fixed point setting. Main result becomes application of Kakutani’s fixed point theorem.

Theorem

Let Assumptions (I), (II) and (III) hold. If each k_i is strongly convex then there exists a solution $x^* = (x_1^*, \ldots, x_N^*) \in \mathbb{R}^N$ of the reduced stochastic investment game with options trading.

Note this provides a risk neutral probability Π_i for each Player i.
What is impact of risk on investment of a firm?
Notation motivation: deterministic two stage game
Coherent risk measures
Stochastic two stage game
Full stochastic equilibrium model

Existence of equilibria

Conjecture

The set mapping $\mathcal{E} : \mathbb{R}^N \rightarrow \mathbb{R}^N$ is upper semicontinuous and has nonempty, compact, convex values.

This allows us to convert the optimality conditions (12)-(14) and capacity market condition (8) into a standard fixed point setting. Main result becomes application of Kakutani’s fixed point theorem.

Theorem

Let Assumptions (I), (II) and (III) hold. If each k_i is strongly convex then there exists a solution $x^* = (x_1^*, \ldots, x_N^*) \in \mathbb{R}^N$ of the reduced stochastic investment game with options trading.

Note this provides a risk neutral probability Π_i for each Player i.

D Ralph
A new two stage stochastic equilibrium
Extensions

Many technical/practical extensions possible

- **Multiple time periods**, c.f. [Ehrenmann-Smeers-07]
- several commodities: \(x_i \) lies in \(\mathbb{R}^n \) not \(\mathbb{R} \)
- Player \(i \)’s problem may directly depend on other players decisions \(x_{-i} \) or \(Z_{-i} \)
- nonsmooth (but still convex) objective functions and constraints
- More complex constraints under suitable constraint qualification

Real interest: interplay between financial products and firms’ investments
- whether few options (incomplete market)
- or many options (nearly complete)
Extensions

Many technical/practical extensions possible

- **Multiple time periods**, c.f. [Ehrenmann-Smeers-07]
- several commodities: x_i lies in \mathbb{R}^n not \mathbb{R}
- Player i’s problem may directly depend on other players decisions x_{-i} or Z_{-i}
- nonsmooth (but still convex) objective functions and constraints
- More complex constraints under suitable constraint qualification

Real interest: interplay between financial products and firms’ investments

- whether few options (incomplete market)
- or many options (nearly complete)
Second, writing $W = (W_1, \ldots, W_N)$, cost C^O is dual multiplier of above constraint in the **hedging problem**

$$
\min_{W} \sum_{i=1}^{N} \rho_i \left(H_i(x_i, \Lambda) - P^O(x)W_i \right)
$$

subject to (11)
Most technical part of analysis occurs here.