The antagonistic interaction of cones in human eye – a pilot study

Lung JCY, Chan HHL

Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.

Multifocal electroretinogram (mfERG) by Sutter (1992) provides a measuring tool of the retinal responses at different locations. Traditional mfERG stimulus at each base period is a pseudorandom m-sequence focal flash. By interleaving seven dark frames between the focal flashes, a slow-sequence stimulus can be formed to trigger retinal responses which are originated predominantly from the bipolar cells and inner retinal cells. In this study, the antagonistic interaction of cones in human eye was investigated by this slow-flash mfERG (sfmfERG) under different colour stimuli (white and blue colour conditions). The N1, P1 and photopic negative response (PhNR) of the sfmfERG were used to investigate the effect on the local retinal responses. It was found that the blue stimulus could trigger greater amplitudes of the N1, P1 and PhNR than the white stimulus did. In terms of the implicit time, the white stimulus would trigger a P1 and PhNR with longer implicit time than the blue stimulus. White stimulus provides a broader spectrum signal than the blue stimulus. The changes of cone responses from a broad to narrow spectrum stimulation may illustrate a decrease in the involvement of retinal antagonism and thus leads to an increase in amplitude and a decrease in implicit time.

Acknowledge: This study was supported by the Associated Fund (Research Postgraduate) from The Hong Kong Polytechnic University, The Niche Areas – Myopia Research (J-BB7P) and Glaucoma Research (J-BB76) from The Hong Kong Polytechnic University.