Make Your Favorite Music Curative: ---- Artificial Intelligence Generated Music for Anxiety Reduction

Fiona Yan Liu yan.liu@polyu.edu.hk Department of Computing The Hong Kong Polytechnic University

Background

- Anxiety is becoming more prevalent
 - Nearly 500,000,000 individuals are affected by anxiety problems [Baghaei, 2021]
 - The situation is even worse recently
 - □ Result in severe consequences such as palpitation, insomnia, and pain [Woo, 2010]
 - An effective treatment is needed
 - Music therapy has been used for more than forty years in clinical practice
- Music therapy shows distinguished effectiveness and few side effects in emotion regulation
 - Is a health profession to help patients improve and maintain their mental and physical health [Bunt, 2014]
 - A commonly accepted theory is that music acts as a distractor, drawing patient's attention to the melody of music rather than his or her own negative feelings [Nilsson, 2008]
 - Music decreased anxiety level of physiologically unhealthy patients such as heart diseases and cancer [Sendelbach, 2006]
 - A positive relationship between music listening and anxiety reduction on normal persons [Khan, 2018]

Music for Therapy

The methods of music therapy

- Receptive: Listen to the music and respond to the experience silently, verbally, or in another modality
- Re-creation: play or sing along to a pre-composed song in a manner that supports identified goals
- Improvisation: Involve spontaneous music making using simple instruments, body percussion, or the voice
- **Composition:** Create own music
- Aim of our work
 - AI-powered therapeutic music generation
- Objectives
 - What are the music factors that essentially evoke human emotions?
 - How to generate therapeutic music with better user engagement?

What Strikes the Strings of Your Heart? ---- Feature Mining for Music Emotion Analysis

Music Emotion Analysis

- Pioneer research in music and emotions
 - □ Validate the existence of relationship between music and emotion Aristotle [Lord, 1984];
- Some specific characters of music can evoke certain kinds of emotions
 - Flowing rhythm patterns may be more indicative of happiness, gracefulness, and serenity while firm rhythm may be perceived as expressing sadness, dignity and vigor [Juslin 2001]
 - Simple and consonant harmony is associated with expression such as serenity and happiness while complex and dissonant harmony with excitement and sadness [Hevner 1936]
 - Ascent and descent of melody may be associated with different emotions [Hevner 1936]
- Our work intends to answer three generally interested questions in data driven approach
 - What are the intrinsic features embedded in music signal that essentially evoke human emotions?
 - **•** To what extent these features influence human emotions?
 - Whether the findings from computational models are consistent with the existing research results from psychology?

Problem Formulation

- Find the intrinsic factors in music that evoke human emotions
 - Motivates us to conduct dimensionality reduction techniques
 - Dimensionality reduction can generate a lower dimensional equivalence to the original highdimensional feature for given target
- Music may evoke more than one emotion [Zentner, 2008]
 - Motivates us to formulate the problem as multi-label learning
 - In multi-label classification, each data point might be associated with multiple labels

Computational Model

Idea

- if two pieces of music express similar emotions
- the low-dimensional representations of them should be close
- Optimization procedure

$$\mathbf{U} = \underset{\mathbf{U}}{\operatorname{arg\,min}} \sum_{i=1}^{n} \sum_{j=1}^{n} ||\mathbf{U}^{T}\mathbf{x}_{i} - \mathbf{U}^{T}\mathbf{x}_{j}||^{2} \cdot \hat{S}_{ij}$$

- \mathbf{x}_i : Original high-dimensional representation of the <u>*i*-th</u> music
- U: Transformation matrix

 \hat{S}_{ij} : Similarity coefficient which represents the emotion similarity between the <u>*i*-th</u> music and the <u>*j*-th</u> music

Algorithm 1: Multi-Emotion Similarity Preserving Embedding (ME-SPE)

Input: Training dataset: $\{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_n, \mathbf{y}_n)\}$; the dimension of the subspace: d Output: Transformation matrix: U 1 for i = 1, ..., n do 2 | for j = 1, ..., n do $\hat{S}_{ij} \leftarrow \langle \mathbf{y}_i / || \mathbf{y}_i ||, \mathbf{y}_j / || \mathbf{y}_j ||
angle;$ 4 for i = 1, ..., n do 5 $D_{ii} \leftarrow \sum_{j=1}^n \hat{S}_{ij};$ 6 $\mathbf{L} \leftarrow \mathbf{D} - \hat{\mathbf{S}}$: $\mathbf{X} \leftarrow [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n];$ for i = 1, ..., d do Solve $\mathbf{X}\mathbf{L}\mathbf{X}^T\mathbf{u}_i = \lambda_i \mathbf{X}\mathbf{D}\mathbf{X}^T\mathbf{u}_i$; 10 U \leftarrow [**u**₁, **u**₂, ..., **u**_d];

Musical Features Evoke Human Emotions

Datasets	Songs	Emotion Labels	Dimension	
EMOTIONS	593	6	72	
CAL-500	502	18	$51,143~(257 \times 199)$	

Detailed information of EMOTIONS and CAL-500 datasets

Datasets	Emotion Labels		
EMOTIONS	angry/aggressive, quiet/still, happy/pleased,		
	sad/lonely, amazed/surprised, relaxing/calm		
CAL-500	happy, sad, calming, arousing, pleasant,		
	cheerful/Festive, tender/soft, powerful/strong,		
	oving/romantic, carefree/lighthearted,		
	exciting/thrilling, emotional/passionate,		
	positive/optimistic, touching/loving,		
	light/playful, angry/aggressive,		
	laid-back/mellow, bizarre/weird		

Emotion labels of EMOTIONS and CAL-500 datasets

Performance Comparison on Music Emotion Classification

Criteria	Average precision	Hamming loss	One-error	Ranking loss
Original 72-D	0.699 ± 0.015	0.275 ± 0.019	0.401 ± 0.023	0.275 ± 0.024
PCA	0.712 ± 0.004	0.262 ± 0.004	0.385 ± 0.009	0.260 ± 0.003
LPP	0.721 ± 0.005	0.258 ± 0.004	0.373 ± 0.009	0.248 ± 0.005
HSL	0.790 ± 0.007	0.211 ± 0.004	0.296 ± 0.015	0.174 ± 0.005
ML-LDA	0.715 ± 0.006	0.261 ± 0.002	0.384 ± 0.014	0.256 ± 0.005
ML-OPLS	0.784 ± 0.006	0.211 ± 0.004	0.301 ± 0.013	0.180 ± 0.007
ME-SPE	0.814 ± 0.003	0.193 ± 0.003	0.257 ± 0.010	0.149 ± 0.003

- The larger the better
 - Average precision
- The small the better
 - Hamming loss
 - One-error
 - Ranking loss

PCA: principal component analysis

LPP: locality preserving projections

HSL: hyper-graph spectral learning

ML-LDA: multi-label linear discriminant analysis

ML-OPLS: multi-label orthonormalized partial least squares

ME-SPE: multi-emotion similarity preserving embedding

To what Extent These Features Influence Human Emotions

The contributions of each features in the classification task

Whether the Findings of Computational Model are Consistent with Existing Research Results

- Mean of spectral flux
 - Measures the change of the frequency of current frame compared to that of the previous one
 - Reflect how fast the pitch of a song changes
 - Contribute to classify all six emotions
 - Match the argues that harmony and melody features are closely related to emotion expressions
- Mean of the first MFCC coefficient
 - The weighted sum of all the log-energies
 - An overall measure of the signal loudness
 - Contribute to differentiating "Amazed" and "Happy"
 - Support the claim that the loudness of the music contributes to convey emotions
- Beat histograms
 - Periods of the first and second beat histogram peaks in bpm (beats per minute) respectively
 - Reflect the tempo of a song
 - Neither of these two dimensions improves the performance individually
 - The combination of them make special contributions in classifying "Angry" and "Amazed", as well as "Sad" and "Quiet"
 - Consistent with the findings that rhythm features are important in emotional expression

Make Your Favorite Music Curative: ---- Generate Music For Anxiety with Better User Engagement

Music Generation for Anxiety Reduction

- Music for receptive music therapy to reduce anxiety [Grocke, 2006]
 - Therapeutic music
 - Relaxation response
 - Emotional regulation
 - User preferred music
 - Emotional connection
 - Personalized expression
- Artificial Intelligence Generated Content (AIGC)
 - Involve the creation of digital content, such as images, natural language, and music, through AI models

Typical Products of AIGC

Al-Powered Music Generation

Music Style Transfer

- A novel style transfer model
 - to generate the therapeutic music
 - according to user's preference
- Start from user preferred music
 - Approximate the character of the therapeutic music
 - Emotion features
 - Musicality features
- A new domain adaptation algorithm
 - that transfers the learning result for music genre classification to the music personalization
- Three convolutional neural networks are utilized
 - Minimize the difference in the feature space

Experiment Design

- Paradigm design
 - Subjects: 20 subjects (8 male and 12 female) with mild anxiety experience
 - Stimuli: 3 types of music: : favorite music, therapeutic music, and transferred music
 - Measurement: State-Trait Anxiety Inventory (STAI, Form Y version)
 - Procedure: Four-day trial: control trial, favourite trial, therapeutic trial, and transferred trial in random order.

Conclusion

Music emotion analysis

- Dimensionality reduction technique has identified the intrinsic features embedded in music signal that evoke human emotions
- Music generation for anxiety reduction
 - AIGC technique has generated therapeutic music according to user's preference

Future work

- Long-term music therapy in more interactive way, such as re-creation or improvisation
 - Seek the cooperation with music therapist
- Music generation to evoke specific emotion precisely
 - Seek the cooperation with psychologist
- Computer music in metaverse for healthy aging
 - Seek the cooperation to apply real world problem solving

Q & A

Fiona Yan Liu yan.liu@polyu.edu.hk Department of Computing The Hong Kong Polytechnic University

References

[1] Baghaei, N., Chitale, V., Hlasnik, A., Stemmet, L., Liang, H. N., & Porter, R. (2021). Virtual reality for supporting the treatment of depression and anxiety: Scoping review. *JMIR mental health*, 8(9), e29681.

[2] Woo, A. K. (2010). Depression and anxiety in pain. *Reviews in pain*, 4(1), 8-12.

[3] Bunt, L., & Stige, B. (2014). *Music therapy: An art beyond words*. Routledge.

[4] Nilsson, U. (2008). The anxiety-and pain-reducing effects of music interventions: a systematic review. *AORN journal*, 87(4), 780-807.

[5] Sendelbach, S. E., Halm, M. A., Doran, K. A., Miller, E. H., & Gaillard, P. (2006). Effects of music therapy on physiological and psychological outcomes for patients undergoing cardiac surgery. Journal of cardiovascular nursing, 21(3), 194-200.

[6] Khan, M. A., Chennafi, M., Li, G., & Wang, G. (2018, October). Electroencephalogram-based comparative study of music effect on mental stress relief. In 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) (pp. 1-5). IEEE.

[7] Lord, C., Aristotle. The Politics. 1st ed. Chicago, IL, USA: Univ. Chicago Press, 1984.

[8] Juslin, P. N. (2001). Communicating emotion in music performance: A review and a theoretical framework.

[9] Hevner, K. (1936). Experimental studies of the elements of expression in music. *The American Journal of Psychology*, 48(2), 246-268.

[10] Zentner, M., Grandjean, D., & Scherer, K. R. (2008). Emotions evoked by the sound of music: characterization, classification, and measurement. *Emotion*, 8(4), 494.

[11] Grocke, D., & Wigram, T. (2006). Receptive methods in music therapy: Techniques and clinical applications for music therapy clinicians, educators and students. Jessica Kingsley Publishers.