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What Strikes the Strings of Your Heart?
– Multi-Label Dimensionality Reduction for
Music Emotion Analysis via Brain Imaging

Yang Liu, Yan Liu, Chaoguang Wang, Xiaohong Wang, Peiyuan Zhou, Gino Yu, and Keith C.C. Chan

Abstract—After twenty years extensive study in psychology, some musical factors have been identified that can evoke certain
kinds of emotions. However, the underlying mechanism of the relationship between music and emotion remains unanswered.
This paper intends to find the genuine correlates of music emotion by exploring a systematic and quantitative framework. The
task is formulated as a dimensionality reduction problem, which seeks the complete and compact feature set with intrinsic
correlates for the given objectives. Since a song generally elicits more than one emotions, we explore dimensionality reduction
techniques for multi-label classification. One challenging problem is that the hard label cannot represent the extent of the emotion
and it is also difficult to ask the subjects to quantize their feelings. This work tries utilizing EEG signal to solve this challenge.
A learning scheme called EEG-based emotion smoothing (E2S) and a bilinear multi-emotion similarity preserving embedding
(BME-SPE) algorithm are proposed. We validate the effectiveness of the proposed framework on standard dataset CAL-500.
Several influential correlates have been identified and the classification via those correlates has achieved good performance.
We build a Chinese music dataset according to the identified correlates and find that the music from different culture may share
similar emotions.

Index Terms—Bilinear Multi-Emotion Similarity Preserving Embedding, Brain Imaging, ElectroEncephaloGraphy (EEG), EEG-
based Emotion Smoothing, Multi-Label Dimensionality Reduction, Music Emotion Analysis

�

1 INTRODUCTION

MUSIC, laxly explained as “organized sound”
[78], exists in every culture and plays a promi-

nent role in our everyday lives [85]. For many people,
listening to music indispensably accompanies their
routine activities such as eating, studying, walking,
driving, and so on [35]. A recent study even showed
that people now spend more time listening to music
than watching TV/movies or reading books [65].

Why is music so prevalent? Besides the purpose of
entertainment, the ability of arousing powerful emo-
tions might be a more important reason behind most
people’s engagement with music [36], [92]. Passionate
songs could heat up our hearts while the sad mood
would be evoked when listening to sorrowful songs.
Just as the Russian writer Leo Tolstoy said: “Music is
the shorthand of emotion”. Such an amazing ability of
music has fascinated not only the general public but
also the researchers from different fields throughout
the ages [17].

As defined in Drever’s psychology dictionary [14],
emotion is “a mental state of excitement or pertur-
bation, marked by a strong feeling, and usually an
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impulse towards a definite form of behavior”. In order
to understand such a complex concept of emotion
and distinguish it from other psychological states such
as reflex, motive, and attitude, Ekman presented a
classical categorical model of emotions based on the
human facial expressions, which divides emotion into
six basic classes: anger, happiness, surprise, disgust,
sadness, and fear [18]. Some similar categorical mod-
els have also been proposed individually [32], [62].

For music emotions, researchers proposed several
models specifically. A hierarchical model called Gene-
va emotional music scale (GEMS-45) is designed by
professionals, which includes 40 labels such as moved,
sad, soothed, and heroic [92]. Turnbull et al. collected
a number of user-generated annotations that describe
500 Western popular music tracks, and generated 18
easily understood emotion labels1 such as happy, sad,
calming, and arousing [75].

Unlike the categorical models that represent the
musical emotions using a number of classes, another
kind of emotion models, called dimensional models,
describe the emotions in a Cartesian space with va-
lence and arousal as two dimensions. Here valence
means how positive or negative the affect appraisal is
and arousal means how high or low the physiological

1. Note that CAL500 dataset actually has 174 labels including
genres, instruments, vocal characteristics, emotions, acoustic char-
acteristics, and song usages. Since our objective is to analyze the
relationship between music and emotion, we only utilize the labels
related to emotions.
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reaction is [67], [71]. For instance, happiness is an
emotion of positive valence and high arousal, while
sadness is an emotion of negative valence and low
arousal.

Since emotion is mainly a psychological concept,
many studies on music and emotion to date are
psychological [13], [35], [36]. Some researchers aimed
to validate the existence of relationship between mu-
sic and emotion. The Greek philosopher Aristotle
described the emotional effects of different musical
modes. In his Politics book VIII [52], he stated that
the Mixolydian mode makes people sad and grave;
the relaxed mode enfeebles the mind; while the Phry-
gian inspires enthusiasm. By combining the Gestalt
Theory and theories of Peirce and Dewey, Meyer
aimed to validate the existence of emotion in music
[57]. Krumhansl performed experiments to support
the point of view that music itself has inherent, un-
changeable qualities that will incite in a listener a
specific emotional response [43]. Blood and Zatorre
demonstrated that the music can evoke emotions by
activating the “pleasure centers” in human brain [5].

Besides validating of the existence of relation-
ship between music and emotion, some researchers
worked on finding out how the music conveys or
evokes emotions. Two founders of the Gestalt psy-
chology, von Ehrenfels and Wertheimer, asked how a
melody retains its identity when all pitch or duration
values changed but relations preserved [45]. Hevner
conducted several psychological experiments to study
the affective value of four features of music: the
major and minor modes, the rising and falling of
the melodic line, the firm or flowing motion in the
rhythm, and the simplicity or complexity of the har-
mony [29], [30]. Brickman et al. suggested the ability
to manipulate specific aspects of music to influence
musical preference and emotional response [6]. Cooke
pointed out that all composers whose music has a
tonal basis have used the same, or closely similar,
melodic phrases, harmonies, and rhythms to express
and evoke the same emotions [10]. He also proposed
the basic expressive functions of all twelve notes of
scale. Luck stated that music often elicits emotion
through emotional associations to specific chord pro-
gressions [56].

With the rapid development of computer resources,
many tasks in musical emotion analysis, such as music
emotional content annotation [74], music recommen-
dation [84], emotion-based music retrieval [82], music
emotion detection [46], music emotion recognition
[89], and emotion-based music generation [79], have
been explored from the perspective of computational
modeling. Most of the computational methods for
musical emotion analysis are based on the categorical
models and dimensional models proposed in psychol-
ogy [37], [38], [54], [77]. In order to learn the relation-
ship between the feature space and the categorical or
dimensional emotion space, many popular machine

learning approaches have already been employed to
train the model, such as k-nearest neighbor [90], sup-
port vector machines [66], Gaussian mixture models
[50], neural networks [20], and boosting [55].

Recent advances in brain imaging techniques, such
as electroencephalography (EEG) [22] and functional
magnetic resonance imaging (fMRI) [3], have enabled
the researchers to explore the human brain activities
during music listening [19], [40], [48]. By recording
and analyzing the ongoing brain responses, some
brain-guided computational models have been de-
veloped for music emotion analysis [15], [48]. These
methods utilized the brain signals to help to link the
music and evoked emotions, and thus narrowed the
gaps between the low-level music features and the
high-level emotion states.

Although tremendous strides forward have already
been made in music emotion analysis from different
perspectives, what intrinsic element of music and how
it arouses a specific emotion response in the listener is
still far from well-understood [88]. In order to provide
a systematical and quantitative way to analyze the
relationship between the music and evoked emotions,
we design a computational framework based on brain
imaging in this paper. After the ongoing brain activ-
ities of subjects during music listening are recorded
via EEG, a learning scheme called EEG-based emo-
tion smoothing (E2S) is proposed to refine the user-
provided emotion labels. Then a multi-label dimen-
sionality reduction algorithm dubbed bilinear multi-
emotion similarity preserving embedding (BME-SPE)
is developed to uncover the intrinsic relationship
between the music signals and the EEG-adjusted e-
motion labels.

The rest of this paper is organized as follows. In
Section 2, we briefly review the related work on EEG-
based music emotion analysis and multi-label dimen-
sionality reduction. Section 3 introduces the proposed
framework with the analysis of computational cost. In
Section 4, a series of experiments are conducted on a
standard Western music dataset CAL-500 and a self-
collected Chinese music dataset to evaluate the per-
formance of the proposed framework. We conclude
the paper and discuss the future work in Section 5.

2 RELATED WORK

2.1 EEG-based Music Emotion Analysis
The neural mechanisms involved in music emotion
understanding remain as active research topics in the
neuroscience community [39], [40]. As one of the
most widely used brain imaging technologies that
records the brains electrical activities using electrodes
attached to the scalp, Electroencephalography (EEG)
has been proven to provide informative characteristics
in responses to the emotional states [9], [60], and thus
has been applied to many music emotion analysis
tasks.
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In [68], Schmidt and Trainor examined whether
the pattern of regional EEG activity distinguished
emotions induced by musical excerpts via the region-
al brain activation/emotion models. Altenmüller et
al. recorded the EEG activation patterns in order to
investigate the neurobiological mechanisms accompa-
nying emotional valence judgements during listening
to complex auditory stimuli [1]. Baumgartner et al.
studied the influence of visual and musical stimuli
on brain processing by using highly arousing pictures
and classical musical excerpts together to evoke the
three basic emotions of happiness, sadness and fear
[4]. In [48], Lin et al. investigated the connections
between emotional states and brain activity record-
ed by EEG. They used machine learning algorithm-
s to categorize EEG dynamics according to subject
self-reported emotional states during music listening.
Kroupi et al. analyzed the EEG for assessing emo-
tions evoked during watching various pre-selected
emotional music video clips. Specifically, they extract-
ed the time domain and frequency domain features
of the EEG signal, and then analyzed the subject-
dependent and subject-independent correlations be-
tween extracted features and subjects self assessed
emotions [42]. Trochidis and Bigand recorded the EEG
activity during music listening in different regions
without a-priori defining regions of interest and then
analyzed the alpha and theta bands separately, which
confirmed the hemispheric specialization hypothesis
for emotional valence [72]. In [41], Koelstra et al.
first presented a multimodal data set for the analysis
of human affective states. The EEG and peripheral
physiological signals during watching music videos
were recorded. They then proposed a semi-automatic
stimuli selection method using affective tags, and con-
ducted single-trial classification to the features extract-
ed from the EEG, peripheral and multimedia content
analysis modalities. Duan et al. utilized pure music
segments as stimuli to evoke the exciting or relaxing
emotions of subjects and then extracted the EEG
power spectrum as the features for the task of binary
emotion classification [15]. Cabredo et al. collected
EEG signals from subjects when they are listening to
emotion-inducing music. Then the EEG signals were
converted into emotion annotation by the emotion
spectrum analysis method and C4.5 was used to build
the emotion models [7]. Daly et al. employed a large
set of musical stimuli drawn from different styles, and
analyzed neural correlates of music-induced emotions
based on the recorded EEG [12]. By combining the
EEG dynamics and acoustic characteristics of musical
contents, Lin et al. developed a multimodal approach
for the classification of emotional valence and arousal
[49].

2.2 Multi-label Dimensionality Reduction
In musical emotion analysis, a song sometimes con-
veys or evokes more than one emotions. Some re-

searchers therefore formulate it as a multi-label learn-
ing problem [73], [86]. Unlike the single-label learning
in which each data point belongs to only one cat-
egory, the multi-label learning is more general than
the single-label case that each data point might be
associated with multiple labels [95]. More importantly,
an implicit assumption in single-label learning is that
the labels are mutually exclusive while in multi-label
learning it is possible that the labels are correlated
with each other [63]. Driven by various applications
such as image classification [64] and text categoriza-
tion [93], many multi-label learning algorithms have
been proposed, such as multi-label k-nearest neighbor
[94], multi-label support vector machines [24], multi-
label neural networks [93], etc. A more comprehensive
review on multi-label learning algorithms could be
found in [95].

Furthermore, the music signals often have a huge
number of features [8], [74], which may contain a large
amount of redundant information and thus cause the
high computational cost and poor performance of
the analysis task. In order to discover the intrinsic
features hidden in the original high-dimensional s-
pace, multi-label dimensionality reduction becomes
our first choice for the task of music emotion analysis.
To the best of our knowledge, there is no work
on multi-label dimensionality reduction for music e-
motion analysis. However, multi-label dimensionality
reduction itself is already an active research area
in machine learning. Yu et al. proposed a method
called multi-label informed latent semantic indexing
to preserve the information of data and meanwhile
capture the correlations between the multiple labels
[91]. Arenas-Garca et al. presented the sparse kernel
orthonormalized partial least squares to handle the
multi-label data [2]. Sun et al. proposed the hyper-
graph spectral learning, which generalize the graph
Laplacian to the hypergraph Laplacian for multi-
label applications [69]. Park and Lee extended the
traditional linear discriminant analysis to the multi-
label version by applying the copy transformation
[59]. Wang et al. proposed another multi-label linear
discriminant analysis algorithm by taking advantage
of label correlations [81]. Zhang and Zhou introduced
a multi-label dimensionality reduction algorithm by
maximizing the dependence between data and cor-
responding labels [96]. Ji et al. proposed a shared-
subspace learning model for multi-label classifica-
tion [33]. Other well-known dimensionality reduction
schemes, such as nonnegative factorization, canonical
correlation analysis, and sparse coding, have also been
extended for multi-label classification [58], [70], [80].

3 PROPOSED FRAMEWORK

3.1 EEG-based Emotion Smoothing
In music emotion analysis, the emotion labels are
generally scored by users. In most of the situations,
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the score on each emotion label will be a binary
choice, i.e., 0–1, where 1 indicates that the music
is able to convey the corresponding emotion and 0
otherwise; or a multi-level choice, e.g., 0–1–2–3, where
0 denotes the weakest extent of the corresponding
emotion while 3 denotes the strongest.

Although the user-provided scores can help to link
the music and the corresponding emotions, sometimes
they are too “hard” to reflect the extent of the evoked
emotions accurately. In this subsection, we introduce
a scheme called EEG-based emotion smoothing (E2S)
to refine the “hard” labels by using the recorded EEG
signals, which have been proven to provide informa-
tive characteristics in responses to the emotional states
[9], [60].

Let X = R
D1×D2 be the high-dimensional feature

space of the music signal, and there is an emotion
set E including m emotion labels. The original user-
provided emotions associated with the i-th song can
be represented as an m-dimensional vector yo

i , where
yo
i ∈ {0, 1}m or yo

i ∈ {0, 1, ..., c}m. Here c denotes
the number of levels of the emotion intension. The
corresponding EEG signal is represented as a Dg-
dimensional vector gi. Given the training dataset
{(X1,y

o
1,g1), ... , (Xng

,yo
ng
,gng

), (Xng+1,y
o
ng+1), ...

, (Xn,y
o
n)}, where ng denotes the number of songs

having the EEG recording and n denotes the total
number of songs. First, E2S refines the emotion labels
of the songs having the EEG recording by introducing
the following objective function:

Yg = argmin
Yg

Q1(Y
g)

= argmin
Yg

1

2

ng∑
i,j=1

‖ yg
i√
Dg

ii

− yg
j√
Dg

jj

‖2Ag
ij

+ α

ng∑
i=1

‖yg
i − yo

i ‖2,

(1)

where Yg = [yg
1, ...,y

g
ng
] is composed of the ng

refined emotion label vectors of those songs who
have the corresponding EEG recording, the coefficient
Ag

ij = exp(−||gi − gj ||2/2σ) measures the similarity
between the i-th and the j-th EEG signal vectors, the
coefficient Dg

ii =
∑ng

j=1 A
g
ij (i = 1, ..., ng) is used to

remove the scaling factor, and α > 0 is a regularization
parameter. In (1), the first term of Q1(Y

g) ensures
that the songs who generate the similar EEG signals
have similar emotion labels, while the second term of
Q1(Y

g) requires the consistency between the refined
labels and initial labels [97].

Differentiating Q1(Y
g) with respect to Yg , we have

∂Q1

∂Yg
= Yg−Yg(Dg)−

1
2Ag(Dg)−

1
2+α(Yg−Yo

1:ng
) = 0,

(2)
where Ag = [Ag

ij ] is the ng × ng matrix, Dg =
diag(Dg

ii) is the ng ×ng diagonal matrix, and Yo
1:ng

=

Algorithm 1: EEG-based Emotion Smoothing (E2S)
Input: Training dataset: {(X1,y

o
1), ..., (Xn,y

o
n)};

the set of recorded EEG signals:
{g1, ...,gng

}; the regularization
parameters: α, β

Output: The refined label vectors: {y1, ...,yn}
1 for i = 1, ..., ng do
2 for j = 1, ..., ng do
3 Ag

ij ← exp(−||gi − gj ||2/2σ);
4 Dg

ii ←
∑ng

j=1 A
g
ij ;

5 Ag ← [Ag
ij ]ng×ng ;

6 Dg ← diag(Dg
ii)ng×ng

;
7 Yo

1:ng
← [yo

1, ...,y
o
ng
];

8 Yg ← αYo
1:ng

(
(1 + α)I− (Dg)−

1
2Ag(Dg)−

1
2

)†;
9 for i = 1, ..., n do

10 for j = 1, ..., n do
11 Aij ← exp(−||Xi −Xj ||2F /2σ);
12 Dii ←

∑n
j=1 Aij ;

13 A ← [Aij ]n×n;
14 D ← diag(Dii)n×n;
15 Ynew ← [yg

1, ...,y
g
ng
,yo

ng+1, ...,y
o
n];

16 Yḡ ← βYnew
(
(1 + β)I−D− 1

2AD− 1
2

)†;
17 [y1, ...,yn] ← [yg

1, ...,y
g
ng
,yḡ

ng+1, ...,y
ḡ
n];

[yo
1, ...,y

o
ng
]. Then we can obtain:

Yg = αYo
1:ng

(
(1 + α)I− (Dg)−

1
2Ag(Dg)−

1
2

)†
, (3)

where (·)† denotes the Moore-Penrose pseudoinverse
[25]. Now the refined emotion label matrix Ynew =
[yg

1, ...,y
g
ng
,yo

ng+1, ...,y
o
n].

Then the proposed E2S further refines the emotion
labels of the remaining songs who do not have EEG
recording by minimizing the following objective func-
tion:
Yḡ = argmin

Yḡ

Q2(Y
ḡ)

= argmin
Yḡ

1

2

n∑
i,j=1

‖ yḡ
i√
Dii

− yḡ
j√
Djj

‖2Aij

+ β
( ng∑

i=1

‖yḡ
i − yg

i ‖2 +
n∑

i=ng+1

‖yḡ
i − yo

i ‖2
)
,

(4)

where Aij = exp(−||Xi − Xj ||2F /2σ) measures the
similarity between the i-th and the j-th data represen-
tations, Dii =

∑n
j=1 Aij (i = 1, ..., n) is used to remove

the scaling factor, β > 0 is a regularization parameter,
and ‖ · ‖F denotes the Frobenius norm. Similar to (3),
the solution of (4) is given by:

Yḡ = βYnew
(
(1 + β)I−D− 1

2AD− 1
2

)†
, (5)

where A = [Aij ] is the n×n matrix and D = diag(Dii)
is the n× n diagonal matrix.
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Fig. 1. Second-order representation of the music
signal. The first order is the frequency order and the
second order is the time order.

In order to emphasize the effect of EEG on label
smoothing, we introduce the constraint that yḡ

i = yg
i

for i = 1, ..., ng to keep the EEG-refined labels un-
changed. The final label matrix is therefore given as
follows:

Y = [Yg,Yḡ
ng+1:n] = [yg

1, ...,y
g
ng
,yḡ

ng+1, ...,y
ḡ
n]. (6)

The detailed procedure of E2S is described in Algo-
rithm 1.

3.2 Bilinear Multi-Emotion Similarity Preserving
Embedding
In this subsection, we propose a multi-label dimen-
sionality reduction algorithm to extract the intrinsic
features embedded in the music signal that essentially
evoke human emotions. In order to adapt to the
music signals, which are naturally represented by
the second-order tensors (i.e., matrices) in the time-
frequency domain as shown in Fig. 1, the proposed
algorithm employs the bilinear learning strategy and
thus is able to take the second-order signals as the
input directly2.

The proposed Bilinear Multi-Emotion Similarity P-
reserving Embedding (BME-SPE) algorithm aims to
map the original high-dimensional music signal rep-
resentations into a low-dimensional feature subspace,
in which we hope that a clearer linkage between
the features and emotions could be discovered. The
idea behind the proposed method is very simple: if
two songs can convey similar emotions, they should
possess some hidden features in common. Specifically,
given the training set {(X1,y1), ..., (Xn,yn)}, BME-
SPE aims to learn two transformation matrices U =
[u1, ...,ud1 ] ∈ R

D1×d1 and V = [v1, ...,vd2 ] ∈ R
D2×d2

to project data to a low-dimensional subspace Z =
R

d1×d2 , where the data with similar emotion labels are
close to each other. The objective function of BME-SPE
is formulated as follows:

min

n∑
i=1

n∑
j=1

‖Zi − Zj‖2F · Sij , (7)

2. An earlier version of the algorithm ME-SPE designed for the
first-order input (i.e., vectors) has been appeared in [51].

where Zi ∈ Z denotes the low-dimensional represen-
tation of the i-th song, and Sij denotes the emotional
similarity between the i-th and the j-th songs (i, j =
1, ..., n). Since the mapping from the original high-
dimensional space to the low-dimensional subspace
is given by Zi = UTXiV, we rewrite the objective
function as follows:

U,V =argmin
U,V

J(U,V)

= argmin
U,V

n∑
i=1

n∑
j=1

‖UTXiV −UTXjV‖2F · Sij .

(8)

There are many different ways to define the similar-
ity function S. In our formulation, we choose the form
of inner product as it is able to capture the information
of correlations between different emotions.

Let Sij = 〈yi,yj〉, where 〈·, ·〉 denotes the inner
product operation, then the similarity matrix S =
[Sij ]n×n = YTY, where Y = [y1,y2, ...,yn] is the
refined label matrix generated by the E2S scheme
introduced in Section 3.1. Let y(i) (i = 1, ...,m) be the
label indication vector for the i-th emotion. In fact, the
transpose of y(i) is the i-th row of Y. Obviously, the
matrix SE = YYT is an m × m matrix in which the
(i, j)-th component indicates the similarity between
the i-th emotion and the j-th emotion. Actually, the
matrix S and SE are closely related since they have
the same non-zero eigenvalues. Suppose μ is a non-
zero eigenvalue of SE , then we have

SEa = YYTa = μa, (9)

where a is the eigenvector of SE corresponding to μ.
Left multiply above equation by YT , we obtain

SYTa = YTYYTa = μYTa, (10)

which means that μ is also the eigenvalue of S,
with the corresponding eigenvector YTa. Therefore,
by formulating such a data similarity matrix S, the
correlation between different labels in SE is well
captured.

In order to normalize the similarity values into
the interval [0, 1], we define the normalized similarity
matrix Ŝ where

Ŝij = 〈ŷi, ŷj〉 = 〈yi/||yi||,yj/||yj ||〉. (11)

The objective function of BME-SPE now becomes

U,V =argmin
U,V

J(U,V)

= argmin
U,V

n∑
i=1

n∑
j=1

‖UTXiV −UTXjV‖2F · Ŝij .

(12)

Since (12) is not a convex optimization problem,
there is no closed-form solution for it. Instead, we
utilize an alternating strategy [28], [44] to find a locally
optimal solution.
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Step 1: First, we fix V to obtain the optimal U.
Eq. (12) could be rewritten as follows:

U =argmin
U

JV(U)

= argmin
U

n∑
i=1

n∑
j=1

||UTXV
i −UTXV

j ||2F · Ŝij ,
(13)

where XV
i = XiV. Then we have

n∑
i,j=1

||UTXV
i −UTXV

j ||2F · Ŝij

=

n∑
i,j=1

tr
(
(UTXV

i −UTXV
j )(UTXV

i −UTXV
j )T

)
Ŝij

=

n∑
i,j=1

tr
(
UT (XV

i −XV
j )(XV

i −XV
j )TU

)
Ŝij

=2 · tr(UT (

n∑
i=1

DiiX
V
i (XV

i )T −
n∑

i,j=1

ŜijX
V
i (XV

j )T )U
)
,

(14)

where Dii =
∑n

j=1 Ŝij (i = 1, ..., n), and tr(·) denotes
the matrix trace operator. The problem in (13) now
becomes

U = argmin
U

tr
(
UT (DV − SV)U

)
, (15)

where DV =
∑n

i=1 DiiX
V
i (XV

i )T and SV =∑n
i,j=1 ŜijX

V
i (XV

j )T . Additionally, we introduce the
constraint UTDVU = Id1 to remove the scaling factor
in the learning process, where Id1

denotes the d1-
dimensional identity matrix. So for the first transfor-
mation vector u1, the problem becomes

u1 = argmin
u1

uT
1 DVu1=1

uT
1 (D

V − SV)u1. (16)

Then we obtain the Lagrangian equation of (16):

L(u1, λ) = uT
1 (D

V − SV)u1 − λ(uT
1 D

Vu1 − 1). (17)

Letting ∂L(u1, λ)/∂u1 = 0, the optimal u1 is therefore
the eigenvector corresponding to the smallest non-
zero eigenvalue of the generalized eigendecomposi-
tion problem

(DV − SV)u = λDVu. (18)

Similarly, u2, ...,ud are the eigenvectors corresponding
to the 2-nd, ..., d-th smallest non-zero eigenvalues of
(18), respectively.

Step 2: After we have obtained the optimal U, we
fix it to find the optimal V. Eq. (12) now could be
rewritten as follows:

V =argmin
V

JU(V)

= argmin
V

n∑
i=1

n∑
j=1

||XU
i V −XU

j V||2F · Ŝij ,
(19)

where XU
i = UTXi. Then we have

n∑
i,j=1

||XU
i V −XU

j V||2F · Ŝij

=

n∑
i,j=1

tr
(
(XU

i V −XU
j V)T (XU

i V −XU
j V)

)
Ŝij

=

n∑
i,j=1

tr
(
VT (XU

i −XU
j )T (XU

i −XU
j )V

)
Ŝij

=2 · tr(VT (

n∑
i=1

Dii(X
U
i )TXU

i −
n∑

i,j=1

Ŝij(X
U
i )TXU

j )V
)
.

(20)

The problem in (19) becomes

V = argmin
V

tr
(
VT (DU − SU)V

)
, (21)

where DU =
∑n

i=1 Dii(X
U
i )TXU

i and SU =∑n
i,j=1 Ŝij(X

U
i )TXU

j . Similarly, we introduce the con-
straint VTDUV = Id2

to remove the scaling factor.
Therefore, the optimal V that minimizes the objective
function in (19) is composed of the eigenvectors cor-
responding to the d2 smallest non-zero eigenvalues of
the generalized eigendecomposition problem

(DU − SU)v = λDUv. (22)

Above two steps are alternately executed until the
learning procedure converges. The proof of the con-
vergency is provided in the Appendix. The detailed
procedure of BME-SPE is described in Algorithm 2.

3.3 Computational Complexity Analysis

In this subsection, we analyze the computational com-
plexity of the proposed framework.

E2S: The time cost of E2S mainly comes from
four aspects: constructing Ag and Dg , calculating
Yg , constructing A and D, and calculating Yḡ . The
cost of these four steps are O(n2

gDg), O(n3
g + n2

gm),
O(n2D1D2), and O(n3+n2m), respectively. Since ng ≤
n, the total time cost of E2S is O(n2

gDg + n2D1D2 +
n3 + n2m).

BME-SPE: The training cost of BME-SPE main-
ly comes from three aspects: the calculation of Ŝij ,
constructing DV, SV, DU, SU, and solving (18)
and (22). The cost of these three steps are O(mn2),
O(nT (D1d2 + D2d1)(D1 + D2)), and O(T (D3

1 + D3
2)),

respectively, where T is the number of iterations
needed for algorithm convergence. Therefore, the total
training cost of BME-SPE is O(mn2 + nT (D1d2 +
D2d1)(D1 + D2) + T (D3

1 + D3
2)). In the test phase of

BME-SPE, the most demanding step is projecting the
high-dimensional data to the learned subspace, whose
cost is O(D1D2 min(d1, d2)).
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Algorithm 2: Bilinear Multi-Emotion Similarity
Preserving Embedding (BME-SPE)

Input: Training dataset: {(X1,y1), ..., (Xn,yn)};
the dimensions of the subspace: d1, d2; the
stop threshold: ε

Output: Transformation matrices: U, V
1 for i = 1, ..., n do
2 for j = 1, ..., n do
3 Ŝij ← 〈yi/||yi||,yj/||yj ||〉;
4 for i = 1, ..., n do
5 Dii ←

∑n
j=1 Ŝij ;

6 t ← 0;
7 U(t),V(t) ← arbitrary column orthogonal

matrices;
8 for i = 1, ..., n do
9 X

V(t)

i ← XiV(t);

10 DV =
∑n

i=1 DiiX
V(t)

i (X
V(t)

i )T ;
11 SV =

∑n
i,j=1 ŜijX

V(t)

i (X
V(t)

j )T ;
12 for i = 1, ..., d1 do
13 Solve (DV − SV)ui = λDVui;

14 U(t+1) ← [u1,u2, ...,ud1
];

15 for i = 1, ..., n do
16 X

U(t+1)

i = UT
(t+1)Xi;

17 DU =
∑n

i=1 Dii(X
U(t+1)

i )TX
U(t+1)

i ;
18 SU =

∑n
i,j=1 Ŝij(X

U(t+1)

i )TX
U(t+1)

j ;
19 for i = 1, ..., d2 do
20 Solve (DU − SU)vi = λDUvi;

21 V(t+1) ← [v1,v2, ...,vd2 ];
22 while |Jt(U,V)− Jt+1(U,V)| > ε do
23 t ← t+ 1;
24 Repeat lines 8 – 21;

4 EXPERIMENTS

In this section, we evaluate the performance of the
proposed framework on a standard dataset CAL-500
[75] and a self-collected Chinese music dataset. The
CAL-500 dataset includes 502 popular western songs
with 18 emotion labels. Table 1 lists the concrete
emotion labels of this dataset. In order to demon-
strate and analyze the performance of the proposed
framework from the original feature space, we do not
use the extracted MFCC-related features provided by
this dataset. Instead, we generate the original STFT
features for each song by ourselves. Specifically, we
select 30-seconds duration from the center of each
song. For each duration, we divide it into short frames
of 300 ms (6, 615 samples at 22, 050 Hz sampling rate)
with 50% length overlap. For each of these frames,
we calculate the 512-point length STFT. We keep only
the magnitude values of the STFTs, and considering
the symmetry in the STFT, we end up with inputs of

TABLE 1
Eighteen emotion labels of CAL-500 dataset.

angry/aggressive, arousing, bizarre/weird,
calming, carefree/lighthearted, cheerful/Festive,
emotional/passionate, exciting/thrilling, happy,
laid-back/mellow, light/playful, loving/romantic,
pleasant, positive/optimistic, powerful/strong,
sad, tender/soft, touching/loving

Fig. 2. Locations of 64 EEG electrodes of the BioSemi
ActiveTwo system.

dimensions 257 for each short frame. Therefore, the
dimension of the input data is 51, 143 (257× 199). All
the values in the data matrix are normalized into the
interval [0, 1].

Besides the CAL-500 dataset, we collect a Chinese
music dataset by ourselves. This dataset is composed
of 100 classical and contemporary Chinese songs se-
lected from 6 CDs of Enjoy Chinese Classical Music
and 10 CDs of The Best Of Chinese Classical. To keep
consistency between the CAL-500 dataset and the
Chinese music dataset, we use the same way as that
used in CAL-500 to generate the 257×199-dimensional
feature matrix for each song in the Chinese music
dataset. All the 18 emotion labels in CAL-500 dataset
are covered by this Chinese music dataset. Specifically,
the labels of the songs in this dataset are provided
according to the descriptions and explanations of the
Chinese music given by [16], [34], [47], [61], [87].

4.1 EEG Data Collection
We recorded the brain activity using 64 BioSemi pin-
type active electrodes. Fig. 2 shows the locations of 64
EEG electrodes of the BioSemi ActiveTwo system3. We
did not use a ground or reference electrode since the

3. http://www.biosemi.com/headcap.htm
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Fig. 3. Correlations of all pairs of 18 emotions from
CAL-500 dataset.

BioSemi Common Mode Sense (CMS) active electrode
and Driven Right Leg (DRL) passive electrode replace
the ground electrodes used in conventional systems.
The sampling rate and filter bandwidth were set to
4kHz and 0.16− 100Hz, respectively.

The EEG data were collected from 10 healthy sub-
jects (7 males and 3 females with the age at 24.5±3.5)
during music listening. All the subjects are students or
staffs at The Hong Kong Polytechnic University, with
no or minimal formal musical education, and thus
could be considered as nonmusicians. Subjects were
instructed to keep their eyes closed and remain seated
with minimal body movement during the process
of music-listening. Twenty songs from the CAL-500
dataset were selected as stimuli, which cover all the
18 emotion labels. Therefore, we have ng = 20. Each
song was edited into a 30-second music segment. A
10-second silent rest was inserted between the music
segments.

The recorded EEG signal were preprocessed via an
automatic artification correction with 150μv for hori-
zon electrooculography (HEOG) amplitude and 250μv
for vertical electrooculography (VEOG) threshold to
remove serious and obvious motion artifacts. Then for
each of the 64 channels, we calculated the mean of the
cleaned EEG signal over time as the feature of that
channel. Therefore, the dimension of the EEG feature
vector of each song is 64, i.e., Dg = 64.

4.2 Schematic Illustration of E2S and BME-SPE
on CAL-500 Dataset

In order to draw an intuitive picture on the rela-
tionship between different emotions, we schematical-
ly show the correlation matrix of all 18 emotions.
From Fig. 3 we can observe that the most correlated
emotions are “cheerful” and “happy” (the correlation
coefficient is 0.7488) while the correlation of some

−15 −10 −5 0
−4

−2

0

2

4

6
cheerful
happy
sad

(a)

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2
’’sad’’ extent: 0.97

’’sad’’ extent: 0.87

’’sad’’ extent: 0.59

cheerful
happy
sad

(b)
Fig. 4. 2-D representations for data points from three
classes, “cheerful”, “happy”, and “sad”, of CAL-500
dataset. (a) Visualization on 2-D principal component
plane; (b) Visualization on 2-D plane learned by BME-
SPE.

other emotion pairs are very low, such as “happy”
and “sad” (the correlation coefficient is 0).

In the first experiment, we map the data points
of above three classes, i.e., “cheerful”, “happy”, and
“sad”, onto the 2-D plane to illustrate the represen-
tation capability of BME-SPE. We also map these
data onto the 2-D plane composed of the first two
principal component axes (i.e., the PCA mapping) for
comparison.

Fig. 4(a) shows the PCA mapping results. Most of
the data points are mingled together and it is not easy
to find clear boundaries to separate the “happy” class
(represented by the green triangles) and the “sad”
class (represented by the red circles), which should
be clearly separated in the emotion space because of
the low correlation coefficient.

Then we run the proposed BME-SPE on the data
points of these three classes with the reduced dimen-
sion d1 × d2 = 2 × 1, and visualize the results in
Fig. 4(b). Obviously, the data points from the “hap-
py” class and the “sad” class are clearly separated.
Moreover, the data points from the “cheerful” class
and the “happy” class are largely overlapped, which
is consistent with the correlation coefficient in the
emotion space, and thus demonstrate that BME-SPE
is able to catch the relationship between different
emotions in the learning process.
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TABLE 2
Performance evaluation of different dimensionality reduction methods using label-based metrics and k-nearest

neighbor classifier on CAL-500 dataset. The number in the bracket denotes the reduced dimension
corresponding to the best result of the algorithm under that criterion.

����������Methods
Criteria Macro average Micro average

Precision F1 Score Precision F1 Score
HSL 0.285± 0.057(8) 0.322± 0.049(14) 0.274± 0.058(13) 0.307± 0.051(13)

ML-LDA 0.301± 0.076(13) 0.266± 0.041(17) 0.296± 0.032(17) 0.263± 0.059(14)
ML-OPLS 0.315± 0.103(12) 0.270± 0.030(5) 0.307± 0.110(13) 0.275± 0.062(4)

MPCA 0.429± 0.103(10× 7) 0.388± 0.021(10× 8) 0.398± 0.099(10× 7) 0.376± 0.007(16× 1)
TLPP 0.457± 0.048(9× 8) 0.392± 0.051(14× 2) 0.427± 0.059(6× 13) 0.404± 0.053(8× 2)

BME-SPE 0.462± 0.039(8× 7) 0.411± 0.041(9× 3) 0.432± 0.040(9× 7) 0.426± 0.042(7× 3)
BME-SPE with E2S 0.479± 0.054(8× 6) 0.430± 0.035(12× 7) 0.455± 0.052(8× 7) 0.441± 0.048(10× 6)

TABLE 3
Performance evaluation of different dimensionality reduction methods using example-based metrics and

multi-label k-nearest neighbor classifier on CAL-500 dataset. The number in the bracket denotes the reduced
dimension corresponding to the best result of the algorithm under that criterion.

����������Methods
Criteria Average precision Hamming loss One-error Ranking loss

HSL 0.496± 0.031(2) 0.219± 0.025(1) 0.585± 0.050(1) 0.351± 0.031(2)
ML-LDA 0.447± 0.040(16) 0.234± 0.014(14) 0.569± 0.091(12) 0.388± 0.039(17)
ML-OPLS 0.453± 0.034(13) 0.234± 0.019(17) 0.574± 0.060(13) 0.380± 0.043(17)

MPCA 0.539± 0.009(16× 9) 0.241± 0.034(2× 20) 0.440± 0.073(12× 11) 0.342± 0.026(19× 14)
TLPP 0.543± 0.035(14× 8) 0.215± 0.028(5× 7) 0.477± 0.053(6× 12) 0.304± 0.029(5× 6)

BME-SPE 0.558± 0.044(8× 10) 0.236± 0.022(3× 3) 0.318± 0.087(10× 10) 0.276± 0.033(5× 1)
BME-SPE with E2S 0.570± 0.031(8× 8) 0.218± 0.026(6× 2) 0.313± 0.069(12× 7) 0.265± 0.024(5× 1)

An interesting observation from Fig. 4(b) is that
the variance of the data points representing “sad”
songs is much larger than that of the data points
representing “happy” songs, which indicates that in
music emotions, the feelings of happy are all alike and
every feeling of unhappy is unhappy in its own way4.

In order to show the reasonableness of E2S, we
examine the refined label values of data points from
the “sad” class. The original label value provided by
human is a hard value, i.e., 1. We set α = β = 0.5
in our experiments. Fig. 4(b) shows the refined “sad”
extent of three data points (marked by the black
squares). By taking the EEG consistency into account,
the refined label values generated by E2S seems more
reasonable than the original ones: the closer the data
point to the “happy” class, the lower extent of the
“sad” emotion the song can evoke.

4.3 Statistical Evaluation of E2S and BME-SPE on
CAL-500 Dataset
In this subsection, we demonstrate the effective-
ness of the proposed methods by comparing them
with five dimensionality reduction algorithms, includ-
ing hyper-graph spectral learning (HSL) [69], multi-
label linear discriminant analysis (ML-LDA) [81],
multi-label orthonormalized partial least squares (ML-
OPLS) [70], multilinear PCA (MPCA) [53], and tensor

4. The original sentence in the novel Anna Karenina by Russian
writer Leo Tolstoy is “Happy families are all alike; every unhappy
family is unhappy in its own way.”

LPP (TLPP) [11]. Here HSL, ML-LDA, and ML-OPLS
are recently proposed multi-label dimensionality re-
duction methods with competent performance while
MPCA and TLPP are typical tensor-based dimension-
ality reduction algorithms for second-order input. In
order to demo the effectiveness of E2S and BME-SPE
clearly, we perform the dimensionality reduction on
BME-SPE without E2S (denoted as BME-SPE in Ta-
ble 2 and Table 3) and BME-SPE with E2S separately.

Two groups of criteria are used to evaluate the
performance. In the first group, we use the standard
label-based metrics, i.e., the precision and F1 score,
as the evaluation criteria [81]. Since precision and
F1 score are originally designed for binary classi-
fication, we use macro average and micro average
to evaluate the overall performance across multiple
labels [95]. The k-nearest neighbor classifier is used
for final classification after dimensionality reduction.
For all these four criteria, the larger the metric value
the better the performance. In the second group, we
use four standard example-based metrics, i.e., aver-
age precision, Hamming loss, one-error, and ranking
loss, as the evaluation criteria [95]. The multi-label k-
nearest neighbor classifier [94] is used for the final
classification after dimensionality reduction. For av-
erage precision, the larger the metric value the better
the performance. For Hamming loss, one-error, and
ranking loss, the smaller the metric value the better
the performance.

For both groups, we perform 10-fold cross valida-
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tion and set the number of nearest neighbor k = 10.
For each algorithm, we test its performance on all the
reduced dimensions and report the best result and
the corresponding dimension. For HSL, ML-LDA, and
ML-OPLS, the dimension of the input data is 51, 143.
For MPCA, TLPP, BME-SPE, and BME-SPE with E2S,
the dimension of the input data is 257× 199.

Table 2 reports the performance on label-based
metrics with k-nearest neighbor classifier. Table 3 re-
ports the performance on example-based metrics with
multi-label k-nearest neighbor classifier. The proposed
BME-SPE outperforms other algorithms on most of
the evaluation criteria. Moreover, by considering the
label smoothing, BME-SPE with E2S further improves
the performance.

4.4 EEG-Brain Mapping on Chinese Music
Dataset
To further analyze the results the proposed algorithm-
s, we conduct an experiment on the self-collected
Chinese music dataset. Given the original represen-
tation of the Chinese song, i.e., XC

i (i = 1, ..., 100),
instead of learning new transformation matrices via
the proposed methods, we map it onto the low-
dimensional space using the existing transformation
matrices learned from the CAL-500 dataset, i.e., ZC

i =
UTXC

i V. Then for each ZC
i , we find its nearest neigh-

bor from the low-dimensional representation of songs
in CAL-500 dataset, i.e.,

N (ZC
i ) = argmin

Zj

j=1,...,502

‖ZC
i − Zj‖2F , (23)

where N (ZC
i ) denotes the nearest neighbor of ZC

i and
Zj denotes the low-dimensional representation of the
j-th song in CAL-500.

We examine the distribution of EEG data of both
datasets on each individual emotion. We select 20
songs from the Chinese music dataset, which cover
all 18 emotions, together with the corresponding 20
Western songs, we have 40 songs in total. We record
the EEG signals of subjects when listen to these songs.
Then for each emotion, we use the traditional linear
discriminant analysis (LDA) [21] to separate the songs
who have the corresponding emotion from those who
do not have in the 1-D space (the original dimension
Dg = 64). We find that they can be clearly separated
in such a low-dimensional space on all the emotions,
which indicates that the Chinese and Western music
share some common characteristics in evoking human
emotions. Table 4 lists the most contributing electrode
from all 64 as well as the corresponding Brodmann
area [23] for classification on each emotion. There
are 8 areas that contribute to the emotion classifica-
tion, in which the areas 6, 37, 39, and 46 contribute
to more than one emotions. The area 46, which is
the dorsolateral prefrontal cortex area, contributes to
the emotions of “happy” and “light/playful”. This

TABLE 4
The most contributing electrode and the

corresponding Brodmann area on each emotion.

Emotions
Most

Contributing
Electrode

Corresponding
Brodmann

Area
angry/aggressive P6 39

arousing/awakening P5 39
bizarre/weird P6 39

calming/smoothing P7 37
carefree/lighthearted CP6 40

cheerful/festive CZ 5
emotional/passionate FCZ 6

exciting/thrilling P7 37
happy AF8 46

laid-back/mellow P6 39
light/playful AF8 46

loving/romantic P7 37
pleasant/comfortable FCZ 6

positive/optimistic FCZ 6
powerful/strong P7 37

sad PO7 19
tender/soft P7 37

touching/loving AF3 9

observation is consistent with the findings in brain
science, where the area 46 has been identified with
the function of music enjoyment. More interestingly,
for the areas 6, 37, and 39, it is not claimed that they
have the functions closely related to music and emo-
tion. However, all these areas have the functions on
language comprehension, which might explain why
they contribute to the music emotion understanding.

5 CONCLUSION AND FUTURE WORK
This paper discovers the relationship between music
and emotion via dimensionality reduction. A new
learning scheme E2S is proposed to refine the user-
provided emotion labels by using the EEG consis-
tency, followed by a novel multi-label dimensionality
reduction technology named BME-SPE, which targets
to find the genuine correlates of music emotions. The
proposed methods find the influential correlates and
show good performance in classification. We represent
the Chinese music according to the identified corre-
lates, and find that the music from different culture
may share similar emotions.

In the future, we are specially interested in inves-
tigating the brain activities with other natural stimuli
such as image browsing [76], [83] and video watching
[26], [27], [31]. We will study how to combine the
brain signals from different natural stimuli together,
and how to apply them to various multimedia content
analysis and affective computing tasks.

APPENDIX
PROOF OF CONVERGENCY OF BME-SPE

Proof: We need to show that the objective func-
tion J(U,V) in (12) is nonincreasing in the learning
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procedure and has a lower bound.
On the one hand, the above alternating strategy

indicates that in each iteration, J(U,V) is nonincreas-
ing, i.e.,

Jt(U,V) =J(U(t),V(t)) = JV(t)
(U(t))

≥min JV(t)
(U) = JV(t)

(U(t+1))

=J(U(t+1),V(t)) = JU(t+1)
(V(t))

≥min JU(t+1)
(V) = JU(t+1)

(V(t+1))

=J(U(t+1),V(t+1)) = Jt+1(U,V),

(24)

where Jt(U,V) denotes the value of J(U,V) after the
t-th iteration, and U(t) and V(t) denote the matrices
U and V after the t-th iteration, respectively.

On the other hand, for any i and j, we have
||UTXiV −UTXjV||2F ≥ 0 and Ŝij ≥ 0. Therefore,

J(U,V) =

n∑
i=1

n∑
j=1

||UTXiV −UTXjV||2F · Ŝij ≥ 0,

(25)
which indicates that the objective function is lower
bounded.

Since it has been proved that J(U,V) is nonincreas-
ing and has a lower bound, we can conclude that the
learning procedure will converge finally.
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