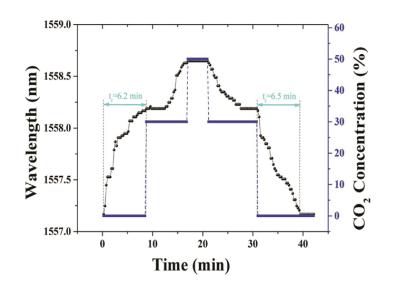


Optical Fiber-Top Microcavity CO₂ Sensor

Prof. A. Ping Zhang and Prof. Hwa-Yaw TAM Department of Electrical Engineering

A new type of fiber-optic CO₂ sensor based on a polymer Fabry-Pérot (FP) cavity fabricated on the end face of a standard single-mode optical fiber has been developed. A photo-crosslinkable poly (ionic liquid) (PIL) with strong CO₂ adsorption ability was synthesized and then printed on the top of optical fiber by home-built in-situ optical using an printing technology to form an FP cavity for CO₂ sensing. Experimental results show such a miniature fiber-optic sensor has wide detection range and relatively fast response time for CO₂ detection.

Representative Publication


Optical Fiber-Top Microcavity Sensor for CO2 Detection

Jushuai Wu¹, Ming-jie Yin¹, Karoline Taeuber², Alessandro Dani², Ryan Guterman², Jiayin Yuan², A. Ping Zhang¹ and Haw-yaw Tam¹

¹Photonics Research Center, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong ²Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany

> Innovation and Technology Development Office 創新及科技發展處

Contact UsIr Steven LAM, Manager, Innovation and Technology Development OfficeT (852) 3400 2864E steven.tf.lam@polyu.edu.hk

The result cycling of а test for characterization of the dynamic response of the fiber-optic CO₂ microsensor shows that the response time of the CO₂ microsensor is around 6.5 minutes, which much faster than that previously is reported PIL CO2 sensor (which is about 30 minutes). The fast response time of the CO₂ microsensor is attributed to its small size achieved by optical microfabrication process.