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 a b s t r a c t

This study presents an analysis of sound radiation from a vibrating thin clamped rectangular plate 
using exact formulas. A new analytical approach–referred to here as the theoretical approximate 
formulas method–is proposed and applied to cases where the plate is either embedded in a rigid 
infinite baffle or has no baffle at all. The exact eigenfrequencies of the plate are obtained from 
a system of five coupled characteristic equations, as reported in the literature. The biharmonic 
equation governing the plate’s vibrations is coupled with the Helmholtz equation on both sides 
of the plate, thereby incorporating acoustic attenuation into the model. To represent the acoustic 
pressure and radiated acoustic power, a double Fourier transform is employed. These quantities 
are expressed as expansion series involving double infinite integrals. The integrals are evaluated 
exactly using the spectral mapping method, the Dini series, and radial polynomials.
 The resulting solutions are accurate and rapidly convergent, spanning from frequencies below 
the plate’s fundamental frequency to those above its critical frequency. Consequently, the pro-
posed method enables effective and precise solutions to both Neumann and Dirichlet boundary 
value problems, and facilitates detailed analysis of the resulting acoustic fields. The findings can 
be applied to predict the acoustic behavior of structural casing elements shaped in the form of thin 
rectangular plates, in industrial environments. Selected numerical examples are also provided to 
demonstrate the method’s applicability.

1.  Introduction

Thin plates are often used in industry as cover plates and as components of casings of various machines. Such plates are subject 
to excited vibration and, consequently, radiate acoustic waves. Therefore, the sound radiation from thin vibrating rectangular plates 
has attracted considerable attention from many researchers. The acoustic field generated is analyzed using different methods, such 
as variational methods, the finite element method (FEM), and experimental approaches. Analyses using exact formulas are relatively 
rare and usually restricted to specific cases.
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\begin {equation}\label {Eq:1} \nabla ^4 W_{n}(x,y) - k_{n}^4 W_{n}(x,y) = 0,\end {equation}


$0 \leqslant x \leqslant a$


$0 \leqslant y \leqslant b$


$k_{n} = (\varrho h \omega _{n}^2/D_E){}^{1/4}$


$D_E = Eh^3/[12(1-\nu ^2)]$


$h$


$h\ll a,b$


$W_{n}$


$n$


$\omega _{n}$


$n$


$n=1,2,\ldots $
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$k_1 < k_2 \ldots $


$n$
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$p$


$q{+}1$


$p{+}1$


$n$


$x$


$y$


$q,p=1,2,\ldots $


$n\equiv (q,p)$


$\exp (-\ri \omega t)$


$\omega $


$t$


\begin {equation}\label {Eq:2} \nabla ^4 = \nabla ^2 \nabla ^2, \qquad \nabla ^2 = \frac {\partial ^2}{\partial x^2} + \frac {\partial ^2}{\partial y^2}.\end {equation}


\begin {equation}\label {Eq:13} \omega ^2 \varrho h (k_D^{-4} \nabla ^4 - 1) W(x+a/2,y+b/2) + e_f p(x,y,0) = P(x+a/2,y+b/2),\end {equation}


\begin {equation}\label {Eq:20} \hat P_{n} = P_0 W_{n}(x'+a/2,y'+a/2).\end {equation}


\begin {equation}\label {Eq:3a} W_{n}(x,y) = \Psi _{q}(x) \Phi _{p}(y),\end {equation}


\begin {equation}\label {Eq:3b} \Psi _{q}(x) = A_{1,q} \bigg [ \cos (\alpha _{1,q} x) - \cosh (\alpha _{2,q} x) - \bar k_{1,q} \bigg ( \frac {\alpha _{2,q}}{\alpha _{1,q}} \sin (\alpha _{1,q} x) - \sinh (\alpha _{2,q} x) \bigg ) \bigg ],\end {equation}


\begin {equation}\label {Eq:3c} \Phi _{p}(y) = A_{2,p} \bigg [ \cos (\beta _{1,p} y) - \cosh (\beta _{2,p} y) - \bar k_{2,p} \bigg ( \frac {\beta _{2,p}}{\beta _{1,p}} \sin (\beta _{1,p} y) - \sinh (\beta _{2,p} y) \bigg ) \bigg ],\end {equation}


$\alpha _{1,q}$


$\alpha _{2,q}$


$\beta _{1,p}$


$\beta _{2,p}$


\begin {equation}\label {Eq:4a} \bar k_{1,q} = \frac {\cos (\alpha _{1,q} a) - \cosh (\alpha _{2,q} a)}{(\alpha _{2,q}/\alpha _{1,q}) \sin (\alpha _{1,q} a) - \sinh (\alpha _{2,q} a)} = \frac { - (\alpha _{1,q}/\alpha _{2,q}) \sin (\alpha _{1,q} a) - \sinh (\alpha _{2,q} a)}{\cos (\alpha _{1,q} a) - \cosh (\alpha _{2,q} a)},\end {equation}


\begin {equation}\label {Eq:4b} \bar k_{2,p} = \frac {\cos (\beta _{1,p} b) - \cosh (\beta _{2,p} b)}{(\beta _{2,p}/\beta _{1,p}) \sin (\beta _{1,p} b) - \sinh (\beta _{2,p} b)} = \frac { - (\beta _{1,p}/\beta _{2,p}) \sin (\beta _{1,p} b) - \sinh (\beta _{2,p} b)}{\cos (\beta _{1,p} b) - \cosh (\beta _{2,p} b)}.\end {equation}


\begin {equation}\label {Eq:5a} W_{n}(0,y) = 0, \quad W_{n}(a,y) = 0; \quad 0\leqslant y \leqslant b,\end {equation}


\begin {equation}\label {Eq:5b} W_{n}(x,0) = 0, \quad W_{n}(x,b) = 0; \quad 0\leqslant x \leqslant a,\end {equation}


\begin {equation}\label {Eq:5c} \frac {\partial }{\partial x} W_{n}(x,y) \bigg |_{x=0} = 0 , \quad \frac {\partial }{\partial x} W_{n}(x,y) \bigg |_{x=a} = 0 ; \quad 0\leqslant y \leqslant b,\end {equation}


\begin {equation}\label {Eq:5d} \frac {\partial }{\partial y} W_{n}(x,y) \bigg |_{y=0} = 0 , \quad \frac {\partial }{\partial y} W_{n}(x,y) \bigg |_{y=b} = 0 ; \quad 0\leqslant x \leqslant a.\end {equation}


\begin {equation}\label {Eq:6a} (\alpha _{2,q}^2 - \alpha _{1,q}^2) \sin (\alpha _{1,q} a) \sinh (\alpha _{2,q} a) - 2 \alpha _{1,q} \alpha _{2,q} \bigg [ \cos (\alpha _{1,q} a) \cosh (\alpha _{2,q} a) - 1 \bigg ] = 0,\end {equation}


\begin {equation}\label {Eq:6b} (\beta _{2,p}^2 - \beta _{1,p}^2) \sin (\beta _{1,p} b) \sinh (\beta _{2,p} b) - 2 \beta _{1,p} \beta _{2,p} \bigg [ \cos (\beta _{1,p} b) \cosh (\beta _{2,p} b) - 1 \bigg ] = 0,\end {equation}


$\alpha _{2,q}^2 - \alpha _{1,q}^2 = 2 \beta _{1,p}^2$


$\beta _{2,p}^2 - \beta _{1,p}^2 = 2 \alpha _{1,q}^2$


$k_{n}$


$k_{n}^2 = \alpha _{1,q}^2 + \beta _{1,p}^2$


\begin {equation}\label {Eq:7a} \bar W_{n}(k_x,k_y) = \bar \Psi _{q}(k_x) \bar \Phi _{p}(k_y),\end {equation}


\begin {equation}\label {Eq:7b} W_{n}(x+a/2,y+b/2) = \Psi _{q}(x+a/2) \Phi _{p}(y+b/2),\end {equation}


\begin {equation}\label {Eq:8a} \bar \Psi _{q}(k_x) = \frac {1}{\sqrt {2\pi }} \int _{-a/2}^{+a/2} \Psi _{q}(x+a/2) \re ^{-\ri k_x x} \rd x,\end {equation}


\begin {equation}\label {Eq:8b} \bar \Phi _{p}(k_y) = \frac {1}{\sqrt {2\pi }} \int _{-b/2}^{+b/2} \Phi _{p}(y+b/2) \re ^{-\ri k_y y} \rd y,\end {equation}


\begin {equation}\label {Eq:8c} \Psi _{q}(x+a/2) = \frac {1}{\sqrt {2\pi }} \int _{-\infty }^{+\infty } \bar \Psi _{q}(k_x) \re ^{+\ri k_x x} \rd k_x,\end {equation}


\begin {equation}\label {Eq:8d} \Phi _{p}(y+b/2) = \frac {1}{\sqrt {2\pi }} \int _{-\infty }^{+\infty } \bar \Phi _{p}(k_y) \re ^{+\ri k_y y} \rd k_y,\end {equation}


$x$


$y$


$(-a/2, +a/2)$


$(-b/2, +b/2)$


\begin {equation}\label {Eq:9a} \bar \Psi _{q}(k_x) = \frac {A_{1,q} (2/\pi ){}^{1/2} k_{n}^2}{(k_x^2-\alpha _{1,q}^2) (k_x^2+\alpha _{2,q}^2)} \Bigg \{ \bigg [ \alpha _{1,q} g_{1,q}(0) - \ri k_x f_{1,q}(0) \bigg ] \re ^{+\ri k_x a/2} - \bigg [ \alpha _{1,q} g_{1,q}(a) - \ri k_x f_{1,q}(a) \bigg ] \re ^{-\ri k_x a/2} \Bigg \},\end {equation}


\begin {equation}\label {Eq:9b} \bar \Phi _{p}(k_y) = \frac {A_{2,p} (2/\pi ){}^{1/2} k_{n}^2}{(k_y^2-\beta _{1,p}^2) (k_y^2+\beta _{2,p}^2)} \Bigg \{ \bigg [ \beta _{1,p} g_{2,p}(0) - \ri k_y f_{2,p}(0) \bigg ] \re ^{+\ri k_y b/2} - \bigg [ \beta _{1,p} g_{2,p}(b) - \ri k_y f_{2,p}(b) \bigg ] \re ^{-\ri k_y b/2} \Bigg \},\end {equation}


$\alpha _{1,q}^2 + \alpha _{2,q}^2 = \beta _{1,p}^2+\beta _{2,p}^2 = 2k_{n}^2$


\begin {equation}\label {Eq:10a} f_{1,q}(x) = \cos (\alpha _{1,q} x) - \bar k_{1,q} \frac {\alpha _{2,q}}{\alpha _{1,q}} \sin (\alpha _{1,q} x),\end {equation}


\begin {equation}\label {Eq:10b} f_{2,p}(y) = \cos (\beta _{1,p} y) - \bar k_{2,p} \frac {\beta _{2,p}}{\beta _{1,p}} \sin (\beta _{1,p} y),\end {equation}


\begin {equation}\label {Eq:10c} g_{1,q}(x) = \sin (\alpha _{1,q} x) + \bar k_{1,q} \frac {\alpha _{2,q}}{\alpha _{1,q}} \cos (\alpha _{1,q} x),\end {equation}


\begin {equation}\label {Eq:10d} g_{2,p}(y) = \sin (\beta _{1,p} y) + \bar k_{2,p} \frac {\beta _{2,p}}{\beta _{1,p}} \cos (\beta _{1,p} y).\end {equation}


\begin {equation}\label {Eq:11} \frac {1}{ab} \int _0^a \int _0^b W_{n}(x,y) W_{n'}(x,y) \rd y \rd x = \delta _{nn'}.\end {equation}


$A_{1,q}$


$A_{2,p}$


$\int _0^a \Psi _{q}^2(x) \rd x = a$


$\int _0^b \Phi _{p}^2(y) \rd y = b$


\begin {equation}\label {Eq:12a} A_{1,q} = \Bigg \{ 1 - \frac {1}{2} \bigg ( 1 - \frac {\alpha _{2,q}^2}{\alpha _{1,q}^2} \bigg ) \bigg [ \bar k_{1,q}^2 - \frac {1}{\alpha _{2,q}a} \bigg ( \bar k_{1,q} - \frac {\alpha _{1,q}}{\alpha _{2,q}} f_{1,q}(a) g_{1,q}(a) \bigg ) \bigg ] \Bigg \}{}^{-1/2},\end {equation}


\begin {equation}\label {Eq:12b} A_{2,p} = \Bigg \{ 1 - \frac {1}{2} \bigg ( 1 - \frac {\beta _{2,p}^2}{\beta _{1,p}^2} \bigg ) \bigg [ \bar k_{2,p}^2 - \frac {1}{\beta _{2,p}b} \bigg ( \bar k_{2,p} - \frac {\beta _{1,p}}{\beta _{2,p}} f_{2,p}(b) g_{2,p}(b) \bigg ) \bigg ] \Bigg \}{}^{-1/2}.\end {equation}


$A_{1,q}$


$A_{2,p}$


$n=1,2,\ldots $


$k_D$


$k_D^4=\omega ^2 \varrho h/D$


$D = D_E (1+\ri \eta )$


$\eta $


$W(x+a/2,y+b/2)$


$P(x+a/2,y+b/2)$


$p(x,y,0)$


$e_f$


$e_f=1$


$e_f=2$


\begin {equation}\label {Eq:24} p(\vec r) = \int _{S'} 2p(x',y',0) \frac {\partial G(\vec r, \vec r\,')}{\partial z'} \bigg |_{z'=0} \rd S',\end {equation}


\begin {equation}\label {Eq:33} \ri \varkappa \mathbf {I} \cdot [c_{n'}] - [\hat \xi _{nn'}] \cdot [c_{n} (k_D^{-4} k_{n}^4 - 1)] = - (\omega ^2 \varrho h){}^{-1} [\hat \xi _{nn'}] \cdot [\hat P_{n}],\end {equation}


$k_D$


$e_f p(x,y,0)$


\begin {equation}\label {Eq:14} \bigg ( \frac {\partial ^2}{\partial x^2} + \frac {\partial ^2}{\partial y^2} + \frac {\partial ^2}{\partial z^2} + k_0^2 \bigg ) p(x,y,z) = 0,\end {equation}


$k_0$


$\omega = k_0 c$


$c$


\begin {equation}\label {Eq:15} \frac {\partial p}{\partial z} \bigg |_{z=0} = \ri \omega \varrho _0 v(x+a/2,y+b/2),\end {equation}


$-a/2<x<+a/2$


$-b/2<y<+b/2$


$z=0$


\begin {equation}\label {Eq:16} v(x+a/2,y+b/2) = -\ri \omega W(x+a/2,y+b/2),\end {equation}


$W(x+a/2,y+b/2)$


\begin {equation}\label {Eq:17a} W(x,y) = \sum _{n=1}^{\infty } c_{n} W_{n}(x,y),\end {equation}


\begin {equation}\label {Eq:17b} P(x,y) = \sum _{n} \hat P_{n} W_{n}(x,y),\end {equation}


$0 \leqslant x \leqslant a$


$0 \leqslant y \leqslant b$


$c_{n}$


$W_{n}(x,y)$


\begin {equation}\label {Eq:18} \hat P_{n} = \frac {1}{ab} \int _0^a \int _0^b P(x,y) W_{n}(x,y) \rd y \rd x.\end {equation}


\begin {equation}\label {Eq:19} P(x,y) = P_0 ab\, \delta (x-x') \delta (y-y'),\end {equation}


$P_0$


$(x',y')$


\begin {equation}\label {Eq:21} p(\vec r) \int _{S'} \bigg [\frac {\partial G(\vec r, \vec r\,')}{\partial n'} p(\vec r\,') - \frac {\partial p(\vec r\,')}{\partial n'} G(\vec r, \vec r\,') \bigg ] \rd S',\end {equation}


$S'$


$\vec n'$


$S'$


$\vec n' = +\vec e_z$


$\vec n' = -\vec e_z$


$\partial /\partial n' = \vec n' \cdot \nabla $


\begin {equation}\label {Eq:22} G(\vec r, \vec r\,') = \frac {\re ^{\ri k_0R}}{4\pi R} = \frac {\ri }{8\pi ^2} \int _{-\infty }^{+\infty } \int _{-\infty }^{+\infty } \re ^{\ri [k_x (x-x') + k_y (y-y') + k_z |z-z'|]} \frac {\rd k_y \rd k_x}{k_z},\end {equation}


$R = |\vec R| = [(x-x'){}^2 + (y-y'){}^2 + (z-z'){}^2]{}^{1/2}$


$\vec R = \vec r - \vec r\,'$


$\vec r = \vec e_xx + \vec e_yy + \vec e_zz$


$\vec r\,' = \vec e_xx' + \vec e_yy' + \vec e_zz'$


\begin {equation}\label {Eq:23} \nabla ^2 G(\vec r, \vec r') + k_0^2 G(\vec r, \vec r') = \delta (\vec r - \vec r'),\end {equation}


$\delta (\vec r - \vec r') = \delta (x-x') \delta (y-y') \delta (z-z')$


$-\infty < z < +\infty $


\begin {equation}\label {Eq:40} \lim _{\varepsilon \to 0} p(x,y,\pm \varepsilon ) = \sign (z) \frac {1}{e_f} \sum _{n} \bigg [ \hat P_{n} - c_{n} \omega ^2 \varrho h \bigg ( \frac {k_{n}^4}{k_D^4} - 1 \bigg ) \bigg ] W_{n}(x+a/2,y+b/2).\end {equation}


$z'=0$


$e_f=2$


$x,y$


$x',y'$


\begin {equation}\label {Eq:25} 2 p(x',y',0) = P(x'+a/2,y'+b/2) - \omega ^2 \varrho h \bigg ( k_D^{-4} \nabla '^4 - 1 \bigg ) W(x'+a/2,y'+b/2),\end {equation}


$\nabla '^4$


$x'$


$y'$


\begin {equation}\label {Eq:26} p(\vec r) = \int _{S'}\bigg [ P(x'+a/2,y'+b/2) - \omega ^2 \varrho h \bigg ( k_D^{-4} \nabla '^4 - 1 \bigg ) W(x'+a/2,y'+b/2) \bigg ] \frac {\partial G(\vec r, \vec r\,')}{\partial z'} \bigg | _{z'=0} \rd S'.\end {equation}


\begin {align}\label {Eq:27} \frac {\partial p}{\partial z} \bigg |_{z=0} &= \omega ^2 \varrho _0 W(x+a/2,y+b/2) \nonumber \\ &= \int _{S'} \bigg [ P(x'+a/2,y'+b/2) - \omega ^2 \varrho h \bigg ( k_D^{-4} \nabla '^4 - 1 \bigg ) W(x'+a/2,y'+b/2) \bigg ] \frac {\partial ^2 G(\vec r, \vec r\,')}{\partial z \partial z'} \bigg |_{z',z=0} \rd S',\end {align}


$0<x< a$


$0<y<b$


\begin {equation}\label {Eq:28} \frac { \partial ^2 G(\vec r, \vec r\,') }{ \partial z \partial z' } \bigg |_{z',z=0} = \frac {\ri }{8\pi ^2} \int _{-\infty }^{+\infty } \int _{-\infty }^{+\infty } \re ^{\ri [k_x (x-x') + k_y (y-y')]} k_z \rd k_y \rd k_x.\end {equation}


\begin {align}\label {Eq:29} &\omega ^2 \varrho _0 \sum _{n} c_{n} W_{n}(x+a/2,y+b/2) \nonumber \\ &= \sum _{n} \bigg [ \hat P_{n} - c_{n} \omega ^2 \varrho h \bigg ( \frac {k_{n}^4}{k_D^4} - 1 \bigg ) \bigg ] \frac {\ri }{4\pi } \int _{-\infty }^{+\infty } \int _{-\infty }^{+\infty } \bar W_{n}(k_x,k_y) \re ^{\ri (k_xx + k_yy)} k_z \rd k_y \rd k_x.\end {align}


$W_{n'}(x+a/2,y+b/2)$


$x+a/2=u$


$y+b/2=v$


$2\ri /(\omega ^2 \varrho h, k_0 ab)$


$e_f=2$


\begin {equation}\label {Eq:30} c_{n'} \ri \varkappa - \sum _{n} c_{n} \bigg ( \frac {k_{n}^4}{k_D^4} - 1 \bigg ) \hat \xi _{nn'} = - \frac {1}{\omega ^2 \varrho h} \sum _{n} \hat P_{n} \hat \xi _{nn'},\end {equation}


$n\equiv (q,p)$


$n'\equiv (q',p')$


\begin {equation}\label {Eq:31} \varkappa = \frac {e_f \varrho _0}{\varrho k_0 h},\end {equation}


\begin {equation}\label {Eq:32} \hat \xi _{nn'} = \frac {1}{ab} \int _{-\infty }^{+\infty } \int _{-\infty }^{+\infty } \bar W_{n}(k_x,k_y) \bar W_{n'}^*(k_x,k_y) \frac {k_z}{k_0} \rd k_y \rd k_x.\end {equation}


$n,n' = 1,2,\ldots ,N-1$


$\cdot $


$\mathbf {I}$


$[\hat \xi _{nn'}]$


$N\times N$


$[c_{n'}]$


$[c_{n} (k_D^{-4} k_{n}^4 - 1)]$


$[\hat P_{n}]$


$N$


$\ri \varkappa $


$(\omega ^2 \varrho h){}^{-1}$


\begin {equation}\label {Eq:45} \sigma = \frac {\Real (\Pi )}{\Pi _{\mathrm {Ref.}}}.\end {equation}


$[\hat \xi _{nn'}]{}^{-1}$


\begin {equation}\label {Eq:34} \mathbf {I} \cdot [c_{n} (k_D^{-4} k_{n}^4 - 1)] - \ri \varkappa [\hat \lambda _{nn'}] \cdot [c_{n'}] = (\omega ^2 \varrho h){}^{-1} \mathbf {I} \cdot [\hat P_{n}],\end {equation}


$[\hat \xi _{nn'}]{}^{-1} \cdot \mathbf {I} = [\hat \xi _{nn'}]{}^{-1}$


$[\hat \xi _{nn'}]{}^{-1} \cdot [\hat \xi _{nn'}] = \mathbf {I}$


$[\hat \lambda _{nn'}] = [\hat \xi _{nn'}]{}^{-1}$


$[\hat \xi _{nn'}]{}^{-1}$


\begin {equation}\label {Eq:35} c_{n'} \bigg ( \frac {k_{n'}^4}{k_D^4} - 1 \bigg ) - \ri \varkappa \sum _{n} c_{n} \hat \lambda _{nn'} = \frac {\hat P_{n'}}{\omega ^2 \varrho h},\end {equation}


$\hat \lambda _{nn'}$


$[\hat \xi _{nn'}]{}^{-1}$


$\nabla '^4 W_{n}(x'+a/2,y'+b/2) = k_{n}^4 W_{n}(x'+a/2,y'+b/2)$


\begin {equation}\label {Eq:36} p(\vec r) = \sum _{n} \bigg [ \hat P_{n} - c_{n} \omega ^2 \varrho h \bigg ( \frac {k_{n}^4}{k_D^4} - 1 \bigg ) \bigg ] \int _{S'} W_{n}(x'+a/2,y'+b/2) \frac {\partial G(\vec r, \vec r,')}{\partial z'} \bigg | _{z'=0} \rd S'.\end {equation}


\begin {equation}\label {Eq:37} \frac {\partial G(\vec r, \vec r\,')}{\partial z'} \bigg | _{z'=0} = \sign (z) \frac {1}{8\pi ^2} \int _{-\infty }^{+\infty } \int _{-\infty }^{+\infty } \re ^{\ri [k_x (x-x') + k_y (y-y') + k_z |z|]} \rd k_y \rd k_x,\end {equation}


\begin {equation}\label {Eq:38} \frac {\partial }{\partial z'} \re ^{\ri k_z |z - z'|} \bigg |_{z'=0} = - \sign (z) \ri k_z \re ^{\ri k_z |z|},\end {equation}


$\sign (z) = 1$


$z>0$


$-1$


$z<0$


$z=0$


$z=0$


\begin {equation}\label {Eq:39} p(\vec r) = \sign (z) \sum _{n} \bigg [ \hat P_{n} - c_{n} \omega ^2 \varrho h \bigg ( \frac {k_{n}^4}{k_D^4} - 1 \bigg ) \bigg ] \frac {1}{4\pi } \int _{-\infty }^{+\infty } \int _{-\infty }^{+\infty } \bar W_{n}(k_x,k_y) \re ^{\ri (k_xx + k_yy + k_z|z|)} \rd k_y \rd k_x.\end {equation}


$|z|\to 0$


$e_f=2$


\begin {equation}\label {Eq:41} \Pi = \int _{-a/2}^{+a/2} \int _{-b/2}^{+b/2} p(x,y,0) v^*(x+a/2,y+b/2) \rd y \rd x,\end {equation}


$p(x,y,0) v^*(x+a/2,y+b/2)$


$1/2$


$e_f=2$


\begin {equation}\label {Eq:42} \Pi = \frac {1}{2} \ri \omega ab \sum _{n} c_{n}^* \bigg [ \hat P_{n} - c_{n} \omega ^2 \varrho h \bigg ( \frac {k_{n}^4}{k_D^4} - 1 \bigg ) \bigg ].\end {equation}


\begin {equation}\label {Eq:43} \Pi _{\mathrm {Ref.}} = e_f \varrho _0 c ab \left < |v|{}^2 \right >,\end {equation}


\begin {equation}\label {Eq:44} \left < |v|{}^2 \right > = \frac {1}{2ab} \int _0^a \int _0^b |v(x,y)|{}^2 \rd y \rd x = \frac {1}{2} \omega ^2 \sum _{n} |c_{n}|{}^2.\end {equation}


$|c_{n}|{}^2 = c_{n} c_{n}^*$


$\varrho _0 \ll \varrho $


$e_f \to 0$


\begin {equation}\label {Eq:46} \omega ' = \frac {\omega ''}{\sqrt {1+\Gamma _{n}}},\end {equation}


$\omega ''$


\begin {equation}\label {Eq:47} \Gamma _{n} = - \varkappa \Imag (\hat \lambda _{nn}).\end {equation}


\begin {equation}\label {Eq:55} \Gamma _{n} = - \varkappa \Imag (\hat \zeta _{nn}).\end {equation}


\begin {equation}\label {Eq:48} c_{n'} \bigg ( \frac {k_{n'}^4}{k_D^4} - 1 \bigg ) \ri \varkappa \sum _{n} c_{n} \hat \zeta _{nn'} = \frac {\hat P_{n'}}{\omega ^2 \varrho h},\end {equation}


$\varkappa $


$e_f=2$


\begin {equation}\label {Eq:49} p(x,y,z) = \sum _{n=1}^{\infty } c_{n} p_{n}(x,y,z),\end {equation}


\begin {equation}\label {Eq:50} p_{n}(x,y,z) = - \ri \omega ^2 \varrho _0 \frac {1}{2\pi } \int _{-\infty }^{+\infty } \int _{-\infty }^{+\infty } \bar W_{n}(k_x,k_y) \re ^{\ri (k_x x + k_y y + k_z z)} \frac {\rd k_y \rd k_x}{k_z},\end {equation}


$k_z^2 = k_0^2 - k_x^2 - k_y^2$


\begin {equation}\label {Eq:51} p(x,y,z) = - \ri \omega ^2 \varrho _0 \int _{-a/2}^{+a/2} \int _{-b/2}^{+b/2} W(x'+a/2,y'+b/2) \frac {\re ^{\ri k_0R}}{\ri 2\pi R} \bigg |_{z'=0} \rd y' \rd x',\end {equation}


$R^2=(x-x'){}^2+(y-y'){}^2+z^2$


$z'=0$


\begin {equation}\label {Eq:52} \Pi = \frac {e_f}{2} \int _0^a \int _0^b p(x,y,0) v^*(x+a/2,y+b/2) \rd y \rd x.\end {equation}


\begin {equation}\label {Eq:53} \Pi = \frac {e_f}{2} \varrho _0 c \omega ^2 ab \sum _{n=1}^{\infty } \sum _{n'=1}^{\infty } c_{n} c_{n'}^* \hat \zeta _{nn'},\end {equation}


\begin {equation}\label {Eq:54} \hat \zeta _{nn'} = \frac {1}{ab} \int _{-\infty }^{+\infty } \int _{-\infty }^{+\infty } \bar W_{n}(k_x,k_y) \bar W_{n'}^*(k_x,k_y)\, \frac {k_0}{k_z}\, \rd k_y \rd k_x,\end {equation}


$\hat \zeta _{nn'} = \hat \zeta _{n'n}$


$\hat \zeta _{nn'} = 0$


$q+q'$


$p+p'$


$\bar W_{n'}^*(k_x,k_y)$


$\bar W_{n}(k_x,k_y)$


$c_{n}$


\begin {equation}\label {Eq:56} \hat \xi _{nn'} = \frac {S_0}{S_{ab}} \sum _{\nu =0}^{\infty } \sum _{\nu '=0}^{\infty } \sum _{m=0}^{\infty } \epsilon _{m} \bar N_{\nu }^{|m|} \bar N_{\nu '}^{|m|} \bar \xi _{\nu \nu '}^{|m|} \Real \bigg [ \hat D_{n}^{|m|}(\gamma _{\nu }^{|m|}) \hat D_{n'}^{|m|*}(\gamma _{\nu '}^{|m|}) \bigg ],\end {equation}


$\epsilon _0 = 1$


$\epsilon _{m} = 2$


$m=1,2,\ldots $


$\nu ,\nu '=0,1,\ldots $


$S_0 = \pi r_0^2$


$r_0$


$S_{ab} = ab$


$\gamma _{\nu }^{|m|}$


$J_{|m|}(\gamma _{\nu }^{|m|} a) = 0$


$\hat \xi _{n'n} = \hat \xi _{nn'}$


$\hat \xi _{nn'} = 0$


$|q-q'|$


$|p-p'|$


$n=(q,p)$


$n'=(q',p')$


$k_z^2 = k_0^2 - \tau ^2$


$k_x = \tau \cos \beta $


$k_y = \tau \sin \beta $


$x = r \cos \phi $


$y = r \sin \phi $


\begin {equation}\label {Eq:57} \hat D_{n}^{|m|}(\gamma _{\nu }^{|m|}) = \frac {1}{2\pi } \int _{-a/2}^{+a/2} \int _{-b/2}^{+b/2} W_{n}(x+a/2,y+b/2) J_{|m|}(\gamma _{\nu }^{|m|} r) \re ^{-\ri |m|\phi } \rd y \rd x,\end {equation}


\begin {equation}\label {Eq:58} \bar \xi _{\nu \nu '}^{|m|} = \frac {2}{r_0^2} \int _0^{\infty } \bar D_{\nu }^{|m|}(\tau ) \bar D_{\nu '}^{|m|}(\tau ) \frac {k_z}{k_0} \tau \rd \tau .\end {equation}


$k_z = (k_0^2 - \tau ^2)/k_z$


\begin {equation}\label {Eq:59} \bar \xi _{\nu \nu '}^{|m|} = \bigg ( 1 - \frac {(\gamma _{\nu }^{|m|}){}^2 + (\gamma _{\nu '}^{|m|}){}^2}{2k_0^2} \bigg ) \bar \zeta _{\nu \nu '}^{|m|} + \frac {\gamma _{\nu }^{|m|}}{2k_0} J_{|m|+1}(\gamma _{\nu }^{|m|} a) \bar \zeta _{1,\nu '}^{|m|} + \frac {\gamma _{\nu '}^{|m|}}{2k_0} J_{|m|+1}(\gamma _{\nu '}^{|m|} a) \bar \zeta _{1,\nu }^{|m|}\end {equation}


$|m|,\nu ,\nu '=0,1,\ldots $


\begin {equation}\label {Eq:60} \bar \zeta _{1,\nu }^{|m|} = \frac {2}{k_0a} \int _0^{\infty } \bar D_{\nu }^{|m|}(\tau ) J_{|m|}(\tau a) \frac {k_0}{k_z} \tau \rd \tau = \sum _{\ell =0}^{\infty } \tilde N_{\ell }^{|m|} \tilde D_{\ell }^{|m|}(\gamma _{\nu }^{|m|}) \tilde \zeta _{1,\ell }^{|m|},\end {equation}


\begin {equation}\label {Eq:61a} \tilde \zeta _{1,0}^0 = 2 \int _0^{\infty } J_1(\tau a) J_0(\tau a) \frac {\rd \tau }{k_z} = \frac {1}{k_0a} \bigg [ 1 - J_0(2k_0a) - \ri \pmb {H}_0(2k_0a) \bigg ],\end {equation}


\begin {align}\label {Eq:61b} \tilde \zeta _{1,\ell }^{|m|} &= \frac {2}{k_0a} \int _0^{\infty } \tilde D_{\ell }^{|m|}(\tau ) J_{|m|}(\tau a) \frac {k_0}{k_z} \tau \rd \tau = (-1){}^{\ell } 2 \int _0^{\infty } J_{|m|+2\ell +1}(\tau a) J_{|m|}(\tau a) \frac {\rd \tau }{k_z} \nonumber \\ &= \frac { (-1){}^{\ell } \Gamma ^2(q+1) (k_0a){}^{2q+1}\, }{ \Gamma (q+p+2) \Gamma (m+1) \Gamma (2q+2) }\, {}_2F_3\big [ q+1, q+1; q+p+2, m+1, 2q+2; -(k_0a){}^2 \big ] \nonumber \\ &\quad - \frac {4\ri }{\pi \, (2p+1) (2q+1)}\, {}_3F_4\big [ \tfrac 12,\tfrac 12,1; \tfrac 12-p, p+\tfrac 32, \tfrac 12-q, q+\tfrac 32; -(k_0a){}^2 \big ],\end {align}


$p=\ell $


$q=|m|+\ell $


\begin {equation}\label {Eq:62a} \bar \zeta _{\nu \nu '}^{|m|} = \frac {2}{r_0^2} \int _0^{\infty } \bar D_{\nu }^{|m|}(\tau ) \bar D_{\nu '}^{|m|}(\tau ) \frac {k_0}{k_z} \tau \rd \tau = \sum _{\ell =0}^{\infty } \sum _{\ell '=0}^{\infty } \tilde N_{\ell }^{|m|} \tilde D_{\ell }^{|m|}(\gamma _{\nu }^{|m|}) \tilde \zeta _{\ell \ell '}^{|m|} \tilde N_{\ell '}^{|m|} \tilde D_{\ell '}^{|m|}(\gamma _{\nu '}^{|m|})\end {equation}


\begin {equation}\label {Eq:62b} \bar \zeta _{\nu \nu }^{|m|} = \sum _{\ell =0}^{\infty } (\tilde N_{\ell }^{|m|}){}^2 [\tilde D_{\ell }^{|m|}(\gamma _{\nu }^{|m|})]{}^2 \tilde \zeta _{\ell \ell }^{|m|} + 2 \sum _{\ell =1}^{\infty } \sum _{\ell '=\ell +1}^{\infty } \tilde N_{\ell }^{|m|} \tilde D_{\ell }^{|m|}(\gamma _{\nu }^{|m|}) \tilde \zeta _{\ell \ell '}^{|m|} \tilde N_{\ell '}^{|m|} \tilde D_{\ell '}^{|m|}(\gamma _{\nu }^{|m|})\end {equation}


\begin {equation}\label {Eq:62c} \tilde \zeta _{\ell \ell '}^{|m|} = \frac {2}{r_0^2} \int _0^{\infty } \tilde D_{\ell }^{|m|}(\tau ) \tilde D_{\ell '}^{|m|}(\tau ) \frac {k_0}{k_z} \tau \rd \tau = - \lim _{J\to \infty } \sum _{j=1}^{J} \frac {(-\tfrac 12j)_{p} (-\tfrac 12j+1)_{q} (\ri k_0r_0){}^{j}}{\Gamma (\tfrac 12j+p+1) \Gamma (\tfrac 12j+q+2)},\end {equation}


\begin {equation}\label {Eq:62d} \bar D_{\nu }^{|m|}(\tau )= \frac {J_{|m|}(\tau r_0)}{(\gamma _{\nu }^{|m|}){}^2 - \tau ^2}\, \gamma _{\nu }^{|m|} r_0 J_{|m|+1}(\gamma _{\nu }^{|m|} r_0) , \qquad \tilde D_{\ell }^{|m|}(\tau ) = (-1){}^{\ell }\, \frac {r_0}{\tau } J_{|m|+2\ell +1}(\tau r_0),\end {equation}


\begin {equation}\label {Eq:62e} (\bar N_{\nu }^{|m|}){}^{-1} = \frac {r_0^2}{2} J_{|m|+1}^2(\gamma _{\nu }^{|m|} a) , \qquad \tilde N_{\ell }^{|m|} = \frac {2}{r_0^2}\, (|m|+2\ell +1),\end {equation}


$p=\ell '-\ell $


$q=|m|+\ell '+\ell $


$k_z^2 = k_0^2 - \tau ^2$


$(a)_n = \Gamma (a+n)/\Gamma (a)$


$ka \leqslant 12$


$J \geqslant 10 + 2\re ka$


$\re \sim 2.718$


$10^{-4}$


$\hat \zeta _{n,n'}$


$\bar \xi _{\nu \nu '}^{|m|}$


$\bar \zeta _{\nu \nu '}^{|m|}$


$\nu =\nu '$


$\nu \neq \nu '$


$\nu \neq \nu '$


\begin {equation}\label {Eq:63} \frac {1}{(\gamma _{\nu }^{|m|}){}^2 - \tau ^2}\, \frac {1}{(\gamma _{\nu '}^{|m|}){}^2 - \tau ^2} = \frac {1}{(\gamma _{\nu }^{|m|}){}^2 - (\gamma _{\nu '}^{|m|}){}^2} \bigg [ \frac {1}{(\gamma _{\nu '}^{|m|}){}^2 - \tau ^2} - \frac {1}{(\gamma _{\nu }^{|m|}){}^2 - \tau ^2} \bigg ],\end {equation}


\begin {equation}\label {Eq:64} \bar \zeta _{\nu \nu '}^{|m|} = \frac {k_0}{(\gamma _{\nu }^{|m|}){}^2 - (\gamma _{\nu '}^{|m|}){}^2} \bigg [ \gamma _{\nu }^{|m|} J_{|m|+1}(\gamma _{\nu }^{|m|} a) \bar \zeta _{1,\nu '}^{|m|} - \gamma _{\nu '}^{|m|} J_{|m|+1}(\gamma _{\nu '}^{|m|} a) \bar \zeta _{1,\nu }^{|m|} \bigg ],\end {equation}


$\nu ,\nu '=0,1,\ldots $


$k_z^2 = k_0^2 - \tau ^2$


$\gamma _{\nu }^{|m|}$


$J_{|m|}(\gamma _{\nu }^{|m|} a) = 0$


\begin {align}\label {Eq:65} \hat D_{n}^{|m|}(\gamma _{\nu }^{|m|})&=\frac {ab}{16\pi } \Bigg \{ \hat {\hat D}_{|m|,q}(\gamma _{\nu }^{|m|} a/2) \tilde {\tilde D}_{0,p}(\gamma _{\nu }^{|m|} b/2) +\sum _{\mu =1}^{\infty }(-\ri ){}^{\mu } \bigg [ \hat {\hat D}_{|m|+\mu ,q}(\gamma _{\nu }^{|m|} a/2) + \hat {\hat D}_{|m|-\mu ,q}(\gamma _{\nu }^{|m|} a/2) \bigg ] \tilde {\tilde D}_{\mu ,p}(\gamma _{\nu }^{|m|} b/2) \Bigg \} \nonumber \\ &\quad + \frac {ab}{16\pi } (-\ri ){}^{|m|} \Bigg \{ \hat {\hat D}_{0,q}(\gamma _{\nu }^{|m|} a/2) \tilde {\tilde D}_{|m|,p}(\gamma _{\nu }^{|m|} b/2) \nonumber \\ &\quad + \sum _{\mu =1}^{\infty } \ri ^{\mu } \hat {\hat D}_{\mu ,q}(\gamma _{\nu }^{|m|} a/2) \bigg [ \tilde {\tilde D}_{|m|+\mu ,p}(\gamma _{\nu }^{|m|} b/2) + \tilde {\tilde D}_{|m|-\mu ,p}(\gamma _{\nu }^{|m|} b/2) \bigg ] \Bigg \},\end {align}


$\hat D_{n}^{m*}(\gamma _{\nu }^{|m|})$


$\hat D_{n}^{m}(\gamma _{\nu }^{|m|})$


\begin {equation}\label {Eq:66a} \hat {\hat D}_{\mu ,q}(\gamma _{\nu }^{|m|} a/2) = \sum _{\mu '=0}^{\infty } \hat T_{2\mu '+\bar \beta (\mu ),q} \hat {\bar D}_{\mu ,\mu '}(\gamma _{\nu }^{|m|} a/2),\end {equation}


\begin {equation}\label {Eq:66b} \tilde {\tilde D}_{\mu ,p}(\gamma _{\nu }^{|m|} b/2) = \sum _{\mu '=0}^{\infty } \tilde T_{2\mu '+\bar \beta (\mu ),p} \hat {\bar D}_{\mu ,\mu '}(\gamma _{\nu }^{|m|} b/2),\end {equation}


$\mu + q$


$\mu + p$


\begin {equation}\label {Eq:67} \hat {\bar D}_{\mu ,\mu '}(\xi ) = \ri ^{|\mu |-\mu } \epsilon _{\bar \beta (|\mu |)+\mu '} J_{\lceil |\mu |/2 \rceil +\mu '}(\xi /2) J_{\bar \alpha (|\mu |)-\mu '}(\xi /2),\end {equation}


$\xi $


$\gamma _{\nu }^{|m|} a/2$


$\gamma _{\nu }^{|m|} b/2$


$\bar \alpha (\mu )=\mathrm {Integer}(\mu /2)$


$\mu $


$\bar \beta (\mu )=\mathrm {Rest}(\mu /2)$


$\mu $


$\ri ^{|\mu |-\mu } = 1$


$\mu = 0,1,.$


$\ri ^{|\mu |-\mu } = (-1){}^{\mu }$


$\mu = -1,-2,.$


$\lceil |\mu |/2 \rceil = \bar \alpha (|\mu |)+\bar \beta (|\mu |)$


$\lceil x \rceil $


$x$


$\hat T_{\mu ,q}$


$\tilde T_{\mu ,p}$


\begin {align}\label {Eq:68a} \hat T_{\mu ,q} &= \hat A_{1,q}^{(c)} \sum _{r=0}^{\lfloor \mu /2 \rfloor } \tilde \alpha _{\mu ,2r} \bigg [ (-1){}^{r} j_{2r}(\alpha _{1,q} a/2) - \frac {i_{2r}^{(1)}(\alpha _{2,q} a/2)}{\cosh (\alpha _{2,q} a/2)} \cos (\alpha _{1,q}a/2) \bigg ] \nonumber \\ &\quad - \hat A_{1,q}^{(s)} \sum _{r=0}^{\lfloor \mu /2 \rfloor } \tilde \alpha _{\mu ,2r+1} \bigg [ (-1){}^{r} j_{2r+1}(\alpha _{1,q} a/2) - \frac {\alpha _{1,q}}{\alpha _{2,q}}\, \frac {i_{2r+1}^{(1)}(\alpha _{2,q} a/2)}{\cosh (\alpha _{2,q} a/2)} \cos (\alpha _{1,q} a/2) \bigg ],\end {align}


\begin {align}\label {Eq:68b} \tilde T_{\mu ,p} &= \tilde A_{2,p}^{(c)} \sum _{r=0}^{\lfloor \mu /2 \rfloor } \tilde \alpha _{\mu ,2r} \bigg [ (-1){}^{r} j_{2r}(\beta _{1,p} b/2) - \frac {i_{2r}^{(1)}(\beta _{2,p} b/2)}{\cosh (\beta _{2,p} b/2)}\, \cos (\beta _{1,p} b/2) \bigg ] \nonumber \\ &\quad - \tilde A_{2,p}^{(s)} \sum _{r=0}^{\lfloor \mu /2 \rfloor } \tilde \alpha _{\mu ,2r+1} \bigg [ (-1){}^{r} j_{2r+1}(\beta _{1,p} b/2) - \frac {\beta _{1,p}}{\beta _{2,p}}\, \frac {i_{2r+1}^{(1)}(\beta _{2,p} b/2)}{\cosh (\beta _{2,p} b/2)} \cos (\beta _{1,p} b/2) \bigg ],\end {align}


$\lim _{u\to \infty } [i_{r}^{(1)}(u)/\cosh (u)] = 0$


$r=0,1,\ldots $


\begin {equation}\label {Eq:69a} \hat A_{1,q}^{(c)} = 2 A_{1,q} f_{1,q}(a/2) , \qquad \hat A_{1,q}^{(s)} = 2 A_{1,q} g_{1,q}(a/2),\end {equation}


\begin {equation}\label {Eq:69b} \tilde A_{2,p}^{(c)} = 2 A_{2,p} f_{2,p}(b/2) , \qquad \tilde A_{2,p}^{(s)} = 2 A_{2,p} g_{2,p}(b/2),\end {equation}


$\mu =0$


$T_0(u) = 1$


\begin {equation}\label {Eq:70a} \hat T_{0,q} = \frac {4A_{1,q}}{\alpha _{1,q} a} \Bigg \{ \bigg ( 1 + \frac {\alpha _{1,q}^2}{\alpha _{2,q}^2}\, \frac {\cos (\alpha _{1,q} a/2)}{\cosh (\alpha _{2,q} a/2)} \bigg ) g_{1,q}(a/2) - \frac {2 k_{n}^2 \bar k_{1,q}}{\alpha _{1,q} \alpha _{2,q}} \Bigg \} ; \quad q = 1,3,\ldots ,\end {equation}


\begin {equation}\label {Eq:70b} \tilde T_{0,p} = \frac {4A_{2,p}}{\beta _{1,p} b} \Bigg \{ \bigg ( 1 + \frac {\beta _{1,p}^2}{\beta _{2,p}^2}\, \frac {\cos (\beta _{1,p} b/2)}{\cosh (\beta _{2,p} b/2)} \bigg ) g_{2,p}(b/2) - \frac {2 k_{n}^2 \bar k_{2,p}}{\beta _{1,p} \beta _{2,p}} \Bigg \} ; \quad p = 1,3,\ldots .\end {equation}


$e_f=2$


$\varrho _0=1.2$


$^3$


$c=343$


$\varrho _p=2700$


$^3$


$E=71$


$\nu =0.33$


$\eta =10^{-4}$


$a=0.60$


$b=0.50$


$3.0$


\begin {equation}\label {Eq:71} f_c =\frac {c^2}{2\pi } \sqrt {\frac {\varrho _p h}{D_E}},\end {equation}


$f_c = 3980.1$


$q$


$p$


$n=1,\ldots ,2500$


$f_{343}=11.9368$


$q=21$


$p=9$


$f_{r}$


$f_{n}$


$0.60\,\mathrm {m} \times 0.50\,\mathrm {m} \times 3.0\,\mathrm {mm}$


$f_c = 3980.1$


$\Gamma _{n}$


$\Psi _{q}(x)$


$\Phi _{p}(y)$


$q=p=1,\ldots ,7$


$x=0.24a$


$y=0.24b$


$q,p=1,\ldots ,7$


$x=0.24a$


$y=0.24b$


$(0.24a,0.24b)$


$= 10\log _{10} (\Pi /\Pi _0)$


$\Pi $


$\Pi _0=1$


$n=1,\ldots ,N$


$f_N$


$f$


$\Delta N$


$\Delta N=10$


$(300/150){}^3=8$


$(2000/150){}^3=2370$


$f_c=3980.1$


$\Pi _{\mathrm {Avg.}}$


$\Pi _{\mathrm {Avg.}}$


$_{\mathrm {Avg.}} = 10\log _{10} (\Pi _{\mathrm {Avg.}}/\Pi _0)$


$\Pi _{\mathrm {Avg.}}$


$\Pi $


$\Pi _0=1$


$_{\mathrm {Avg.}}$


$\Pi _{\mathrm {Avg.}}$


$\Delta N=10$


$\sigma _{\mathrm {Avg.}}$


$\Delta N=10$


$\delta \Pi _{\mathrm {Avg.}}$


$\Delta N=10$


$\Delta N=40$


$_{\mathrm {Avg.}}$


$f=86.0\div 91.0$


$\Delta N=10$


$f=87.0\div 88.3$


$\Delta N=5,\ldots ,40$


$f=88.2\div 88.4$


$\Delta N=5,\ldots ,60$


$x'=0.24a$


$y'=0.24b$


$0\leqslant |\theta | \leqslant \pi $


$\phi =\arctan (b/a)$


$0\leqslant r \leqslant 3r_0$


$r_0^2 = (a/2){}^2 + (b/2^2)$


$x'=0.24a$


$y'=0.24b$


$0\leqslant |\theta | \leqslant \pi $


$\phi =\arctan (b/a)$


$0\leqslant r \leqslant 3r_0$


$r_0^2 = (a/2){}^2 + (b/2^2)$


$\delta \Pi _{\mathrm {Avg.}}$


$\Pi _{\mathrm {Avg.}}$


$\Delta N$


$\Delta N=60$


\begin {equation}\label {Eq:72} \delta \Pi _{\mathrm {Avg.}} = \bigg \{ \frac {1}{\Delta f} \int _{f_1}^{f_2} \frac {|\Pi _1-{\Pi _2|}^2}{|{\Pi _2|}^2}\, \rd f \bigg \}^{1/2} 100\,\%,\end {equation}


$f_1 = 10$


$f_2 = 10$


$\Delta f = f_2-f_1$


$\Pi _1 = \Pi _{\mathrm {Avg.}}$


$\Pi $


$\Delta N=10$


$\Pi _2 = \Pi _{\mathrm {Avg.}}$


$\Delta N=40$


$10^{-12}$


$\Delta N$


$\Delta N=60$


$f_c = 3980.1$


$\Delta N$


$\Delta N$


$\delta \Pi _{\mathrm {Avg.}}$


$\Delta N=5,10,20,30$


$\Delta N=40$


$\delta \Pi _{\mathrm {Avg.}}$


$\Delta N=5,10,20,30$


$\Delta N=40$


$\Delta N=10$


$\Delta N$


\begin {equation}\label {Eq:73} \tau = \frac {1}{\Delta f} \int _{f_1}^{f_2} \frac {t_1}{t_2}\, \rd f,\end {equation}


$f_1 = 0$


$f_2 = 10$


$\Delta f = f_2-f_1$


$t_1$


$\Pi _{\mathrm {Avg.}}$


$\Delta N=5,10,20,30$


$t_2$


$\Delta N=40$


$\tau $


$\Pi _{\mathrm {Avg.}}$


$\Delta N$


$\Delta N=40$


$= 10\log _{10} [|p|{}^2/(2p_0^2)]$


$|p|$


$p_0=20$


$0\leqslant |\theta | \leqslant \pi $


$\phi =\arctan (b/a)$


$0\leqslant r \leqslant 3r_0$


$r_0^2 = (a/2){}^2 + (b/2^2)$


$\phi =\arctan (b/a)$


$z=0$


$|x|>a/2$


$|y|>b/2$


$x'=0.24a$


$y'=0.24b$


$0\leqslant |\theta | \leqslant \pi $


$\phi =\arctan (b/a)$


$0\leqslant r \leqslant 3r_0$


$r_0^2 = (a/2){}^2 + (b/2^2)$


$\theta $


$R=10$


$x'=0.24a$


$y'=0.24b$


$\theta $


$\phi =\arctan (b/a)$


$\phi $


$\theta =\pi /3$


$\theta $


$\phi =\arctan (b/a)$


$\phi $


$\theta =\pi /3$


$R=10$


$\theta =\pi /2$


$z=0$


$\theta =0$


$\theta \neq 0$


$\phi $


$\phi $


$0$


$\pi /2$


$R=10$


$x'=0.24a$


$y'=0.24b$


$\theta $


$\phi =\arctan (b/a)$


$\phi $


$\theta =\pi /3$


$\theta $


$\phi =\arctan (b/a)$


$\phi $


$\theta =\pi /3$


$\theta $


$\theta $


$\phi $


$\phi $


\begin {align}\label {Eq:A1} J_{|m|}(\tau r) \re ^{-\ri |m|\phi } &= \sum _{\mu =-\infty }^{+\infty } (-\ri ){}^{\mu } J_{|m|+\mu }(\tau x) J_{\mu }(\tau y) = \frac {1}{2} \bigg [ J_{|m|}(\tau x) J_{0}(\tau y) + (-\ri ){}^{|m|} J_{0}(\tau x) J_{|m|}(\tau y) \bigg ] \nonumber \\ &\quad + \frac {1}{2} \sum _{\mu =1}^{\infty } (-\ri ){}^{\mu } \Bigg \{ \bigg [ J_{|m|+\mu }(\tau x) + J_{|m|-\mu }(\tau x) \bigg ] J_{\mu }(\tau y) + (-1){}^{\mu } (-\ri ){}^{|m|} J_{\mu }(\tau x) \bigg [ J_{|m|+\mu }(\tau y) + J_{|m|-\mu }(\tau y) \bigg ] \Bigg \},\end {align}


$w=\tau r$


$u=\tau y$


$v=\tau x$


$\gamma =\phi $


$\mu =m$


$k=\mu $


$\re ^{-\ri \mu \pi /2} = (-\ri ){}^{\mu }$


$|m|-\mu < 0$


$J_{|m|-\mu }(\tau x) = (-1){}^{|m|-\mu } J_{\mu -|m|}(\tau x)$


$J_{|m|-\mu }(\tau y) = (-1){}^{|m|-\mu } J_{\mu -|m|}(\tau y)$


$|\mu | \geqslant 10+|m|$


$n$


$q$


$p$


$(q,p)$


\begin {align}\label {Eq:A2} \hat D_{n}^{|m|}(\tau ) &= \frac {ab}{16\pi } \Bigg \{ \hat {\hat D}_{|m|,q}(\xi ) \tilde {\tilde D}_{0,p}(\zeta ) + \sum _{\mu =1}^{\infty } (-\ri ){}^{\mu } \bigg [ \hat {\hat D}_{|m|+\mu ,q}(\xi ) + \hat {\hat D}_{|m|-\mu ,q}(\xi ) \bigg ] \tilde {\tilde D}_{\mu ,p}(\zeta ) \Bigg \} \nonumber \\ &\quad + \frac {ab}{16\pi } (-\ri ){}^{|m|} \Bigg \{ \hat {\hat D}_{0,q}(\xi ) \tilde {\tilde D}_{|m|,p}(\zeta ) + \sum _{\mu =1}^{\infty } \ri ^{\mu } \hat {\hat D}_{\mu ,q}(\xi ) \bigg [ \tilde {\tilde D}_{|m|+\mu ,p}(\zeta ) + \tilde {\tilde D}_{|m|-\mu ,p}(\zeta ) \bigg ] \Bigg \},\end {align}


$\hat {\hat D}_{\mu ,q}(\zeta ) = (-1){}^{\mu } \hat {\hat D}_{-\mu ,q}(\zeta )$


$\tilde {\tilde D}_{\mu ,p}(\zeta ) = (-1){}^{\mu } \tilde {\tilde D}_{-\mu ,p}(\zeta )$


$|m|-\mu < 0$


$\hat {\hat D}_{|m|-\mu ,q}(\zeta ) = (-1){}^{|m|-\mu } \hat {\hat D}_{\mu -|m|,q}(\zeta )$


$\tilde {\tilde D}_{|m|-\mu ,p}(\zeta ) = (-1){}^{|m|-\mu } \tilde {\tilde D}_{\mu -|m|,p}(\zeta )$


$\tau x = \xi u$


$\tau y = \zeta w$


$x = u a/2$


$y = w b/2$


\begin {equation}\label {Eq:A3a} \hat {\hat D}_{\mu ,q}(\xi ) = \frac {2}{a} \int _{-a/2}^{+a/2} J_{\mu }(\tau x) \Psi _{q}(x+a/2) \rd x = \int _{-1}^{+1} J_{\mu }(\xi u) \hat {\hat \psi }_{q}(u) \rd u,\end {equation}


\begin {equation}\label {Eq:A3b} \tilde {\tilde D}_{\mu ,p}(\zeta ) = \frac {2}{b} \int _{-b/2}^{+b/2} J_{\mu }(\tau y) \Phi _{p}(y+b/2) \rd y = \int _{-1}^{+1} J_{\mu }(\zeta w) \tilde {\tilde \phi }_{p}(w) \rd w,\end {equation}


$\xi = \tau a/2$


$\zeta = \tau b/2$


\begin {equation}\label {Eq:A4a} \hat {\hat \psi }_{q}(u) = \Psi _{q}[(1+u) a/2],\end {equation}


\begin {equation}\label {Eq:A4b} \tilde {\tilde \phi }_{p}(w) = \Phi _{p}[(1+w) b/2].\end {equation}


$J_{\mu }(-u) = J_{-\mu }(u) = (-1){}^{\mu } J_{\mu }(u)$


$\hat {\hat \psi }_{q}(-u) = (-1){}^{q+1} \hat {\hat \psi }_{q}(u)$


$\tilde {\tilde \phi }_{p}(-w) = (-1){}^{p+1} \tilde {\tilde \phi }_{p}(w)$


\begin {equation}\label {Eq:A5a} \hat {\hat D}_{\mu ,q}(\xi ) = 2 \int _0^1 J_{\mu }(\xi u) \hat {\hat \psi }_{q}(u) \rd u ; \quad \mu + q =1,3,\ldots ,\end {equation}


\begin {equation}\label {Eq:A5b} \tilde {\tilde D}_{\mu ,p}(\zeta ) = 2 \int _0^1 J_{\mu }(\zeta w) \tilde {\tilde \phi }_{p}(w) \rd w ; \quad \mu + p = 1,3,\ldots ,\end {equation}


$\hat {\hat D}_{\mu ,q}(\xi ) = 0$


$\mu + q = 2,4,\ldots $


$\tilde {\tilde D}_{\mu ,p}(\zeta ) = 0$


$\mu + p = 2,4,\ldots $


\begin {equation}\label {Eq:A6a} \hat {\hat \psi }_{q}(-u) = \Psi _{q}[(1-u) a/2] , \qquad \hat {\hat D}_{\mu ,q}(\xi ) = (-1){}^{\mu } \hat {\hat D}_{-\mu ,q}(\xi ),\end {equation}


\begin {equation}\label {Eq:A6b} \tilde {\tilde \phi }_{p}(-w) = \Phi _{p}[(1-w) b/2] , \qquad \tilde {\tilde D}_{\mu ,p}(\zeta ) = (-1){}^{\mu } \tilde {\tilde D}_{-\mu ,p}(\zeta ).\end {equation}


\begin {equation}\label {Eq:A7a} J_{\mu }(\xi u) = \sum _{\mu '=0}^{\infty } \hat {\bar D}_{\mu ,\mu '}(\xi ) T_{2\mu '+\bar \beta (\mu )}(u),\end {equation}


\begin {equation}\label {Eq:A7b} J_{\mu }(\zeta w) = \sum _{\mu '=0}^{\infty } \hat {\bar D}_{\mu ,\mu '}(\zeta ) T_{2\mu '+\bar \beta (\mu )}(w),\end {equation}


$T_{n}(u)$


$\mu $


$\bar \alpha (\mu )=\mathrm {Integer}(\mu /2)$


$\bar \beta (\mu )=\mathrm {Rest}(\mu /2)$


\begin {equation}\label {Eq:A8} \hat {\bar D}_{\mu ,\mu '}(\xi ) = \ri ^{|\mu |-\mu } \epsilon _{\bar \beta (|\mu |)+\mu '} J_{\lceil |\mu |/2 \rceil +\mu '}(\xi /2) J_{\bar \alpha (|\mu |)-\mu '}(\xi /2),\end {equation}


$\epsilon _0=1$


$\epsilon _{\mu '} = 2$


$\mu '\neq 0$


$\ri ^{|\mu |-\mu } = 1$


$\mu = 0,1,.$


$\ri ^{|\mu |-\mu } = (-1){}^{\mu }$


$\mu = -1,-2,.$


$\lceil |\mu |/2 \rceil = \bar \alpha (|\mu |)+\bar \beta (|\mu |)$


$\lceil x \rceil $


$x$


$\xi $


$u$


$T$


$u$


$-1$


$+1$


$x/x_0$


$y/y_0$


$\xi = \tau a/2$


$\zeta = \tau b/2$


$\infty $


$\mu '$


$10+\lceil \xi /2 \rceil $


$\leqslant 11 + \mathrm {Integer}(\xi /2)$


\begin {equation}\label {Eq:A9a} \hat {\hat D}_{\mu ,q}(\xi ) = \sum _{\mu '=0}^{\infty } \hat T_{2\mu '+\bar \beta (\mu ),q} \hat {\bar D}_{\mu ,\mu '}(\xi ),\end {equation}


\begin {equation}\label {Eq:A9b} \tilde {\tilde D}_{\mu ,p}(\zeta ) = \sum _{\mu '=0}^{\infty } \tilde T_{2\mu '+\bar \beta (\mu ),p} \hat {\bar D}_{\mu ,\mu '}(\zeta ),\end {equation}


$\mu + q$


$\mu + p$


\begin {equation}\label {Eq:A10a} \hat T_{\mu ,q} = \int _{-1}^{+1} T_{\mu }(u) \hat {\hat \psi }_{q}(u) \rd u = 2 \int _0^1 T_{\mu }(u) \hat {\hat \psi }_{q}(u) \rd u ; \quad \mu + q = 1,3,\ldots ,\end {equation}


\begin {equation}\label {Eq:A10b} \tilde T_{\mu ,p} = \int _{-1}^{+1} T_{\mu }(w) \tilde {\tilde \phi }_{p}(w) \rd w = 2 \int _0^1 T_{\mu }(w) \tilde {\tilde \phi }_{p}(w) \rd w ; \quad \mu + p = 1,3,\ldots ,\end {equation}


$\hat T_{\mu ,q} = 0$


$\mu + q = 2,4,\ldots $


$\tilde T_{\mu ,p} = 0$


$\mu + p = 2,4,\ldots $


$\mu $


$2\mu '+\bar \beta (\mu )$


$n$


$q$


$p$


$n \equiv (q,p)$


$T_{\mu }(-u) = (-1){}^{\mu } T_{\mu }(u)$


$T_{\mu }(-w) = (-1){}^{\mu } T_{\mu }(w)$


\begin {equation}\label {Eq:A11a} \hat T_{\mu ,q} = A_{1,q} \bigg ( \hat T_{1,\mu ,q} - \bar k_{1,q} \frac {\alpha _{2,q}}{\alpha _{1,q}} \hat T_{2,\mu ,q} - \hat T_{3,\mu ,q} + \bar k_{1,q} \hat T_{4,\mu ,q} \bigg ),\end {equation}


\begin {equation}\label {Eq:A11b} \tilde T_{\mu ,p} = A_{2,p} \bigg ( \tilde T_{1,\mu ,p} - \bar k_{2,p} \frac {\beta _{2,p}}{\beta _{1,p}} \tilde T_{2,\mu ,p} - \tilde T_{3,\mu ,p} + \bar k_{2,p} \tilde T_{4,\mu ,p} \bigg ),\end {equation}


\begin {equation}\label {Eq:A12a} \hat T_{1,\mu ,q} = \int _{-1}^{+1} T_{\mu }(u) \cos [(1+u) \alpha _{1,q} a/2] \rd u = \hat T_{1,\mu ,q}^{(c)} \cos (\alpha _{1,q} a/2) - \hat T_{1,\mu ,q}^{(s)} \sin (\alpha _{1,q} a/2),\end {equation}


\begin {equation}\label {Eq:A12b} \hat T_{2,\mu ,q} = \int _{-1}^{+1} T_{\mu }(u) \sin [(1+u) \alpha _{1,q} a/2] \rd u = \hat T_{1,\mu ,q}^{(c)} \sin (\alpha _{1,q} a/2) + \hat T_{1,\mu ,q}^{(s)} \cos (\alpha _{1,q} a/2),\end {equation}


\begin {align}\label {Eq:A12c} \hat T_{3,\mu ,q} & = \int _{-1}^{+1} T_{\mu }(u) \cosh [(1+u) \alpha _{2,q} a/2] \rd u = \hat T_{1,\mu ,q}^{(ch)} \cosh (\alpha _{2,q} a/2) + \hat T_{1,\mu ,q}^{(sh)} \sinh (\alpha _{2,q} a/2) \nonumber \\ & = \re ^{\alpha _{2,q} a/2} \hat T_{1,\mu ,q}^{(+)} + \re ^{-\alpha _{2,q} a/2} \hat T_{1,\mu ,q}^{(-)} = \re ^{\alpha _{2,q} a/2} \sum _{r=0}^{\mu } \tilde \alpha _{\mu ,r} i_{r}^{(1)}(\alpha _{2,q} a/2) + \re ^{-\alpha _{2,q} a/2} \sum _{r=0}^{\mu } \tilde \alpha _{\mu ,r} (-1){}^{r} i_{r}^{(1)}(\alpha _{2,q} a/2),\end {align}


\begin {align}\label {Eq:A12d} \hat T_{4,\mu ,q} &= \int _{-1}^{+1} T_{\mu }(u) \sinh [(1+u) \alpha _{2,q} a/2] \rd u = \hat T_{1,\mu ,q}^{(ch)} \sinh (\alpha _{2,q} a/2) + \hat T_{1,\mu ,q}^{(sh)} \cosh (\alpha _{2,q} a/2) \nonumber \\ &= \re ^{\alpha _{2,q} a/2} \hat T_{1,\mu ,q}^{(+)} - \re ^{-\alpha _{2,q} a/2} \hat T_{1,\mu ,q}^{(-)} = \re ^{\alpha _{2,q} a/2} \sum _{r=0}^{\mu } \tilde \alpha _{\mu ,r} i_{r}^{(1)}(\alpha _{2,q} a/2) - \re ^{-\alpha _{2,q} a/2} \sum _{r=0}^{\mu } \tilde \alpha _{\mu ,r} (-1){}^{r} i_{r}^{(1)}(\alpha _{2,q} a/2),\end {align}


\begin {equation}\label {Eq:A12e} \hat T_{1,\mu ,q}^{(+)} = \frac {1}{2} \int _{-1}^{+1} T_{\mu }(u) \re ^{u \alpha _{2,q} a/2} \rd u = \sum _{r=0}^{\mu } \tilde \alpha _{\mu ,r} \frac {1}{2} \int _{-1}^{+1} \re ^{u \alpha _{2,q} a/2} P_{r}(u) \rd u = \sum _{r=0}^{\mu } \tilde \alpha _{\mu ,r} i_{r}^{(1)}(\alpha _{2,q} a/2),\end {equation}


\begin {equation}\label {Eq:A12f} \hat T_{1,\mu ,q}^{(-)} = \frac {1}{2} \int _{-1}^{+1} T_{\mu }(u) \re ^{-u \alpha _{2,q} a/2} \rd u = \sum _{r=0}^{\mu } \tilde \alpha _{\mu ,r} \frac {1}{2} \int _{-1}^{+1} \re ^{-u \alpha _{2,q} a/2} P_{r}(u) \rd u = \sum _{r=0}^{\mu } \tilde \alpha _{\mu ,r} (-1){}^{r} i_{r}^{(1)}(\alpha _{2,q} a/2),\end {equation}


\begin {equation}\label {Eq:A12g} \frac {1}{2} \int _{-1}^{+1} \re ^{u \alpha _{2,q} a/2} P_{r}(u) \rd u = i_{r}^{(1)}(\alpha _{2,q} a/2),\end {equation}


\begin {equation}\label {Eq:A12h} \frac {1}{2} \int _{-1}^{+1} \re ^{-u \alpha _{2,q} a/2} P_{r}(u) \rd u = (-1){}^{r} i_{r}^{(1)}(\alpha _{2,q} a/2),\end {equation}


\begin {equation}\label {Eq:A12i} \frac {1}{2} \int _{-1}^{+1} \re ^{\pm ua} P_{n}(u) \rd u = (\pm 1){}^{n} i_{n}^{(1)}(a),\end {equation}


\begin {equation}\label {Eq:A12j} \tilde T_{1,\mu ,p} = \int _{-1}^{+1} T_{\mu }(w) \cos [(1+w) \beta _{1,p} b/2] \rd w = \tilde T_{2,\mu ,p}^{(c)} \cos (\beta _{1,p} b/2) - \tilde T_{2,\mu ,p}^{(s)} \sin (\beta _{1,p} b/2),\end {equation}


\begin {equation}\label {Eq:A12k} \tilde T_{2,\mu ,p} = \int _{-1}^{+1} T_{\mu }(w) \sin [(1+w) \beta _{1,p} b/2] \rd w = \tilde T_{2,\mu ,p}^{(c)} \sin (\beta _{1,p} b/2) + \tilde T_{2,\mu ,p}^{(s)} \cos (\beta _{1,p} b/2),\end {equation}


\begin {equation}\label {Eq:A12l} \tilde T_{3,\mu ,p} = \int _{-1}^{+1} T_{\mu }(w) \cosh [(1+w) \beta _{2,p} b/2] \rd w = \tilde T_{2,\mu ,p}^{(ch)} \cosh (\beta _{2,p} b/2) + \tilde T_{2,\mu ,p}^{(sh)} \sinh (\beta _{2,p} b/2),\end {equation}


\begin {equation}\label {Eq:A12m} \tilde T_{4,\mu ,p} = \int _{-1}^{+1} T_{\mu }(w) \sinh [(1+w) \beta _{2,p} b/2] \rd w = \tilde T_{2,\mu ,p}^{(ch)} \sinh (\beta _{2,p} b/2) + \tilde T_{2,\mu ,p}^{(sh)} \cosh (\beta _{2,p} b/2),\end {equation}


$i_{n}^{(1)}(-a) = (-1){}^{n} i_{n}^{(1)}(a)$


$\cos [(1+u) \alpha _{1,q} a/2] = [\cos (\alpha _{1,q} a/2) \cos (u \alpha _{1,q} a/2) - \sin (\alpha _{1,q} a/2) \sin (u \alpha _{1,q} a/2)]$


$\sin [(1+u) \alpha _{1,q} a/2] = [\sin (\alpha _{1,q} a/2) \cos (u \alpha _{1,q} a/2) + \cos (\alpha _{1,q} a/2) \sin (u \alpha _{1,q} a/2)]$


\begin {equation}\label {Eq:A13a} \hat T_{1,\mu ,q}^{(c)} = \int _{-1}^{+1} T_{\mu }(u) \cos (u \alpha _{1,q} a/2) \rd u ;\ \text {for even}\ \mu \ \text {zero otherwise},\end {equation}


\begin {equation}\label {Eq:A13b} \hat T_{1,\mu ,q}^{(s)} = \int _{-1}^{+1} T_{\mu }(u) \sin (u \alpha _{1,q} a/2) \rd u ;\ \text {for odd}\ \mu \ \text {zero otherwise},\end {equation}


\begin {equation}\label {Eq:A13c} \hat T_{1,\mu ,q}^{(ch)} = \int _{-1}^{+1} T_{\mu }(u) \cosh (u \alpha _{2,q} a/2) \rd u ;\ \text {for even}\ \mu \ \text {zero otherwise},\end {equation}


\begin {equation}\label {Eq:A13d} \hat T_{1,\mu ,q}^{(sh)} = \int _{-1}^{+1} T_{\mu }(u) \sinh (u \alpha _{2,q} a/2) \rd u ;\ \text {for odd}\ \mu \ \text {zero otherwise},\end {equation}


\begin {equation}\label {Eq:A13e} \tilde T_{2,\mu ,p}^{(c)} = \int _{-1}^{+1} T_{\mu }(w) \cos (w \beta _{1,p} b/2) \rd w ;\ \text {for even}\ \mu \ \text {zero otherwise},\end {equation}


\begin {equation}\label {Eq:A13f} \tilde T_{2,\mu ,p}^{(s)} = \int _{-1}^{+1} T_{\mu }(w) \sin (w \beta _{1,p} b/2) \rd w ;\ \text {for odd}\ \mu \ \text {zero otherwise},\end {equation}


\begin {equation}\label {Eq:A13g} \tilde T_{2,\mu ,p}^{(ch)} = \int _{-1}^{+1} T_{\mu }(w) \cosh (w \beta _{2,p} b/2) \rd w ;\ \text {for even}\ \mu \ \text {zero otherwise},\end {equation}


\begin {equation}\label {Eq:A13h} \tilde T_{2,\mu ,p}^{(sh)} = \int _{-1}^{+1} T_{\mu }(w) \sinh (w \beta _{2,p} b/2) \rd w ;\ \text {for odd}\ \mu \ \text {zero otherwise},\end {equation}


$\cosh (u \alpha _{2,q} a/2) = \cos (\ri u \alpha _{2,q} a/2)$


$\sinh (u \alpha _{2,q} a/2) = (-\ri ) \sin (\ri u \alpha _{2,q} a/2)$


\begin {equation}\label {Eq:A14} T_{\mu }(x) = \sum _{r=0}^{\mu } \tilde \alpha _{\mu ,r} P_{r}(x),\end {equation}


$\tilde \alpha _{0,r} = \delta _{0,r}$


\begin {equation}\label {Eq:A15} \tilde \alpha _{\mu ,r} = \frac {2r+1}{2} \int _{-1}^{+1} T_{\mu }(x) P_{r}(x) \rd x,\end {equation}


$0\leqslant r \leqslant \mu $


$r=0,1,\ldots $


\begin {equation}\label {Eq:A16} \int _{-1}^{+1} P_{r}(x) P_{r'}(x) \rd x = \frac {2}{2r+1} \delta _{rr'}.\end {equation}


$x=\cos \theta $


\begin {equation}\label {Eq:A17} \tilde \alpha _{\mu ,r} = \frac {2r+1}{2} \int _0^{\pi } T_{\mu }(\cos \theta ) P_{r}(\cos \theta ) \sin \theta \, \rd \theta .\end {equation}


\begin {equation}\label {Eq:A18} P_{r}(\cos \theta ) = \sum _{k=0}^{\lfloor r/2 \rfloor } \epsilon _{r-2k} \tilde \beta _{r,k} T_{r-2k}(\cos \theta ),\end {equation}


$\lfloor x \rfloor $


$x$


$\epsilon _0 = 1$


$\epsilon _k = 2$


$|k| = 1,2,\ldots $


\begin {equation}\label {Eq:A19} \tilde \beta _{r,k} = \frac {1}{\pi }\, \frac {\Gamma (k+1/2)}{\Gamma (k+1)}\, \frac {\Gamma (r-k+1/2)}{\Gamma (r-k+1)}.\end {equation}


\begin {equation}\label {Eq:A20} \tilde \alpha _{\mu ,r} = \frac {2r+1}{2} \sum _{k=0}^{\lfloor r/2 \rfloor } \epsilon _{r-2k} \tilde \beta _{r,k} \tilde \gamma _{\mu ,r-2k},\end {equation}


\begin {equation}\label {Eq:A21} \tilde \gamma _{\mu ,\nu } = \int _0^{\pi } T_{\mu }(\cos \theta ) T_{\nu }(\cos \theta ) \sin \theta \, \rd \theta = \int _{-1}^{+1} T_{\mu }(x) T_{\nu }(x) \rd x.\end {equation}


\begin {equation}\label {Eq:A22} T_{\mu }(x) T_{\nu }(x) = \frac {1}{2} T_{\mu +\nu }(x) + \frac {1}{2} T_{|\mu -\nu |}(x),\end {equation}


$\mu ,\nu \geqslant 0$


\begin {equation}\label {Eq:A23} \tilde \gamma _{\mu ,\nu } = \tilde \xi _{\mu +\nu } + \tilde \xi _{|\mu -\nu |},\end {equation}


\begin {equation}\label {Eq:A24} \tilde \xi _{n} = \frac {1}{2} \int _{-1}^{+1} T_{n}(x) \rd x = \begin {cases} 0; & n=1,3,5,\ldots , \\ (1-n^2){}^{-1}; & n=0,2,4,\ldots . \\ \end {cases}\end {equation}


\begin {equation}\label {Eq:A25a} \int _{-1}^{+1} \re ^{\ri ua} P_{n}(u) \rd u = 2\ri ^{n} j_{n}(a),\end {equation}


\begin {equation}\label {Eq:A25b} \int _{-1}^{+1} \re ^{-\ri ua} P_{n}(u) \rd u = 2(-\ri ){}^{n} j_{n}(a),\end {equation}


$a>0$


$j_{n}(a) = [\pi /(2a)]{}^{1/2} J_{n+1/2}(a)$


\begin {equation}\label {Eq:A26a} \int _{-1}^{+1} P_{2n}(u) \sin (ua) \rd u = 0,\end {equation}


\begin {equation}\label {Eq:A26b} \int _{-1}^{+1} P_{2n+1}(u) \cos (ua) \rd u = 0,\end {equation}


\begin {equation}\label {Eq:A26c} \int _{-1}^{+1} P_{2n}(u) \cos (ua) \rd u = 2 (-1){}^{n} j_{2n}(a),\end {equation}


\begin {equation}\label {Eq:A26d} \int _{-1}^{+1} P_{2n+1}(u) \sin (ua) \rd u = 2 (-1){}^{n} j_{2n+1}(a).\end {equation}


\begin {equation}\label {Eq:A27a} \hat T_{1,\mu ,q}^{(c)} = 2 \sum _{r=0}^{\lfloor \mu /2 \rfloor } \tilde \alpha _{\mu ,2r} (-1){}^{r} j_{2r}(\alpha _{1,q} a/2),\end {equation}


\begin {equation}\label {Eq:A27b} \hat T_{1,\mu ,q}^{(s)} = 2 \sum _{r=0}^{\lfloor \mu /2 \rfloor } \tilde \alpha _{\mu ,2r+1} (-1){}^{r} j_{2r+1}(\alpha _{1,q} a/2),\end {equation}


\begin {equation}\label {Eq:A27c} \hat T_{1,\mu ,q}^{(ch)} = 2 \sum _{r=0}^{\lfloor \mu /2 \rfloor } \tilde \alpha _{\mu ,2r} i_{2r}^{(1)}(\alpha _{2,q} a/2),\end {equation}


\begin {equation}\label {Eq:A27d} \hat T_{1,\mu ,q}^{(sh)} = 2 \sum _{r=0}^{\lfloor \mu /2 \rfloor } \tilde \alpha _{\mu ,2r+1} i_{2r+1}^{(1)}(\alpha _{2,q} a/2),\end {equation}


\begin {equation}\label {Eq:A27e} \tilde T_{2,\mu ,p}^{(c)} = 2 \sum _{r=0}^{\lfloor \mu /2 \rfloor } \tilde \alpha _{\mu ,2r} (-1){}^{r} j_{2r}(\beta _{1,p} b/2),\end {equation}


\begin {equation}\label {Eq:A27f} \tilde T_{2,\mu ,p}^{(s)} = 2 \sum _{r=0}^{\lfloor \mu /2 \rfloor } \tilde \alpha _{\mu ,2r+1} (-1){}^{r} j_{2r+1}(\beta _{1,p} b/2),\end {equation}


\begin {equation}\label {Eq:A27g} \tilde T_{2,\mu ,p}^{(ch)} = 2 \sum _{r=0}^{\lfloor \mu /2 \rfloor } \tilde \alpha _{\mu ,2r} i_{2r}^{(1)}(\beta _{2,p} b/2),\end {equation}


\begin {equation}\label {Eq:A27h} \tilde T_{2,\mu ,p}^{(sh)} = 2 \sum _{r=0}^{\lfloor \mu /2 \rfloor } \tilde \alpha _{\mu ,2r+1} i_{2r+1}^{(1)}(\beta _{2,p} b/2),\end {equation}


$j_{n}(\ri z) = \ri ^{n} i_{n}^{(1)}(z)$


$i_{n}^{(1)}(z) = [\pi /(2z)]{}^{1/2} I_{n+1/2}(z)$


$\mu =0$


$T_0(u) = 1$


\begin {equation}\label {Eq:A28a} \hat T_{0,q} = \int _{-1}^{+1} \hat {\hat \psi }_{q}(u) \rd u = 2 \int _0^1 \hat {\hat \psi }_{q}(u) \rd u = 2 \int _{-1}^0 \hat {\hat \psi }_{q}(u) \rd u ; \quad q = 1,3,\ldots ,\end {equation}


\begin {equation}\label {Eq:A28b} \tilde T_{0,p} = \int _{-1}^{+1} \tilde {\tilde \phi }_{p}(w) \rd w = 2 \int _0^1 \tilde {\tilde \phi }_{p}(w) \rd w = 2 \int _{-1}^0 \tilde {\tilde \phi }_{p}(w) \rd w ; \quad p = 1,3,\ldots ,\end {equation}


$\hat T_{0,q} = 0$


$q = 2,4,\ldots $


$\tilde T_{0,p} = 0$


$p = 2,4,\ldots $


\begin {equation}\label {Eq:A29a} \hat T_{0,q} = 2 \int _{-1}^0 \Psi _{q}[(1+u) a/2] \rd u = \frac {4}{a} \int _0^{a/2} \Psi _{q}(x) \rd x ; \quad q = 1,3,\ldots ,\end {equation}


\begin {equation}\label {Eq:A29b} \tilde T_{0,p} = 2 \int _{-1}^0 \Phi _{p}[(1+w) b/2] \rd w = \frac {4}{b} \int _0^{b/2} \Phi _{p}(y) \rd y ; \quad p = 1,3,\ldots ,\end {equation}


$(1+u) a/2 = x$


$(1+w) b/2 = y$


\begin {align}\label {Eq:B1} p(\vec r) &= \lim _{\epsilon \to 0} \int _{S'_{+}} \bigg [ \frac {\partial G(\vec r, \vec r\,')}{\partial z'} p(\vec r\,') - \frac {\partial p(\vec r\,')}{\partial z'} G(\vec r, \vec r\,') \bigg ]{}_{z'=+\epsilon } \rd S'_{+} \nonumber \\ &\quad - \lim _{\epsilon \to 0} \int _{S'_{-}} \bigg [ \frac {\partial G(\vec r, \vec r\,')}{\partial z'} p(\vec r\,') - \frac {\partial p(\vec r\,')}{\partial z'} G(\vec r, \vec r\,') \bigg ]{}_{z'=-\epsilon } \rd S'_{-},\end {align}


$z'=+\epsilon $


$z'=-\epsilon $


$\epsilon \to 0$


$S'_{+}$


$S'_{-}$


$\epsilon \to 0$


\begin {equation}\label {Eq:B2} \lim _{\epsilon \to 0} \bigg [ \frac {\partial G(\vec r, \vec r\,')}{\partial z'} \bigg ]{}_{z'=\pm \epsilon } = - \ri k_0 \bigg \{ \bigg ( 1 - \frac {1}{\ri k_0R} \bigg ) \frac {\re ^{\ri k_0R}}{4\pi R}\, \frac {z}{R} \bigg \}{}_{z'=0},\end {equation}


$R = |\vec R| = [(x-x'){}^2 + (y-y'){}^2 + (z-z'){}^2]{}^{1/2}$


$z$


$z'$


\begin {align}\label {Eq:B3} p(\vec r) & = \lim _{\epsilon \to 0} \int _{S'_{+}} \bigg [ \frac {\partial G(\vec r, \vec r\,')}{\partial z'} p(\vec r\,') - \ri \omega \varrho _0 v(x+a/2,y+b/2) G(\vec r, \vec r\,') \bigg ]{}_{z'=+\epsilon } \rd S'_{+} \nonumber \\ &\quad - \lim _{\epsilon \to 0} \int _{S'_{-}} \bigg [ \frac {\partial G(\vec r, \vec r\,')}{\partial z'} p(\vec r\,') - \ri \omega \varrho _0 v(x+a/2,y+b/2) G(\vec r, \vec r\,') \bigg ]{}_{z'=-\epsilon } \rd S'_{-}.\end {align}


$z'=0$


$z\geqslant 0$


\begin {equation}\label {Eq:B4a} \lim _{\epsilon \to 0} \bigg [ G(\vec r, \vec r\,') \bigg ]{}_{z'=+\epsilon } = \lim _{\epsilon \to 0} \bigg [ G(\vec r, \vec r\,') \bigg ]{}_{z'=-\epsilon } = G(\vec r, \vec r\,') \bigg |_{z'=0},\end {equation}


\begin {equation}\label {Eq:B4b} \lim _{\epsilon \to 0} \bigg [ \frac {\partial G(\vec r, \vec r\,')}{\partial z'} \bigg ]{}_{z'=+\epsilon } = \lim _{\epsilon \to 0} \bigg [ \frac {\partial G(\vec r, \vec r\,')}{\partial z'} \bigg ]{}_{z'=-\epsilon } = \frac {\partial G(\vec r, \vec r\,')}{\partial z'} \bigg |_{z'=0}.\end {equation}


$p(x',y',z') = -p(x',y',-z')$


\begin {equation}\label {Eq:B5} \lim _{\epsilon \to 0} \bigg [ p(\vec r\,') \bigg ]{}_{z'=+\epsilon } = - \lim _{\epsilon \to 0} \bigg [ p(\vec r\,') \bigg ]{}_{z'=-\epsilon } = \bigg [ p_{+}(\vec r\,') \bigg ]{}_{z'=0} = - \bigg [ p_{-}(\vec r\,') \bigg ]{}_{z'=0},\end {equation}


$p_{+}(\vec r\,')$


$p_{-}(\vec r\,')$


$z\geqslant 0$


\begin {equation}\label {Eq:B6} p(\vec r) = \int _{S'} \bigg [ p_{+}(\vec r\,') - p_{-}(\vec r\,') \bigg ]{}_{z'=0} \frac {\partial G(\vec r, \vec r\,')}{\partial z'} \bigg |_{z'=0} \rd S',\end {equation}


$S'=S'_{+}=S'_{-}$


$2p(x',y',0)$


\begin {equation}\label {Eq:B7} \bigg [ p_{+}(\vec r\,') - p_{-}(\vec r\,') \bigg ]{}_{z'=0} = \bigg [ 2p_{+}(\vec r\,') \bigg ]{}_{z'=0} = - \bigg [ 2p_{-}(\vec r\,') \bigg ]{}_{z'=0} = 2p(x',y',0).\end {equation}


$\varrho _0 \ll \varrho $


$e_f \to 0$


$n'\neq n$


$n$


$n$


\begin {equation}\label {Eq:C1a} c_{n}' D k_{n}^4 - c_{n}' \omega '^2 \varrho h - c_{n}' \ri \varkappa \omega '^2 \varrho h \hat \lambda _{nn} = \hat P_{n}\end {equation}


\begin {equation}\label {Eq:C1b} c_{n}'' D k_{n}^4 - c_{n}'' \omega ''^2 \varrho h = \hat P_{n}\end {equation}


$\omega '$


$\omega ''$


$c_{n}'$


$c_{n}''$


\begin {equation}\label {Eq:C2} c_{n}' D k_{n}^4 - c_{n}' \omega '^2 \varrho h - c_{n}' \ri \varkappa \omega '^2 \varrho h \hat \lambda _{nn} = c_{n}'' D k_{n}^4 - c_{n}'' \omega ''^2 \varrho h\end {equation}


$c_{n}' \approx c_{n}''$


$-a/2 \leqslant x \leqslant +a/2$


$-b/2 \leqslant y \leqslant +b/2$


\begin {equation}\label {Eq:D1} W_{n}(x+a/2,y+b/2) = \sum _{\nu =0}^{\infty } \sum _{m=-\infty }^{\infty } \hat D_{n}^{m}(\gamma _{\nu }^{|m|}) \bar N_{\nu }^{|m|} J_{|m|}(\gamma _{\nu }^{|m|} r) \re ^{\ri m\phi },\end {equation}


$x = r \cos \phi $


$y = r \sin \phi $


\begin {equation}\label {Eq:D2} \bar W_{n}(k_x,k_y) = \sum _{\nu =0}^{\infty } \sum _{m=-\infty }^{\infty } (-\ri ){}^{|m|} \hat D_{n}^{m}(\gamma _{\nu }^{|m|}) \bar N_{\nu }^{|m|} \bar D_{\nu }^{|m|}(\tau ) \re ^{+\ri m\beta },\end {equation}


$k_x = \tau \cos \beta $


$k_y = \tau \sin \beta $


$N$


$f$


$n=0,\ldots ,N-1$


$N\times N$


$\hat \xi _{nn'}$


$\ell =0,\ldots ,L-1$


$L = \mathrm {Round}(3m+1.7\nu +3)$


$m$


$\nu $


$\gamma _{\nu }^{|m|}$


$m$


$\nu $


$\gamma _{\nu }^{|m|} \leqslant 2\pi f/c$


$\Delta N$


$c_{n}$


$c_{n}$
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Leppington et al. [1] analytically investigated the acoustic radiation efficiency of simply supported rectangular panels. Berry et 
al. [2] derived general expressions for sound radiation from rectangular baffled plates with arbitrary boundary conditions. They ap-
plied the approximate Rayleigh–Ritz method to solve the equations of motion and performed analytical calculations to determine the 
radiation efficiency. Atalla et al. [3] used the Rayleigh-Ritz approximation for the eigenfrequencies and mode shapes of a rectangular 
plate with general boundary conditions. They then presented formulas for the acoustic field of the unbaffled plate. In numerical anal-
ysis, they focused on the influence of the specific boundary conditions of the plate on the radiation efficiency. They considered simply 
supported and free edges of the plate, conducted limited comparative analyses between the sound radiation of baffled and unbaffled 
plates, and carried out limited experimental studies of the acoustic field. Sung and Jan [4] obtained approximate eigenfrequencies of 
a clamped rectangular plate and presented the radiated acoustic power. They derived approximate solutions for the vibration problem 
of the plate based on the virtual work principle. Two concentrated forces were applied to emulate a single excitation moment on the 
plate. The acoustic power was calculated using the double Fourier transform. Their experimental results were slightly smaller than the 
theoretical values, probably due to diffraction at the edges of the finite baffle, in contrast to the infinite baffle assumed in theoretical 
calculations, which is especially important at the low-frequency limit. Laulagnet [5] presented a rigorous analysis of the sound radia-
tion of a vibrating simply supported rectangular plate with no baffle (WNB). He solved the coupled system of the biharmonic equation 
and the Helmholtz equation by applying the modal expansion of the vibration velocity of the plate and the two-dimensional Fourier 
transform for calculating the modal impedance coefficients. Li and Gibeling [6] analyzed the effect of including the self- and mutual 
radiation resistances of a simply supported rectangular plate in rigorous calculations of the radiated sound power. They illustrated the 
influence of including or neglecting the mutual radiation resistances on the calculated total acoustic power. Li [7] presented further 
efficient analytical solutions for the real component of the self- and mutual radiation resistances of a simply supported rectangular 
plate in the form of double surface integrals. Hashimoto [8] proposed a practical measurement method for the radiation efficiency 
of a vibrating thin clamped panel, referred to as the discrete calculation method. This method is based on measuring the normal 
vibration velocity on the plate discretized into elements small compared to the wavelength. The acoustic field was then calculated 
as the superposition of the fields radiated by the elements considered as circular pistons. This method is equivalent to numerical 
integration of the Rayleigh first integral, while integrating the field over the surface of the plate yields the acoustic power. In this 
method, the ratio of the discretized element size to the wavelength corresponds to the approximation error: the greater the ratio, the 
larger the error.

Arenas and Crocker [9] analyzed the radiation efficiency of baffled clamped and simply supported rectangular plates excited by 
point forces. They used the resistance matrix method proposed earlier by Hashimoto. Zawieska et al. [10,11] presented the low-
frequency approximation for the modal self- and mutual impedance coefficients of a vibrating simply supported rectangular plate. 
Currey and Cunefare [12] presented theoretical expressions for the radiation resistances of simply supported plates. They expressed 
the sound power radiated from a plate in terms of the normal velocity distribution on the plate and a coupling matrix. Their velocity 
distribution on the plate was expressed in terms of the modal amplitudes and normal modes. Zou and Crocker [13] analyzed the sound 
power radiated from rectangular plates for six different boundary configurations of the plate edges. They applied the method presented 
earlier by Currey and Cunefare, with the key issue being to find the coupling matrix for the boundary conditions of interest. Putra and 
Thompson [14] analyzed the sound radiation efficiency of a vibrating thin rectangular plate with pairs of edges either simply supported 
or guided. They used approximate eigenfrequencies and eigenvalues (proposed earlier by Warburton [15]), and included only the 
modal mutual impedance coefficients in their numerical calculations, obtaining results up to frequencies above the critical frequency of 
the plates. Kolber et al. [16] applied the DCM to examine the effect of plate discretization on the accuracy of sound radiation efficiency 
measurements. This method is essentially equivalent to the method presented earlier by Hashimoto. Mellow and Kärkkäinen [17] 
presented a rigorous analysis of the radiation impedance of a rectangular piston vibrating in an infinite rigid baffle. They obtained 
some highly convergent expansion series useful at low frequencies. Hasheminejad and Keshavarzpour [18] proposed an algorithm 
for an active sound radiation control system for a thick piezolaminated smart rectangular plate, based on a semi-analytic solution for 
the coupled vibroacoustic response of a simply supported, arbitrarily thick, piezolaminated rectangular plate embedded in an infinite 
rigid baffle. They applied the linear three-dimensional piezoelasticity theory in conjunction with the classical Rayleigh integral, while 
the responses of their smart plate were controlled by an integrated layer with spatially distributed piezoelectric sensors and actuators. 
It was shown numerically that the proposed control system was capable of suppressing the predicted sound radiation response of 
the plate. Hasheminejad et al. [19] presented a similar algorithm for suppressing the vibroacoustic responses of a rectangular point-
excited, simply supported, sandwich electrorheological panel. Pawelczyk and Wrona [20] presented several practical applications of 
the rigorous analysis of sound radiation of vibrating thin rectangular plates as elements of machine casings in industrial environments. 
Dikshit and Sonti analytically studied sound transmission of an obliquely incident plane wave passing through an unbaffled simply 
supported plate using the double Fourier transform method [21]. Dikshit et al. presented a closed-form expression for the resonance 
frequencies of an unbaffled simply supported rectangular water-loaded plate [22]. As shown above, considerable work has been 
carried out on sound radiation of rectangular plates. Most studies, however, either employ the approximate Rayleigh-Ritz method to 
find the eigenfrequencies and eigenfunctions of the plates, or they focus on exact solutions for limited boundary configurations. In the 
case of the Rayleigh-Ritz method, the results are accurate only at the lowest frequencies. In the case of exact solutions, recent results 
are restricted to plates where both the eigenfrequencies and eigenfunctions assume simple forms, including plates simply supported 
on all edges or plates with two opposite edges simply supported and the other two guided. Dealing with more complex boundary 
configurations leads to complex algorithms, such as those applied by Zou and Crocker [13]. The main limitation of the exact solutions 
presented so far is that the plate edges are either simply supported, clamped, or mixed configurations such as SS-C-SS-C or SS-F-SS-F 
(here SS stands for a simply supported edge, C for a clamped edge, and F for a free edge). However, these boundary configurations are 
of limited practical use for cases such as a glass plate in a rectangular window, where all the edges have similar or identical boundary 
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conditions. Although it is uncertain whether the edges of such glass plates are clamped or simply supported, they are unlikely to match 
mixed configurations such as SS-C-SS-C or SS-F-SS-F. Therefore, addressing the case of the C-C-C-C plate could represent significant 
progress. On the other hand, the approximate eigenfrequencies and eigenfunctions obtained using methods such as the Rayleigh-Ritz 
approach result in error propagation when calculating radiation impedances and subsequently solving systems of equations. Hence, 
they are reliable only for the lowest frequencies. Therefore, applying exact solutions of the eigenvalue problem for free vibrations of 
the C-C-C-C plate is of utmost importance, as only negligible numerical errors would be propagated from this stage to the radiation 
impedances and the solution of systems of equations. If, in addition, the radiation impedance could be calculated exactly, even smaller 
numerical errors would propagate to the subsequent systems of equations. The main aim of this study is to address this problem and 
provide the theoretical approximate formulas method (TAFM) for the sound radiation of a thin rectangular plate clamped along its 
entire circumference, considering two major cases: the plate WNB and the plate embedded in a rigid infinite baffle (RIB). In this case, 
the system of coupled characteristic equations, presented recently by Xing and Liu [23], must be applied. This leads to exact solutions 
for free vibrations of thin rectangular clamped plates. For this purpose, they used their symplectic dual method. Solving their system 
of characteristic equations yields the exact eigenvalues and eigenfunctions of clamped plates. In this study, this exact approach to 
the eigenvalue problem has been applied. Further, the Fourier transforms of the eigenfunctions of the plate have been presented in 
a form suitable for obtaining the acoustic pressure and acoustic power of the vibrating plate, expressed as a double inverse Fourier 
transform useful for numerical calculations (i.e., the transforms are rearranged using the boundary conditions of the plate in such 
a way that the hyperbolic functions are eliminated). The resulting double integrals for the modal admittance coefficients exhibit 
troublesome singularities and, overall, the calculations are time-consuming. Therefore, the double integrals have been transformed 
using the relation between the double inverse Fourier transforms and series of single inverse Hankel transforms, as mentioned by 
Cornacchio and Soni [24] and Baddour [25]. The latter contain only single integrals, which simplifies further numerical analysis. 
However, this results in expansion coefficients expressed in the form of double integrals. These coefficients have been presented here 
as rapidly convergent expansion series, independent of frequency and therefore calculable a priori, i.e., before any calculations of 
the acoustic field are performed. The obtained single inverse Hankel transform has been spectrally mapped to a set of integrals that 
can be expressed in terms of generalized hypergeometric functions, which are readily available in Python and similar programming 
languages (cf. e.g. Rdzanek and Szemela [26]). For this purpose, the formalism of radial polynomials (connected with the circular 
Zernike polynomials widely used in optics) has been applied. It is important to note that although the spectral mapping method has 
previously been successfully applied to problems of sound radiation by vibrating circular and annular plates and apertures, it is not 
obvious that this method would also be applicable to rectangular plates while still providing exact and numerically accurate results. 
Nevertheless, this was achieved by employing the aforementioned relation between the double inverse Fourier transforms and series 
of single inverse Hankel transforms. Finally, all formulas are theoretically exact and numerically accurate, except for numerical errors 
due to truncation, which are then propagated when solving the system of algebraic equations. By numerically accurate, it should be 
understood here as achievable with arbitrary numerical precision.

The TAFM presented in this study can be applied for rapid and accurate calculations of acoustic power, radiation efficiency, and 
acoustic pressure of thin clamped rectangular plates, whether in the RIB or WNB. The numerical results are valid across a wide 
frequency range, from below the fundamental frequencies of the plates to frequencies far exceeding their critical values.

Such high accuracy has been achieved by determining the exact eigenvalues and eigenfunctions of the clamped plate. In addition, 
the radiation impedances and admittances have also been calculated exactly. This was accomplished using the spectral mapping 
method and reducing the formulas for the modal self-impedance and mutual coefficients of the plate in the RIB from their double 
inverse Fourier transform form into rapidly converging expansion series. These coefficients can subsequently be used to calculate, 
relatively rapidly, the modal admittance coefficients of the WNB plate. Consequently, the coefficients can be determined efficiently and 
accurately, regardless of frequency. A secondary aim is to present sample numerical results, to examine the frequency limits within 
which the formulas provide reliable outcomes, and to validate the numerical results using other methods such as FEM. Potential 
practical applications of TAFM include theoretical predictions of the acoustic field and acoustic power of various industrial systems 
containing thin clamped rectangular plates, whenever they can be treated as plates in infinite baffles or when the effect of the baffle 
is negligible. This method can also be used to obtain reference values to validate results produced by different approximate methods, 
including FEM. This study is organized as follows. Section 2.1 presents the statement of the problem. Section 2.2 presents the free 
vibrations, characteristic equations, and eigenfunctions of a thin rectangular plate clamped on all its edges. Section 2.3 presents 
the Fourier transforms of the eigenfunctions of the plate. Section 2.4 presents the solutions for the sound radiation of the excited 
vibrations of the WNB plate. Section 2.5 presents the solutions for the sound radiation of the excited vibrations of the plate in the 
RIB. Section 3 describes the spectral mapping method for obtaining modal admittance coefficients in the form of rapidly converging 
expansion series useful for numerical calculations. Section 4 presents the numerical analysis. In Section 5, the conclusions are drawn. 
Some detailed mathematical derivations are presented in Appendix A–E.

2.  The governing equations

2.1.  Statement of the problem

The problem of sound radiation from a thin rectangular plate clamped on all its edges is considered. The plate is either embedded 
in the RIB or in the WNB. In the first case, the Neumann boundary condition, corresponding to zero normal particle velocity (i.e., 
a rigid boundary), is satisfied throughout the plane of the plate — both on the plate itself and in the surrounding medium. In the 
second case, the Neumann condition is enforced only on the plate, whereas in the region outside the plate, the Dirichlet boundary 
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Fig. 1. Geometry of the clamped rectangular plate of dimensions 𝑎 × 𝑏 × ℎ in rectangular coordinates (𝑥, 𝑦), where (𝑥′, 𝑦′) are the coordinates of the 
point where the concentrated force is applied to the plate, suitable for: (a) the vibration problem, (b) the radiation problem.

condition (corresponding to zero acoustic pressure) is imposed. In this second scenario, the acoustic pressure is continuous across the 
plate plane except at the location of the plate itself, where a discontinuity occurs.

The plate is excited by a time-harmonic concentrated external force. The problem is solved exactly.

2.2.  The free vibrations of the plate

The exact solutions for the eigenfrequencies and eigenfunctions of a thin clamped rectangular plate were presented earlier by Xing 
and Liu [23]. Therefore, only the necessary equations are summarized here for convenience.

A thin rectangular plate of dimensions 𝑎 × 𝑏 × ℎ with clamped edges is oscillating freely. The origin of the coordinates is located at 
the corner of the plate, i.e., at 𝑥, 𝑦 = 0 (cf. Fig. 1(a)). Thus, the following biharmonic equation is satisfied (cf. Pierce [27] Eq. (1-6.1), 
Blackstock [28] Eq. (A.1) p. 2, and Meirovitch [29] Eq. (5.258))

∇4𝑊𝑛(𝑥, 𝑦) − 𝑘4𝑛𝑊𝑛(𝑥, 𝑦) = 0, (1)

for 0 ⩽ 𝑥 ⩽ 𝑎 and 0 ⩽ 𝑦 ⩽ 𝑏, where 𝑘𝑛 = (𝜚ℎ𝜔2
𝑛∕𝐷𝐸 )1∕4 is the bending wavenumber, 𝐷𝐸 = 𝐸ℎ3∕[12(1 − 𝜈2)] is the bending stiffness, ℎ

is the thickness of the plate (ℎ ≪ 𝑎, 𝑏), 𝑊𝑛 is the 𝑛th eigenfunction, 𝜔𝑛 is the 𝑛th angular eigenfrequency, 𝑛 = 1, 2,…, 𝑛 is the modal 
number in the order of increasing 𝑘𝑛 (𝑘1 < 𝑘2 …), each value of 𝑛 is associated with the unique pair of the modal numbers 𝑞 and 𝑝 such 
that 𝑞+1 and 𝑝+1 are the numbers of the nodal lines of the 𝑛th eigenfunction in the 𝑥 and 𝑦 directions (including the nodal lines at the 
edges of the plate), and 𝑞, 𝑝 = 1, 2,…. Consequently, 𝑛 ≡ (𝑞, 𝑝). The time dependence is exp(−i𝜔𝑡), where 𝜔 is the angular frequency and 
𝑡 is time. The time dependence is suppressed throughout this study. The biharmonic and Laplace operators in rectangular coordinates 
assume, respectively, the forms of (cf. Rao [30] p. 487)

∇4 = ∇2∇2, ∇2 = 𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2
. (2)

The eigenfunction of the plate is given by (cf. Xing and Liu [23] Eqs. (13)–(20)) 
𝑊𝑛(𝑥, 𝑦) = Ψ𝑞(𝑥)Φ𝑝(𝑦), (3a)

Ψ𝑞(𝑥) = 𝐴1,𝑞

[

cos(𝛼1,𝑞𝑥) − cosh(𝛼2,𝑞𝑥) − 𝑘̄1,𝑞

(𝛼2,𝑞
𝛼1,𝑞

sin(𝛼1,𝑞𝑥) − sinh(𝛼2,𝑞𝑥)
)]

, (3b)

Φ𝑝(𝑦) = 𝐴2,𝑝

[

cos(𝛽1,𝑝𝑦) − cosh(𝛽2,𝑝𝑦) − 𝑘̄2,𝑝

( 𝛽2,𝑝
𝛽1,𝑝

sin(𝛽1,𝑝𝑦) − sinh(𝛽2,𝑝𝑦)
)]

, (3c)

where 𝛼1,𝑞 , 𝛼2,𝑞 , 𝛽1,𝑝, and 𝛽2,𝑝 are the characteristic values, and 

𝑘̄1,𝑞 =
cos(𝛼1,𝑞𝑎) − cosh(𝛼2,𝑞𝑎)

(𝛼2,𝑞∕𝛼1,𝑞) sin(𝛼1,𝑞𝑎) − sinh(𝛼2,𝑞𝑎)
=

−(𝛼1,𝑞∕𝛼2,𝑞) sin(𝛼1,𝑞𝑎) − sinh(𝛼2,𝑞𝑎)
cos(𝛼1,𝑞𝑎) − cosh(𝛼2,𝑞𝑎)

, (4a)

𝑘̄2,𝑝 =
cos(𝛽1,𝑝𝑏) − cosh(𝛽2,𝑝𝑏)

(𝛽2,𝑝∕𝛽1,𝑝) sin(𝛽1,𝑝𝑏) − sinh(𝛽2,𝑝𝑏)
=

−(𝛽1,𝑝∕𝛽2,𝑝) sin(𝛽1,𝑝𝑏) − sinh(𝛽2,𝑝𝑏)
cos(𝛽1,𝑝𝑏) − cosh(𝛽2,𝑝𝑏)

. (4b)

The following boundary conditions are satisfied 
𝑊𝑛(0, 𝑦) = 0, 𝑊𝑛(𝑎, 𝑦) = 0; 0 ⩽ 𝑦 ⩽ 𝑏, (5a)

𝑊𝑛(𝑥, 0) = 0, 𝑊𝑛(𝑥, 𝑏) = 0; 0 ⩽ 𝑥 ⩽ 𝑎, (5b)

𝜕
𝜕𝑥
𝑊𝑛(𝑥, 𝑦)

|

|

|

|𝑥=0
= 0, 𝜕

𝜕𝑥
𝑊𝑛(𝑥, 𝑦)

|

|

|

|𝑥=𝑎
= 0; 0 ⩽ 𝑦 ⩽ 𝑏, (5c)

𝜕
𝜕𝑦
𝑊𝑛(𝑥, 𝑦)

|

|

|

|𝑦=0
= 0, 𝜕

𝜕𝑦
𝑊𝑛(𝑥, 𝑦)

|

|

|

|𝑦=𝑏
= 0; 0 ⩽ 𝑥 ⩽ 𝑎. (5d)
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The system of the characteristic equations of the plate are 

(𝛼22,𝑞 − 𝛼
2
1,𝑞) sin(𝛼1,𝑞𝑎) sinh(𝛼2,𝑞𝑎) − 2𝛼1,𝑞𝛼2,𝑞

[

cos(𝛼1,𝑞𝑎) cosh(𝛼2,𝑞𝑎) − 1
]

= 0, (6a)

(𝛽22,𝑝 − 𝛽
2
1,𝑝) sin(𝛽1,𝑝𝑏) sinh(𝛽2,𝑝𝑏) − 2𝛽1,𝑝𝛽2,𝑝

[

cos(𝛽1,𝑝𝑏) cosh(𝛽2,𝑝𝑏) − 1
]

= 0, (6b)

where 𝛼22,𝑞 − 𝛼21,𝑞 = 2𝛽21,𝑝, 𝛽22,𝑝 − 𝛽21,𝑝 = 2𝛼21,𝑞 , and the bending wavenumber 𝑘𝑛 on the plate can be obtained from 𝑘2𝑛 = 𝛼21,𝑞 + 𝛽
2
1,𝑝 (cf. the 

text after Eq. (1)).

2.3.  The Fourier transforms

The double forward and backward Fourier transforms of the eigenfunctions and their spectral densities are important in the further 
analysis of the acoustic field generated by the vibrating plate and can be presented as follows: 

𝑊̄𝑛(𝑘𝑥, 𝑘𝑦) = Ψ̄𝑞(𝑘𝑥)Φ̄𝑝(𝑘𝑦), (7a)

𝑊𝑛(𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2) = Ψ𝑞(𝑥 + 𝑎∕2)Φ𝑝(𝑦 + 𝑏∕2), (7b)

where 

Ψ̄𝑞(𝑘𝑥) =
1

√

2𝜋 ∫

+𝑎∕2

−𝑎∕2
Ψ𝑞(𝑥 + 𝑎∕2)e−i𝑘𝑥𝑥d𝑥, (8a)

Φ̄𝑝(𝑘𝑦) =
1

√

2𝜋 ∫

+𝑏∕2

−𝑏∕2
Φ𝑝(𝑦 + 𝑏∕2)e

−i𝑘𝑦𝑦d𝑦, (8b)

Ψ𝑞(𝑥 + 𝑎∕2) =
1

√

2𝜋 ∫

+∞

−∞
Ψ̄𝑞(𝑘𝑥)e+i𝑘𝑥𝑥d𝑘𝑥, (8c)

Φ𝑝(𝑦 + 𝑏∕2) =
1

√

2𝜋 ∫

+∞

−∞
Φ̄𝑝(𝑘𝑦)e

+i𝑘𝑦𝑦d𝑘𝑦, (8d)

and the origin of the coordinates has been shifted to the center of the plate (cf. Fig. 1(b)). It is important to note that the integration 
limits with respect to the spatial variables 𝑥 and 𝑦 are restricted to the intervals (−𝑎∕2,+𝑎∕2) and (−𝑏∕2,+𝑏∕2), respectively. This limit 
reflects the applied boundary conditions: either the normal component of the vibration velocity vanishes outside the plate in its plane, 
corresponding to a Neumann boundary condition, or the acoustic pressure is assumed to be zero beyond the physical boundaries of 
the plate, indicating a Dirichlet boundary condition. Further, the integrals in Eqs. (8a) and (8b) can be rearranged as follows 

Ψ̄𝑞(𝑘𝑥) =
𝐴1,𝑞(2∕𝜋)1∕2𝑘2𝑛

(𝑘2𝑥 − 𝛼
2
1,𝑞)(𝑘

2
𝑥 + 𝛼

2
2,𝑞)

{

[

𝛼1,𝑞𝑔1,𝑞(0) − i𝑘𝑥𝑓1,𝑞(0)
]

e+i𝑘𝑥𝑎∕2 −
[

𝛼1,𝑞𝑔1,𝑞(𝑎) − i𝑘𝑥𝑓1,𝑞(𝑎)
]

e−i𝑘𝑥𝑎∕2
}

, (9a)

Φ̄𝑝(𝑘𝑦) =
𝐴2,𝑝(2∕𝜋)1∕2𝑘2𝑛

(𝑘2𝑦 − 𝛽
2
1,𝑝)(𝑘

2
𝑦 + 𝛽

2
2,𝑝)

{

[

𝛽1,𝑝𝑔2,𝑝(0) − i𝑘𝑦𝑓2,𝑝(0)
]

e+i𝑘𝑦𝑏∕2 −
[

𝛽1,𝑝𝑔2,𝑝(𝑏) − i𝑘𝑦𝑓2,𝑝(𝑏)
]

e−i𝑘𝑦𝑏∕2
}

, (9b)

since 𝛼21,𝑞 + 𝛼22,𝑞 = 𝛽21,𝑝 + 𝛽
2
2,𝑝 = 2𝑘2𝑛, where 

𝑓1,𝑞(𝑥) = cos(𝛼1,𝑞𝑥) − 𝑘̄1,𝑞
𝛼2,𝑞
𝛼1,𝑞

sin(𝛼1,𝑞𝑥), (10a)

𝑓2,𝑝(𝑦) = cos(𝛽1,𝑝𝑦) − 𝑘̄2,𝑝
𝛽2,𝑝
𝛽1,𝑝

sin(𝛽1,𝑝𝑦), (10b)

𝑔1,𝑞(𝑥) = sin(𝛼1,𝑞𝑥) + 𝑘̄1,𝑞
𝛼2,𝑞
𝛼1,𝑞

cos(𝛼1,𝑞𝑥), (10c)

𝑔2,𝑝(𝑦) = sin(𝛽1,𝑝𝑦) + 𝑘̄2,𝑝
𝛽2,𝑝
𝛽1,𝑝

cos(𝛽1,𝑝𝑦). (10d)

The orthogonality relation is (cf. Meirovitch [29] Sec. ‘5-5 Generalized Orthogonality. Expansion Theorem’ pp. 140–143)
1
𝑎𝑏 ∫

𝑎

0 ∫

𝑏

0
𝑊𝑛(𝑥, 𝑦)𝑊𝑛′ (𝑥, 𝑦)d𝑦d𝑥 = 𝛿𝑛𝑛′ . (11)

The normalization constants 𝐴1,𝑞 and 𝐴2,𝑝 can be obtained from the following arbitrary normalization conditions ∫ 𝑎0 Ψ2
𝑞(𝑥)d𝑥 = 𝑎 and 

∫ 𝑏0 Φ2
𝑝(𝑦)d𝑦 = 𝑏, giving, respectively, 

𝐴1,𝑞 =

{

1 − 1
2

(

1 −
𝛼22,𝑞
𝛼21,𝑞

)[

𝑘̄21,𝑞 −
1

𝛼2,𝑞𝑎

(

𝑘̄1,𝑞 −
𝛼1,𝑞
𝛼2,𝑞

𝑓1,𝑞(𝑎)𝑔1,𝑞(𝑎)
)]

}

−1∕2, (12a)
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𝐴2,𝑝 =

{

1 − 1
2

(

1 −
𝛽22,𝑝
𝛽21,𝑝

)[

𝑘̄22,𝑝 −
1

𝛽2,𝑝𝑏

(

𝑘̄2,𝑝 −
𝛽1,𝑝
𝛽2,𝑝

𝑓2,𝑝(𝑏)𝑔2,𝑝(𝑏)
)]

}

−1∕2. (12b)

Note, that the constants 𝐴1,𝑞 and 𝐴2,𝑝 must be calculated individually for each mode number 𝑛 = 1, 2,….

2.4.  The sound radiation of the excited vibrations of the plate WNB

The equation of motion of the excited plate can be given as
𝜔2𝜚ℎ(𝑘−4𝐷 ∇4 − 1)𝑊 (𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2) + 𝑒𝑓 𝑝(𝑥, 𝑦, 0) = 𝑃 (𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2), (13)

where 𝑘𝐷 is the bending wavenumber (𝑘4𝐷 = 𝜔2𝜚ℎ∕𝐷), 𝐷 = 𝐷𝐸 (1 + i𝜂) is the complex bending stiffness, 𝜂 is the dimensionless damping 
coefficient, 𝑊 (𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2) is the transverse displacement amplitude of the plate, 𝑃 (𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2) (Pa) is the external excitation 
applied to the plate, and 𝑝(𝑥, 𝑦, 0) is the acoustic pressure at the plate’s upper surface. Here, 𝑒𝑓  indicates whether only the plate’s 
upper side is air-loaded (𝑒𝑓 = 1) or both sides are air-loaded (𝑒𝑓 = 2). Such a simple configuration change is possible only when the 
half-space below the plate is the mirror image of the half-space above the plate (see e.g. Levine and Leppington [31], Eqs. (24) and 
(28), where the acoustic pressure is taken twice, and the explanation of the effective damping coefficient in Eq. (33)). It is worth 
noting that Eq. (13) contains two kinds of vibration attenuation of the plate. The first is material damping inside the plate, represented 
by the complex bending wavenumber 𝑘𝐷. The second is air damping, represented by the acoustic pressure 𝑒𝑓 𝑝(𝑥, 𝑦, 0) on the plate 
surface. The latter is particularly interesting as it can be obtained by solving the following Helmholtz equation

(

𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2
+ 𝜕2

𝜕𝑧2
+ 𝑘20

)

𝑝(𝑥, 𝑦, 𝑧) = 0, (14)

where 𝑘0 is the acoustic wavenumber 𝜔 = 𝑘0𝑐 is the driving circular frequency, and 𝑐 is the speed of sound. It is important to note 
that Eqs. (13) and (14) form a system of two coupled differential equations to be solved. After some mathematical manipulations, this 
system reduces to algebraic equations to be solved separately for each frequency sample. It is shown in this section how the system 
can be obtained. The vibrating plate satisfies the following Neumann boundary condition (cf. Fig. 1(b))

𝜕𝑝
𝜕𝑧

|

|

|

|𝑧=0
= i𝜔𝜚0𝑣(𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2), (15)

on the plate for −𝑎∕2 < 𝑥 < +𝑎∕2, −𝑏∕2 < 𝑦 < +𝑏∕2, and 𝑧 = 0, where the normal component of the vibration velocity on the plate is
𝑣(𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2) = −i𝜔𝑊 (𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2), (16)

and 𝑊 (𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2) is the transverse displacement amplitude of the plate presented in Eq. (3a).
The transverse displacement amplitude of the plate and the external excitation amplitude on the plate can be expressed as follows 

(cf. Fig. 1(a) and Eq. (13)) 

𝑊 (𝑥, 𝑦) =
∞
∑

𝑛=1
𝑐𝑛𝑊𝑛(𝑥, 𝑦), (17a)

𝑃 (𝑥, 𝑦) =
∑

𝑛
𝑃𝑛𝑊𝑛(𝑥, 𝑦), (17b)

for 0 ⩽ 𝑥 ⩽ 𝑎 and 0 ⩽ 𝑦 ⩽ 𝑏, where 𝑐𝑛 are unknown coefficients (to be obtained by solving the aforementioned system of algebraic 
equations). For 𝑊𝑛(𝑥, 𝑦) see Eq. (3a), and

𝑃𝑛 =
1
𝑎𝑏 ∫

𝑎

0 ∫

𝑏

0
𝑃 (𝑥, 𝑦)𝑊𝑛(𝑥, 𝑦)d𝑦d𝑥. (18)

The most useful excitation is the point excitation. It can be formulated as
𝑃 (𝑥, 𝑦) = 𝑃0𝑎𝑏 𝛿(𝑥 − 𝑥′)𝛿(𝑦 − 𝑦′), (19)

where 𝑃0 is the excitation amplitude, and (𝑥′, 𝑦′) are the rectangular coordinates of the excitation point on the plate. The modal 
excitation coefficients can be obtained by substituting the above equations into Eq. (18)

𝑃𝑛 = 𝑃0𝑊𝑛(𝑥′ + 𝑎∕2, 𝑦′ + 𝑎∕2). (20)

The acoustic pressure amplitude appearing in the system of two differential equations, Eqs. (13) and (14), can be expressed using 
the Kirchhoff-Helmholtz integral equation as follows (cf. Fahy and Gardonio [32], Eqs. (3.184)–(3.186), pp. 236–237, and also Atalla 
et al. [3], Eq. (6))

𝑝(𝑟)∫𝑆′

[

𝜕𝐺(𝑟, 𝑟 ′)
𝜕𝑛′

𝑝(𝑟 ′) −
𝜕𝑝(𝑟 ′)
𝜕𝑛′

𝐺(𝑟, 𝑟 ′)
]

d𝑆′, (21)

where 𝑆′ denotes the surface enclosing both sides of the plate, 𝑛′ is the unit vector normal outward to the surface 𝑆′ of the plate, 
𝑛′ = +𝑒𝑧 on the upper side of the plate and ⃗𝑛′ = −𝑒𝑧 on the lower side, 𝜕∕𝜕𝑛′ = 𝑛′ ⋅ ∇ is the normal component of the gradient operator. 
The Green function for the entire free space in Eq. (21) is

𝐺(𝑟, 𝑟 ′) = ei𝑘0𝑅
4𝜋𝑅

= i
8𝜋2 ∫

+∞

−∞ ∫

+∞

−∞
ei[𝑘𝑥(𝑥−𝑥

′)+𝑘𝑦(𝑦−𝑦′)+𝑘𝑧|𝑧−𝑧′|]
d𝑘𝑦d𝑘𝑥
𝑘𝑧

, (22)
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where 𝑅 = |𝑅⃗| = [(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2]1∕2, 𝑅⃗ = 𝑟 − 𝑟 ′, ⃗𝑟 = 𝑒𝑥𝑥 + 𝑒𝑦𝑦 + 𝑒𝑧𝑧, and ⃗𝑟 ′ = 𝑒𝑥𝑥′ + 𝑒𝑦𝑦′ + 𝑒𝑧𝑧′. This function satisfies 
the nonuniform wave equation

∇2𝐺(𝑟, 𝑟′) + 𝑘20𝐺(𝑟, 𝑟
′) = 𝛿(𝑟 − 𝑟′), (23)

where the Dirac delta is 𝛿(𝑟 − 𝑟′) = 𝛿(𝑥 − 𝑥′)𝛿(𝑦 − 𝑦′)𝛿(𝑧 − 𝑧′). Note that the term with the normal pressure gradient on one side of 
the plate in Eq. (21) cancels this term on the other side of the plate, and only the term having the acoustic pressure remains and is 
doubled. This yields the acoustic pressure amplitude in the form of (for more details see Appendix B)

𝑝(𝑟) = ∫𝑆′
2𝑝(𝑥′, 𝑦′, 0)

𝜕𝐺(𝑟, 𝑟 ′)
𝜕𝑧′

|

|

|

|𝑧′=0
d𝑆′, (24)

which is valid for −∞ < 𝑧 < +∞. Note that the acoustic pressure in Eq. (24) represents Rayleigh’s second integral formula (cf. Williams 
[33], Eq. (2.67), p. 35), where the acoustic pressure on the plate is given in Eq. (40), and the derivative of the Green function for 
𝑧′ = 0 is presented earlier in Eq. (22). Now, assuming 𝑒𝑓 = 2 and replacing 𝑥, 𝑦 with 𝑥′, 𝑦′ in Eq. (13) yields

2𝑝(𝑥′, 𝑦′, 0) = 𝑃 (𝑥′ + 𝑎∕2, 𝑦′ + 𝑏∕2) − 𝜔2𝜚ℎ
(

𝑘−4𝐷 ∇′4 − 1
)

𝑊 (𝑥′ + 𝑎∕2, 𝑦′ + 𝑏∕2), (25)

where ∇′4 is the biharmonic operator with differentiation over the variables 𝑥′ and 𝑦′. Then, substituting Eq. (25) to Eq. (24) gives 
the acoustic pressure in the form of

𝑝(𝑟) = ∫𝑆′

[

𝑃 (𝑥′ + 𝑎∕2, 𝑦′ + 𝑏∕2) − 𝜔2𝜚ℎ
(

𝑘−4𝐷 ∇′4 − 1
)

𝑊 (𝑥′ + 𝑎∕2, 𝑦′ + 𝑏∕2)
]

𝜕𝐺(𝑟, 𝑟 ′)
𝜕𝑧′

|

|

|

|𝑧′=0
d𝑆′. (26)

Further, it can be obtained from the boundary condition in Eq. (15) that
𝜕𝑝
𝜕𝑧

|

|

|

|𝑧=0
= 𝜔2𝜚0𝑊 (𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2)

= ∫𝑆′

[

𝑃 (𝑥′ + 𝑎∕2, 𝑦′ + 𝑏∕2) − 𝜔2𝜚ℎ
(

𝑘−4𝐷 ∇′4 − 1
)

𝑊 (𝑥′ + 𝑎∕2, 𝑦′ + 𝑏∕2)
]

𝜕2𝐺(𝑟, 𝑟 ′)
𝜕𝑧𝜕𝑧′

|

|

|

|𝑧′ ,𝑧=0
d𝑆′, (27)

for 0 < 𝑥 < 𝑎 and 0 < 𝑦 < 𝑏. Further
𝜕2𝐺(𝑟, 𝑟 ′)
𝜕𝑧𝜕𝑧′

|

|

|

|𝑧′ ,𝑧=0
= i

8𝜋2 ∫

+∞

−∞ ∫

+∞

−∞
ei[𝑘𝑥(𝑥−𝑥

′)+𝑘𝑦(𝑦−𝑦′)]𝑘𝑧d𝑘𝑦d𝑘𝑥. (28)

Inserting Eqs. (17a), (17b), and (28), into Eq. (27) and applying Eq. (1) yields (cf. Eq. (7a))
𝜔2𝜚0

∑

𝑛
𝑐𝑛𝑊𝑛(𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2)

=
∑

𝑛

[

𝑃𝑛 − 𝑐𝑛𝜔2𝜚ℎ
( 𝑘4𝑛
𝑘4𝐷

− 1
)]

i
4𝜋 ∫

+∞

−∞ ∫

+∞

−∞
𝑊̄𝑛(𝑘𝑥, 𝑘𝑦)e

i(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑘𝑧d𝑘𝑦d𝑘𝑥. (29)

Now, multiplying Eq. (29) by 𝑊𝑛′ (𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2) integrating over the plate area, applying Eqs. (7a)–(8b), substituting 𝑥 + 𝑎∕2 = 𝑢
and 𝑦 + 𝑏∕2 = 𝑣, multiplying by 2i∕(𝜔2𝜚ℎ, 𝑘0𝑎𝑏), applying the orthogonality relation in Eq. (11), assuming that both sides of the plate 
are air-loaded (𝑒𝑓 = 2), and slightly rearranging results in

𝑐𝑛′ i𝜘 −
∑

𝑛
𝑐𝑛

( 𝑘4𝑛
𝑘4𝐷

− 1
)

𝜉𝑛𝑛′ = − 1
𝜔2𝜚ℎ

∑

𝑛
𝑃𝑛𝜉𝑛𝑛′ , (30)

where 𝑛 ≡ (𝑞, 𝑝), 𝑛′ ≡ (𝑞′, 𝑝′), the symbol * denotes the conjugate value, the dimensionless air loading coefficient is

𝜘 =
𝑒𝑓𝜚0
𝜚𝑘0ℎ

, (31)

and the modal acoustic admittance coefficient is

𝜉𝑛𝑛′ =
1
𝑎𝑏 ∫

+∞

−∞ ∫

+∞

−∞
𝑊̄𝑛(𝑘𝑥, 𝑘𝑦)𝑊̄ ∗

𝑛′ (𝑘𝑥, 𝑘𝑦)
𝑘𝑧
𝑘0

d𝑘𝑦d𝑘𝑥. (32)

Now, the system of algebraic equations in Eq. (30) truncated for 𝑛, 𝑛′ = 1, 2,… , 𝑁 − 1 can be expressed in the matrix notation as 
follows (cf. Putra and Thompson [14] Eq. (C-3) in Appendix C)

i𝜘𝐈 ⋅ [𝑐𝑛′ ] − [𝜉𝑛𝑛′ ] ⋅ [𝑐𝑛(𝑘−4𝐷 𝑘4𝑛 − 1)] = −(𝜔2𝜚ℎ)−1[𝜉𝑛𝑛′ ] ⋅ [𝑃𝑛], (33)

where the dot ⋅ denotes the scalar product, 𝐈 is the identity matrix, and [𝜉𝑛𝑛′ ] is the square matrix, both of dimensions 𝑁 ×𝑁 . [𝑐𝑛′ ], 
[𝑐𝑛(𝑘−4𝐷 𝑘4𝑛 − 1)], and [𝑃𝑛] are vectors of length 𝑁 , while i𝜘 and (𝜔2𝜚ℎ)−1 are scalar values. Then, multiplying Eq. (45) by the inverse 
matrix [𝜉𝑛𝑛′ ]−1 gives

𝐈 ⋅ [𝑐𝑛(𝑘−4𝐷 𝑘4𝑛 − 1)] − i𝜘[𝜆̂𝑛𝑛′ ] ⋅ [𝑐𝑛′ ] = (𝜔2𝜚ℎ)−1𝐈 ⋅ [𝑃𝑛], (34)
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since [𝜉𝑛𝑛′ ]−1 ⋅ 𝐈 = [𝜉𝑛𝑛′ ]−1 and [𝜉𝑛𝑛′ ]−1 ⋅ [𝜉𝑛𝑛′ ] = 𝐈. The following square matrix has been introduced: [𝜆̂𝑛𝑛′ ] = [𝜉𝑛𝑛′ ]−1, where [𝜉𝑛𝑛′ ]−1 is 
the inverse matrix. Finally, the matrix equation in Eq. (34) can be expressed in its classical form as follows:

𝑐𝑛′
(𝑘4𝑛′
𝑘4𝐷

− 1
)

− i𝜘
∑

𝑛
𝑐𝑛𝜆̂𝑛𝑛′ =

𝑃𝑛′
𝜔2𝜚ℎ

, (35)

where the modal impedance coefficients 𝜆̂𝑛𝑛′  are obtained from the inverse matrix [𝜉𝑛𝑛′ ]−1 of the modal acoustic admittance coefficients 
in Eq. (32).

The acoustic pressure in Eq. (26) can be rearranged by applying Eqs. (1) (to evaluate ∇′4𝑊𝑛(𝑥′ + 𝑎∕2, 𝑦′ + 𝑏∕2) = 𝑘4𝑛𝑊𝑛(𝑥′ + 𝑎∕2, 𝑦′ +
𝑏∕2)), (17a), and (17b), and changing the order of summation and integration, giving

𝑝(𝑟) =
∑

𝑛

[

𝑃𝑛 − 𝑐𝑛𝜔2𝜚ℎ
( 𝑘4𝑛
𝑘4𝐷

− 1
)]

∫𝑆′
𝑊𝑛(𝑥′ + 𝑎∕2, 𝑦′ + 𝑏∕2)

𝜕𝐺(𝑟, 𝑟,′ )
𝜕𝑧′

|

|

|

|𝑧′=0
d𝑆′. (36)

Differentiating the Green function in Eq. (22) once gives
𝜕𝐺(𝑟, 𝑟 ′)
𝜕𝑧′

|

|

|

|𝑧′=0
= sign(𝑧) 1

8𝜋2 ∫

+∞

−∞ ∫

+∞

−∞
ei[𝑘𝑥(𝑥−𝑥

′)+𝑘𝑦(𝑦−𝑦′)+𝑘𝑧|𝑧|]d𝑘𝑦d𝑘𝑥, (37)

since
𝜕
𝜕𝑧′

ei𝑘𝑧|𝑧−𝑧
′
|

|

|

|

|𝑧′=0
= − sign(𝑧)i𝑘𝑧ei𝑘𝑧|𝑧|, (38)

where sign(𝑧) = 1 for 𝑧 > 0, −1 for 𝑧 < 0, and 0 for 𝑧 = 0 (the latter case is not applicable here as the Green function is not differentiable 
at 𝑧 = 0; the sign function is used only for convenience).

Applying Eq. (37) in Eq. (36), changing the order of integration, and using Eqs. (7a)–(8b) leads to

𝑝(𝑟) = sign(𝑧)
∑

𝑛

[

𝑃𝑛 − 𝑐𝑛𝜔2𝜚ℎ
( 𝑘4𝑛
𝑘4𝐷

− 1
)]

1
4𝜋 ∫

+∞

−∞ ∫

+∞

−∞
𝑊̄𝑛(𝑘𝑥, 𝑘𝑦)e

i(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧|𝑧|)d𝑘𝑦d𝑘𝑥. (39)

Now, assuming |𝑧| → 0 and 𝑒𝑓 = 2, and applying the double inverse Fourier transform given in Eqs. (7b), (8c), and (8d), the acoustic 
pressure amplitude on the plate is obtained as

lim
𝜀→0

𝑝(𝑥, 𝑦,±𝜀) = sign(𝑧) 1
𝑒𝑓

∑

𝑛

[

𝑃𝑛 − 𝑐𝑛𝜔2𝜚ℎ
( 𝑘4𝑛
𝑘4𝐷

− 1
)]

𝑊𝑛(𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2). (40)

The time-averaged acoustic power is (cf. Fahy and Gardonio [32], Eq. (3.100), p. 181)

Π = ∫

+𝑎∕2

−𝑎∕2 ∫

+𝑏∕2

−𝑏∕2
𝑝(𝑥, 𝑦, 0)𝑣∗(𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2)d𝑦d𝑥, (41)

where the normal component of the sound intensity 𝑝(𝑥, 𝑦, 0)𝑣∗(𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2) is integrated over one side of the plate. The acoustic 
power radiated by the upper side is identical to that radiated by the lower side. Therefore, the integration in Eq. (41) is performed 
only over the upper side of the plate and then doubled, so the factor 1∕2 from averaging cancels in Eq. (41). Applying Eqs. (16),
(17a), and (40), and assuming 𝑒𝑓 = 2, gives

Π = 1
2
i𝜔𝑎𝑏

∑

𝑛
𝑐∗𝑛

[

𝑃𝑛 − 𝑐𝑛𝜔2𝜚ℎ
( 𝑘4𝑛
𝑘4𝐷

− 1
)]

. (42)

The reference acoustic power is (cf. Fahy and Gardonio [32], Eq. (3.102), p. 181)
ΠRef . = 𝑒𝑓𝜚0𝑐𝑎𝑏

⟨

|𝑣|2
⟩

, (43)

where the mean square vibration velocity on the plate is (cf. the orthogonality relation in Eq. (11))
⟨

|𝑣|2
⟩

= 1
2𝑎𝑏 ∫

𝑎

0 ∫

𝑏

0
|𝑣(𝑥, 𝑦)|2d𝑦d𝑥 = 1

2
𝜔2

∑

𝑛
|𝑐𝑛|

2. (44)

and |𝑐𝑛|2 = 𝑐𝑛𝑐∗𝑛 . The radiation efficiency is (cf. Fahy and Gardonio [32] Eqs. (3.103) p. 181)

𝜎 =
Re(Π)
ΠRef .

. (45)

Assuming that 𝜚0 ≪ 𝜚 (𝑒𝑓 → 0), the approximate resonant frequency of the air loaded plate can be expressed as follows (cf. Fahy 
and Gardonio [32] Eqs. (4.58) p. 268, Amabili et al. [34] Eqs. (8)–(10) and further details in Appendix C)

𝜔′ = 𝜔′′
√

1 + Γ𝑛
, (46)

where 𝜔′′ is the resonant frequency of the plate in vacuum, and the nondimensionalized added virtual mass incremental (NAVMI) is
Γ𝑛 = −𝜘 Im(𝜆̂𝑛𝑛). (47)
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It is worth noting that Eqs. (46) and (55) are consistent with the results presented by Fahy and Gardonio [32] (cf. their Eqs. (4.56)– 
(4.58)). As such, they are useful for both low and high frequencies. This method has also been applied to a vibrating elastically 
supported annular plate by Rdzanek et al. [35] and the fluid light loading effect has been discussed in their Sec. 2.8. On the other 
hand, the results presented by Amabili et al. [34] in their Eqs. (8)– (10) are valid only for low frequencies. The fluid effect on the 
resonant frequencies was analyzed numerically, and results obtained using the approach of Amabili et al. (called the Laplace equation 
approximation by Rdzanek et al.) were compared with those obtained using the approach of Rdzanek et al. (called the Helmholtz 
equation approximation by Rdzanek et al.). The approximation error is illustrated in their Figure 10d. The error increased almost 
linearly with frequency, reaching about 80% for 5 kHz, while it did not exceed about 10% for the same frequency.

2.5.  The sound radiation of the excited vibrations of the plate in the RIB

The case of a plate vibrating in the RIB is the classical problem. Here, after some mathematical manipulations, Eq. (13) can be 
rearranged as

𝑐𝑛′
(𝑘4𝑛′
𝑘4𝐷

− 1
)

i𝜘
∑

𝑛
𝑐𝑛𝜁𝑛𝑛′ =

𝑃𝑛′
𝜔2𝜚ℎ

, (48)

where the value of 𝜘 is obtained on the basis of Eq. (31) assuming 𝑒𝑓 = 2 (both sides of the plate are air loaded). Note that Eq. (48) 
has a form similar to Eq. (35).

The acoustic pressure amplitude can be expressed as

𝑝(𝑥, 𝑦, 𝑧) =
∞
∑

𝑛=1
𝑐𝑛𝑝𝑛(𝑥, 𝑦, 𝑧), (49)

where the modal acoustic pressure is given by the following double inverse Fourier transform

𝑝𝑛(𝑥, 𝑦, 𝑧) = −i𝜔2𝜚0
1
2𝜋 ∫

+∞

−∞ ∫

+∞

−∞
𝑊̄𝑛(𝑘𝑥, 𝑘𝑦)e

i(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧)
d𝑘𝑦d𝑘𝑥
𝑘𝑧

, (50)

and 𝑘2𝑧 = 𝑘20 − 𝑘
2
𝑥 − 𝑘

2
𝑦. The modal acoustic pressure amplitude in Eq. (50) can also be written as Rayleigh’s first integral formula (cf. 

Williams [33] Eq. (2.75) p. 36)

𝑝(𝑥, 𝑦, 𝑧) = −i𝜔2𝜚0 ∫

+𝑎∕2

−𝑎∕2 ∫

+𝑏∕2

−𝑏∕2
𝑊 (𝑥′ + 𝑎∕2, 𝑦′ + 𝑏∕2) e

i𝑘0𝑅

i2𝜋𝑅
|

|

|

|𝑧′=0
d𝑦′d𝑥′, (51)

where 𝑅2 = (𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + 𝑧2, by applying the Weyl integral for 𝑧′ = 0 (cf. Duffy [36] Eq. (4.5.27) p. 205; Williams [33] 
Eq. (2.64) p. 35).

The time-averaged acoustic power is

Π =
𝑒𝑓
2 ∫

𝑎

0 ∫

𝑏

0
𝑝(𝑥, 𝑦, 0)𝑣∗(𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2)d𝑦d𝑥. (52)

Inserting Eqs. (17a) and (49) to Eq. (52) gives

Π =
𝑒𝑓
2
𝜚0𝑐𝜔

2𝑎𝑏
∞
∑

𝑛=1

∞
∑

𝑛′=1
𝑐𝑛𝑐

∗
𝑛′𝜁𝑛𝑛′ , (53)

where the modal acoustic impedance coefficient is

𝜁𝑛𝑛′ =
1
𝑎𝑏 ∫

+∞

−∞ ∫

+∞

−∞
𝑊̄𝑛(𝑘𝑥, 𝑘𝑦)𝑊̄ ∗

𝑛′ (𝑘𝑥, 𝑘𝑦)
𝑘0
𝑘𝑧

d𝑘𝑦d𝑘𝑥, (54)

𝜁𝑛𝑛′ = 𝜁𝑛′𝑛, 𝜁𝑛𝑛′ = 0 if either 𝑞 + 𝑞′ is odd or 𝑝 + 𝑝′ is odd, and 𝑊̄ ∗
𝑛′ (𝑘𝑥, 𝑘𝑦) is the conjugate value of 𝑊̄𝑛(𝑘𝑥, 𝑘𝑦).

The acoustic pressure amplitude on the plate and the time-averaged acoustic power can be expressed in identical forms as in 
Eqs. (40) and (42). The only difference is that the coefficients 𝑐𝑛 assume different values. The NAVMI factor now takes the form (cf. 
Eq. (47))

Γ𝑛 = −𝜘 Im(𝜁𝑛𝑛). (55)

3.  The spectral mapping for the admittance coefficients

In the case of the rectangular plate vibrating WNB, the modal admittance coefficients in Eq. (32) can be expressed, respectively, 
as follows (for more details see Appendix D)

𝜉𝑛𝑛′ =
𝑆0
𝑆𝑎𝑏

∞
∑

𝜈=0

∞
∑

𝜈′=0

∞
∑

𝑚=0
𝜖𝑚𝑁̄

|𝑚|
𝜈 𝑁̄ |𝑚|

𝜈′ 𝜉
|𝑚|
𝜈𝜈′ Re

[

𝐷̂|𝑚|
𝑛 (𝛾 |𝑚|𝜈 )𝐷̂|𝑚|∗

𝑛′ (𝛾 |𝑚|𝜈′ )
]

, (56)

where 𝜖0 = 1, 𝜖𝑚 = 2 for 𝑚 = 1, 2,…, 𝜈, 𝜈′ = 0, 1,…, 𝑆0 = 𝜋𝑟20 (𝑟0 is the radius of the circle encircling the plate), 𝑆𝑎𝑏 = 𝑎𝑏 is the plate’s 
surface area, the eigenvalues 𝛾 |𝑚|𝜈  can be obtained on the basis of the characteristic equation 𝐽

|𝑚|(𝛾
|𝑚|
𝜈 𝑎) = 0, 𝜉𝑛′𝑛 = 𝜉𝑛𝑛′ , moreover 𝜉𝑛𝑛′ =
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0 if either |𝑞 − 𝑞′| or |𝑝 − 𝑝′| is odd (𝑛 = (𝑞, 𝑝) and 𝑛′ = (𝑞′, 𝑝′)), and the following relations have been used 𝑘2𝑧 = 𝑘20 − 𝜏
2, 𝑘𝑥 = 𝜏 cos 𝛽, 

𝑘𝑦 = 𝜏 sin 𝛽, 𝑥 = 𝑟 cos𝜙, 𝑦 = 𝑟 sin𝜙, the complex expansion coefficient is (cf. Appendix A)

𝐷̂|𝑚|
𝑛 (𝛾 |𝑚|𝜈 ) = 1

2𝜋 ∫

+𝑎∕2

−𝑎∕2 ∫

+𝑏∕2

−𝑏∕2
𝑊𝑛(𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2)𝐽|𝑚|(𝛾 |𝑚|𝜈 𝑟)e−i|𝑚|𝜙d𝑦d𝑥, (57)

and the modal admittance coefficients are

𝜉|𝑚|𝜈𝜈′ =
2
𝑟20

∫

∞

0
𝐷̄|𝑚|
𝜈 (𝜏)𝐷̄|𝑚|

𝜈′ (𝜏)
𝑘𝑧
𝑘0
𝜏d𝜏. (58)

Now, applying the following relation 𝑘𝑧 = (𝑘20 − 𝜏
2)∕𝑘𝑧 gives (cf. Lovat and Celozzi [37] Eq. (12))

𝜉|𝑚|𝜈𝜈′ =
(

1 −
(𝛾 |𝑚|𝜈 )2 + (𝛾 |𝑚|𝜈′ )2

2𝑘20

)

𝜁 |𝑚|𝜈𝜈′ +
𝛾 |𝑚|𝜈
2𝑘0

𝐽
|𝑚|+1(𝛾 |𝑚|𝜈 𝑎)𝜁 |𝑚|1,𝜈′ +

𝛾 |𝑚|𝜈′

2𝑘0
𝐽
|𝑚|+1(𝛾

|𝑚|
𝜈′ 𝑎)𝜁

|𝑚|
1,𝜈 (59)

for any |𝑚|, 𝜈, 𝜈′ = 0, 1,…, where the following integrals have been isolated (that can also be expressed in terms of rapidly convergent 
expansion series as below)

𝜁 |𝑚|1,𝜈 = 2
𝑘0𝑎 ∫

∞

0
𝐷̄|𝑚|
𝜈 (𝜏)𝐽

|𝑚|(𝜏𝑎)
𝑘0
𝑘𝑧
𝜏d𝜏 =

∞
∑

𝓁=0
𝑁̃ |𝑚|

𝓁 𝐷̃|𝑚|
𝓁 (𝛾 |𝑚|𝜈 )𝜁 |𝑚|1,𝓁 , (60)

and the following integrals can be calculated exactly 

𝜁01,0 = 2∫

∞

0
𝐽1(𝜏𝑎)𝐽0(𝜏𝑎)

d𝜏
𝑘𝑧

= 1
𝑘0𝑎

[

1 − 𝐽0(2𝑘0𝑎) − i𝐻𝐻𝐻0(2𝑘0𝑎)
]

, (61a)

𝜁 |𝑚|1,𝓁 = 2
𝑘0𝑎 ∫

∞

0
𝐷̃|𝑚|

𝓁 (𝜏)𝐽
|𝑚|(𝜏𝑎)

𝑘0
𝑘𝑧
𝜏d𝜏 = (−1)𝓁2∫

∞

0
𝐽
|𝑚|+2𝓁+1(𝜏𝑎)𝐽|𝑚|(𝜏𝑎)

d𝜏
𝑘𝑧

=
(−1)𝓁Γ2(𝑞 + 1)(𝑘0𝑎)2𝑞+1

Γ(𝑞 + 𝑝 + 2)Γ(𝑚 + 1)Γ(2𝑞 + 2) 2𝐹3
[

𝑞 + 1, 𝑞 + 1; 𝑞 + 𝑝 + 2, 𝑚 + 1, 2𝑞 + 2;−(𝑘0𝑎)2
]

− 4i
𝜋 (2𝑝 + 1)(2𝑞 + 1) 3𝐹4

[ 1
2 ,

1
2 , 1;

1
2 − 𝑝, 𝑝 + 3

2 ,
1
2 − 𝑞, 𝑞 + 3

2 ; −(𝑘0𝑎)
2], (61b)

with 𝑝 = 𝓁 and 𝑞 = |𝑚| + 𝓁, and the modal impedance coefficients are given by 

𝜁 |𝑚|𝜈𝜈′ =
2
𝑟20

∫

∞

0
𝐷̄|𝑚|
𝜈 (𝜏)𝐷̄|𝑚|

𝜈′ (𝜏)
𝑘0
𝑘𝑧
𝜏d𝜏 =

∞
∑

𝓁=0

∞
∑

𝓁′=0
𝑁̃ |𝑚|

𝓁 𝐷̃|𝑚|
𝓁 (𝛾 |𝑚|𝜈 )𝜁 |𝑚|

𝓁𝓁′
𝑁̃ |𝑚|

𝓁′
𝐷̃|𝑚|

𝓁′
(𝛾 |𝑚|𝜈′ ) (62a)

𝜁 |𝑚|𝜈𝜈 =
∞
∑

𝓁=0
(𝑁̃ |𝑚|

𝓁 )2[𝐷̃|𝑚|
𝓁 (𝛾 |𝑚|𝜈 )]2𝜁 |𝑚|𝓁𝓁 + 2

∞
∑

𝓁=1

∞
∑

𝓁′=𝓁+1
𝑁̃ |𝑚|

𝓁 𝐷̃|𝑚|
𝓁 (𝛾 |𝑚|𝜈 )𝜁 |𝑚|

𝓁𝓁′
𝑁̃ |𝑚|

𝓁′
𝐷̃|𝑚|

𝓁′
(𝛾 |𝑚|𝜈 ) (62b)

𝜁 |𝑚|
𝓁𝓁′

= 2
𝑟20

∫

∞

0
𝐷̃|𝑚|

𝓁 (𝜏)𝐷̃|𝑚|
𝓁′

(𝜏)
𝑘0
𝑘𝑧
𝜏d𝜏 = − lim

𝐽→∞

𝐽
∑

𝑗=1

(− 1
2 𝑗)𝑝(−

1
2 𝑗 + 1)𝑞(i𝑘0𝑟0)𝑗

Γ( 12 𝑗 + 𝑝 + 1)Γ( 12 𝑗 + 𝑞 + 2)
, (62c)

𝐷̄|𝑚|
𝜈 (𝜏) =

𝐽
|𝑚|(𝜏𝑟0)

(𝛾 |𝑚|𝜈 )2 − 𝜏2
𝛾 |𝑚|𝜈 𝑟0𝐽|𝑚|+1(𝛾 |𝑚|𝜈 𝑟0), 𝐷̃|𝑚|

𝓁 (𝜏) = (−1)𝓁
𝑟0
𝜏
𝐽
|𝑚|+2𝓁+1(𝜏𝑟0), (62d)

(𝑁̄ |𝑚|
𝜈 )−1 =

𝑟20
2
𝐽 2
|𝑚|+1(𝛾

|𝑚|
𝜈 𝑎), 𝑁̃ |𝑚|

𝓁 = 2
𝑟20

(|𝑚| + 2𝓁 + 1), (62e)

with 𝑝 = 𝓁′ − 𝓁 and 𝑞 = |𝑚| + 𝓁′ + 𝓁, 𝑘2𝑧 = 𝑘20 − 𝜏
2, the Pochhammer symbol is (𝑎)𝑛 = Γ(𝑎 + 𝑛)∕Γ(𝑎) (cf. Abramowitz and Stegun [38] 

Eq. 6.1.22). It is worth mentioning that the quantity presented in Eq. (62a) is similar to the modal radiation impedance coefficients of 
a stretched circular membrane (cf. Morse and Ingard [39] Eq. (10.2.14)) and Fig. (10.8); and Rdzanek et al. [40] Eq. (15) and (25b)). 
The expansion series in Eq. (62c) is accurate and highly convergent for 𝑘𝑎 ⩽ 12 and 𝐽 ⩾ 10 + 2e𝑘𝑎 (e ∼ 2.718), where the relative 
percentage error is smaller than 10−4% (cf. Aarts and Janssen [41] in their Eq. (A24)). In addition, for the rectangular plate vibrating 
in the RIB, the modal impedance coefficients 𝜁𝑛,𝑛′  in Eqs. (54) can be obtained from Eq. (56) simply by replacing 𝜉|𝑚|𝜈𝜈′  with 𝜁

|𝑚|
𝜈𝜈′ .

The expansion in Eq. (62a) is useful for numerical calculations, whether 𝜈 = 𝜈′ or 𝜈 ≠ 𝜈′. In the case when 𝜈 ≠ 𝜈′, the integral in 
Eq. (62a) can be rearranged using the following basic relation

1
(𝛾 |𝑚|𝜈 )2 − 𝜏2

1
(𝛾 |𝑚|𝜈′ )2 − 𝜏2

= 1
(𝛾 |𝑚|𝜈 )2 − (𝛾 |𝑚|𝜈′ )2

[

1
(𝛾 |𝑚|𝜈′ )2 − 𝜏2

− 1
(𝛾 |𝑚|𝜈 )2 − 𝜏2

]

, (63)

which leads to

𝜁 |𝑚|𝜈𝜈′ =
𝑘0

(𝛾 |𝑚|𝜈 )2 − (𝛾 |𝑚|𝜈′ )2

[

𝛾 |𝑚|𝜈 𝐽
|𝑚|+1(𝛾 |𝑚|𝜈 𝑎)𝜁 |𝑚|1,𝜈′ − 𝛾

|𝑚|
𝜈′ 𝐽|𝑚|+1(𝛾

|𝑚|
𝜈′ 𝑎)𝜁

|𝑚|
1,𝜈

]

, (64)
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where 𝜈, 𝜈′ = 0, 1,…, 𝑘2𝑧 = 𝑘20 − 𝜏
2, the eigenvalues 𝛾 |𝑚|𝜈  are obtained from the characteristic equation 𝐽

|𝑚|(𝛾
|𝑚|
𝜈 𝑎) = 0.

The complex expansion coefficient in Eq. (57) can be expressed as

𝐷̂|𝑚|
𝑛 (𝛾 |𝑚|𝜈 ) = 𝑎𝑏

16𝜋

{

̂̂𝐷
|𝑚|,𝑞(𝛾 |𝑚|𝜈 𝑎∕2) ̃̃𝐷0,𝑝(𝛾 |𝑚|𝜈 𝑏∕2) +

∞
∑

𝜇=1
(−i)𝜇

[

̂̂𝐷
|𝑚|+𝜇,𝑞(𝛾 |𝑚|𝜈 𝑎∕2) + ̂̂𝐷

|𝑚|−𝜇,𝑞(𝛾 |𝑚|𝜈 𝑎∕2)
]

̃̃𝐷𝜇,𝑝(𝛾 |𝑚|𝜈 𝑏∕2)

}

+ 𝑎𝑏
16𝜋

(−i)|𝑚|
{

̂̂𝐷0,𝑞(𝛾 |𝑚|𝜈 𝑎∕2) ̃̃𝐷
|𝑚|,𝑝(𝛾 |𝑚|𝜈 𝑏∕2)

+
∞
∑

𝜇=1
i𝜇 ̂̂𝐷𝜇,𝑞(𝛾 |𝑚|𝜈 𝑎∕2)

[

̃̃𝐷
|𝑚|+𝜇,𝑝(𝛾 |𝑚|𝜈 𝑏∕2) + ̃̃𝐷

|𝑚|−𝜇,𝑝(𝛾 |𝑚|𝜈 𝑏∕2)
]

}

, (65)

where 𝐷̂𝑚∗
𝑛 (𝛾 |𝑚|𝜈 ) can be obtained as the conjugate value of 𝐷̂𝑚

𝑛 (𝛾
|𝑚|
𝜈 ), 

̂̂𝐷𝜇,𝑞(𝛾 |𝑚|𝜈 𝑎∕2) =
∞
∑

𝜇′=0
𝑇̂2𝜇′+𝛽(𝜇),𝑞 ̂̄𝐷𝜇,𝜇′ (𝛾 |𝑚|𝜈 𝑎∕2), (66a)

̃̃𝐷𝜇,𝑝(𝛾 |𝑚|𝜈 𝑏∕2) =
∞
∑

𝜇′=0
𝑇̃2𝜇′+𝛽(𝜇),𝑝 ̂̄𝐷𝜇,𝜇′ (𝛾 |𝑚|𝜈 𝑏∕2), (66b)

for odd 𝜇 + 𝑞 and 𝜇 + 𝑝 and zero otherwise, and
̂̄𝐷𝜇,𝜇′ (𝜉) = i|𝜇|−𝜇𝜖𝛽(|𝜇|)+𝜇′𝐽⌈|𝜇|∕2⌉+𝜇′ (𝜉∕2)𝐽𝛼̄(|𝜇|)−𝜇′ (𝜉∕2), (67)

with 𝜉 being either 𝛾 |𝑚|𝜈 𝑎∕2 or 𝛾 |𝑚|𝜈 𝑏∕2, ̄𝛼(𝜇) = Integer(𝜇∕2) being the integer part of dividing an integer value 𝜇 by 2 and 𝛽(𝜇) = Rest(𝜇∕2)
being the rest of dividing an integer value 𝜇 by 2, i|𝜇|−𝜇 = 1 for 𝜇 = 0, 1, ., i|𝜇|−𝜇 = (−1)𝜇 for 𝜇 = −1,−2, ., and ⌈|𝜇|∕2⌉ = 𝛼̄(|𝜇|) + 𝛽(|𝜇|)
(⌈𝑥⌉ is the smallest integer greater equal 𝑥).

The coefficients 𝑇̂𝜇,𝑞 and 𝑇̃𝜇,𝑝 occurring in Eqs. (66a) and (66b) can be obtained on the basis of the following rapidly converging 
expansion series 

𝑇̂𝜇,𝑞 = 𝐴̂(𝑐)
1,𝑞

⌊𝜇∕2⌋
∑

𝑟=0
𝛼̃𝜇,2𝑟

[

(−1)𝑟𝑗2𝑟(𝛼1,𝑞𝑎∕2) −
𝑖(1)2𝑟 (𝛼2,𝑞𝑎∕2)
cosh(𝛼2,𝑞𝑎∕2)

cos(𝛼1,𝑞𝑎∕2)
]

− 𝐴̂(𝑠)
1,𝑞

⌊𝜇∕2⌋
∑

𝑟=0
𝛼̃𝜇,2𝑟+1

[

(−1)𝑟𝑗2𝑟+1(𝛼1,𝑞𝑎∕2) −
𝛼1,𝑞
𝛼2,𝑞

𝑖(1)2𝑟+1(𝛼2,𝑞𝑎∕2)
cosh(𝛼2,𝑞𝑎∕2)

cos(𝛼1,𝑞𝑎∕2)
]

, (68a)

𝑇̃𝜇,𝑝 = 𝐴̃(𝑐)
2,𝑝

⌊𝜇∕2⌋
∑

𝑟=0
𝛼̃𝜇,2𝑟

[

(−1)𝑟𝑗2𝑟(𝛽1,𝑝𝑏∕2) −
𝑖(1)2𝑟 (𝛽2,𝑝𝑏∕2)
cosh(𝛽2,𝑝𝑏∕2)

cos(𝛽1,𝑝𝑏∕2)
]

− 𝐴̃(𝑠)
2,𝑝

⌊𝜇∕2⌋
∑

𝑟=0
𝛼̃𝜇,2𝑟+1

[

(−1)𝑟𝑗2𝑟+1(𝛽1,𝑝𝑏∕2) −
𝛽1,𝑝
𝛽2,𝑝

𝑖(1)2𝑟+1(𝛽2,𝑝𝑏∕2)
cosh(𝛽2,𝑝𝑏∕2)

cos(𝛽1,𝑝𝑏∕2)
]

, (68b)

where lim𝑢→∞[𝑖(1)𝑟 (𝑢)∕ cosh(𝑢)] = 0 for 𝑟 = 0, 1,…, and 

𝐴̂(𝑐)
1,𝑞 = 2𝐴1,𝑞𝑓1,𝑞(𝑎∕2), 𝐴̂(𝑠)

1,𝑞 = 2𝐴1,𝑞𝑔1,𝑞(𝑎∕2), (69a)

𝐴̃(𝑐)
2,𝑝 = 2𝐴2,𝑝𝑓2,𝑝(𝑏∕2), 𝐴̃(𝑠)

2,𝑝 = 2𝐴2,𝑝𝑔2,𝑝(𝑏∕2), (69b)

In the specific case when 𝜇 = 0, 𝑇0(𝑢) = 1 and 

𝑇̂0,𝑞 =
4𝐴1,𝑞

𝛼1,𝑞𝑎

{

(

1 +
𝛼21,𝑞
𝛼22,𝑞

cos(𝛼1,𝑞𝑎∕2)
cosh(𝛼2,𝑞𝑎∕2)

)

𝑔1,𝑞(𝑎∕2) −
2𝑘2𝑛𝑘̄1,𝑞
𝛼1,𝑞𝛼2,𝑞

}

; 𝑞 = 1, 3,… , (70a)

𝑇̃0,𝑝 =
4𝐴2,𝑝

𝛽1,𝑝𝑏

{

(

1 +
𝛽21,𝑝
𝛽22,𝑝

cos(𝛽1,𝑝𝑏∕2)
cosh(𝛽2,𝑝𝑏∕2)

)

𝑔2,𝑝(𝑏∕2) −
2𝑘2𝑛𝑘̄2,𝑝
𝛽1,𝑝𝛽2,𝑝

}

; 𝑝 = 1, 3,… . (70b)

The detailed derivation of Eqs. (68a)–(70b) has been presented in the Supplementary Material. It is worth noting that the expansion 
coefficients in Eq. (65) are essentially values independent on frequency. Therefore, they can be calculated a priori and later used for 
calculations in Eq. (56) for arbitrary frequency, which helps to improve the time efficiency of numerical calculations.
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Table 1 
The selected resonant frequencies 𝑓𝑟 and the eigenfrequencies 𝑓𝑛 of the plate of the sizes 0.60m × 0.50m × 3.0mm and the critical frequency 
𝑓𝑐 = 3980.1Hz (cf. Eq. (71)), where Γ𝑛 is the NAVMI factor (cf. Eq. (55)). Key for results obtained: ta—using TAFM, fe—using FEM, wb—from 
the Warburton approximation (cf. Warburton [15] Eqs. (15) and (16), Squicciarini et al. [43] Eq. (4), and Leissa [44] Eq. (4.16)), and na—using 
the NAVMI factors (cf. Eq. (46)).

 Index  Vacuum  Air, Infinite Baffle  Air, No Baffle
𝑛 𝑞 𝑝 𝑓𝑛,ta(Hz) 𝑓𝑛,fe(Hz) 𝑓𝑛,wb(Hz) 𝑓𝑟,ta(Hz) 𝑓𝑟,fe(Hz) 𝑓𝑟,na(Hz) Γ𝑛 𝑓𝑟,ta(Hz) 𝑓𝑟,fe(Hz) 𝑓𝑟,na(Hz) Γ𝑛

 1  1  1  90.0719  92.292  92.4782  87.5  90.0  88.817  0.028452  88.5  90.8  88.988  0.024518
 2  2  1  164.942  166.83  170.923  162.5  165.6  162.775  0.026811  163.0  165.8  163.117  0.022507
 3  1  2  206.378  207.67  211.090  203.5  206.7  204.325  0.020198  204.0  207.0  204.514  0.018307
 4  2  2  274.096  276.32  294.435  271.5  276.5  271.403  0.019940  271.5  276.4  271.529  0.018997
 5  3  1  285.567  286.92  290.847  283.0  287.0  283.089  0.017581  283.0  287.0  283.244  0.016467
 47  7  5  1943.98  1943.4  1998.91  1935.0  –  1935.90  0.008360  1935.0  –  1935.52  0.008760
 48  9  2  1976.77  1974.9  2010.86  1969.0  –  1968.13  0.008798  1968.0  –  1968.10  0.008830
 49  8  4  1984.16  1983.0  2036.17  –  –  1975.83  0.008450  –  –  1975.37  0.008924
 50  4  7  1998.30  1997.2  2041.42  1990.0  –  1988.98  0.009386  1989.5  –  1989.29  0.009075
 51  6  6  2012.41  2011.7  2066.68  2003.5  –  2004.35  0.008054  2003.5  –  2004.13  0.008277

4.  Numerical analysis

The numerical analysis has been carried out methodically in a step-by-step manner to apply sample calculations using the TAFM. 
This method incorporates the exact results presented in this study and in Section 3. The numerical results obtained are further 
validated using the FEM. It should also be noted that the relation between the double inverse Fourier transforms and the series of 
single inverse Hankel transforms, as discussed by Cornacchio and Soni [24] and Baddour [25], has been applied to the majority of the 
numerical calculations presented herein. The rigorous application of this relation is demonstrated in Section 3. In general, the Dini 
coefficients should be integrated over the surface area of the circle. In the present case, the radius of this circle should be equal to half 
of the diagonal of the rectangular plate. Nevertheless, the integration in Eqs. (65) and (66a) can be restricted to the surface area of the 
rectangular plate, since either the normal vibration velocity of the plate is equal to zero (for the Neumann boundary condition) or the 
acoustic pressure is zero (for the Dirichlet boundary condition) on the circle outside the rectangular plate. Therefore, the application 
of the above-mentioned relation is justified herein. This application makes it possible to perform all numerical calculations without 
further simplifications. All modal admittance coefficients are included in the calculations, and thus the results are highly accurate, 
while the computational cost remains reasonable. In other words, without applying the relation proposed by Cornacchio and Soni 
[24], most of the results presented here would not be achievable through direct numerical integration in Eqs. (54) and (32).

In this study, it is assumed that the plate is air-loaded on both sides. Consequently, 𝑒𝑓 = 2 throughout the numerical analysis. The 
plate is submerged in air with an ambient density 𝜚0 = 1.2 kg/m3. The speed of sound is 𝑐 = 343m/s. The plate is made of aluminum, 
with the following parameter values: 𝜚𝑝 = 2700 kg/m3, 𝐸 = 71GPa, 𝜈 = 0.33, and 𝜂 = 10−4. The dimensions of the plate are 𝑎 = 0.60m, 
𝑏 = 0.50m, and the thickness is 3.0mm. The critical frequency is given by

𝑓𝑐 =
𝑐2

2𝜋

√

𝜚𝑝ℎ
𝐷𝐸

, (71)

which yields a value of 𝑓𝑐 = 3980.1Hz for the considered plate.
The first step is to numerically determine the eigenfrequencies of the plate using the equations from Section 2.2. They were ob-

tained using the Python function ‘findroot’ with the ‘anderson’ solver from the ‘mpmath’ library [42]. The calculations were performed 
for modal numbers 𝑞 and 𝑝 in Eq. (3a) ranging from 1 to 50, resulting in a total of 2500 eigenfrequencies. These eigenfrequencies 
were then sorted in ascending order and numbered as 𝑛 = 1,… , 2500. This number is far more than necessary, as only the first 283 
eigenfrequencies are below 10 kHz. Even when an additional 60 modes are included, this results in 343 modes (up to eigenfrequency 
𝑓343 = 11.9368 kHz for 𝑞 = 21 and 𝑝 = 9), which are sufficient for calculating the reference values (used to assess approximation er-
rors). Nevertheless, a larger set of eigenfrequencies was calculated to ensure that none of the first 343 were omitted. The flowchart 
of the numerical calculation scheme is presented in Appendix E.

Some representative eigenfrequencies are provided in Table 1, together with values obtained using FEM and the Warburton 
approximation (cf. Warburton [15]) and (16), Squicciarini et al. [43] Eq. (4)). It can be observed that the FEM results agree well with 
those presented herein, and the difference between both methods does not exceed 1Hz for the 51st eigenfrequency. On the other 
hand, the Warburton approximation is consistent for the lowest eigenfrequencies, while significant divergence appears at higher 
eigenfrequencies. For example, the Warburton result is overestimated by about 55Hz compared to the results from FEM and the 
formulas used herein for the 51st eigenfrequency, indicating that it is accurate only for the lowest eigenfrequencies. Table 1 also 
provides the values of the resonant frequencies estimated using the NAVMI factor based on Eqs. (46), (47), and (55). These estimates 
agree very well with the values obtained by solving the system of algebraic equations in Eqs. (35) and (48).

The lowest eigenfunctions are illustrated in Fig. 2(a) and (b) for the modal numbers 𝑞, 𝑝 = 1,… , 7, and the excitation coordinates 
𝑥 = 0.24𝑎 and 𝑦 = 0.24𝑏 were selected to avoid exciting the nodal lines of these modes. The coordinates are indicated with vertical red 
dotted lines in Figs. 2(a) and (b). Such a selection of the excitation point ensures that all resonant maxima occur at each successive 
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Fig. 2. The selected initial eigenfunctions Ψ𝑞(𝑥) and Φ𝑝(𝑦) on the plate for 𝑞 = 𝑝 = 1,… , 7. The coordinates 𝑥 = 0.24𝑎 and 𝑦 = 0.24𝑏 of the excitation 
point (vertical red dotted lines) were selected to avoid any nodal lines for these eigenfunctions. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Comparison of the SWL (dB) of the plate excited at low frequencies by a concentrated load at (0.24𝑎, 0.24𝑏) obtained using TAFM and FEM 
for the plate: (a) in the RIB, (b) WNB.

resonant frequency as long as the specified mode number intervals are not exceeded. Therefore, it can be expected that choosing 
excitation frequencies at the five lowest resonant frequencies (i.e., below 286Hz) will result in resonant responses. This reasoning is 
confirmed by the results presented in Fig. 3(a), where five maxima of the sound power level SWL= 10 log10(Π∕Π0) of the vibrating 
plate can be observed, whether the plate is embedded into the RIB or is WNB, where Π is the acoustic power and Π0 = 1pW is the 
reference value. It can be noted that the results obtained using TAFM and those from FEM are generally in good agreement. The SWL 
for the plate in the RIB is greater by about 10 to 20dB than the SWL for the plate in WNB for all frequencies below 330Hz except at 
the resonant frequencies. At the resonant frequencies, the SWL assumes comparable values whether the plate is in the RIB or WNB. 
The five resonant maxima can be observed at the frequencies specified in Table 1 below 330Hz. The resonant frequencies are slightly 
lower when the plate is in the RIB compared with the case of WNB. The TAFM results are obtained by incorporating all necessary 
modes for 𝑛 = 1,… , 𝑁 in the numerical analysis for a given excitation frequency smaller than or equal to 4 kHz, where 𝑓𝑁  is the 
highest eigenfrequency smaller than or equal to the excitation frequency 𝑓 . After the number of necessary modes is determined, it 
is increased by the mode number increment (MNI) Δ𝑁 to improve the accuracy of the results. In this figure, the MNI was selected 
arbitrarily as Δ𝑁 = 10, as this value was anticipated to be sufficient. The relation between the MNI, approximation errors, and 
computational efficiency will be discussed later. On the other hand, FEM requires a sufficiently large region around the plate and 
a perfectly matched layer (PML) to ensure reasonable results. It was assumed that the largest finite element does not exceed one 
sixth of the excitation wavelength. This requirement is satisfied for frequencies up to 150Hz in Fig. 3(a), which means that the FEM 
results obtained for higher frequencies should be interpreted with caution. Meeting this requirement up to 300Hz would result in 
about (300∕150)3 = 8 times more finite elements, which was not feasible with the computer used. The FEM results are not presented 
in Fig. 3(b) for the same reason. In this figure the requirement of at least six finite elements per wavelength for frequencies up to 
2 kHz would result in an approximate number of elements about (2000∕150)3 = 2370 times higher than in Fig. 3(a). In addition, the 
COMSOL software generates the mesh automatically and provides elements that are much smaller near the plate, especially along 
its edges when the plate is WNB. The elements on the plate are also smaller, as the bending wavenumbers on the plate are shorter 
than the acoustic wavelengths below the critical frequency 𝑓𝑐 = 3980.1Hz. The free region is chosen as a full sphere with a radius six 
times the diagonal of the plate. The thickness of the PML is also six times this diagonal. All these factors lead to a huge number of 
finite elements in the acoustic field simulations, making the calculations very time-consuming. A total of 132 frequency samples were 
calculated using both TAFM and FEM. Additional samples were added near the resonant frequencies to make the curves in Fig. 3(a) 
acceptably smooth.

The SWL maxima for higher frequencies are presented in Fig. 3(b), covering the frequency interval from 1920 to 2020Hz, which 
contains the five eigenfrequencies listed in the lower part of Table 1. Only four resonant maxima can be observed because the 
excitation point lies on one of the nodal lines of the 49th mode. Consequently, the 49th mode of the plate is not excited and its 
resonant maximum is absent for this mode. The difference in SWL does not exceed about 5dB within this frequency interval for the 
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Table 2 
The mean ratio of the time required for calculations of the 
averaged acoustic power ΠAvg. (W) per frequency sample for 
frequencies smaller than 330Hz using two different methods, 
TIFM and FEM, with the reference time obtained using the 
TAFM.

𝑡TIFM
𝑡TAFM

𝑡FEM
𝑡TAFM

 Infinite Baffle  2.435  1.967
 No Baffle  2.555  1.962

Fig. 4. The selected 21 excitation points on the plate (cf. Putra and Thompson [14] Fig. 1).

plates in the RIB and WNB. The SWL is still higher for the plate in the RIB, except at the resonant frequency, where the SWL for the 
plate in WNB is greater. It was not possible to obtain FEM results with acceptable accuracy in this frequency interval using a regular 
computer; therefore, such results are not presented in Fig. 3(b) or in Table 1.

Table 2 presents the ratio of the mean time required for numerical calculations of the averaged acoustic power ΠAvg. (W) per 
frequency sample for frequencies below 330Hz, using the theoretical integration formulas method (TIFM) and TAFM, where the 
latter provides the reference time. This ratio measures the time efficiency of the TAFM compared with TIFM and FEM. On average, 
the TAFM is about 2.5 times more time-efficient than TIFM and about 2 times more efficient than FEM. With respect to TIFM, there 
are at least two major issues. First, the numerical integration procedure ‘NIntegrate’ in Mathematica fails to compute the double 
integrals in Eqs. (54) and (32), becoming ineffective for some frequencies above 330Hz. Second, it is difficult to control the accuracy 
of double numerical integration, and this becomes impossible when the procedure fails. The second column of values in Table 2 shows 
the ratio of the time required for calculations using FEM compared with TAFM. The ratio is close to 2. The main problem with FEM 
is that the number of finite elements required for calculations grows rapidly with frequency. As a result, physically correct results 
can be obtained only for frequencies below 150Hz, which is far below the plate’s critical frequency. This is a very narrow interval 
of low frequencies, and the results obtained using FEM are useful mainly for validation of the TAFM. In contrast, the TAFM is free 
from these shortcomings. It enables numerical calculations up to 10 kHz, which is well above the critical frequency of the plate. At 
the same time, the accuracy can be controlled by selecting greater or smaller MNI. It should be emphasized that the TAFM allows 
further optimization of time efficiency. For example, once the modal admittance coefficients are calculated, they can be reused for 
rapid calculations at different excitation points. In contrast, any change in the excitation point requires repeating time-consuming 
calculations using FEM. Consequently, the acoustic power averaged over 20 excitation points can be obtained about 40 times faster 
using TAFM than FEM since the modal admittance coefficients need to be calculated only once .

The sound power level is SWLAvg. = 10 log10(ΠAvg.∕Π0) for the plate vibrating either in the RIB or WNB, where ΠAvg. is the acoustic 
power Π averaged over the 21 different excitation points shown in Fig. 4 and Π0 = 1pW. The excitation points were selected after 
Putra and Thompson [14] (cf. their Figure 1) to ensure that as many resonant maxima as possible are obtained across a wide frequency 
range, from the lowest values to well above the critical frequency. The 21st excitation point was added to ensure that all resonant 
maxima are captured for frequencies below 330Hz.

The SWL presented in Fig. 5(a) is generally greater for the plate in the RIB than for the plate in WNB. The difference is about 
20dB around the fundamental frequency and decreases to zero as the frequency approaches the critical value. Fig. 5(b) shows the 
radiation efficiency for both plates and demonstrates that the plate in WNB is a much weaker radiator than the plate in the RIB below 
the critical frequency. This conclusion is consistent with the findings of Laulagnet [5] (cf. Figs. 5, 7, and 9), Putra and Thompson 
[14] (cf. Figs. 8 and 9), Bao et al. [45] (cf. Fig. 5), and Neekar et al. [46] (cf. Figs. 1, 3, and A2). Fig. 5(c) presents the mean square 
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Fig. 5. (a) The SWLAvg. for the acoustic power ΠAvg. averaged over all 21 excitation points shown in Fig. 4 (cf. Putra and Thompson [14] Fig. 2, thin 
curves) for Δ𝑁 = 10. (b) The radiation efficiency 𝜎Avg. averaged over all the same 21 excitation points for Δ𝑁 = 10. (c) The approximation error for 
the averaged acoustic power 𝛿ΠAvg. (%) for Δ𝑁 = 10 with the reference values obtained for Δ𝑁 = 40.

Fig. 6. The approximation error 𝛿ΠAvg. (%). for the averaged acoustic power ΠAvg. over all 21 excitation points shown in Fig. 3 (cf. Putra and 
Thompson [14], Fig. 2, thin curves) as a function of Δ𝑁 with the reference values calculated for Δ𝑁 = 60 for arbitrarily selected frequencies for the 
plate in the RIB and WNB.

approximation error

𝛿ΠAvg. =
{

1
Δ𝑓 ∫

𝑓2

𝑓1

|Π1 − Π2|
2

|Π2|
2

d𝑓
}1∕2

100%, (72)

averaged over the frequency interval from 𝑓1 = 10Hz to 𝑓2 = 10 kHz, where Δ𝑓 = 𝑓2 − 𝑓1, Π1 = ΠAvg. is the acoustic power Π averaged 
over the 21 excitation points shown in Fig. 4 and calculated for Δ𝑁 = 10, and the reference value Π2 = ΠAvg. is calculated for Δ𝑁 = 40. 
The error does not exceed 4% for the plate in the RIB and reaches its maximum around the critical frequency. For the plate in WNB 
the error is generally larger but does not exceed 10%. It reaches local maxima at the resonant frequencies. The question arises as to 
what causes these local maxima for the plate in WNB, which do not occur for the plate in RIB. This issue will be addressed later.

Although all the theoretical formulas used in this study are exact, some numerical errors are inevitable. The primary source of 
these errors is truncation in the eigenfunction expansion for the transverse displacement of the plate and the excitation in Eqs. (17a) 
and (17b). As mentioned before, all the necessary eigenfunctions are included (up to the excitation frequency) in these expansions, 
and then the number of eigenfunctions is increased by the factor MNI to improve accuracy and minimize numerical errors. It is worth 
noting that all the other expansions used in this study include enough terms so that numerical errors from these expansions are 
negligible compared with truncation errors in Eqs. (17a) and (17b). Therefore, truncation errors are the primary source of numerical 
errors, which are propagated while solving the systems of algebraic equations in Eqs. (30), (35), and (48). Other sources of error 
also exist; for example, solving the system of algebraic equations in Eq. (35) requires calculating the inverse matrix of the modal 
admittance coefficients used in Eq. (30) to obtain the matrix of modal impedance coefficients used in Eq. (35). The difference in the 
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Fig. 7. The SWLAvg. for the acoustic power averaged over all 21 excitation points shown in Fig. 4 (cf. Putra and Thompson [14], Fig. 2, thin 
curves): (a) a wide frequency interval of 𝑓 = 86.0 ÷ 91.0Hz for Δ𝑁 = 10 and the plate either in the RIB or WNB; (b) a narrow frequency interval of 
𝑓 = 87.0 ÷ 88.3Hz for Δ𝑁 = 5,… , 40 and the plate in the RIB; (c) a very narrow frequency interval of 𝑓 = 88.2 ÷ 88.4Hz for Δ𝑁 = 5,… , 60 and the 
plate in WNB.

complex acoustic power obtained by solving the systems of equations in Eqs. (30) and (35) does not exceed 10−12% and such errors 
are negligible. The effect of the MNI on the approximation error of the acoustic power averaged over 21 different excitation points as 
a function of Δ𝑁 with the reference values calculated for Δ𝑁 = 60 is presented in Fig. 6 and (b) for arbitrarily selected frequencies. The 
error does not exceed a few percent for all analyzed frequencies, including 5 kHz, which is above the critical frequency 𝑓𝑐 = 3980.1Hz, 
regardless of whether the plate is vibrating in the RIB or WNB. The error decreases uniformly with increasing MNI for the plate in 
the RIB. In the case of the plate in WNB, the error decreases with increasing MNI, but the decrease occurs in steps.

In addition, the effect of the MNI on the accuracy of the numerical results obtained for the SWL of the acoustic power averaged 
over 21 different excitation points is presented in Fig. 7(a)–(d) within a very narrow frequency interval of 5Hz around the resonant 
maxima of the fundamental mode of the vibrating plate in the RIB and WNB in Fig. 7(a). The two curves for the plate in the RIB 
assume values higher on average by about 20dB than the two curves for the plate in WNB across the entire frequency interval, 
except at the resonant frequencies where the situation is reversed. More importantly, the two curves for the RIB are nearly identical, 
whereas the two curves for the WNB are slightly shifted at the resonant frequency. The shift is very small and the maxima are very 
steep. Consequently, this small frequency shift results in SWL variations smaller than 2dB, yet very large percentage errors in the 
immediate vicinity of the resonant maximum, as illustrated in Fig. 7(b). Since the resonant maxima for the plate in WNB are extremely 
narrow, the large errors are of little practical importance, as are the small frequency shifts. This effect has already been discussed 
for a vibrating elastically supported annular plate by Rdzanek et al. [35] (cf. their Figure 6). At the same time, for the plate in the 
RIB, the error is smaller than 0.01% at the resonant maximum. It can also be observed that in the RIB case, the resonant maximum 
is relatively wide (cf. Fig. 7(c)), while in the WNB case the resonant maximum is extremely narrow (cf. Fig. 7(d)). Virtually no effect 
of Δ𝑁 on the resonant curve can be seen in Fig. 7(c), as the maximum is relatively wide. On the other hand, increasing Δ𝑁 shifts 
the resonant maximum toward lower frequencies. Nevertheless, the shift does not exceed 0.05Hz (0.06%) and stabilizes at about 
88.29Hz. This shift is so small that, from a practical standpoint, it can be neglected, especially as, in the WNB case, the resonant 
maximum is extremely narrow. Only the lowest resonant maxima are shown in Fig. 7(a), but the behavior of higher resonant maxima 
is similar.

The mean square approximation error 𝛿ΠAvg. (%) for the averaged acoustic power calculated using Eq. (72) for Δ𝑁 = 5, 10, 20, 30
with the reference values calculated for Δ𝑁 = 40 is presented in Table 3. In the case of the plate in the RIB, the error is about 1% 
and about 3% for the plate in WNB for Δ𝑁 = 10. Such errors were considered acceptable in this study for subsequent numerical 
calculations. The error for the plate in WNB can be reduced by half when Δ𝑁 is increased to 30. However, in this case, the mean 
computation time increases by nearly an order of magnitude. The mean ratio

𝜏 = 1
Δ𝑓 ∫

𝑓2

𝑓1

𝑡1
𝑡2

d𝑓, (73)
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Table 3 
The mean square approximation error 𝛿ΠAvg. (%) for the av-
eraged acoustic power, calculated using Eq. (72) for Δ𝑁 =
5, 10, 20, 30 with reference values obtained for Δ𝑁 = 40.

Δ𝑁  5  10  20  30
 Infinite Baffle  2.827%  1.134%  0.395%  0.167%
 No Baffle  4.038%  2.865%  2.091%  1.572%

Table 4 
The mean ratio 𝜏 in Eq. (73) of time necessary for calcula-
tions of the averaged acoustic power ΠAvg. (W) for different 
values of Δ𝑁 with the reference time obtained for Δ𝑁 = 40.

Δ𝑁  5  10  20  30
 Infinite Baffle  0.03865  0.07330  0.2035  0.4981
 No Baffle  0.03285  0.06592  0.1940  0.4891

Fig. 8. The SPL (dB) of the vibrating plate in the RIB in the near-field for the excitation point with the coordinates 𝑥′ = 0.24𝑎 and 𝑦′ = 0.24𝑏, and 
the selected low frequencies as a function of 0 ⩽ |𝜃| ⩽ 𝜋, 𝜙 = arc tan(𝑏∕𝑎), and 0 ⩽ 𝑟 ⩽ 3𝑟0, where 𝑟20 = (𝑎∕2)2 + (𝑏∕22), calculated using: (a)–(e) the 
TAFM, (f)–(j) the FEM.

was averaged over the frequency interval from 𝑓1 = 0Hz to 𝑓2 = 10 kHz, where Δ𝑓 = 𝑓2 − 𝑓1. Here, 𝑡1 denotes the time required to 
calculate the acoustic power ΠAvg. (W) averaged over the 21 excitation points shown in Fig. 4 for Δ𝑁 = 5, 10, 20, 30, and 𝑡2 represents 
the reference time obtained for Δ𝑁 = 40 (cf. Table 4).

This part of the numerical analysis examines the acoustic near-field and far-field using the TAFM developed in this study and 
validates it by comparison with the FEM. For this purpose, the sound pressure level SPL= 10 log10[|𝑝|2∕(2𝑝20)] was calculated, where |𝑝|
is the acoustic pressure amplitude modulus obtained from Eqs. (24) and (51), and 𝑝0 = 20 µPa is the reference value. The calculations 
were performed for 0 ⩽ |𝜃| ⩽ 𝜋, 𝜙 = arc tan(𝑏∕𝑎), and distances from the plate center 0 ⩽ 𝑟 ⩽ 3𝑟0, where 𝑟20 = (𝑎∕2)2 + (𝑏∕22). The 
analysis focused on the lower resonant frequencies listed in Table 1 for both the plate in the RIB and the plate in WNB. Both the 
TAFM and FEM were applied for comparison. The specific plane 𝜙 = arc tan(𝑏∕𝑎) was chosen to avoid cases where the acoustic field 
vanishes in planes parallel to the plate edges, as these coincide with nodal planes. Fig. 8 presents the SPL radiated by the plate in the 
RIB, and Fig. 9 shows the SPL radiated by the plate in WNB. The resonant frequencies obtained by the two methods differ slightly, 
but the results are highly consistent for each frequency, thus validating both approaches. In the TAFM, Eqs. (51) and (24) were 
employed, satisfying the homogeneous Neumann and Dirichlet boundary conditions, respectively, for 𝑧 = 0, |𝑥| > 𝑎∕2, and |𝑦| > 𝑏∕2. 
Fig. 10 shows similar results for SPL at the higher resonant frequencies listed in Table 1 for the plates in both RIB and WNB. For 
these cases, only the TAFM was used. At the fundamental resonant frequency, the SPL exhibits a nearly omnidirectional pattern. As 
frequency increases, the number of side lobes grows as expected.

The SPL in the far-field as the function of the polar angle 𝜃 has been presented in Fig. 11. These results were obtained using 
Eqs. (24) and (51) for the resonant frequencies listed in Table 1, at a distance of 𝑅 = 10m from the plate center, for both theRIB and 
WNB cases. For the plate in the RIB, the far-field pattern in Fig. 11(a) is nearly omnidirectional at the fundamental resonant frequency 
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Fig. 9. The SPL (dB) of the vibrating plate WNB in the near-field for the excitation point with the coordinates 𝑥′ = 0.24𝑎 and 𝑦′ = 0.24𝑏, and the 
selected low frequencies as a function of 0 ⩽ |𝜃| ⩽ 𝜋, 𝜙 = arc tan(𝑏∕𝑎), and 0 ⩽ 𝑟 ⩽ 3𝑟0, where 𝑟20 = (𝑎∕2)2 + (𝑏∕22), calculated using: (a)–(e) the TAFM, 
(f)–(j) the FEM.

Fig. 10. The SPL (dB) in the near-field for the excitation point with the coordinates 𝑥′ = 0.24𝑎 and 𝑦′ = 0.24𝑏, and the selected high frequencies as 
a function of 0 ⩽ |𝜃| ⩽ 𝜋, 𝜙 = arc tan(𝑏∕𝑎), and 0 ⩽ 𝑟 ⩽ 3𝑟0, where 𝑟20 = (𝑎∕2)2 + (𝑏∕22), calculated using the formulas presented in this study for the 
plate vibrating: (a) in the RIB, (b) WNB.

and develops maxima at higher resonant frequencies. For the plate in WNB, the far-field pattern in Fig. 11(c) exhibits a clear horizontal 
nodal plane at 𝜃 = 𝜋∕2 (𝑧 = 0) across all resonant frequencies due to the Dirichlet boundary condition. The maximum occurs at 𝜃 = 0
for the fundamental resonant frequency and shifts to 𝜃 ≠ 0 for higher resonant frequencies. The SPL in the far-field as a function of 
the azimuthal angle 𝜙, presented in Fig 11(b) and (d), is nearly omnidirectional at the fundamental resonant frequency for both RIB 
and WNB. At higher resonant frequencies, however, the field becomes axially asymmetric, forming vertical nodal planes at specific 
values of 𝜙 such as 0 and 𝜋∕2, depending on the dominant mode corresponding to each resonant frequency.

The SPL in the far-field for some higher resonant frequencies is presented in Fig. 12. Generally, the SPL as a function of the polar 
angle 𝜃 shows a growing number of nodal lobes with increasing resonant frequency, regardless of whether the plate is in the RIB or 
WNB, as shown in Fig. 12(a) and (c). This indicates that the field develops a larger number of nodal cones for different values of 𝜃 as 
the frequency increases. The SPL in the far-field as a function of the azimuthal angle 𝜙 is shown in Fig. 12(b) and (d). It demonstrates 
that the number of lobes for different values of 𝜙 increases with frequency. This means that the number of vertical nodal planes also 
grows with frequency.
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Fig. 11. The SPL (dB) in the far-field for 𝑅 = 10m, the excitation point with the coordinates 𝑥′ = 0.24𝑎 and 𝑦′ = 0.24𝑏, and the selected low frequen-
cies as a function of: (a) 𝜃 for 𝜙 = arc tan(𝑏∕𝑎) in the RIB, (b) 𝜙 for 𝜃 = 𝜋∕3 in the RIB, (c) 𝜃 for 𝜙 = arc tan(𝑏∕𝑎) WNB, (d) 𝜙 for 𝜃 = 𝜋∕3 WNB.

Fig. 12. The SPL (dB) in the far-field for 𝑅 = 10m, the excitation point with coordinates 𝑥′ = 0.24𝑎 and 𝑦′ = 0.24𝑏, and the selected high frequencies 
as a function of: (a) 𝜃 for 𝜙 = arc tan(𝑏∕𝑎) in the RIB, (b) 𝜙 for 𝜃 = 𝜋∕3 in the RIB, (c) 𝜃 for 𝜙 = arc tan(𝑏∕𝑎) in WNB, (d) 𝜙 for 𝜃 = 𝜋∕3 in WNB.

5.  Conclusions

The major findings of this study are summarized below. A new rigorous analysis method, called the TAFM, has been proposed. 
Using this method, it is possible to effectively and accurately solve the Neumann and Dirichlet boundary problems, and analyze the 
acoustic field of a thin rectangular plate in the RIB and WNB, respectively. The results obtained can be useful for predicting the 
acoustic field of casing elements in the form of thin rectangular plates used in industrial environments. Applying the TAFM made it 
possible to efficiently obtain accurate numerical results for the acoustic power within a wide frequency interval, from values below 
the fundamental frequency of a clamped rectangular plate to far above the critical frequency. Once the modal impedance coefficients 
are calculated for the plate in the RIB, they can be used to efficiently calculate the complementary modal admittance coefficient for 
the same plate in WNB. This requires using the spectral mapping method, radial polynomials, and the Dini series for such calculations. 
The presented TAFM is much more robust, accurate, and efficient than both the TIFM and the FEM. For example, the TAFM makes 
it possible to obtain accurate results up to 10 kHz, whereas the FEM provides accurate results only up to 330Hz. This is because 
the TAFM is significantly less demanding in terms of computational resources. The TAFM is approximately twice as time-efficient 
as the FEM when obtaining the first curve for a selected excitation point. Further curves can then be obtained in negligible time for 
different excitation points, while the FEM requires repeating the time-consuming calculations. This means that the TAFM remains 
a subject for further optimization. The NAVMI factors are useful for determining approximate values of the resonant frequencies of 
the plate, which agree well with the exact results as well as with those from the FEM. The results for the acoustic power obtained with 
the TAFM are generally consistent with those obtained using FEM. The findings confirm that the vibrating plate in WNB is a much 
weaker radiator than the same plate in the RIB for frequencies below the critical frequency of the plate, i.e., the radiation efficiency 
and acoustic power are much smaller. The TAFM makes it possible to obtain the acoustic pressure distribution both in the near-field 
and in the far-field. The Rayleigh first integral and the Rayleigh second integral are useful for such calculations for the plate in the 
RIB and the plate in WNB, respectively.
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Appendix A.  Calculating analytically the integral in Eq. (57)

For the analytical calculation of the integral in Eq. (57), the following Graf addition theorem can be applied (cf. Olver et al. [47] 
Eq. 10.23.7 on p. 247),

𝐽
|𝑚|(𝜏𝑟)e−i|𝑚|𝜙 =

+∞
∑

𝜇=−∞
(−i)𝜇𝐽

|𝑚|+𝜇(𝜏𝑥)𝐽𝜇(𝜏𝑦) =
1
2

[

𝐽
|𝑚|(𝜏𝑥)𝐽0(𝜏𝑦) + (−i)|𝑚|𝐽0(𝜏𝑥)𝐽|𝑚|(𝜏𝑦)

]

+ 1
2

∞
∑

𝜇=1
(−i)𝜇

{

[

𝐽
|𝑚|+𝜇(𝜏𝑥) + 𝐽|𝑚|−𝜇(𝜏𝑥)

]

𝐽𝜇(𝜏𝑦) + (−1)𝜇(−i)|𝑚|𝐽𝜇(𝜏𝑥)
[

𝐽
|𝑚|+𝜇(𝜏𝑦) + 𝐽|𝑚|−𝜇(𝜏𝑦)

]

}

, (A.1)

where the substitutions are 𝑤 = 𝜏𝑟, 𝑢 = 𝜏𝑦, 𝑣 = 𝜏𝑥, 𝛾 = 𝜙, 𝜇 = 𝑚, 𝑘 = 𝜇, and e−i𝜇𝜋∕2 = (−i)𝜇 . When |𝑚| − 𝜇 < 0 in Eq. (A.1), the following 
relations can be used: 𝐽

|𝑚|−𝜇(𝜏𝑥) = (−1)|𝑚|−𝜇𝐽𝜇−|𝑚|(𝜏𝑥) and 𝐽|𝑚|−𝜇(𝜏𝑦) = (−1)|𝑚|−𝜇𝐽𝜇−|𝑚|(𝜏𝑦), which ensure that the order of the Bessel 
functions is always non-negative. Sufficient accuracy can be obtained in Eq. (A.1) by assuming that |𝜇| ⩾ 10 + |𝑚|. Then, inserting 
Eq. (A.1) into Eq. (57) gives (note that 𝑛 can be used here interchangeably with 𝑞 and 𝑝 since it is the mode number (𝑞, 𝑝))

𝐷̂|𝑚|
𝑛 (𝜏) = 𝑎𝑏

16𝜋

{

̂̂𝐷
|𝑚|,𝑞(𝜉) ̃̃𝐷0,𝑝(𝜁 ) +

∞
∑

𝜇=1
(−i)𝜇

[

̂̂𝐷
|𝑚|+𝜇,𝑞(𝜉) +

̂̂𝐷
|𝑚|−𝜇,𝑞(𝜉)

]

̃̃𝐷𝜇,𝑝(𝜁 )

}

+ 𝑎𝑏
16𝜋

(−i)|𝑚|
{

̂̂𝐷0,𝑞(𝜉) ̃̃𝐷|𝑚|,𝑝(𝜁 ) +
∞
∑

𝜇=1
i𝜇 ̂̂𝐷𝜇,𝑞(𝜉)

[

̃̃𝐷
|𝑚|+𝜇,𝑝(𝜁 ) + ̃̃𝐷

|𝑚|−𝜇,𝑝(𝜁 )
]

}

, (A.2)

since ̂̂𝐷𝜇,𝑞(𝜁 ) = (−1)𝜇 ̂̂𝐷−𝜇,𝑞(𝜁 ), ̃̃𝐷𝜇,𝑝(𝜁 ) = (−1)𝜇 ̃̃𝐷−𝜇,𝑝(𝜁 ). When |𝑚| − 𝜇 < 0, the following relations can be used: ̂̂𝐷
|𝑚|−𝜇,𝑞(𝜁 ) =

(−1)|𝑚|−𝜇 ̂̂𝐷𝜇−|𝑚|,𝑞(𝜁 ), and ̃̃𝐷|𝑚|−𝜇,𝑝(𝜁 ) = (−1)|𝑚|−𝜇 ̃̃𝐷𝜇−|𝑚|,𝑝(𝜁 ). It can be obtained, by substituting 𝜏𝑥 = 𝜉𝑢, 𝜏𝑦 = 𝜁𝑤, 𝑥 = 𝑢𝑎∕2, and 𝑦 =
𝑤𝑏∕2, that 

̂̂𝐷𝜇,𝑞(𝜉) =
2
𝑎 ∫

+𝑎∕2

−𝑎∕2
𝐽𝜇(𝜏𝑥)Ψ𝑞(𝑥 + 𝑎∕2)d𝑥 = ∫

+1

−1
𝐽𝜇(𝜉𝑢) ̂̂𝜓𝑞(𝑢)d𝑢, (A.3a)

̃̃𝐷𝜇,𝑝(𝜁 ) =
2
𝑏 ∫

+𝑏∕2

−𝑏∕2
𝐽𝜇(𝜏𝑦)Φ𝑝(𝑦 + 𝑏∕2)d𝑦 = ∫

+1

−1
𝐽𝜇(𝜁𝑤) ̃̃𝜙𝑝(𝑤)d𝑤, (A.3b)

where 𝜉 = 𝜏𝑎∕2, 𝜁 = 𝜏𝑏∕2, and 
̂̂𝜓𝑞(𝑢) = Ψ𝑞[(1 + 𝑢)𝑎∕2], (A.4a)

̃̃𝜙𝑝(𝑤) = Φ𝑝[(1 +𝑤)𝑏∕2]. (A.4b)

Now, taking into account that 𝐽𝜇(−𝑢) = 𝐽−𝜇(𝑢) = (−1)𝜇𝐽𝜇(𝑢), ̂̂𝜓𝑞(−𝑢) = (−1)𝑞+1 ̂̂𝜓𝑞(𝑢), ̃̃𝜙𝑝(−𝑤) = (−1)𝑝+1 ̃̃𝜙𝑝(𝑤), it follows that 

̂̂𝐷𝜇,𝑞(𝜉) = 2∫

1

0
𝐽𝜇(𝜉𝑢) ̂̂𝜓𝑞(𝑢)d𝑢; 𝜇 + 𝑞 = 1, 3,… , (A.5a)
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̃̃𝐷𝜇,𝑝(𝜁 ) = 2∫

1

0
𝐽𝜇(𝜁𝑤) ̃̃𝜙𝑝(𝑤)d𝑤; 𝜇 + 𝑝 = 1, 3,… , (A.5b)

with ̂̂𝐷𝜇,𝑞(𝜉) = 0 for 𝜇 + 𝑞 = 2, 4,…, and ̃̃𝐷𝜇,𝑝(𝜁 ) = 0 for 𝜇 + 𝑝 = 2, 4,…, where 
̂̂𝜓𝑞(−𝑢) = Ψ𝑞[(1 − 𝑢)𝑎∕2],

̂̂𝐷𝜇,𝑞(𝜉) = (−1)𝜇 ̂̂𝐷−𝜇,𝑞(𝜉), (A.6a)

̃̃𝜙𝑝(−𝑤) = Φ𝑝[(1 −𝑤)𝑏∕2], ̃̃𝐷𝜇,𝑝(𝜁 ) = (−1)𝜇 ̃̃𝐷−𝜇,𝑝(𝜁 ). (A.6b)

Next, the following expansion can be used (cf. Wimp [48] Eqs. (2.22) and (2.23)) 

𝐽𝜇(𝜉𝑢) =
∞
∑

𝜇′=0

̂̄𝐷𝜇,𝜇′ (𝜉)𝑇2𝜇′+𝛽(𝜇)(𝑢), (A.7a)

𝐽𝜇(𝜁𝑤) =
∞
∑

𝜇′=0

̂̄𝐷𝜇,𝜇′ (𝜁 )𝑇2𝜇′+𝛽(𝜇)(𝑤), (A.7b)

where 𝑇𝑛(𝑢) stands for the Chebyshev polynomials of the first kind (cf. Abramowitz and Stegun [38] Eq. 22.2.4 p. 774), the integer 
part and the rest of dividing an integer value 𝜇 by 2 are 𝛼̄(𝜇) = Integer(𝜇∕2) and 𝛽(𝜇) = Rest(𝜇∕2), and

̂̄𝐷𝜇,𝜇′ (𝜉) = i|𝜇|−𝜇𝜖𝛽(|𝜇|)+𝜇′𝐽⌈|𝜇|∕2⌉+𝜇′ (𝜉∕2)𝐽𝛼̄(|𝜇|)−𝜇′ (𝜉∕2), (A.8)

𝜖0 = 1 and 𝜖𝜇′ = 2 for 𝜇′ ≠ 0, i|𝜇|−𝜇 = 1 for 𝜇 = 0, 1, ., i|𝜇|−𝜇 = (−1)𝜇 for 𝜇 = −1,−2, ., and ⌈|𝜇|∕2⌉ = 𝛼̄(|𝜇|) + 𝛽(|𝜇|) (⌈𝑥⌉ is the smallest 
integer greater equal 𝑥). It is convenient to apply the expansion in Eqs. (A.7a) and (A.7b) as it separates variables 𝜉 and 𝑢. Then 𝑇
polynomials are orthogonal on the interval of 𝑢 from −1 do +1 exactly as the normalized coordinates 𝑥∕𝑥0 and 𝑦∕𝑦0 on the plate. Also, 
𝜉 = 𝜏𝑎∕2 and 𝜁 = 𝜏𝑏∕2 assume values from 0 to ∞ as they are the normalized wavenumbers. A sufficient accuracy can be obtained in 
Eqs. (A.7a) and (A.7b) by assuming that all terms are included for 𝜇′ from 0 to minimum 10 + ⌈𝜉∕2⌉ (⩽ 11 + Integer(𝜉∕2)). Applying 
the expansion in Eqs. (A.7a) and (A.7b) to Eqs. (A.3a) and (A.3b) gives 

̂̂𝐷𝜇,𝑞(𝜉) =
∞
∑

𝜇′=0
𝑇̂2𝜇′+𝛽(𝜇),𝑞 ̂̄𝐷𝜇,𝜇′ (𝜉), (A.9a)

̃̃𝐷𝜇,𝑝(𝜁 ) =
∞
∑

𝜇′=0
𝑇̃2𝜇′+𝛽(𝜇),𝑝 ̂̄𝐷𝜇,𝜇′ (𝜁 ), (A.9b)

for odd 𝜇 + 𝑞 and 𝜇 + 𝑝 and zero otherwise, where 

𝑇̂𝜇,𝑞 = ∫

+1

−1
𝑇𝜇(𝑢) ̂̂𝜓𝑞(𝑢)d𝑢 = 2∫

1

0
𝑇𝜇(𝑢) ̂̂𝜓𝑞(𝑢)d𝑢; 𝜇 + 𝑞 = 1, 3,… , (A.10a)

𝑇̃𝜇,𝑝 = ∫

+1

−1
𝑇𝜇(𝑤) ̃̃𝜙𝑝(𝑤)d𝑤 = 2∫

1

0
𝑇𝜇(𝑤) ̃̃𝜙𝑝(𝑤)d𝑤; 𝜇 + 𝑝 = 1, 3,… , (A.10b)

𝑇̂𝜇,𝑞 = 0 for 𝜇 + 𝑞 = 2, 4,…, 𝑇̃𝜇,𝑝 = 0 for 𝜇 + 𝑝 = 2, 4,…, by substituting 𝜇 for 2𝜇′ + 𝛽(𝜇), and 𝑛 for 𝑞 and 𝑝 as 𝑛 ≡ (𝑞, 𝑝), since 𝑇𝜇(−𝑢) =
(−1)𝜇𝑇𝜇(𝑢), and 𝑇𝜇(−𝑤) = (−1)𝜇𝑇𝜇(𝑤).

The integrals in Eqs. (A.10a) and (A.10b) can be calculated as follows 

𝑇̂𝜇,𝑞 = 𝐴1,𝑞

(

𝑇̂1,𝜇,𝑞 − 𝑘̄1,𝑞
𝛼2,𝑞
𝛼1,𝑞

𝑇̂2,𝜇,𝑞 − 𝑇̂3,𝜇,𝑞 + 𝑘̄1,𝑞 𝑇̂4,𝜇,𝑞

)

, (A.11a)

𝑇̃𝜇,𝑝 = 𝐴2,𝑝

(

𝑇̃1,𝜇,𝑝 − 𝑘̄2,𝑝
𝛽2,𝑝
𝛽1,𝑝

𝑇̃2,𝜇,𝑝 − 𝑇̃3,𝜇,𝑝 + 𝑘̄2,𝑝𝑇̃4,𝜇,𝑝

)

, (A.11b)

where 

𝑇̂1,𝜇,𝑞 = ∫

+1

−1
𝑇𝜇(𝑢) cos[(1 + 𝑢)𝛼1,𝑞𝑎∕2]d𝑢 = 𝑇̂ (𝑐)

1,𝜇,𝑞 cos(𝛼1,𝑞𝑎∕2) − 𝑇̂
(𝑠)
1,𝜇,𝑞 sin(𝛼1,𝑞𝑎∕2), (A.12a)

𝑇̂2,𝜇,𝑞 = ∫

+1

−1
𝑇𝜇(𝑢) sin[(1 + 𝑢)𝛼1,𝑞𝑎∕2]d𝑢 = 𝑇̂ (𝑐)

1,𝜇,𝑞 sin(𝛼1,𝑞𝑎∕2) + 𝑇̂
(𝑠)
1,𝜇,𝑞 cos(𝛼1,𝑞𝑎∕2), (A.12b)

𝑇̂3,𝜇,𝑞 = ∫

+1

−1
𝑇𝜇(𝑢) cosh[(1 + 𝑢)𝛼2,𝑞𝑎∕2]d𝑢 = 𝑇̂ (𝑐ℎ)

1,𝜇,𝑞 cosh(𝛼2,𝑞𝑎∕2) + 𝑇̂
(𝑠ℎ)
1,𝜇,𝑞 sinh(𝛼2,𝑞𝑎∕2)

= e𝛼2,𝑞𝑎∕2𝑇̂ (+)
1,𝜇,𝑞 + e−𝛼2,𝑞𝑎∕2𝑇̂ (−)

1,𝜇,𝑞 = e𝛼2,𝑞𝑎∕2
𝜇
∑

𝑟=0
𝛼̃𝜇,𝑟𝑖

(1)
𝑟 (𝛼2,𝑞𝑎∕2) + e−𝛼2,𝑞𝑎∕2

𝜇
∑

𝑟=0
𝛼̃𝜇,𝑟(−1)𝑟𝑖(1)𝑟 (𝛼2,𝑞𝑎∕2), (A.12c)

𝑇̂4,𝜇,𝑞 = ∫

+1

−1
𝑇𝜇(𝑢) sinh[(1 + 𝑢)𝛼2,𝑞𝑎∕2]d𝑢 = 𝑇̂ (𝑐ℎ)

1,𝜇,𝑞 sinh(𝛼2,𝑞𝑎∕2) + 𝑇̂
(𝑠ℎ)
1,𝜇,𝑞 cosh(𝛼2,𝑞𝑎∕2)
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= e𝛼2,𝑞𝑎∕2𝑇̂ (+)
1,𝜇,𝑞 − e−𝛼2,𝑞𝑎∕2𝑇̂ (−)

1,𝜇,𝑞 = e𝛼2,𝑞𝑎∕2
𝜇
∑

𝑟=0
𝛼̃𝜇,𝑟𝑖

(1)
𝑟 (𝛼2,𝑞𝑎∕2) − e−𝛼2,𝑞𝑎∕2

𝜇
∑

𝑟=0
𝛼̃𝜇,𝑟(−1)𝑟𝑖(1)𝑟 (𝛼2,𝑞𝑎∕2), (A.12d)

𝑇̂ (+)
1,𝜇,𝑞 =

1
2 ∫

+1

−1
𝑇𝜇(𝑢)e

𝑢𝛼2,𝑞𝑎∕2d𝑢 =
𝜇
∑

𝑟=0
𝛼̃𝜇,𝑟

1
2 ∫

+1

−1
e𝑢𝛼2,𝑞𝑎∕2𝑃𝑟(𝑢)d𝑢 =

𝜇
∑

𝑟=0
𝛼̃𝜇,𝑟𝑖

(1)
𝑟 (𝛼2,𝑞𝑎∕2), (A.12e)

𝑇̂ (−)
1,𝜇,𝑞 =

1
2 ∫

+1

−1
𝑇𝜇(𝑢)e

−𝑢𝛼2,𝑞𝑎∕2d𝑢 =
𝜇
∑

𝑟=0
𝛼̃𝜇,𝑟

1
2 ∫

+1

−1
e−𝑢𝛼2,𝑞𝑎∕2𝑃𝑟(𝑢)d𝑢 =

𝜇
∑

𝑟=0
𝛼̃𝜇,𝑟(−1)𝑟𝑖(1)𝑟 (𝛼2,𝑞𝑎∕2), (A.12f)

1
2 ∫

+1

−1
e𝑢𝛼2,𝑞𝑎∕2𝑃𝑟(𝑢)d𝑢 = 𝑖(1)𝑟 (𝛼2,𝑞𝑎∕2), (A.12g)

1
2 ∫

+1

−1
e−𝑢𝛼2,𝑞𝑎∕2𝑃𝑟(𝑢)d𝑢 = (−1)𝑟𝑖(1)𝑟 (𝛼2,𝑞𝑎∕2), (A.12h)

1
2 ∫

+1

−1
e±𝑢𝑎𝑃𝑛(𝑢)d𝑢 = (±1)𝑛𝑖(1)𝑛 (𝑎), (A.12i)

𝑇̃1,𝜇,𝑝 = ∫

+1

−1
𝑇𝜇(𝑤) cos[(1 +𝑤)𝛽1,𝑝𝑏∕2]d𝑤 = 𝑇̃ (𝑐)

2,𝜇,𝑝 cos(𝛽1,𝑝𝑏∕2) − 𝑇̃
(𝑠)
2,𝜇,𝑝 sin(𝛽1,𝑝𝑏∕2), (A.12j)

𝑇̃2,𝜇,𝑝 = ∫

+1

−1
𝑇𝜇(𝑤) sin[(1 +𝑤)𝛽1,𝑝𝑏∕2]d𝑤 = 𝑇̃ (𝑐)

2,𝜇,𝑝 sin(𝛽1,𝑝𝑏∕2) + 𝑇̃
(𝑠)
2,𝜇,𝑝 cos(𝛽1,𝑝𝑏∕2), (A.12k)

𝑇̃3,𝜇,𝑝 = ∫

+1

−1
𝑇𝜇(𝑤) cosh[(1 +𝑤)𝛽2,𝑝𝑏∕2]d𝑤 = 𝑇̃ (𝑐ℎ)

2,𝜇,𝑝 cosh(𝛽2,𝑝𝑏∕2) + 𝑇̃
(𝑠ℎ)
2,𝜇,𝑝 sinh(𝛽2,𝑝𝑏∕2), (A.12l)

𝑇̃4,𝜇,𝑝 = ∫

+1

−1
𝑇𝜇(𝑤) sinh[(1 +𝑤)𝛽2,𝑝𝑏∕2]d𝑤 = 𝑇̃ (𝑐ℎ)

2,𝜇,𝑝 sinh(𝛽2,𝑝𝑏∕2) + 𝑇̃
(𝑠ℎ)
2,𝜇,𝑝 cosh(𝛽2,𝑝𝑏∕2), (A.12m)

since 𝑖(1)𝑛 (−𝑎) = (−1)𝑛𝑖(1)𝑛 (𝑎), cos[(1 + 𝑢)𝛼1,𝑞𝑎∕2] = [cos(𝛼1,𝑞𝑎∕2) cos(𝑢𝛼1,𝑞𝑎∕2) − sin(𝛼1,𝑞𝑎∕2) sin(𝑢𝛼1,𝑞𝑎∕2)], and sin[(1 + 𝑢)𝛼1,𝑞𝑎∕2] =
[sin(𝛼1,𝑞𝑎∕2) cos(𝑢𝛼1,𝑞𝑎∕2) + cos(𝛼1,𝑞𝑎∕2) sin(𝑢𝛼1,𝑞𝑎∕2)], 

𝑇̂ (𝑐)
1,𝜇,𝑞 = ∫

+1

−1
𝑇𝜇(𝑢) cos(𝑢𝛼1,𝑞𝑎∕2)d𝑢; for even 𝜇 zero otherwise, (A.13a)

𝑇̂ (𝑠)
1,𝜇,𝑞 = ∫

+1

−1
𝑇𝜇(𝑢) sin(𝑢𝛼1,𝑞𝑎∕2)d𝑢; for odd 𝜇 zero otherwise, (A.13b)

𝑇̂ (𝑐ℎ)
1,𝜇,𝑞 = ∫

+1

−1
𝑇𝜇(𝑢) cosh(𝑢𝛼2,𝑞𝑎∕2)d𝑢; for even 𝜇 zero otherwise, (A.13c)

𝑇̂ (𝑠ℎ)
1,𝜇,𝑞 = ∫

+1

−1
𝑇𝜇(𝑢) sinh(𝑢𝛼2,𝑞𝑎∕2)d𝑢; for odd 𝜇 zero otherwise, (A.13d)

𝑇̃ (𝑐)
2,𝜇,𝑝 = ∫

+1

−1
𝑇𝜇(𝑤) cos(𝑤𝛽1,𝑝𝑏∕2)d𝑤; for even 𝜇 zero otherwise, (A.13e)

𝑇̃ (𝑠)
2,𝜇,𝑝 = ∫

+1

−1
𝑇𝜇(𝑤) sin(𝑤𝛽1,𝑝𝑏∕2)d𝑤; for odd 𝜇 zero otherwise, (A.13f)

𝑇̃ (𝑐ℎ)
2,𝜇,𝑝 = ∫

+1

−1
𝑇𝜇(𝑤) cosh(𝑤𝛽2,𝑝𝑏∕2)d𝑤; for even 𝜇 zero otherwise, (A.13g)

𝑇̃ (𝑠ℎ)
2,𝜇,𝑝 = ∫

+1

−1
𝑇𝜇(𝑤) sinh(𝑤𝛽2,𝑝𝑏∕2)d𝑤; for odd 𝜇 zero otherwise, (A.13h)

since cosh(𝑢𝛼2,𝑞𝑎∕2) = cos(i𝑢𝛼2,𝑞𝑎∕2), and sinh(𝑢𝛼2,𝑞𝑎∕2) = (−i) sin(i𝑢𝛼2,𝑞𝑎∕2). Let us now express the Chebyshev polynomial in terms of 
the finite series of the Legendre polynomials as follows

𝑇𝜇(𝑥) =
𝜇
∑

𝑟=0
𝛼̃𝜇,𝑟𝑃𝑟(𝑥), (A.14)

where 𝛼̃0,𝑟 = 𝛿0,𝑟,

𝛼̃𝜇,𝑟 =
2𝑟 + 1

2 ∫

+1

−1
𝑇𝜇(𝑥)𝑃𝑟(𝑥)d𝑥, (A.15)
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for 0 ⩽ 𝑟 ⩽ 𝜇, 𝑟 = 0, 1,…, and the orthogonality relation has been used

∫

+1

−1
𝑃𝑟(𝑥)𝑃𝑟′ (𝑥)d𝑥 = 2

2𝑟 + 1
𝛿𝑟𝑟′ . (A.16)

Then, applying the substitution 𝑥 = cos 𝜃 to the integral in Eq. (A.15) gives

𝛼̃𝜇,𝑟 =
2𝑟 + 1

2 ∫

𝜋

0
𝑇𝜇(cos 𝜃)𝑃𝑟(cos 𝜃) sin 𝜃 d𝜃. (A.17)

Now, the Legendre function can be expressed in terms of the Fourier series as follows

𝑃𝑟(cos 𝜃) =
⌊𝑟∕2⌋
∑

𝑘=0
𝜖𝑟−2𝑘𝛽𝑟,𝑘𝑇𝑟−2𝑘(cos 𝜃), (A.18)

where ⌊𝑥⌋ is the greatest integer less than or equal to 𝑥, 𝜖0 = 1, 𝜖𝑘 = 2 for |𝑘| = 1, 2,…, and

𝛽𝑟,𝑘 =
1
𝜋

Γ(𝑘 + 1∕2)
Γ(𝑘 + 1)

Γ(𝑟 − 𝑘 + 1∕2)
Γ(𝑟 − 𝑘 + 1)

. (A.19)

Subsequently, applying the series in Eq. (A.18) to the integral in Eq. (A.17) gives

𝛼̃𝜇,𝑟 =
2𝑟 + 1

2

⌊𝑟∕2⌋
∑

𝑘=0
𝜖𝑟−2𝑘𝛽𝑟,𝑘𝛾̃𝜇,𝑟−2𝑘, (A.20)

where

𝛾̃𝜇,𝜈 = ∫

𝜋

0
𝑇𝜇(cos 𝜃)𝑇𝜈 (cos 𝜃) sin 𝜃 d𝜃 = ∫

+1

−1
𝑇𝜇(𝑥)𝑇𝜈 (𝑥)d𝑥. (A.21)

Then, applying the following relation

𝑇𝜇(𝑥)𝑇𝜈 (𝑥) =
1
2
𝑇𝜇+𝜈 (𝑥) +

1
2
𝑇
|𝜇−𝜈|(𝑥), (A.22)

valid for 𝜇, 𝜈 ⩾ 0, gives
𝛾̃𝜇,𝜈 = 𝜉𝜇+𝜈 + 𝜉|𝜇−𝜈|, (A.23)

where

𝜉𝑛 =
1
2 ∫

+1

−1
𝑇𝑛(𝑥)d𝑥 =

{

0; 𝑛 = 1, 3, 5,… ,
(1 − 𝑛2)−1; 𝑛 = 0, 2, 4,… .

(A.24)

Then, the following relation can be employed (cf. also Gradshteyn and Ryzhik [49] Eq. (7.243.5) p. 792) 

∫

+1

−1
ei𝑢𝑎𝑃𝑛(𝑢)d𝑢 = 2i𝑛𝑗𝑛(𝑎), (A.25a)

∫

+1

−1
e−i𝑢𝑎𝑃𝑛(𝑢)d𝑢 = 2(−i)𝑛𝑗𝑛(𝑎), (A.25b)

for 𝑎 > 0, where the spherical Bessel function is 𝑗𝑛(𝑎) = [𝜋∕(2𝑎)]1∕2𝐽𝑛+1∕2(𝑎) (cf. Abramowitz and Stegun [38] Eq. 10.1.1 p. 437). 
Comparing the real and imaginary parts on both sides of Eq. (A.12g) gives 

∫

+1

−1
𝑃2𝑛(𝑢) sin(𝑢𝑎)d𝑢 = 0, (A.26a)

∫

+1

−1
𝑃2𝑛+1(𝑢) cos(𝑢𝑎)d𝑢 = 0, (A.26b)

∫

+1

−1
𝑃2𝑛(𝑢) cos(𝑢𝑎)d𝑢 = 2(−1)𝑛𝑗2𝑛(𝑎), (A.26c)

∫

+1

−1
𝑃2𝑛+1(𝑢) sin(𝑢𝑎)d𝑢 = 2(−1)𝑛𝑗2𝑛+1(𝑎). (A.26d)

Then 

𝑇̂ (𝑐)
1,𝜇,𝑞 = 2

⌊𝜇∕2⌋
∑

𝑟=0
𝛼̃𝜇,2𝑟(−1)𝑟𝑗2𝑟(𝛼1,𝑞𝑎∕2), (A.27a)

𝑇̂ (𝑠)
1,𝜇,𝑞 = 2

⌊𝜇∕2⌋
∑

𝑟=0
𝛼̃𝜇,2𝑟+1(−1)𝑟𝑗2𝑟+1(𝛼1,𝑞𝑎∕2), (A.27b)
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𝑇̂ (𝑐ℎ)
1,𝜇,𝑞 = 2

⌊𝜇∕2⌋
∑

𝑟=0
𝛼̃𝜇,2𝑟𝑖

(1)
2𝑟 (𝛼2,𝑞𝑎∕2), (A.27c)

𝑇̂ (𝑠ℎ)
1,𝜇,𝑞 = 2

⌊𝜇∕2⌋
∑

𝑟=0
𝛼̃𝜇,2𝑟+1𝑖

(1)
2𝑟+1(𝛼2,𝑞𝑎∕2), (A.27d)

𝑇̃ (𝑐)
2,𝜇,𝑝 = 2

⌊𝜇∕2⌋
∑

𝑟=0
𝛼̃𝜇,2𝑟(−1)𝑟𝑗2𝑟(𝛽1,𝑝𝑏∕2), (A.27e)

𝑇̃ (𝑠)
2,𝜇,𝑝 = 2

⌊𝜇∕2⌋
∑

𝑟=0
𝛼̃𝜇,2𝑟+1(−1)𝑟𝑗2𝑟+1(𝛽1,𝑝𝑏∕2), (A.27f)

𝑇̃ (𝑐ℎ)
2,𝜇,𝑝 = 2

⌊𝜇∕2⌋
∑

𝑟=0
𝛼̃𝜇,2𝑟𝑖

(1)
2𝑟 (𝛽2,𝑝𝑏∕2), (A.27g)

𝑇̃ (𝑠ℎ)
2,𝜇,𝑝 = 2

⌊𝜇∕2⌋
∑

𝑟=0
𝛼̃𝜇,2𝑟+1𝑖

(1)
2𝑟+1(𝛽2,𝑝𝑏∕2), (A.27h)

since 𝑗𝑛(i𝑧) = i𝑛𝑖(1)𝑛 (𝑧), where the modified Bessel function of the fractional order is 𝑖(1)𝑛 (𝑧) = [𝜋∕(2𝑧)]1∕2𝐼𝑛+1∕2(𝑧) (cf. Olver et al. [47] 
Eq. 10.47.7 on p. 262). Further substituting relations in Eqs. (A.27a)–(A.27h) to Eqs. (A.12a)–(A.12h) gives Eqs. (66a)–(66b).

In the specific case when 𝜇 = 0, 𝑇0(𝑢) = 1 and, consequently (cf. Eqs. (A.10a) and (A.10b)), 

𝑇̂0,𝑞 = ∫

+1

−1
̂̂𝜓𝑞(𝑢)d𝑢 = 2∫

1

0
̂̂𝜓𝑞(𝑢)d𝑢 = 2∫

0

−1
̂̂𝜓𝑞(𝑢)d𝑢; 𝑞 = 1, 3,… , (A.28a)

𝑇̃0,𝑝 = ∫

+1

−1

̃̃𝜙𝑝(𝑤)d𝑤 = 2∫

1

0

̃̃𝜙𝑝(𝑤)d𝑤 = 2∫

0

−1

̃̃𝜙𝑝(𝑤)d𝑤; 𝑝 = 1, 3,… , (A.28b)

with 𝑇̂0,𝑞 = 0 for 𝑞 = 2, 4,…, and 𝑇̃0,𝑝 = 0 for 𝑝 = 2, 4,…. Further, based on Eqs. (A.4a) and (A.4b), it holds 

𝑇̂0,𝑞 = 2∫

0

−1
Ψ𝑞[(1 + 𝑢)𝑎∕2]d𝑢 =

4
𝑎 ∫

𝑎∕2

0
Ψ𝑞(𝑥)d𝑥; 𝑞 = 1, 3,… , (A.29a)

𝑇̃0,𝑝 = 2∫

0

−1
Φ𝑝[(1 +𝑤)𝑏∕2]d𝑤 = 4

𝑏 ∫

𝑏∕2

0
Φ𝑝(𝑦)d𝑦; 𝑝 = 1, 3,… , (A.29b)

by substituting (1 + 𝑢)𝑎∕2 = 𝑥 and (1 +𝑤)𝑏∕2 = 𝑦. Now, applying Eqs. (3b) and (3c) leads to the results presented in Eqs. (68a)–(68b).

Appendix B.  Sample rigorous manipulations

The integral in Eq. (21) can be split into the integrals for the upper and the lower surfaces of the plate as follows

𝑝(𝑟) = lim
𝜖→0∫𝑆′

+

[

𝜕𝐺(𝑟, 𝑟 ′)
𝜕𝑧′

𝑝(𝑟 ′) −
𝜕𝑝(𝑟 ′)
𝜕𝑧′

𝐺(𝑟, 𝑟 ′)
]

𝑧′=+𝜖d𝑆′
+

− lim
𝜖→0∫𝑆′

−

[

𝜕𝐺(𝑟, 𝑟 ′)
𝜕𝑧′

𝑝(𝑟 ′) −
𝜕𝑝(𝑟 ′)
𝜕𝑧′

𝐺(𝑟, 𝑟 ′)
]

𝑧′=−𝜖d𝑆′
−, (B.1)

where 𝑧′ = +𝜖 refers to the upper surface of the plate and 𝑧′ = −𝜖 denotes to the lower surface of the plate for 𝜖 → 0, 𝑆′
+ represents 

the upper surface of the plate, and 𝑆′
− is the lower surface of the plate. The derivative of the Green function, for 𝜖 → 0, is (cf. Eq. (22))

lim
𝜖→0

[

𝜕𝐺(𝑟, 𝑟 ′)
𝜕𝑧′

]

𝑧′=±𝜖 = −i𝑘0

{(

1 − 1
i𝑘0𝑅

)

ei𝑘0𝑅
4𝜋𝑅

𝑧
𝑅

}

𝑧′=0, (B.2)

where 𝑅 = |𝑅⃗| = [(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2]1∕2. Next, applying Eq. (15) (after replacing 𝑧 by 𝑧′) gives

𝑝(𝑟) = lim
𝜖→0∫𝑆′

+

[

𝜕𝐺(𝑟, 𝑟 ′)
𝜕𝑧′

𝑝(𝑟 ′) − i𝜔𝜚0𝑣(𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2)𝐺(𝑟, 𝑟 ′)
]

𝑧′=+𝜖d𝑆′
+

− lim
𝜖→0∫𝑆′

−

[

𝜕𝐺(𝑟, 𝑟 ′)
𝜕𝑧′

𝑝(𝑟 ′) − i𝜔𝜚0𝑣(𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2)𝐺(𝑟, 𝑟 ′)
]

𝑧′=−𝜖d𝑆′
−. (B.3)

Now based on Eqs. (22) and (B.2), it can be noted that for 𝑧′ = 0 and 𝑧 ⩾ 0, it holds 

lim
𝜖→0

[

𝐺(𝑟, 𝑟 ′)
]

𝑧′=+𝜖 = lim
𝜖→0

[

𝐺(𝑟, 𝑟 ′)
]

𝑧′=−𝜖 = 𝐺(𝑟, 𝑟 ′)
|

|

|

|𝑧′=0
, (B.4a)

lim
𝜖→0

[

𝜕𝐺(𝑟, 𝑟 ′)
𝜕𝑧′

]

𝑧′=+𝜖 = lim
𝜖→0

[

𝜕𝐺(𝑟, 𝑟 ′)
𝜕𝑧′

]

𝑧′=−𝜖 =
𝜕𝐺(𝑟, 𝑟 ′)
𝜕𝑧′

|

|

|

|𝑧′=0
. (B.4b)
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In addition, based on the anti-symmetry condition 𝑝(𝑥′, 𝑦′, 𝑧′) = −𝑝(𝑥′, 𝑦′,−𝑧′), it holds

lim
𝜖→0

[

𝑝(𝑟 ′)
]

𝑧′=+𝜖 = − lim
𝜖→0

[

𝑝(𝑟 ′)
]

𝑧′=−𝜖 =
[

𝑝+(𝑟 ′)
]

𝑧′=0 = −
[

𝑝−(𝑟 ′)
]

𝑧′=0, (B.5)

where 𝑝+(𝑟 ′) is the acoustic pressure amplitude on the upper surface of the plate and 𝑝−(𝑟 ′) is the acoustic pressure amplitude on the 
lower surface of the plate.

Now, based on Eqs. (B.4a) and (B.4b), the two terms containing the Green function in Eq. (B.3) cancel each other, while the two 
terms containing the derivative of the Green function sum up. This results in the acoustic pressure amplitude, for 𝑧 ⩾ 0, in the form 
of

𝑝(𝑟) = ∫𝑆′

[

𝑝+(𝑟 ′) − 𝑝−(𝑟 ′)
]

𝑧′=0
𝜕𝐺(𝑟, 𝑟 ′)
𝜕𝑧′

|

|

|

|𝑧′=0
d𝑆′, (B.6)

where 𝑆′ = 𝑆′
+ = 𝑆′

− as both sides of the plate have the same surface area. Further, from Eq. (B.5) it results that the acoustic pressure 
difference on the plate is equal to the doubled acoustic pressure 2𝑝(𝑥′, 𝑦′, 0) on the upper side of the plate, which can be expressed as 
follows

[

𝑝+(𝑟 ′) − 𝑝−(𝑟 ′)
]

𝑧′=0 =
[

2𝑝+(𝑟 ′)
]

𝑧′=0 = −
[

2𝑝−(𝑟 ′)
]

𝑧′=0 = 2𝑝(𝑥′, 𝑦′, 0). (B.7)

Then, applying Eq. (B.7) to Eq. (B.6) yields the acoustic pressure amplitude in the form presented in Eq. (24).

Appendix C.  The approximate resonant frequencies using the NAVMI factors

In the case when 𝜚0 ≪ 𝜚 (𝑒𝑓 → 0), the approximate resonant frequencies can be obtained by applying the procedure described by 
Fahy and Gardonio [32] (cf. their Eqs. (4.56)– (4.58)). For this purpose, all the terms for 𝑛′ ≠ 𝑛 have been neglected in Eq. (35) assum-
ing that close to the 𝑛th resonant frequency, only the 𝑛th mode contributes significantly and, therefore, is dominant. Consequently, 
Eq. (35) is written as 

𝑐′𝑛𝐷𝑘
4
𝑛 − 𝑐

′
𝑛𝜔

′2𝜚ℎ − 𝑐′𝑛i𝜘𝜔
′2𝜚ℎ𝜆̂𝑛𝑛 = 𝑃𝑛 (C.1a)

𝑐′′𝑛 𝐷𝑘
4
𝑛 − 𝑐

′′
𝑛 𝜔

′′2𝜚ℎ = 𝑃𝑛 (C.1b)

where 𝜔′ and 𝜔′′ are the resonant frequencies of the plate in fluid and in vacuum, respectively, as, in addition, the fluid loading 
effect has been neglected in Eq. (C.1b). Similarly, 𝑐′𝑛 and 𝑐′′𝑛  are valid in these two different cases. Note, that the right sides of both 
equations are identical and can be eliminated giving

𝑐′𝑛𝐷𝑘
4
𝑛 − 𝑐

′
𝑛𝜔

′2𝜚ℎ − 𝑐′𝑛i𝜘𝜔
′2𝜚ℎ𝜆̂𝑛𝑛 = 𝑐′′𝑛 𝐷𝑘

4
𝑛 − 𝑐

′′
𝑛 𝜔

′′2𝜚ℎ (C.2)

Now, assuming that 𝑐′𝑛 ≈ 𝑐′′𝑛  and taking now the real component of the above equation gives the approximate resonant angular 
frequency in Eq. (46).

Appendix D.  The spectral mapping for the impedance coefficients

The following expansion series is valid for −𝑎∕2 ⩽ 𝑥 ⩽ +𝑎∕2 and −𝑏∕2 ⩽ 𝑦 ⩽ +𝑏∕2

𝑊𝑛(𝑥 + 𝑎∕2, 𝑦 + 𝑏∕2) =
∞
∑

𝜈=0

∞
∑

𝑚=−∞
𝐷̂𝑚
𝑛 (𝛾

|𝑚|
𝜈 )𝑁̄ |𝑚|

𝜈 𝐽
|𝑚|(𝛾 |𝑚|𝜈 𝑟)ei𝑚𝜙, (D.1)

where 𝑥 = 𝑟 cos𝜙, 𝑦 = 𝑟 sin𝜙. Applying this expansion to Eq. (7a) gives yet another expansion series

𝑊̄𝑛(𝑘𝑥, 𝑘𝑦) =
∞
∑

𝜈=0

∞
∑

𝑚=−∞
(−i)|𝑚|𝐷̂𝑚

𝑛 (𝛾
|𝑚|
𝜈 )𝑁̄ |𝑚|

𝜈 𝐷̄|𝑚|
𝜈 (𝜏)e+i𝑚𝛽 , (D.2)

where 𝑘𝑥 = 𝜏 cos 𝛽, 𝑘𝑦 = 𝜏 sin 𝛽. Now, inserting Eq. (D.2) to (32) and rearranging yields the expansion presented in Eq. (56).

Appendix E.  The TAFM numerical calculations scheme

The TAFM numerical calculations scheme is presented in Fig. E.13, where the blocks can be described as follows:

• “Eigenfrequencies”: The procedure begins with determining the eigenfrequencies from the system of five characteristic equations 
in Eqs. (6a), (6b), and the accompanying text. The eigenfrequencies are then arranged in ascending order.

• “Truncation Condition”: Next, the truncation condition 𝑁 in the modal expansions in Eqs. (17a) and (17b) is applied for each 
excitation frequency 𝑓 , where 𝑛 = 0,… , 𝑁 − 1.

• “Modal Admittance”: It is then decided whether the matrix of modal admittances will be calculated by direct numerical integration 
or by successive spectral mappings.

• “Numerical Integration”: If direct numerical integration is selected, the 𝑁 ×𝑁 admittance matrix 𝜉𝑛𝑛′  is computed using Eq. (32).
• “Spectral Mapping”: If the spectral mapping method is chosen, the following steps are performed:
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Fig. E.13. The TAFM numerical calculations scheme.

– “Cerjan Expansion”: The modal coefficients in Eqs. (61b) and (62c) are calculated. The truncation conditions for these ex-
pansions were discussed earlier by Rdzanek [50] (cf. the text after Eq. (38)), where it was empirically shown that sufficient 
accuracy is achieved for 𝓁 = 0,… , 𝐿 − 1, with 𝐿 = Round(3𝑚 + 1.7𝜈 + 3). Appropriate bounds for 𝑚 and 𝜈 must first be deter-
mined. These bounds are obtained from the characteristic equation following Eq. (56) for the eigenvalues 𝛾 |𝑚|𝜈 . Once these 
eigenvalues are found (as zeros of the characteristic equation), the values of 𝑚 and 𝜈 corresponding to all 𝛾 |𝑚|𝜈 ⩽ 2𝜋𝑓∕𝑐 are 
collected. These values are then increased by the factor Δ𝑁 (see the discussion of the MNI after Fig. 3).

– “Fourier-Bessel Series”: The modal coefficients in Eqs. (60) and (62b) are computed, followed by the coefficients in Eq. (59).
– “Rapid Expansion Series’: The modal admittance coefficients in Eq. (56) are tabulated for each frequency. This requires first 
tabulating the coefficients in Eq. (57) based on Eqs. (65)–(70b).

• “Equations System Solving”: The system of equations in Eq. (35) is solved numerically for each excitation frequency, yielding the 
modal coefficients 𝑐𝑛 used in the modal expansions in Eqs. (17a) and (17b).

• “Sound Power”: Once the coefficients 𝑐𝑛 are determined, all vibroacoustic quantities can be calculated, including the acoustic 
power in Eq. (42), the acoustic pressure amplitude on the plate in Eq. (40), the acoustic pressure amplitude outside the plate 
in Eq. (24) with the Green function derivative in Eq. (B.2), and the normal component of vibration velocity on the plate from 
Eq. (17a). This concludes the procedure.
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