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Quantitative assessment of damage severity is important for maintaining and extending the ser-
vice life of engineering structures. Traditional vibration-based methods often face challenges such
as low sensitivity, strong dependence on structural details and excitation signals, and the need for
global models or baseline signals. The recently developed Pseudo Excitation (PE) method enables
the detection of local structural damage by utilizing high-order spatial derivatives of the
measured displacement data, easing some of these constraints. However, the PE method can only
pinpoint the presence of damage and outline its boundaries; it currently lacks the ability to
quantify the damage severity or the profile of the damaged area. To address these limitations, this
study proposes a novel damage quantification approach, referred to as Local Force Continuity
(LFC) method, based on the continuity principle of local internal forces. By examining the force
continuity relations near the damage boundary, we establish a correlation between the damage
severity and the measured vibration responses, enabling a quantitative characterization of the
damage profile. The proposed approach is first validated through numerical simulations, show-
casing its remarkable ability in locating damage and identifying its shape. The effects of damage
extents, excitation frequency and structural boundary conditions are systematically investigated,
highlighting the effectiveness and robustness of the proposed method. Finally, experimental
verification is conducted using laser doppler vibrometer (LDV) scanning. Results demonstrate that
the LFC method can effectively assess damage severity. The LFC method not only retains the
advantages of the PE method, but also significantly extends its capabilities in damage quantifi-
cation, providing new physical insights and broadening its potential applications in related en-
gineering fields.

1. Introduction

Safety of engineering structures is of paramount importance, necessitating stringent standards for reliability, integrity, and
durability [1-3]. To monitor structural conditions, extensive research has led to the development of various non-destructive testing
(NDT) techniques based on different physical principles, encompassing a diverse range of technologies including ultrasonic inspection
[4], shearography [5], magnetic resonance imagery [6], laser interferometry [7], acoustic emission [8], etc. Among them,
vibration-based methods have garnered significant attention due to their cost-effectiveness, ease of implementation, and potential for
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real-time structural health monitoring in complex structures [9-12].

The fundamental principle underlying vibration-based detection methods is that the presence of damage, such as notches or cracks,
alters the physical parameters of the structure (exemplified by stiffness and mass distribution and damping) compared to the baseline
values obtained in the pristine structure. These variations can lead to changes in the vibration response, including eigenfrequencies
[13], mode shapes [14], and their derivatives [15] etc. Among them, natural frequencies reflect alterations in the global vibration
characteristics of the structure, which can be obtained from the frequency response functions. However, they primarily indicate the
presence of severe damage, as global parameters cannot provide detailed information about the damage’s location and shape [16]. In
contrast, changes in mode shapes, which inherently contain spatial information about the structural dynamics, can more effectively
inform on the location and extent of damage. Nonetheless, measuring mode shapes requires sophisticated experimental setups, and the
damaged-induced changes may be subtle and challenging to detect [17]. Consequently, researchers have turned to examine the
higher-order derivatives of the structural displacement (mode shapes or in-situ deflection shape) to assess the location and severity of
damage [18,19], with demonstrated applicability. For example, Chang et al. [20] defined a damage indicator based on the first de-
rivative of mode shapes, referred to as rotational modes. Alternatively, damage index was also defined in terms of curvature or strain
energy [21], or shear force or vibrational power flow [22], which involve the second and the third derivative with respect to structural
displacement, respectively. For force identification problems, the fourth derivative was also deployed [21]. Compared to mode shape
methods, the derivative-based approach does offer greater sensitivity and higher detection accuracy. However, noises in the mea-
surement are omni-present and unavoidable, thus drastically affecting the accuracy of the higher-order derivative operation. Overall,
conventional physics-based techniques still face several common limitations, including relatively limited precision in detecting minor
damages, the need for baseline signals and global models, and difficulties in identifying damage within complex structures.

To address these challenges, emerging techniques such as signal processing and machine learning have attracted significant
attention in recent years [22-24]. Advanced signal processing techniques, such as Hilbert Transform, can efficiently extract and
analyze critical information from complex vibration signals based on dedicate formulations and algorithms [25]. Meanwhile, machine
learning techniques offer powerful capabilities in pattern recognition and automatic feature extraction from abundant history data.
Despite the promise offered by these techniques [26,27], they still suffer from poor result interpretability due to the lack of a solid
physical foundation and venerable sensitivity to modeling or measurement errors. Thus, they have not fully addressed the inherent
limitations of traditional vibration-based damage detection methods.

To overcome these constraints, Pseudo Excitation (PE) approach was developed over the past decade to identify structural damages
by examining the local dynamic equilibrium based on high-order spatial derivatives of the displacement field [28]. The fundamental
principle of the PE approach is that the presence of damage would disrupt the original local dynamic equilibrium of the healthy
structure, thus allowing the use of a Damage Index (DI) to describe the “pseudo force” generated by the damage and its location. Unlike
conventional global vibration-based methods, the PE approach leverages the local examination of specific components in a structure,
which can be complex and difficult to model, to achieve accurate detection and localization of the damage. Initially, a strong form of
the DI was developed, with demonstrated success in localizing damage across various engineering structures, including beams [29],
plates [30], reinforced concrete structures [31], honeycomb sandwich structures [32], laminated composites [33], cables [34], and
cylinders [35] etc. To further enhance this efficacy, particularly in terms of getting increased robustness against noise and reducing
measurement points required for higher-order derivative estimation, a weak form PE formulation was proposed [36], by utilizing
weighted integration of interval damage indicators, thus enabling a paradigm shift from pointwise detection to regional detection. On
this basis, methods such as the virtual vibration displacement method and the sparse boundary measurement method were proposed,
thus enabling online structural health monitoring [37].

Despite the encouraging progress, different versions of the PE approach currently fail to quantitively assess the damage severity.
This limitation hinders its practical application, where accurate and detailed damage assessment is crucial for informed decision-
making and the development of effective repair strategies. To address this issue, this study proposes a novel damage quantification
approach based on the continuity relation of local internal forces, which are intrinsically linked to the flexural stiffness and spatial
derivatives of vibration displacements. The fundamental principle underpinning this approach is that when damage presents, struc-
tural flexural stiffness undergoes changes; yet the local internal forces, even near the damaged areas, remain continuous. As a result,
spatial derivatives of the displacement field can be utilized to quantify changes in flexural stiffness. If flexural stiffness can be explicitly
defined by the structure’s cross-section and material properties, the damage severity related to the change in the cross-section can be
quantified inversely. The proposed method retains all the advantages of local vibration-based detection methods, such as eliminating
the need for baseline signals and global structural models, and not being constrained by a specific excitation frequency, making it well-
suited for complex structures. Furthermore, the proposed method enhances the capability of the PE method for damage quantification
by incorporating lower-order displacement derivatives, thereby enhancing the robustness of the process of damage identification.
These appealing features open new avenues for developing a practical SHM technique that can provide abundant damage-specific
information in complex systems.

This paper is organized as follows: Section 2 introduces the principle of the proposed LFC approach. Section 3 validates the
approach through numerical simulations, examining quantification accuracy across key parameters including frequency selection,
damage location, and boundary conditions. Section 4 validates the approach experimentally using Laser Doppler Vibrometer (LDV)
measurements on damaged beam specimens. Conclusions are given in the last section.

2. Local force continuity (LFC)

The proposed LFC approach essentially formulates the problem of damage identification by quantitively assessing the local force
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continuity relation. When a structure vibrates under external harmonic excitation, only internal forces are present at locations away
from the excitation source. This ensures that the spatial derivatives of the vibration displacement field and the internal forces
inherently satisfy a specific equilibrium relationship. As a result, variations in physical parameters, such as bending strength, modulus
or cross-section, can be inferred by analyzing changes in the derivatives of vibration field. This section elaborates on the theoretical
background of the proposed LFC approach.

2.1. Dynamic response of a general elastic structure

Consider a general three-dimensional elastic structure represented by domain £ as shown in Fig. 1, containing a damaged region
denoted as £2,. The structure is subjected to a harmonic external excitation force, f(x,t), which induces vibrations in the elastic body.

Assuming that nonlinear effect in the system can be neglected and that the vibration amplitude in the elastic body is small, the
displacement field u(x,t) at any point within the domain £ (where the position vector x € ) can be obtained by solving the governing
equation in its strong form:

V.o(u)+g(x,t)+pi=0 (@))
where g(x, t) represents the body forces. The above equation can be solved by applying the appropriate boundary conditions. On the
displacement boundary, we have

u(x,t) = uy(x,t) )

On the force boundary,

6(u) -n = f(x,t) 3
where p is density; n represents the normal vector to the force boundary; ¢(u) is stress tensor, which is the product of elasticity tensor C
and the strain tensor £(u), expressed as

6(u) = C:¢(u) @

1 T

e(u) = 5 {Vu+ (Vu)'} (5)
where “:” denotes a double dot product. Assuming the structure undergoes steady-state vibration, the displacement field can be
transferred to the frequency domain as:

u(x, t) = Ux, 0)e"t (6)
where w is the angular frequency of the external force. In this study, only time-invariant body forces are considered, and among these,
self-weight is the only body force included in the analysis. Like other time-invariant body forces, self-weight manifests as a constant

offset in the time domain and is typically excluded from frequency domain analysis. Consequently, in the free section where £ is not
constrained by displacement or force boundaries, substituting Eq. (6) into Eq. (1) yields

V-6(U) —0?pU =0 (7)

This paper focuses on dynamic responses such that the omission of the body force term will not affect the method’s accuracy. The
steady-state response can be obtained by solving Eq. (7) under specified boundary conditions. Equations (1)-(7) depict the forward
solution procedure for solving the vibration response of the elastic body. Equation (7) can be made more complete by adding the

fx)

Qq

Fig. 1. Three-dimensional elastic domain with damage.



Y. Yang et al. Journal of Sound and Vibration 625 (2026) 119604

harmonic excitation force:
V-6(U) — ©*pU = LU = F§(x — x,) (8)

where L refers to matrix differential operator, U is the displacement field, F represents external forces applied at position x, and § is
Dirac function, which is equal to 1 when x = x, and 0 for all other values of x.

In conventional vibration-based damage detection methods, analyzing the global responses such as natural frequencies, mode
shape functions, or frequency response functions—can, in principle, indicate whether a structure contains damage by comparing
measured vibration responses with simulated ones or the baseline signals. However, their efficiency and accuracy are heavily
dependent on the fidelity of the global model and the solution process, which are also easily affected by the change of boundary
conditions and excitation signals.

2.2. Pseudo excitation (PE) method and damage index (DI)

PE approach capitalizes on the local examination of the dynamic equilibrium conditions of a structural component using high-order
spatial derivatives of displacement data. For the same elastic body containing a damaged region as illustrated in Fig. 1, its free section
excluding any external excitation forces can be formulated as:

DI=V . 6(U) - a?pU=LU=0 9

where the elastic force and the inertia force are balanced locally at any point within the structure. The occurrence of damage would
lead to changes in the structural parameters, resulting in a violation of Eq. (9) and indicating a disruption of the original equilibrium
condition, as illustrated in Fig. 1. DI = LU in Eq. (9) is thus defined in the PE approach as a Damage Index (DI) to signal whether
structural damage occurs at the examined point.

In general, PE approach is applicable to both simple structural components such as beams, plates, and shells, and complex systems
involving their combinations. The only prerequisite is that the local equilibrium relationship in the elastic body can be explicitly
formulated. In the simplest case of a homogeneous isotropic Euler-Bernoulli beam element, DI can be explicitly defined as

14
DI = EOIO% — poho®*w(x) (10)
where w(x) refers to the transverse displacement of the beam element at any point x, Eo, Ip, py, and Ay are the Young’s modulus
(complex number if material damping is considered), density, moment of inertia and cross-section area of the intact region of the beam;
respectively. In the damaged region, assuming that damage causes a reduction in the mass and stiffness as compared to the healthy
status, A,s and Ag, respectively, the above equation can be re-written as

d*w(x)

(Eolp — Agr) — (poAo — App)@*w(x) = 0 an

where DI can be explicitly determined as:
14
d ;)XSX) — pOAowzw(x) = AE[W — ApA(UZW(X) (1 2)

It is clear that a non-zero value of DI indicates the presence of structural damage, underscoring the fundamental principle of the PE
approach. In previous research, the PE approach has demonstrated remarkable ability for damage localization [28,32,34]. Specifically,
the PE method’s local formulation ensures exceptional immunity to perturbations in structural boundary conditions and excitation
frequencies. However, the lack of ability to quantitatively assess the damage severity remains a bottlenecking issue.

4
DI = Eol, d'w(x)

2.3. Damage quantification using LFC

To revamp and improve the PE approach from damage localization to quantification, we introduce a method based on the principle
of local force continuity. Using the Euler-Bernoulli beam as a simple example, Fig. 2 illustrates a damaged beam with a damaged region
from x; to x;, represented by a slot with a depth of a. We first assume that no external forces exist near the damage, and the changes in
the bending stiffness are solely due to damage. In regions distant from external forces, the principle of force transmissibility and
continuity ensures that internal forces within a structure remain continuous at any point without sudden changes.

Mx:x{ Mx:x-+
7N

13
Intact region Ely=x; EIx:x{'

Damaged

: Intact region
region

7
Xi Xj

Fig. 2. Local internal force continuity in a beam structure containing a damaged region.
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Consequently, within an infinitesimal volume element, internal force variations exhibit smooth and continuous behavior without
discontinuities. Therefore, at the left boundary x; of the damaged area, the bending moments (as internal forces) on the left and right
sides of this interface, Mx—x; and M,_,-, respectively, are equal, which can be expressed as:

foxi’ = Mx:xfr =M (1 3)

where the subscript x = x; and x = x;" represent the corresponding physic quantities on the left and right of x;, respectively. The
bending moment can be calculated by the product of flexural stiffness and deflection curvature as:
&*w
M =EI e 14
On the two sides across the damage boundary, the left-hand side maintains their integrity with an intact bending stiffness referred
toas EI__ , whereas the damaged region exhibits a reduced flexural stiffness, denoted as EI,_, . Hence, the principle of force continuity

can be employed to derive the following relationship:

d*w d*w
EL(:,(l ) = EIX:Xr ) (15)
X=X x:xl.*
d*w d*w
e e = EL« / EL (16)
-+ x=x;

X=X
i

Consequently, the ratio of the second derivative of flexural displacement across the damaged region’s boundary exhibits an
intrinsic correlation with the damage severity. Therefore, damage that can quantitatively alter the bending stiffness of the structure
could be detected and measured. Taking the simplest case where damage is in the form of reduced thickness, we can deduce that

bh?
Lew == (1-a-am’) a7)
Substitute Eq. (17) into Eq. (16) yields
1
2 2 3
DSI=a/h=1— (Zx_f A ) (18)

X=X
i

where a is the slot-caused depth reduction; h is the height of the intact segment. It should be noted that, in principle, the LFC method
can identify damages of various forms as long as they can alter the bending stiffness. The reduction of the cross-sectional area is
considered here as a representative case. The left-hand side of Eq. (18) is defined as the Damage Severity Index (DSI) hereinafter, which
indicates the relative damage severity. For damage with a non-uniform shape, the method can scan the affected area by recursively
applying the assessment technique, allowing for the reconstruction of the damage profile. Section 3.5 will demonstrate this capability
through illustrative examples. Note that transverse vibration displacements can be accurately measured using various sensor
technologies.

This approach offers several advantages, such as being less dependent on the boundary conditions, structural complexity, the type
and frequency of external excitation signals. Compared to the original PE approach, it does not require the measurement of additional
parameters. Additionally, unlike the fourth derivatives used in the strong form of the PE method, the LFC method only involves the
second derivatives, thus enabling reduced sensitivity and increased robustness to noise. It is noteworthy that the LFC method not only
enables quantitative damage identification, but also provides a means to calculate the pseudo force within the framework of the PE
method. According to Eq. (12), assuming that the damage is in the form of reduced thickness, when x; < x < x;, we have

d*W(x)
dct

Ebh® 3 2
DI =~ (1 - (1-DsD’) — pbha®W(x)DSI 19

where b is the thickness of the beam. Given that the principles of local dynamic equilibrium and internal force continuity are rooted in
fundamental mechanical equilibrium which remains valid in higher-dimensional systems, the LFC method can be extended to more
complex structures beyond the one-dimensional beams. As previously discussed, the successful implementation of the PE approach in
higher-dimensional and structurally complex systems provides strong evidence for the feasibility of extending the LFC method to
similar structural systems.

3. Numerical results
To verify the efficacy of the LFC method, we first numerically model a beam containing a predefined damage and assess whether the

proposed approach can accurately detect the extent of the damage. Note such a model is for the sole purpose of providing simulated
data to test the method, knowing that in practice, no global model is needed, and the structure can eventually be of arbitrary types as
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long as the area under inspection is a beam component. The lumped-mass method and the finite element method are separately
implemented to calculate the vibration response of the system. The displacement fields and their spatial derivatives are then processed
to identify the positions and severity of damage by using the proposed LFC approach. The study then explores the influence of
excitation frequency, damage location, and boundary conditions on the accuracy of damage severity identification. Finally, the LFC
method is employed to achieve the inversion of the damage profile by identifying the DSI at each location within the damaged region.

3.1. Lumped mass method

The lumped mass method is employed to discretize continuous systems in this study. This section elucidates the modeling process
using the lumped-mass method, taking the damaged Euler-Bernoulli beam as an illustrative example. First, the structure is discretized
into discrete segments, with each segment specified as a nodal point where mass is concentrated. The mass and stiffness matrices of the
undamaged structure are then constructed, assuming each segment has a uniform length Ax, with mass, stiffness, and damping

concentrated as m; = pyAoAx, ki = Eoly/ (Ax)g, and ¢; = CAx respectively. This leads to the dynamic equation governing these un-
damaged elements:

where i, 4, u,and f;(t) donate acceleration, velocity, displacement, and external force at the i — th node, respectively. Damage is
introduced by assigning the id — th element as the damaged element, with the corresponding mass, stiffness, and damping at each node

changed tomyy = pgAqAx, ki =Eqlq/ (Ax)3, and ¢;y = CAx, where Eq, py, I4, and A4 are the elastic modulus, density, moment of inertia,
and cross-sectional area of the damaged element, respectively. The dynamic equation for the damaged element writes,

m,-dli + Cidll + k,—du :fid(t) (21)

With the governing equations for both damaged and undamaged elements established, the dynamic governing equation for the entire
system can be formulated as

Mii + Cu + Ku = F(t) (22)

where M, C, K, and F(t) are the mass, damping, stiffness, and external forces matrices, respectively, defined as

M = diag(my,my, -+, Myg, -+, My) @3
C = diag(c;, ¢, -+, Cid, ***, Cn) @9
K = tridiagonal( — k;, k; + ki1, —kis1), i=1~id~n =
F(0) = (0. o(0). - fult). = u(t) 0

Finally, the displacement response of the entire damaged structures under vibrational loads can be solved through methods such as
modal decomposition, the Newmark-§ method, the Runge-Kutta method, and the Wilson-6 method.

A cantilever beam serves as a representative example. The beam (345 mm long, 19 mm wide and 6 mm thick; Young’s modulus:
68.9x% (1 +107%) GPa; density: 2700 kg/m>), is clamped at its left end and bears a through-width damaged zone from x4 —d /2to x4
+d/2 along the beam axis (centralized at x4 with a length of d), as shown in Fig. 3. It is worth noting that due to its high aspect ratio
(I/h = 57.5) and minor shear effects, the beam was modeled using Euler beam theory for simplicity. The whole beam is modeled

Fig. 3. Diagram of beam model.
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with a total of 200 elements (1.725 x 102 m in length for each element). The damage is simulated with a reduction in beam
thickness. F(t) in Eq. (26) is set to a harmonic point force of frequency f at x, = 0.035 m. To avoid any singularity (singular points in
the DI caused by these external loads) near the excitation force, an inspection region (Lispecrion = 0.255 m, starting at a distance of
0.07 m away from the left end) is selected by excluding the vicinity of x,. Severity of the damage is defined by DSI = a /h. The above
steps are implemented and solved utilizing MATLAB software.

3.2. Validations against finite element model

The lump-mass model is compared to the finite element model shown in Fig. 4, in term of vibration response for validation. In the
latter case, the analysis is performed using COMSOL Multiphysics. The structural dimensions and material properties are the same as
those used in the lumped mass method. A harmonic force with a unity amplitude is applied 35 mm from the fixed end of the beam in the
transverse direction. Mesh convergence studies indicate that a maximum element size of 2 mm is enough to ensure simulation ac-
curacy, resulting in about two thousand three-dimensional hexahedral solid elements discretizing the beam. The entire system is
subject to a transverse excitation at a prescribed frequency, Foé(x + d)e®t, which is exerted at 0.035 m from the origin (x, = 0.035
m, Fy =20 N). Both eigenfrequency and frequency domain analyses are conducted, and displacement responses at the predefined
inspection points are extracted to determine the damage location and severity according to Eq. (27) and Eq. (28).

3.3. Quantification of damage severity

A cantilever beam with a damaged zone spanning from x4 — d/2 to x4 + d/2 (x4= 0.22 m, d = 0.01 m) is used as an example to
verify the effectiveness of the LFC method using the two numerical modeling approaches as described above. The Frequency Response
Function (FRF) of the beam at x = 0.07 m, and displacement fields of the beam considering the damage with DSI = 0.5 under excitation
frequency of 60 Hz, obtained from both lumped mass and finite element modeling methods, are shown in Fig. 5(a) and (b), respec-
tively. The near-identical displacement fields obtained from both methods validate the modeling accuracy of both approaches, con-
firming their consistency and reliability.

In the PE and LFC methods, the fourth and second derivatives of vibration displacement can be obtained through finite difference
calculations. Assuming the displacement at the discrete point i is represented as w;, the displacement values collected from adjacent
points ranging from i — 2 to i + 2 allow for the computation of the fourth and second derivatives at point i. Therefore, DI and DSI can be
formulated as:

DI; = Eyl, (Wiz — Wi + 6dvri — Wi + WHZ) - pvowZWi 27)
m
1
DSI; = a/h =1- ((Wi,z —2w; 4, + Wi)/(wi—l —2w; + Wi+1))3 (28)

In the calculation of high-order derivatives, measurement density would significantly affect the accuracy of the damage identifi-
cation [38]. In theory, a denser distribution of measurement points allows for a more accurate detection of damage locations. However,
the impact of measurement noise becomes increasingly magnified with higher-order derivatives, particularly in densely sampled data
points. Therefore, as noted in previous work [28], an appropriate selection of the measurement points allows for striking a balance
between the detection resolution and the noise immunity. The optimized choice, as suggested in [28], is to use approximately ten
measurement points per wavelength when the fourth-order derivatives are involved. Due to the high accuracy of both the lumped mass
method and the finite element method in solving the displacement field, the distribution of measurement points in this Section is set to
109 points per wavelength in the inspection region.

Fig. 6(a) and (b) illustrate the DI distributions derived from the displacement fields in Fig. 5 using Eq. (12). Pronounced oscillations
at the damage boundary arise due to changes in the structural physical parameters upon reaching the damaged region, thus outlining
the boundary of the damage. The DI values within the damage boundary quantify the magnitude of the pseudo force, reflecting the
disturbance of the initial local equilibrium caused by the damage. This pseudo force is effectively equivalent to a nonexistent force

Fig. 4. Finite element model in COMSOL.
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Fig. 5. Comparison of (a) FRF curves; and (b) displacement field between lumped mass method and finite element method.

acting on the original beam. The accuracy of the damage localization results indicates that the precision of the displacement field
obtained through those two methods is sufficient to meet the requirements of the PE method for computing the fourth-order de-
rivatives. Nevertheless, as observed in Fig. 6(b), minor oscillations are present within the damaged area. This is attributed to errors
introduced during the finite element method’s solution process. Although the displacement fields obtained by both methods exhibit
satisfactory consistency, it is worth noting that the process of deriving the fourth-order derivative amplifies these errors, which aligns
with the previously discussed issue of noise sensitivity associated with higher-order derivative operation.
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Fig. 6. Absolute value of DI at 60 Hz using (a) LM; (b) FEM and DI from 750Hz to 1250 Hz using (c) LM; (d) FEM.
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To illustrate the applicability of the PE method across different frequencies, Fig. 6(c) and (d) present the curves of the absolute DI
values within the 750-1250 Hz range. It is evident that, despite the frequency variations, the DI effectively indicates the actual damage
locations, thus showing the independence of the proposed vibration-based local damage detection method on excitation frequency. In
the most ideal scenario, each sinusoidal component under wideband excitation can be viewed as an independent detection channel,
allowing for both damage quantification using a single frequency component or more comprehensive analysis by multi-frequency data
fusion. A potential limitation of the proposed approach lies in compromised detection performance when damage occurs at modal
nodes or when excitation is applied at nodal points. As demonstrated in Fig. 6(c) and (d), this limitation can be addressed through
multi-frequency excitation and data fusion strategies, which provide complementary information and enhance detection robustness
across the frequency spectrum.

Fig. 7 (a) and (b) show the DSI identification results within the damaged zone, obtained through the LFC method after pinpointing
the location of the damage. The DSI values are effectively identified, with a maximum error of 0.04 and a relative error of 8%. As
mentioned before, the LFC method not only entails quantitative damage identification, but also provides additional information about
the pseudo force level. DI values in the damaged region represent a pseudo force. Once the DSI values are obtained, reverse inference
can be applied to validate the concept of pseudo force using Eq. (19). As shown in Fig. 7 (c) and (d), the pseudo force derived from the
identified DSI closely aligns with the distribution of the pseudo force defined by DI, with only minor discrepancies observed at certain
peak values, which can be attributed to identification errors.

3.4. Quantification accuracy analysis
To evaluate the effectiveness of the LFC method in identifying varying DSI values, a comprehensive parametric analysis is con-

ducted, with DSI ranging from 0.03 to 0.67 across 20 distinct parameter values. Additionally, DSI identification is performed under
varying excitation frequencies, damage locations, and boundary conditions to systematically explore the impact of these factors on
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identification accuracy. Firstly, Fig. 8 examines the impact of excitation frequency on identification accuracy. Fig. 8(a) and (b)
illustrate DSI values at frequencies of 50 Hz and 500 Hz, respectively. Apart from the excitation frequency and DSI variations, all other
model parameters remain consistent with those outlined in Section 3.3. Fig. 8 illustrates that detection performance shows minor
variations across different excitation frequencies. These variations do not arise from any intrinsic frequency dependence of the pro-
posed method, which is theoretically effective across the entire frequency spectrum. Instead, such fluctuations are mainly attributed to
the interplay between spatial sampling requirements and wavelength characteristics, as well as numerical challenges associated with
higher-order derivative calculations—issues that merit further exploration in future research. The maximum error, enqy, is defined as
the absolute ratio of the largest identified DSI error to the theoretical DSI value in each figure. The eyq for Fig. 8(a) and (b) are 12.7%
and 14.5% respectively. The LFC method exhibits minimal identification errors for most DSI values across various frequencies, with
even the largest errors remaining within an acceptable range.

Subsequently, the effectiveness of the LFC method in identifying DSI values for damage at different locations is assessed. Fig. 9(a)
and (b) present the identification results for damage located at 0.04 m and 0.19 m, respectively, with epg, being 8.8% and 13.7%,
indicating a high level of precision in damage detection across different locations. Furthermore, the investigation extends to examining
the influence of boundary conditions on the accuracy of DSI identification by applying free-free and simply supported boundary
conditions to the beam structure. This is depicted in Fig. 10(a) and (b), where the enq, are 10.1% and 15.7%, respectively. Different
boundary conditions also lead to some slight variations in detection accuracy, indicating the need for more in-depth analysis in future
studies.

In the field of damage detection based on global vibration signals, both traditional methods and machine learning techniques can be
significantly influenced by excitation frequency, damage location, and boundary conditions. The proposed LFC method, as demon-
strated in the above analyses, is almost immune to these varying factors and exhibits robust identification performance. This advantage
stems from the inherent characteristics of the LFC method as a local damage detection approach, underpinned by solid physical
principles. These research findings further corroborate that the LFC method is particularly suitable for precise damage quantification in
complex structures under variable operating conditions. Although this study employs a simple beam structure for illustration, the LFC
method actually possesses broad application potential and can be extended to more complex engineering practices.

3.5. Inversion of damage profile

Building upon the above, the proposed method can continuously reconstruct the damage profile by identifying the DSI at each point
within the damaged region, using values derived from the previously identified data. In addition to uniform cross-sectional groove
defects, this section also examines three different cross-sectional shapes: step-shaped, trapezoidal, and arc-shaped, to further expand
the method’s applicability. The dimensions of the structures containing these three types of defects are identical to those previously
described, with the sole distinction being the shape and size of the defects. The specific dimensions of the defects are annotated in
Figs. 11-13, respectively.

Fig. 11(a) and (b) illustrate the results of damage localization and quantitative analysis for step-shaped beam performed using the
PE method and the LFC method, respectively. The PE method successfully identifies the location of the damage but fails to capture the
extent of the damage within the affected region. In contrast, as evident from Fig. 11(b), the DSI curve clearly delineates the step-like
defect shape. While notable oscillations are observed at locations where abrupt cross-sectional changes occur, the overall profile
exhibits good agreement with the actual defect shape.

Figs. 12 and 13 present the geometric configurations and corresponding identification results for trapezoidal and arc-shaped de-
fects, respectively. Although these figures clearly depict trapezoidal and arc-shaped DSI profiles, oscillatory behavior can be observed
to the right of the damage region. The continuously changing profiles leads to computational errors caused by discrete sampling which
cannot fully capture smooth transitions. Furthermore, the sequential nature of the LFC identification process causes errors at damage
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boundaries to propagate to subsequent measurement points. This also explains the error observed in Fig. 13(b), where the maximum

DSI occurs.

The aforementioned results indicate that, given a sufficient number of measurement points, the LFC method is capable of accurately
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inverting damage profiles, even for continuously varying cross-sectional shapes. It is worth noting that the displacement fields are
scanned on the intact side of the structure, alluding to the possibility of detecting internal defects behind it. Although defects that
appear on the surface of the structure are studied here for better illustration, the LFC method is generally applicable to a wide range of
defects, including internal ones inside the structure.

4. Experimental validations

This section presents an experimental validation of the proposed LFC method using a non-contact approach for damage identifi-
cation in cantilever beam specimens. The efficacy of the method is demonstrated via localizing damage and quantifying DSI values
across multiple test cases. Note again that this beam can represent a component within a more complex system that includes other
structural elements, and it is worth noting that the proposed method is not constrained by the complexity of the structure, the
boundary condition and the frequency of vibrational excitation.

4.1. Experimental setup

The experimental setup is schematically illustrated in Fig. 14. The beam is made of Al6061 aluminum alloy, with its material
properties and geometric parameters tabulated in Table 1. Through-thickness notches of varying depths are precisely machined,
positioned 0.21 m or 0.04 m from the fixed end of the beam. Five samples are shown in Fig. 15, where the damage profile is illustrated
in the black rectangle. The dimensions of the samples, measured in meters, are presented alongside the corresponding results of
damage identification. A harmonic excitation, generated using an electro-mechanical shaker (B&K 4089), is applied at 0.035 m from
the fixed beam end. The inspection area measured 0.255 m in length is positioned 0.07 m away from the fixed end.
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Fig. 14. Experimental setup.

The structural displacement is measured using a scanning Doppler laser vibrometer system (Polytec PSV-400). It should be noted
that the effectiveness of the LFC method may be limited in environments where optical measurements cannot be performed. The
experimental procedures are briefly outlined as follows:

Step 1: Setup the equipment and specimen

Install and position the Laser Doppler Vibrometer system and specimens at a suitable location.

Step 2: Configure the Measurement Region

An inspection region, slightly away from fixed boundaries and excitation points, is a priori selected. Measurement points are evenly
distributed across the detection area, with a sampling density of about twenty points per wavelength, determined by the highest
measurement frequency. A schematic illustration of the detection area and the distribution of measurement points is presented in in
Fig. 16.

Step 3: Measure the vibration field

The damaged beam is excited using a B&K electromagnetic shaker. Sinusoidal frequency sweep ranging from 10 to 1000 Hz is
generated as the input excitation signal. To obtain consistent results, vibration data at each measurement point are averaged over 30
acquisitions to reduce noise and measurement error.

Step 4: Data acquisition

Collect data at each measurement point to reconstruct the complete displacement field of the inspection region across the frequency
range, check the quality of the acquired signals.

Step 5: Data processing

Substitute measured displacement field into DSI equation, i.e. Eq. (28), to identify the damage location and calculate the severity
index.

Given the inevitability of measurement errors, we employ a sampling density of twenty measurement points per wavelength in the
experimental phase. Although reference [28] suggests an optimal measurement density of ten points per wavelength, the LFC method’s
reliance solely on second-order derivatives of vibration displacement, rather than fourth-order derivatives, renders it less susceptible

Table 1
Material properties and geometric parameters of the beam used for
experimental validation.

Density (kg/m?) 2700
Young’s Modulus E (GPa) 68.9
Beam length L (m) 0.365
Fixed length Ly (m) 0.02
Width b (m) 0.019
Thickness h (m) 0.006
Location of the excitation x, (m) 0.035
Length of inspection region Linspection (M) 0.255
Central location of damaged zone x4 (m) 0.21
Length of the damaged zone d (m) 0.02

13



Y. Yang et al. Journal of Sound and Vibration 625 (2026) 119604

Sample 1
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Sample 3
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Fig. 15. Samples showing the shape of the damages to be identified using the proposed approach.
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Fig. 16. A schematic illustration of the detecting area and measurement points distribution.

to error propagation. To minimize the potential influence of experimental errors that could lead to false damage identification, a
two-stage strategy is adopted: first, the damage is roughly located using the DI, followed by a focused quantitative assessment within
the identified damaged region using DSI. Zero DSI values were assigned to regions outside the damage zone, as these areas away from
damages were not of primary interest.

This experiment was designed to validate the effectiveness of the proposed method in quantitatively describing damage severity, as
well as to assess its robustness against variations in excitation frequency and damage location.

4.2. Results and discussions

To verify the reliability of the experimental data, a frequency sweep excitation is first applied to the beam, and the FRF curve is
extracted at a specific point (70 mm from the fixed end) on the beam. The corresponding FRF curve is also obtained from the same
location in the finite element model for comparison, as shown in Fig. 17 (a). Following this, as shown in Fig. 17 (b), the displacement
field at 625 Hz obtained from the experiment is compared with that from the finite element model, exhibiting good agreement.

The constructed DI and DSI distribution in the inspection region for damage Samples 1, 2, 3, and 4 are presented in Fig. 18. The
results indicate that the DI distribution obtained using the PE method exhibits significant oscillations at the location of the damage.
Subsequently, the DSI values within the damaged region are identified using the LFC method, demonstrating that the LFC method
provides effective identification across varying damage depths.

It can be seen that while numerical simulations demonstrate the method’s high sensitivity to small stiffness variations, the above
experimental results indicate that the practical detection limit of the LFC method is primarily governed by the signal-to-noise ratio of
the measurement system. Fig. 19(a) and (b) illustrate the impact of excitation frequency and damage location on the identification
accuracy. The results of the LFC method are found to be independent of both the excitation frequency and damage location, indicating
their negligible influence on the identification results.

Table 2 presents the experimentally identified DSI values (the average DSI value within damage region) and their corresponding
relative errors for Samples 1 through 5. The observed deviations fall within an acceptable range, with the minor discrepancies pri-
marily attributable to measurement noise and the inherent challenges associated with numerical differentiation. These results
demonstrate the robustness of the method in the presence of experimental uncertainties. When benchmarked against existing methods,
the proposed LFC approach demonstrates comparable or superior performance in terms of accuracy. For example, Loutridis et al. [39]
investigated the fundamental vibration mode of double-cracked beams using wavelet transform. In their study, when the actual DSIs
were 20% and 30%, the identified DSIs were 30% and 40%, respectively, resulting in relative errors of 50% and 33.3%. Chen et al. [40]
examined an aluminum beam with deflection influence lines. In their experiments, for a single crack damage with an actual DSI of
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55%, the identified DSI was approximately 50% using a single sensor at midspan, leading to a relative error of 9.1%. Therefore, the
proposed LFC method not only exhibits superior detection accuracy, but also offers several inherent advantages owing to its local,
multi-frequency vibration-based and dynamic-enabled detection ability.

It should be noted that the current experiment examines a damage of finite length, where a reduction in local bending stiffness
clearly creates discontinuities in the second derivatives at the damage boundaries. If the notch length approaches zero, the two
boundaries merge into a single interface, resembling a crack. In such cases, the local structural stiffness at the interface may exhibit
complicated behaviors. Future studies are needed to extend this method to address other types of damages and more complex
structural configurations. Concerning minimum notch dimensions, the LFC method can theoretically detect any thickness reduction
affecting bending stiffness. However, measurement noise and numerical errors in derivative calculations can impact accuracy, as
illustrated in Figs. 18-19. Consequently, we anticipate that lower DSI values will make damage localization more challenging,
compromising the accuracy of quantitative assessments. Therefore, the sensitivity of this approach should be carefully evaluated in
practical applications.

5. Conclusions

This study presents a novel method for locating and quantifying damage severity contained in a structure based on the local force
continuity conditions. Based on the continuity relationship that governs the local internal forces, this method effectively detects
damage regions of finite width and is theoretically sensitive to any reduction in thickness, which represents a form of stiffness
degradation. By examining variations in the spatial derivatives of vibration displacement, the severity of damage is the target of the
inspection. Numerical simulations using both the lumped mass method and finite element method demonstrate that the proposed
approach can reliably identify local damage depth, independent of excitation frequency, damage location, and boundary conditions.
Also, by continuously tracking the identified local DSI, the method enables precise reconstruction of the damage profile. At the same
time, effectiveness of the approach is experimentally examined by quantifying damage depth in a beam using a scanning laser vibr-
ometer. Compared to the numerical results, the experimentally obtained damage depth predictions exhibit slightly larger errors, which
can be attributed to measurement noise and the use of higher-order derivatives in the method. Overall, the experimental results
confirm the effectiveness of the proposed approach.

As a local damage quantification method, LFC approach inherits all the advantages of the PE method, including the ability to
operate without requiring vibration signals from an undamaged reference structure, no dependence on precise knowledge on global
structural models, boundary conditions or excitation frequency, and no limitations regarding damage location or quantity. Further-
more, this method validates the concept of the pseudo force introduced in the PE method, advancing the method from mere damage
localization to damage quantification without the need for additional data. Additionally, due to its localized nature, this method also
enables the reconstruction of the shape of the damage, which is of significant importance for engineering applications.

It is noteworthy that the proposed method is inherently extensible from simple beam models to more complex engineering
structures, since it is built on fundamental equilibrium principles applicable to higher-dimensional continuous bodies. With the
ongoing development of measurement technologies, optical fiber-based sensing techniques and video-based image processing methods
will greatly simplify the acquisition of vibration data and may further enhance the capabilities of the proposed method. Although
measurement noise inevitably introduces errors in practical implementations, such effects can be effectively reduced through
appropriate signal-processing techniques and measurement strategies, thereby ensuring reliable performance in realistic scenarios.
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Table 2

Relative errors of experimental identification values.
Samples Expected DSI Identified DSI Errors
1 0.167 0.171 -2.39%
2 0.333 0.391 17.42%
3 0.500 0.418 -16.4%
4 0.667 0.602 9.75%
5 0.500 0.485 -8.40%

CRediT authorship contribution statement

Yuting Yang: Writing — original draft, Validation, Methodology, Investigation. Yu’e Ma: Writing — review & editing, Supervision.
Linfeng Li: Writing — review & editing, Validation. Li Cheng: Writing — review & editing, Supervision, Methodology. Xiang Yu:
Writing — review & editing, Validation, Supervision, Methodology.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. U2341238) and the Research Institute
for Artificial Intelligence of Things (RIAloT) of the Hong Kong Polytechnic University. The authors also acknowledge the support from
the PolyU Dual Degree Research Postgraduate Scholarship.

Data availability

Data will be made available on request.

References

[1] C. Zhang, H. Xu, Z. Su, L. Cheng, Damage detection based on sparse virtual element boundary measurement using metal-core piezoelectric fiber, Struct. Health
Monit. 17 (2018) 15-23, https://doi.org/10.1177/1475921717735574.

[2] Z. Pan, T. Liu, J. Zhang, H. Wang, F. Sun, W. Li, A two-stage method based on extreme learning machine for predicting the remaining useful life of rolling-
element bearings, Mech. Syst. Signal Process. 144 (2020) 106899, https://doi.org/10.1016/j.ymssp.2020.106899.

[3] S. Zhu, J. Huang, H. Peng, D. Yin, C. Lu, Fatigue reliability assessment of turbine discs under multi-source uncertainties, Fatigue Fract. Eng. Mater. Struct. 41
(2018) 1291-1305, https://doi.org/10.1111/ffe.12773.

[4] C.Liu, J.B. Harley, M. Bergés, D.W. Greve, 1.J. Oppenheim, Robust ultrasonic damage detection under complex environmental conditions using singular value
decomposition, Ultrasonics 58 (2015) 75-86, https://doi.org/10.1016/j.ultras.2014.12.005.

17


https://doi.org/10.1177/1475921717735574
https://doi.org/10.1016/j.ymssp.2020.106899
https://doi.org/10.1111/ffe.12773
https://doi.org/10.1016/j.ultras.2014.12.005

Y. Yang et al. Journal of Sound and Vibration 625 (2026) 119604

[5]

[6]

71

[8]

[91
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]

[40]

N. Tao, A.G. Anisimov, R.M. Groves, Shearography non-destructive testing of thick GFRP laminates: numerical and experimental study on defect detection with
thermal loading, Compos. Struct. 282 (2022) 115008, https://doi.org/10.1016/j.compstruct.2021.115008.

P. Coti¢, D. Kolari¢, V.B. Bosiljkov, V. Bosiljkov, Z. Jaglici¢, Image fusion for improved detection of near-surface defects in NDT-CE using unsupervised clustering
methods, J. Nondestruct. Eval. 33 (2014) 384-397, https://doi.org/10.1007/s10921-014-0238-8.

A. Zarei, S. Pilla, Laser ultrasonics for nondestructive testing of composite materials and structures: a review, Ultrasonics 133 (2023) 107163, https://doi.org/
10.1016/j.ultras.2023.107163.

Y.H. Yu, J.H. Choi, J.H. Kweon, D.H. Kim, A study on the failure detection of composite materials using an acoustic emission, Compos. Struct. 75 (2006)
163-169, https://doi.org/10.1016/j.compstruct.2006.04.032.

O. Avci, O. Abdeljaber, S. Kiranyaz, M. Hussein, D.J. Inman, A review of vibration-based damage detection in civil structures: from traditional methods to
machine learning and deep learning applications, Mech. Syst. Signal Process. 147 (2021) 107077, https://doi.org/10.1016/j.ymssp.2020.107077.

W. Fan, P. Qiao, Vibration-based damage identification methods: a review and comparative study, Struct. Health Monit. 10 (2011) 83-111, https://doi.org/
10.1177/1475921710365419.

K. Skowronek, M. Bocian, J. Bien, T. Kalisch, Assessment of background noise properties in time and time-frequency domains in the context of vibration-based
local damage detection in real environment, Mech. Syst. Signal Process. 199 (2023) 110465, https://doi.org/10.1016/j.ymssp.2023.110465.

H.W. Shih, D. Thambiratnam, T. Chan, Vibration based structural damage detection in flexural members using multi-criteria approach, J. Sound Vib. 323 (2009)
645-661, https://doi.org/10.1016/j.jsv.2009.01.019.

Y. Xia, H. Hao, Statistical damage identification of structures with frequency changes, J. Sound Vib. 263 (2003) 853-870, https://doi.org/10.1016/50022-460X
(02)01077-5.

N. Maia, J.M.M. Silva, E.A.M. Almas, R.P.C. Sampaio, Damage detection in structures: from mode shape to frequency response function methods, Mech. Syst.
Signal Process. 17 (2003) 489-498, https://doi.org/10.1006/mssp.2002.1506.

A. Alvandi, C. Cremona, Assessment of vibration-based damage identification techniques, J. Sound Vib. 292 (2006) 179-202, https://doi.org/10.1016/j.
jsv.2005.07.036.

J. Humar, A. Bagchi, H. Xu, Performance of vibration-based techniques for the identification of structural damage, Struct. Health Monit. 5 (2006) 215-241,
https://doi.org/10.1177/1475921706058809.

C.P. Ratcliffe, Damage detection using a modified Laplacian operator on mode shape data, J. Sound Vib. 204 (1997) 505-517, https://doi.org/10.1006/
jsvi.1997.0961.

D. Dessi, G. Camerlengo, Damage identification techniques via modal curvature analysis: overview and comparison, Mech. Syst. Signal Process. 52 (2015)
181-205, https://doi.org/10.1016/j.ymssp.2014.07.004.

J. Ciambella, A. Pau, F. Vestroni, Modal curvature-based damage localization in weakly damaged continuous beams, Mech. Syst. Signal Process. 121 (2019)
171-182, https://doi.org/10.1016/j.ymssp.2018.11.012.

C.C. Chang, L.W. Chen, Damage detection of cracked thick rotating blades by a spatial wavelet based approach, Appl. Acoust. 65 (2004) 1095-1111, https://doi.
org/10.1016/j.apacoust.2004.04.006.

M. Djamaa, N. Ouelaa, C. Pezerat, J.L. Guyader, Reconstruction of a distributed force applied on a thin cylindrical shell by an inverse method and spatial
filtering, J. Sound Vib. 301 (2007) 560-575, https://doi.org/10.1016/].jsv.2006.10.02.3.

T. Zhang, Y. Xu, Z. Liu, X. Wang, H. Li, Vibration-based structural damage detection via phase-based motion estimation using convolutional neural networks,
Mech. Syst. Signal Process. 178 (2022) 109320, https://doi.org/10.1016/j.ymssp.2022.109320.

R. Ghiasi, P. Torkzadeh, M. Noori, A machine-learning approach for structural damage detection using least square support vector machine based on a new
combinational kernel function, Struct. Health Monit. 15 (2016) 302-316, https://doi.org/10.1177/1475921716639587.

H.B. Bisheh, G.G. Amiri, Structural damage detection based on variational mode decomposition and kernel PCA-based support vector machine, Eng. Struct. 278
(2023) 115565, https://doi.org/10.1016/j.engstruct.2022.115565.

Z. Nie, H. Ma, Z. Wei, X. Wang, Baseline-free structural damage detection using PCA-Hilbert transform with limited sensors, J. Sound Vib. 568 (2024) 117966,
https://doi.org/10.1016/j.jsv.2023.117966.

Y. Bao, Y. Guo, H. Li, A machine learning-based approach for adaptive sparse time-frequency analysis used in structural health monitoring, Struct. Health
Monit. 19 (2020) 1963-1975, https://doi.org/10.1177/1475921719900918.

M. Makki Alamdari, B. Samali, J. Li, Y. Lu, S. Mustapha, Frequency domain decomposition-based multisensor data fusion for assessment of progressive damage
in structures, Struct, Control Health Monit. 26 (2019) 2299, https://doi.org/10.1002/stc.2299.

H. Xu, L.Z. Su, M.S. Cao, Y. Xia, Identification of structural damage based on locally perturbed dynamic equilibrium with an application to beam component,
J. Sound Vib. 330 (2011) 5963-5981, https://doi.org/10.1016/.jsv.2011.07.020.

M. Cao, W. Xu, W. Ostachowicz, Z. Su, A multi-scale pseudo-force model in wavelet domain for identification of damage in structural components, Mech. Syst.
Signal Process. 28 (2012) 638-659, https://doi.org/10.1016/j.ymssp.2011.09.029.

H. Xu, L. Cheng, Z. Su, M. Cao, Damage visualization based on local dynamic perturbation: theory and application to characterization of multi-damage in a plane
structure, J. Sound Vib. 332 (2013) 3438-3462, https://doi.org/10.1016/.jsv.2012.10.036.

H. Xu, L. Cheng, Z. Su, M.S. Cao, Reconstructing interfacial force distribution for identification of multi-debonding in steel-reinforced concrete structures using
noncontact laser vibrometry, Struct. Health Monit. 12 (2013) 507-521, https://doi.org/10.1177/1475921713500514.

C. Zhang, H. Xu, L. Cheng, Z. Su, Structural damage detections based on a general vibration model identification approach, Mech. Syst. Signal Process. 123
(2019) 316-332, https://doi.org/10.1016/j.ymssp.2019.01.019.

M. Cao, Z. Su, W. Xu, L. Cheng, A novel damage characterization approach for laminated composites in the absence of material and structural information,
Mech. Syst. Signal Process. 143 (2020) 106831, https://doi.org/10.1016/j.ymssp.2020.106831.

W. Xu, M. Cao, Q. Ding, M. Radzienski, W. Ostachowicz, A novel structural damage identification approach using damage-induced perturbation in longitudinal
vibration, J. Sound Vib. 496 (2021) 115932, https://doi.org/10.1016/j.jsv.2021.115932.

W. Xu, M. Cao, Y. Pan, W. Ostachowicz, Reconstruction of radial pseudo-forces on cylinders via mono-laser scanning: concept and application to
characterization of damage, Mech. Syst. Signal Process. 200 (2023) 110570, https://doi.org/10.1016/j.ymssp.2023.110570.

C. Zhang, H. Xu, Z. Su, L. Cheng, Structural damage detection based on virtual element boundary measurement, J. Sound Vib. 372 (2016) 133-146, https://doi.
0rg/10.1016/j.j5v.2016.02.029.

C. Zhang, H. Xu, Z. Su, L. Cheng, Damage detection based on sparse virtual element boundary measurement using metal-core piezoelectric fiber, Struct. Health
Monit. 17 (2018) 15-23, https://doi.org/10.1177/1475921717735574.

E. Lofrano, et al., Optimal sensors placement in dynamic damage detection of beams using a statistical approach, J. Optim. Theory Appl. 187 (2020) 758-775,
https://doi.org/10.1007/510957-020-01761-3.

S. Loutridis, E. Douka, A. Trochidis, Crack identification in double-cracked beams using wavelet analysis, J. Sound Vib. 277 (2004) 1025-1039, https://doi.org/
10.1016/j.jsv.2003.09.035.

Z.W. Chen, Q.L. Cai, S. Zhu, Damage quantification of beam structures using deflection influence lines, Struct. Control Health Monit. 25 (2018) e2242, https://
doi.org/10.1002/stc.2242.

18


https://doi.org/10.1016/j.compstruct.2021.115008
https://doi.org/10.1007/s10921-014-0238-8
https://doi.org/10.1016/j.ultras.2023.107163
https://doi.org/10.1016/j.ultras.2023.107163
https://doi.org/10.1016/j.compstruct.2006.04.032
https://doi.org/10.1016/j.ymssp.2020.107077
https://doi.org/10.1177/1475921710365419
https://doi.org/10.1177/1475921710365419
https://doi.org/10.1016/j.ymssp.2023.110465
https://doi.org/10.1016/j.jsv.2009.01.019
https://doi.org/10.1016/S0022-460X(02)01077-5
https://doi.org/10.1016/S0022-460X(02)01077-5
https://doi.org/10.1006/mssp.2002.1506
https://doi.org/10.1016/j.jsv.2005.07.036
https://doi.org/10.1016/j.jsv.2005.07.036
https://doi.org/10.1177/1475921706058809
https://doi.org/10.1006/jsvi.1997.0961
https://doi.org/10.1006/jsvi.1997.0961
https://doi.org/10.1016/j.ymssp.2014.07.004
https://doi.org/10.1016/j.ymssp.2018.11.012
https://doi.org/10.1016/j.apacoust.2004.04.006
https://doi.org/10.1016/j.apacoust.2004.04.006
https://doi.org/10.1016/j.jsv.2006.10.023
https://doi.org/10.1016/j.ymssp.2022.109320
https://doi.org/10.1177/1475921716639587
https://doi.org/10.1016/j.engstruct.2022.115565
https://doi.org/10.1016/j.jsv.2023.117966
https://doi.org/10.1177/1475921719900918
https://doi.org/10.1002/stc.2299
https://doi.org/10.1016/j.jsv.2011.07.020
https://doi.org/10.1016/j.ymssp.2011.09.029
https://doi.org/10.1016/j.jsv.2012.10.036
https://doi.org/10.1177/1475921713500514
https://doi.org/10.1016/j.ymssp.2019.01.019
https://doi.org/10.1016/j.ymssp.2020.106831
https://doi.org/10.1016/j.jsv.2021.115932
https://doi.org/10.1016/j.ymssp.2023.110570
https://doi.org/10.1016/j.jsv.2016.02.029
https://doi.org/10.1016/j.jsv.2016.02.029
https://doi.org/10.1177/1475921717735574
https://doi.org/10.1007/s10957-020-01761-3
https://doi.org/10.1016/j.jsv.2003.09.035
https://doi.org/10.1016/j.jsv.2003.09.035
https://doi.org/10.1002/stc.2242
https://doi.org/10.1002/stc.2242

	Quantification of structural damage by harnessing the principle of local force continuity
	1 Introduction
	2 Local force continuity (LFC)
	2.1 Dynamic response of a general elastic structure
	2.2 Pseudo excitation (PE) method and damage index (DI)
	2.3 Damage quantification using LFC

	3 Numerical results
	3.1 Lumped mass method
	3.2 Validations against finite element model
	3.3 Quantification of damage severity
	3.4 Quantification accuracy analysis
	3.5 Inversion of damage profile

	4 Experimental validations
	4.1 Experimental setup
	4.2 Results and discussions

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


