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A B S T R A C T

Nonlinear acoustic meta-materials/structures (NAMs) hold great promise for ultra-low and ultra- 
broadband vibration suppression through chaotic band mechanisms, but at the expense of 
compromising the original bandgap benefits. To concurrently harness the benefits arising from 
both bandgaps and chaotic passbands, we propose a dedicated design paradigm in which both 
linear and nonlinear oscillators are integrated in meta-plates. Harmonic balance method and 
time-domain integration are utilized to compute the system responses and evaluate the perfor
mances of two types of meta-plates. Type I design leverages the complementary benefits of linear 
acoustic meta-materials/structures (LAMs) and NAMs. The design entails the stability of the 
bandgap, in which additional 17 dB improvement is achieved over traditional NAMs, while 
maintaining a stable chaotic band. Type II extends the Type I design, elucidating the influence of 
nonlinearity location, linear stiffness and damping. Based on the insights gained, broadband vi
bration suppression has seen a significant extension into the lower frequency range, along with a 
notable improvement in vibration suppression effectiveness. Our concept is demonstrated 
experimentally on a meta-plate consisting of linear and vibro-impact nonlinear oscillators. The 
study alludes to a new route for designing high-performance meta-structures in views of struc
tural vibration control.

1. Introduction

Acoustic metamaterials (AMs) and metastructures, designed for controlling low-frequency elastic waves, can be customized by 
strategically tailoring the constituent artificial microstructural units [1–5]. NAMs [6–12], incorporating nonlinear local resonators, 
have garnered increasing attention due to their unique properties unattainable in their linear counterparts. For instance, NAMs can 
achieve nonreciprocal wave propagation [13,14] and break the mass law governing the sound insulation for conventional structures 
[15]. Crucially, they can enable ultra-low and ultrabroad-band wave suppression, thereby overcoming the narrow-band limitations 
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inherent to LAMs [16] and offering new avenues for vibration mitigation [17–20] and sound radiation control [17,21–23].
As demonstrated in the literature, the chaotic band in NAMs is an essential mechanism for achieving the broadband vibration 

reduction [24–26]. Inside these bands, incident periodic waves can be converted into chaotic transmitted waves [24]. In NAMs with 
hardening nonlinearity, chaotic bands can effectively reduce the vibration transmission above the nonlinear resonant bandgaps [26]. 
This reduction effect remains insensitive to the mass ratio of the local resonators, enabling lightweight and optimized designs [25]. 
Research has further clarified the influence of design parameters on NAM-induced vibration reduction performance [27], spurring the 
development of dedicated NAM unit cells, which are engineered to generate strong nonlinearity under moderate excitation amplitudes 
[28–30]. Experimental validation has also confirmed the exceptional ultra-low and ultra-broadband vibration suppression achieved 
through chaotic bands in NAM-based beams and plates [16,17]. Subsequent applications have successfully implemented this strategy 
in honeycomb sandwich plates [18] and cantilever wing plates [31,32] for mitigating aeroelastic vibration in high-speed flow [19,20]. 
Further advancing this field, Yu et al. demonstrated that combining vibro-impact motion with proper damping can produce a robust 
hyper-damping effect, thereby substantially augmenting the vibration reduction potential of NAMs [33,34].

Although chaotic bands are shown to provide effective vibration suppression within NAMs’ passbands, the beneficial nonlinear 
effects arising come at a cost: they impair the performance of locally resonant (LR) bandgaps [24–26], which can also be beneficial in 
many applications such as vibration reduction, sound absorption and wave control. Bandgaps in NAMs are dominated by the 
degeneration of dispersion curves [13,46] and self-adaptivity of the reduction range [28,46], both stemming from the time-space 
amplitude-dependent properties of NAMs [35–45]. When increasing the excitation amplitude, the NAM bandgap shifts down
ward/upward for softening/hardening nonlinearity [35]. In weakly NAMs structures [35,44], the bending of the dispersion curves 
reflects the degeneration (narrowing) of bandgaps as nonlinearity strengthens. In strongly NAMs [46], bandgaps are exemplified by 
the shortening, merging, or even disappearance of dispersion curves. These changes are driven by the varying nonlinear strength, 
which induce transitions in wave modes and consequently lead to bandgap degeneration. On the other hand, the bandwidth of the total 
LR bandgap is self-adaptive with the propagation distance and time, because the reduced wave amplitude shifts the bandgap range 
during the wave propagation process, causing the sweeping of the bandgap effect across a broad frequency range, thereby leading to 
ultrabroad bandgaps [28,46]. In high-dimensional NAM structures [13], spatial divergence can accelerate this self-adaptivity process. 
Consequently, it is difficult for NAMs to sustain stable bandgaps under excitations with varying amplitude or in large-scale and 
higher-dimensional structures. In contrast, one of the appealing features of the LAM bandgaps is their proven ability to suppress vi
brations regardless of the external excitation intensity [47–49]. Also, the vibration reduction level within chaotic bands is usually 
lower than that inside the bandgap [24]. Thus, leveraging the advantages of both LAM and NAM through combining linear and 
nonlinear oscillators in structural design might be a solution to maintain both ultra-deep bandgaps and ultra-broad chaotic bands 
simultaneously. Earlier work has shown that subwavelength nonreciprocal elastic diodes can be realized via combining linear and 
nonlinear AMs [13,14]. For vibration reduction, numerical studies also confirmed the efficacy of a combined design in a 1D NAM chain 
using gradient nonlinear stiffness coefficients [50]. However, this strategy has not yet been exploited in high-dimensional NAM 
structures, alongside the lack of experimental demonstration and analysis of the underlying physical mechanisms.

To tackle these problems, this paper investigates a high-dimensional meta-plate which incorporates both linear and nonlinear local 
oscillators. We develop a comprehensive modeling framework for the meta-plate, predict its vibrational responses, define evaluation 
criteria for assessing vibration reduction performance, and validate the approach through time-domain simulations. The study in
vestigates two distinct combinational systems of LAMs and NAMs: Type I utilizes equal-frequency oscillators while Type II involves 
different-frequency oscillators. We further fabricate a meta-plate and experimentally demonstrate its performance and elucidate the 
underlying physical mechanisms, thereby bridging the gap in the field of NAMs.

2. Nonlinear meta-plate and analysis methods

Fig. 1(a) illustrates a nonlinear meta-plate consisting of a rectangular thin plate, over which 5 × 6 periodic metacells are installed. The 
substrate plate is made of aluminum alloy with dimensions a × b × h = 0.7 × 0.84 × 0.006 m, density ρ = 2700 kg/m3, Young’s modulus 
E = 67 GPa, and Poisson’s ratio ν = 0.3, respectively. The metacell is square, with a lattice constant of 0.04 m. These parameters can form 

Fig. 1. Metamaterial model. (a) Schematic of an finite plate with 30 periodically arranged nonlinear oscillators. (b) Equivalent model of the 
nonlinear oscillators. (c) Distribution and positions of the metacells and exctiation.
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efficient LR bandgaps in the meta-plate [17,18,48]. As shown in Fig. 1(b), a concentrated mass m0 is embedded on the plate and coupled 
to two independent oscillators with masses m1, m2, linear stiffness k1, k2 and damping coefficients c1, c2, respectively. The displacements 
of m0, m1 and m2 denote w0, w1 and w2, respectively. w1r = w1-w0 and w2r = w2-w0. Natural frequencies are ωi = 2πfi, i = 1, 2; thus, the 
linear stiffness of individual resonators are ki = (ωi)2mi, i = 1, 2. The damping coefficient denotes ci = 0.01ki/ωi [17]. Damping and 
geometrical nonlinearity in the plate are not considered; therefore, nonlinearity only arises from the local oscillators, with k1N and k2N 
denoting the nonlinear stiffness coefficients (k1N = k2N). Thus, the equation of motion for the sth (s = 1, 2, …, 30) metacell is given by: 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m0ẅ(xs, ys, t) − k1ws
1r − k1N

(
ws

1r

)n
− k2ws

2r − k2N
(
ws

2r

)n
= Fs(xs, ys)

m1

(

ẅ(xs, ys, t) + ẅs
1r

)

+ k1ws
1r + k1N

(
ws

1r
)3

= 0

m2

(

ẅ(xs, ys, t) + ẅs
2r

)

+ k2ws
2r + k2N

(
ws

2r
)3

= 0

, (1) 

where n is a nonlinear factor that can be achieved through oscillating unit design [29]. Here, we adopt the cubic stiffness nonlinearity 
(n = 3), as used in many studies [13,28,46], to show the salient phenomena in the system. The nonlinear stiffness coefficients are 
specified as k1N = 0 or k2N = 1 × 1013 N/m3 to ensure the occurrence of the chaotic bands under a moderate excitation level [17,18].

Without nonlinearity, the meta-plate exhibits two distinct band structure configurations: one LR bandgap with two passbands 
(achieved when f1 = f2); and two LR bandgaps with three passbands (achieved when f1 ∕= f2). Consequently, we define two system 
types: Type I with f1 = f2 and Type II with f1 ∕= f2. Each type implements four design strategies: Linear model (LM, k1N = k2N = 0); Linear 
and nonlinear model 1 (LM&NM 1, k1N = 0 and k2N = 1 × 1013 N/m3); Linear and nonlinear model 2 (LM&NM 2, k1N = 1 × 1013 and 
k2N = 0 N/m3 ); Dual nonlinear model (NM, k1N = k2N = 1 × 1013 N/m3). For Type I systems (f1 = f2), LM&NM 1 and LM&NM 2 models 
are equivalent due to oscillator symmetry; thus, they are collectively denoted as LM&NM. The following sections investigate the vi
bration suppression characteristics and the underlying physical mechanisms of both system types. Based on these findings, we develop 
tailored design strategies to cope with diverse vibration suppression requirements.

2.1. Modelling of the meta-plate

The vibration of 30-metacell-loaded meta-plate system is characterized by the vibration of the thin plate subjected to the reaction 
forces [F1, F2, …, F30] from the metacells and an external excitation force. Coupled with Eq. (1), the equation governing the entire 
meta-plate system motion writes: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρh
∂2w(x, y, t)

∂t2 + D
(

∂4w(x, y, t)
∂x4 + 2

∂4w(x, y, t)
∂x2y2 +

∂4w(x, y, t)
∂y4

)

= − F1(x1, y1)δ(x − x1)δ(y − y1) − F2(x2, y2)δ(x − x2)δ(y − y2) − ...

− F30
(
x30, y30

)
δ(x − x30)δ

(
y − y30

)
+ F0sin(2πft)δ(x − xc)δ(y − yc)

m0ẅ(x1, y1, t) − k1w1
1r − k1N

(
w1

1r
)3

− k2w1
2r − k2N

(
w1

2r
)3

= F1(x1, y1)

m1

(

ẅ(x1, y1, t) + ẅ1
1r

)

+ k1w1
1r + k1N

(
w1

1r
)3

= 0

m2

(

ẅ(x1, y1, t) + ẅ1
2r

)

+ k2w1
2r + k2N

(
w1

2r
)3

= 0

...

m0ẅ
(
x30, y30, t

)
− k1w30

1r − k1N
(
w30

1r
)3

− k2w30
2r − k2N

(
w30

2r
)30

= F30
(
x30, y30

)

m1

(

ẅ
(
x30, y30, t

)
+ ẅ30

1r

)

+ k1w30
1r + k1N

(
w30

1r
)3

= 0

m2

(

ẅ
(
x30, y30, t

)
+ ẅ30

2r

)

+ k2w30
2r + k2N

(
w30

2r
)3

= 0

, (2) 

where w denotes the transverse plate displacement; D = Eh3

12(1− ν2)
represents the flexural stiffness; (xs, ys) denotes the location of the sth (s 

= 1, 2, …, 30) metacell; δ is the Dirac delta function; F0, f and (xc, yc) specify the excitation amplitude, frequency and location, 
respectively.

Eq. (2) is solved via modal superposition (Assumed Modes Method (AMM)). Assuming the natural frequencies ωij and the corre
sponding mode shape functionsϕij(x,y), the displacement solution considering mc × nc modes is expressed as: 

w(x, y, t) =
∑mc

i=1

∑nc

j=1
ϕij(x, y)qij(t). (3) 
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For simply-supported boundary conditions as shown in Fig. 1(a), mode shape functions ϕij(x, y) are analytically known as: 

ϕij = sin
(

iπx
a

)

sin
(

jπy
b

)

(i=1, 2,…,mc; j=1,2,…, nc). (4) 

Substituting Eq. (3) into Eq. (2) yields: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑mc

i=1

∑nc

j=1
ρhϕij(x, y)q̈ij(t) +

∑mc

i=1

∑nc

j=1
D

(
∂4ϕij(x, y)

∂x4 + 2
∂4ϕij(x, y)

∂x2y2 +
∂4ϕij(x, y)

∂y4

)

qij(t)

= − F1(x1, y1)δ(x − x1)δ(y − y1) − F2(x2, y2)δ(x − x2)δ(y − y2) − ...

− F30
(
x30, y30

)
δ(x − x30)δ

(
y − y30

)
+ F0sin(2πft)δ(x − xc)δ(y − yc)

m0

∑mc

i=1

∑nc

j=1
ϕij(x1, y1)q̈ij(t) − c1ẇ1

1r − k1w1
1r − k1N

(
w1

1r
)3

− c2ẇ1
2r − k2w1

2r − k2N
(
w1

2r
)3

= F1(x1, y1)

m1

(
∑mc

i=1

∑nc

j=1
ϕij(x1, y1)q̈ij(t) + ẅ1

1r

)

+ c1ẇ1
1r + k1w1

1r + k1N
(
w1

1r
)3

= 0

m2

(
∑mc

i=1

∑nc

j=1
ϕij(x1, y1)q̈ij(t) + ẅ1

2r

)

+ c2ẇ1
2r + k2w1

2r + k2N
(
w1

2r
)3

= 0

...

m0

∑mc

i=1

∑nc

j=1
ϕij
(
x30, y30

)
q̈ij(t) − c1ẇ30

1r − k1w30
1r − k1N

(
w30

1r
)3

− c2ẇ30
2r − k2w30

2r − k2N
(
w30

2r
)3

= F30
(
x30, y30

)

m1

(
∑mc

i=1

∑nc

j=1
ϕij
(
x30, y30

)
q̈ij(t) + ẅ30

1r

)

+ c1ẇ30
1r + k1w30

1r + k1N
(
w30

1r
)3

= 0

m2

(
∑mc

i=1

∑nc

j=1
ϕij
(
x30, y30

)
q̈ij(t) + ẅ30

2r

)

+ c2ẇ30
2r + k2w30

2r + k2N
(
w30

2r
)3

= 0

. (5) 

Multiplying both sides of the first formula in Eq. (5) by the mode shape function of index p and q, integrating over the entire plate 
area and making use of the orthogonality properties of the mode shapes give the coupled equation of the system, expresses in matrix 
form as (detailed matrix expressions provided in Appendix A.1): 

MQ̈ + CQ̇ + KQ + KdQ3 = F, (6) 

where Q ¼ [q11, q12,…, qmcnc, w1r
1 , w2r

1 ,…, w1r
30, w2r

30]T. The above equation is solved using the harmonic balance method. Due to the 
cubic nonlinearity of the system, the one-third and third harmonic components are dominant among all subharmonic and super
harmonic responses. Thus, the steady-state response is assumed to take the form: 

Q = A1sin
(

1
3

ωt
)

+ B1cos
(

1
3

ωt
)

+ C1sin(ωt) + D1cos(ωt) + E1sin(3ωt) + F1cos(3ωt). (7) 

Substituting Eq. (7) into (6) and balancing the coefficients in front of the sinsoidal function terms give: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[

K −
1
9

ω2M
]

A1 −
1
3

ωCB1 + Kdα1 = 0
[

K −
1
9

ω2M
]

B1 +
1
3

ωCA1 + Kdα2 = 0

[
K − ω2M

]
C1 − ωCD1 + Kdα3 = F0

[
K − ω2M

]
D1 + ωCC1 + Kdα4 = 0

[
K − 9ω2M

]
E1 − 3ωCF1 + Kdα5 = 0

[
K − 9ω2M

]
F1 + 3ωCE1 + Kdα6 = 0

, (8) 

where detailed expressions of A1, B1, C1, D1, E1 F1, α1, α2, α3, α4, α5 and α6 are provided in Appendix A.1.
Vibration responses of the plate are evaluated under an force excitation at (xc = 0.385 m, yc = 0.315 m), as shown in Fig. 1(c). The 

input point is eccentrical to excite both symmetrical and asymmetrical vibration modes. The solution of A1, B1, C1, D1, E1 and F1 in Eq. 
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(8) are obtained by the Newton iteration, and their initial values are set to 0 for a given excitation frequency f ∈ [0, 1000] Hz (f =
ω/2π). Subsequently, Q is derived from Eq. (7). According to Eq. (3), the displacement response can be obtained at any position of the 
meta-plate.

2.2. Evaluation criteria

The overall vibration level V of the meta-plate is quantified by 

V(f) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑30

i=1
(Vs(f))2Ss

/
Stotal

√

F0
, (9) 

in which Vs represents the velocity at each metacell location (xs, ys) (s = 1, 2, …, 30). A detailed description of sampling points amount 
is provided in Appendix A.2. The average vibration transmission writes: 

R(f) = 20log10(V(f)), (10) 

where Ss and Stotal are the area of the sth metcell and that of the entire meta-plate, respectively.
We use the Type I system to demonstrate the simulation accuracy of the model in terms of the proposed evaluation criteria. Fig. 2

shows the transmission R for the LM model using the aforementioned AMM with two different modal truncations: (mc, nc) = (10, 12) 
and (20, 24), respectively. For comparison, results from the finite element method (FEM) are also shown by the black curve, as detailed 
in Appendix A.3. The results obtained by FEM and AMM are in good agreement: Peak frequency deviations are typically ≤4 % for (10, 
12) in AMM and ≤3 % for (20, 24) in AMM. Balancing the computational efficiency and accuracy, (mc, nc) = (20, 24) is adopted in 
AMM in subsequent analyses. Existing errors primarily arise from modal truncation, which neglects the contribution of higher-order 
modes to the system’s dynamic response. In contrast, the numerical computation error—comprising round-off error (from finite- 
precision calculations) and truncation error (from algorithmic approximations)—is negligible in comparison, given the ~15 deci
mal digits of precision employed here. In addition, the bandgap frequency range is obtained according to Bloch-Floquet theorem [13,
17], denoted by the shadowed area. The valley of the R is consistent with the bandgap area (99–133 Hz), further verifying the accuracy 
of the modelling.

Based on the frequency range of the LM bandgap, the transmission R can be divided into three regions: passband before the 
bandgap; bandgap (shaded area); and the passband after the bandgap, as shown in Fig. 2. We take the minimum value of R within the 
bandgap valley, denoted as Rbmin, to quantify the vibration reduction effect. Conversely, to evaluate the broadband vibration sup
pression in the passbands, we take the average value of R, denoted as Rpmean. Their expressions are written as: 

Rbmin= 20log10(min(
∑fbandgap end

f=fbandgap start

V(f))
)
and Rpmean= 20log10(mean(

∑fpassband end

f=fpassband start

V(f))
)
. (11) 

Fig. 3 shows the transmission R calculated by AMM for NM and LM&NM with an increasing excitation force F0. As F0 tends to 0, 
nonlinear solutions converge to linear results, evident in the overlapping curves. Following the linear bandgap reference, R is also 
segmented into three frequency bands as shown in Fig. 3(a–c). According to Eq. (11), Rbmin and Rpmean can be extracted as shown in 
Fig. 3(d–f). These metrics enable direct comparison of vibration reduction performance across the three Type I design strategies (LM, 
NM and LM&NM). Detailed analyses of nonlinear phenomena are provided in subsections.

For Type II system (f1 ∕= f2), varying resonant frequencies of the oscilators produce distinct bandgaps. To facilitate cross-case 
comparison, results are normalized against linear baselines as follows: 

Ratio Rbmin = min

⎛

⎝
∑fbandgap end

f=fbandgap start

VLM(f)

⎞

⎠

/

min

⎛

⎝
∑fbandgap end

f=fbandgap start

V(f)

⎞

⎠,

Fig. 2. Transmission R calculated by Eq. (10) for the linear meta-plate by AMM and FEM.
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and 

Ratio Rpmean = mean

⎛

⎝
∑fpassband end

f=fpassband start

VLM(f)

⎞

⎠

/

mean

⎛

⎝
∑fpassband end

f=fpassband start

V(f)

⎞

⎠. (12) 

2.3. Validation of the time-domain simuation

To validate AMM predictions, time-domain simuations are performed at typical frequencies. Here, we present examples of NM and 
LM&NM at two representative excitation frequencies: 100 and 240 Hz. As shown in Fig. 3(c), these two frequencies lie within the 
bandgap and the passband, respectively. We selecte an integration time of three seconds which is long enough for the system response 
to reach a steady state at these two frequencies. The last 1 s response is taken as the steady velocity signal for further signal processing 
such as FFT analysis. Velocity data are collected at 30 measurement points as shown in Fig. 1(c). The spatially averaged velocity 
Vaver(f) normalized by the excitation force F0 is shown in Fis. 3(a–d). Meanwhile, the component amplitude Vs(f) are derived from 
frequency spectra at each metacell location (xs, ys) (s = 1, 2, …, 30). Following Eq. (9), the numerical V(f) is calculated. Results from 
the AMM and the time domian numerical model are compared through a normalized index: 

Ratio(f) = VLM(f)
/
V(f), (13) 

where V(f)LM denotes V(f) of the LM model.
Consequently, the AMM and numerical Ratio(100) and Ratio(240) are presented in Fig. 4(e, f). At 100 Hz (within the bandgap), the 

Fig. 3. AMM responses and their statistics datas for the LM, NM and LM&NM models of Type I with increasing F0. (a) R of NM. (b) R of LM&NM. (c) 
R of F0 = 90 N (d–f) Comparisions of Rbmin and RPmean among the LM, NM and LM&NM models. (d) is within the bandgap; (e) is before the bandgap; 
(f) is behind the bandgap.
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numerical results for both models exhibit strong agreement with the AMM predictions. At 240 Hz (within the passband), discrepancies 
emerge between the two sets of results when F0 reaches 50 N. This divergence stems from the intensified chaotic dynamics induced by 
increasing nonlinearity [24–26], which exceed the predictive capabilities of the numerical methods. As such, the time-domain signal 
fails to converge within the three-second simulation window. Despite amplitude deviations, both methods capture a consistent trend. 
Thus, the time-domain simulations validate the AMM model within the operational amplitude ranges while highlighting limitations 
under strongly chaotic regimes.

3. Type I system: maintaining both bandgap and chaotic passbands for vibration reduction

For the NM model shown in Fig. 3(a), the identical parameters of masses m1 and m2 create a single-degree-of-freedom (1DoF) 
oscillator system. While most passband peaks (the region behind the red area) are supressed, the bandgap performance (red area) 
under increasing F0 can hardly be maintained. To concurrently maintain both bandgap effectiveness and chaotic passband suppression, 
we reconfigure this 1DoF oascilator as a 2DoF oascialtor system through strategic decoupling: one linear resonator for maintaining the 
bandgap performance while a parallel nonlinear resonator for enabling chaotic passband suppression. This redesign leads to the 
LM&NM configuration shown in Fig. 3b

3.1. Vibration reduction by NM versus LM&NM

To evaluate the vibration reduction in the NM model as F0 increases, we apply the criteria developped in Section 2.2 to both the 
bandgap and the passband regions. Within the bandgap as shown in Fig. 3(d), Rbmin for NM increases from − 105 to − 80 dB, while LM 
remains at − 105 dB. Due to the bandgap degeneration [13,46], the NM model loses vibration suppression capability in this region. 
Within the passbands shown in Fig. 3(e, f), Rpmean remains stable (within 3 dB variation) before the bandgap but decreases from − 55 to 
− 63 dB after the bandgap. The selective impact of the nonlinearity on the passband behind the bandgap will be scrutinized at 
subsquent sections. The NM model achieves broadband passband suppression through chaotic band effects [24–26], with stronger 
nonlinearity enhancing this suppression.

Despite its broadband performance, NM’s bandgap disappearance is undesirable. While chaotic bands suppress resonance peaks, 

Fig. 4. Numerical reponses and its statistics datas obtained by time-domain simulation with increasing F0. (a, c) Normlized average velocities of 
LM&NM. (b, d) Normlized average velocities of NM. (e, f) Comparisions of Ratio between the AMM and numerical methods. (a, b, e) f = 100 Hz; (c, 
d, f) f = 240 Hz.
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they cannot build up deep vibration valleys. Most importantly, linear bandgaps produces consistent vibration valleys regardless of the 
excitation amplitudes. As shown in Fig. 3(b), integrating linear oscillators into the NM framework yields the LM&NM model, which 
preserves the vibration valley (blue region) under increasing F0. This valley corresponds to the linear-resonator-induced bandgap. 
Simultaneously, the chaotic bands from nonlinear resonators suppress most passband peaks. At F0 = 90 N as shown in Fig. 3(c), 
remarkable differences emerge between the two models: Rbmin of LM&NM dowells and persists at least 93 %, whereas that of NM can 
hardly exceed 76 % as shown in Fig. 3(d). Both models exhibit comparable passband suppression with Rpmean increasing by around 8 
dB as shown in Fig. 3(f). Thus, the LM&NM model provide more robust and consistent bandgap performance while enabling chaotic 
passband suppression.

Furthermore, time-domain simulations validate this characteristic, as shown in Fig. 4. At 100 Hz excitation (within the bandgap), 
LM&NM maintains normalized amplitudes below 1 × 10–4, whereas NM exhibits amplitudes up to 6 × 10–4 as shown in Fig. 4 (a, b). 
This confirms LM&NM’s capability to maintain bandgap performance under increasing nonlinearity. At 240 Hz (within the passband), 
both models display nearly identical normalized amplitudes that decrease with rising F0 as shown in Fig. 4(c, d). Frequency spectra 
exhibit comparable vibration suppression characteristics (Fig. 4(e, f)), validating both models’ passband vibration suppression effi
cacy. Collectively, these results demonstrate the unique ability of LM&NM to simultaneously maintain bandgap integrity and leverage 
chaotic passbands for broadband vibration reduction.

Therefore, design guidance for Type I systems can be summarized as follows: 

1. For applications requiring exclusively resonance peak suppression only, the NM model is recommended.
2. When deep vibration valleys are the primary requirement, the LM model should be selected.
3. For scenarios demanding both deep vibration valleys and resonance peak supression, the LM&NM model is the optimal solution.

3.2. Experimental validation

To implement the LM&NM design and validate its numerically predicted performance, we conducte experimental verification. 
Achieving strong nonlinearity under moderate excitation amplitudes remains challenging in NAMs. Vibro-impact [18,28,33] provides 
a viable approach for realizing the required nonlinearity level. Previous comparative studies demonstrate similar dynamic properties 
between vibro-impact and cubic stiffness nonlinearities under weak and strong nonlinearity [29]. Consequently, we employ 
vibro-impact oscillators here to generate nonlinearity as shown in Fig. 5(a), enabling chaotic bands for passband vibration suppression.

In the vibro-impact oscillator, the primary mass m01 is a hollow parallelepiped rigidly connected to a thin plate by bolts. The sphere 
m1, held inside m01, is stuck to a cantilever beam whose radius is 10 mm. m1 couples to m01 by this cantilever beam with a total stiffness 
k1. A symmetrical clearance, δ = 50 ± 20 μm, is provisioned between the sphere m1 and the wall m01. When the relative displacement 
w1r between them are larger than δ, nonlinear interaction takes place through m1 colliding with m01. As shown in Fig. 5(b), the linear 
oscillator counterpart uses identical parameters but has an enlarged clearance to prevent collision. The NAM meta-plate thickness is 
0.003 m, with all other parameters matching the theoretical and simulation values. Simply-supported boundary conditions are 
approximated by clamping limited edge regions (orange area) as shown in Fig. 5(d). This minimal restraint area (small relative to the 
total plate area) provides weak constraint to boundary bending, thereby approximating simply-supported behavior. Other parameters 
are m0 = m01+m02 = 70 g, m1 = m2 = 32 g, f1 =f2 = 280 Hz.

As shown in Fig. 5(c, d), a signal generator (Tektronix, AFG1022X) supplies the input signal coded by a computer, to a power 
amplifier (Brüel&Kjær, Type 2706). The power amplifier boosts the input signal by 15 dB and drives the shaker (Brüel&Kjær, Type 
4809). A Doppler Laser Vibrometer (Polytec, PSV-500) records the transient velocity of the plate and transmits the data to a computer 
for further processing. White-noise excitation at three voltage levels (1 V, 5 V, 9 V) produces progressively increasing nonlinear levels 
as shown in Fig. 6(b). Instead of direct force measurement, we use the transmission T defined as: 

Fig. 5. Experimental setup. (a) Specimen of the vibro-impact nonlinear oscillator. (b) Specimen of the linear oscillator. (c) and (d) System for 
measuring the response of the meta-plate with oscillators of (a) and (b) from two perspectives.
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T(f) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑30

i=1
(Vs(f))2Ss

/
Stotal

√

V0
, (14) 

RT(f) = 20lg(T(f)). (15) 

The corresponding evaluation criteria for the bandgaps and passbands can be redefined according to Section 2.2: 

RTbmin= 20lg(min(
∑fbandgap end

f=fbandgap start

T(f))
)
and RTpmean= 20lg(mean(

∑fpassband end

f=fpassband start

T(f))
)
, (16) 

where V0 is the velocity of the excitation point.
Fig. 6(a) presents the simulated and experimentally measured transmission RT. Under low (e.g., 1 V) input, no vibro-impact 

collision occurs and the system exhibits linear behavior. Rayleigh damping and resonator damping parameters for the experimental 
model were deduced from a comparison of the transmissions depicted in Appendix. A.3. The mass proportional coefficient (α) and the 
stiffness proportional coefficient (β) were determined to be 34.27 and 7.23 × 10⁻7, respectively. The damping coefficient of the res
onators was set to ci = 0.01ki/ωi, i = 1, 2. The close alignment between the experimental and simulated peak frequencies validates the 
simply-supported boundary implementation. Minor bandgap discrepancies arise from oscillator resonance frequency variations (280 
± 5 Hz). Fig. 6(b) shows the RT evolution with input voltage escalation (1 V→9 V). Within the bandgap, transmission valleys show 
slight elevation; passband behavior diverges: pre-bandgap peaks remain stable while post-bandgap peaks attenuate, consistent with 
theoretical predictions. Statistical analysis in Fig. 6(b, c) confirms that RTbmin maintains at least 90 %, and the RTpmean after the 
bandgap increase by 2 dB. The experimental results at 9 V input align with F0 = 8 N simulation data, as shown in Fig. 3(d–f), 
collectively demonstrating successful bandgap preservation and passband vibration suppression features.

4. Type II system: effects of nonlinearity location, linear stiffness and damping

Type I system constitutes a configuration derived from a 1DoF oscillator nonlinear meta-plate in Section 3.1. Type II system extends 
this configuration by separating the two resonant frequencies of the oscillators from f1 = f2 to f1 ∕= f2. To investigate this generalization, 
we adapt the stiffness k2 to cope with the resonant frequencies f2 = 150, 200, 250, 300, 350, 400 Hz, while keeping f1 = 100 Hz 
constant, thus resulting in six distinct cases. Compared with Type I, Type II is more suitable for evaluating the effects of nonlinearity 
location, linear stiffness and damping. Furthermore, this system allows for understanding why nonlinearity preferentially suppresses 
post-bandgap rather than pre-bandgap passbands. These insights provide useful guidance for optimizing combinational design 

Fig. 6. Experimental transmissions and their statistics datas with increasing input voltage. (a) Comparison of RT for the linear meta-plate between 
simulation and experiment. (b) RT of the cominational design. (c-e) The trend of RTbmin and RTPmean within the bandgap of (c); before the bandgap 
of (d); behind the bandgap of (e).
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strategies. One may also treat Type I as a special case of Type II model with f1 = f2. All four design strategies (LM, LM&NM 1, LM&NM 2 
and NM) are evaluated within this framework.

Fig. 7(a) presents a representative R for the NM model with f1 = 100 Hz and f2 = 300 Hz under increasing F0. The spectra comprise 
five distinct regions: two bandgaps (the first and second) and three passbands (the first, second and third). For the two bandgaps, the 
first valley attenuates with increasing nonlinearity, while the second maintains its transmission valley. For the passbands, peak 
suppression intensifies progressively in the second and third passbands compared to the first. To systematically quantify these vari
ations and elucidate their underlying mechanisms, we conduct a comparative analysis across all six cases using established evaluation 
criteria and examine the nonlinear phenomena sequentially.

4.1. Effect of nonlinearity location

As Ratio_Rbmin and Ratio_Rpmean are defined in Eq. (12), Ratio_Rbmin <1 indicates that the minimum transmission within the 
bandgap exceeds that of the LM model, while Ratio_Rpmean <1 signifies higher average passband transmission relative to the LM 
baseline.

The first bandgap, as shown in Fig. 7(b) disappear after introducing nonlinearity into k1: Ratio_Rbmin for all six cases fall below 10 
%. Conversely, introducing nonlinearity into k2 only affects the second bandgap as shown in Fig. 7(f) rather than the first as shown in 
Fig. 7(c). This is because the resonant frequencies are independently determined by the two oscillators in parallel. Therefore, intro
ducing nonlinearity does not take into account the coupling of the two oscillators. Also, the two oscillators can also be connected in 
series (see Appendix A.5). However, the parallel configuration offers key advantages over the serial design. Its operational principle 
relies on the relatively independent motion of the two mass blocks, which helps maintain a complete bandgap. Additionally, the 
parallel configuration provides superior vibration suppression performance within the chaotic band.

4.2. Effect of linear stiffness

Interestingly, although introducing nonlinearity into k2 can also affect the second bandgap, the Ratio_Rbmin evolution under 

Fig. 7. Ananlytical responses and their bandgap statistics datas for the six cases with different resonance frequencies as F0 increases. (a) R for NM 
when f1=100 Hz and f2=300 Hz. (b, c, d) Ratio_Rbmin of the first bandgap. (e, f, g) Ratio_Rbmin of the second bandgap. (b, e) are the results of 
LM&NM 1; (c, f) are the results of LM&NM 2; (d, g) are results of NM.
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increasing F0 exhibits distinct trends across the six frequency cases as shown in Fig. 7(f, g). As f2 increases, the robustness of the 
nonlinear bandgap improves. We analyze this phenomenon through two representative LM&NM 2 cases: (1) f1 = 100 Hz, f2 = 150 Hz 
and (2) f1 = 100 Hz, f2 = 400 Hz, as shown in Fig. 8. Obviously, nonlinearity causes the disappearance of the second bandgap (blue 
area) for f2 = 150 Hz but not for f2 = 400 Hz, as shown in Fig. 8(a, b). When the resonance frequency f2 is shifted to a higher frequency, 
the value of k2 = (2πf2)2m2 increases. This causes the nonlinear interaction force Fr between m2 and m0 to approach linear behavior as 
shown in Fig. 8(d). Consequently, oscillators with higher stiffness exhibit reduced nonlinear sensitivity at the same excitation forces. 
Thus, it is necessary to consider whether the excitation force is sufficient to induce the required nonlinearity.

4.3. Effect to the passband after the bandgap

Notably, k1N affects the second passband but not the first passband in all six cases, consistent with the observation made in Section 
3.1: Ratio_Rpmean of the six cases all increase within the second passband, as shown in Fig. 9 (d–f) while remaining almost stable within 
the first passband as shown in Fig. 9(a–c). Similarly, k2N affects the third passband but not the second passband: Ratio_Rpmean of the six 
cases all increase within the third passband as shown in Fig. 9(g–i) but remains almost unchanged within the second passband as shown 
in Fig. 7(e). Thus, introducing nonlinearity into the oscillators with a resonance frequency of fx can suppress the passband after fx. As 
explained in our work [24–26], the hardened NAM influences all passbands that are higher than the nonlinear LR bandgap.

To validate this phenomenon, time-domain simulations are conducted at an excitation frequency of 190 Hz (within the second 
passband) for the f1 = 100 Hz and f2 = 300 Hz configuration as shown in Fig. 10. As F0 increases, Ratio_Rpmean rises for both LM&NM 1 
and NM, but remains stable for LM&NM 2. This confirms that vibration suppression at 190 Hz requires the presence of k1N. These 
findings provide critical design guidance: to maximize chaotic band coverage for vibration suppression, nonlinear elements should be 
implemented in oscillators with the minimal feasible stiffness.

4.4. Effect of damping on nonlinear responses

Irrespective of the nonlinearity location, the third passband exhibits consistent vibration suppression evidenced by the increased 
Ratio_Rpmeam as shown in Fig. 9(g–i). However, a higher f2 reduces the growth rate of Ratio_Rpmeam, indicating impaired suppression 
efficacy. This attenuation stems from the concurrent increase in damping c2 = 0.01k2/ω2. Although this damping is minimal, it reduces 
the vibration after the second bandgap (Fig. 11(c)) and constrains the relative displacement w1r between m1 and m0. This compromises 
the nonlinear effects, in the same way as discussed in Ref. [17,29]. Consequently, increasing damping impair the vibration suppression 
through chaotic band effects. As shown in Fig. 11(d, e), to highlight this phenomenon, we remove c2, showing that the suppression 
effect in the third passband occurs without damping but becomes less effective with damping. Thus, damping-induced suppression of 

Fig. 8. Effect of nonlinear stiffness. (a) R for LM&MN 2 when f1 = 100 Hz and f2 = 150 Hz. (b) R for LM&MN 2 when f1 = 100 Hz and f2 = 400 Hz. 
(c) Single oscillator of LM&MN 2 (d) Relationships between Fr and w2r.

C. Gong et al.                                                                                                                                                                                                           Journal of Sound and Vibration 626 (2026) 119614 

11 



nonlinear effects directly causes the observed Ratio_Rpmeam growth rate reduction at higher f2.
Guidence for designing Type II system can be summarised as follows: 

1. The metacell resonant frequencies can be independently determined by parallel oscillators, eliminating the coupling considerations 
during nonlinearity implementation.

2. Oscillators with higher stiffness exhibit reduced nonlinear sensitivity at the same excitation force. Thus, it is necessary to consider 
whether the excitation force is sufficient to induce the required nonlinearity.

Fig. 9. Passband statistics datas for the six cases with different resonance frequencies as F0 increases. (a, b, c) Ratio_Rpmean of the first passband. (d, 
e, f) Ratio_Rpmean of the second passband. (g, h, i) Ratio_Rpmean of the third passband. (a, d, g) are the results of LM&NM 1; (b, e, h) are the results of 
LM&NM 2; (c, f, i) are results of NM.

Fig. 10. Cmparsions of Ratio_RPmean among single oscillators: LM&NM 1, LM&NM 2 and NM.
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3. To maximize chaotic band coverage for vibration suppression, nonlinear elements should be implemented in oscillators with 
minimal feasible stiffness.

4. Reduced oscillator damping enhances the manifestation of the nonlinear effect in the meta-plate.

5. Conclusions

This work leverages the complementary benefits of both LAM and NAM to address the degeneration of the linear bandgap caused by 
nonlinearity, while preserving broadband vibration suppression in the chaotic band. The combined structure is implemented within a 
high-dimensional NAM system to experimentally demonstrate its effectiveness and to elucidate the underlying physical mechanisms. 
Two types of systems are investigated: Type I with equal bandgap frequencies f1 = f2 and Type II with different bandgap frequencies f1 
∕= f2. By integrating the substantial bandgaps of the LAMs with the ultra-broadband suppression of the NAMs, Type I improves the 
vibration reduction in bandgap by 17 dB compared to traditional NAMs while maintaining a stable chaotic band with minimal 
fluctuation (3 dB). Its superior performance is experimentally validated using a configuration comprising vibro-impact and linear 
oscillators.

Type II represents a general case, with resonant frequencies f1 and f2 independently set to two parallel oscillators, enabling 
uncoupled frequency selection to meet specific requirements. In this type, we reveal the effects of the nonlinearity location, linear 
stiffness and damping on the suppression effect in different frequency ranges. The results provide guidance for combinational designs: 
Elevated stiffness and damping suppress nonlinear effects; thus, necessitating optimized stiffness and damping levels. Moreover, 
hardening nonlinearity generates chaotic bands primarily after the bandgap corresponding to the nonlinear resonator, thereby 
reducing post-resonance responses. To maximize the vibration suppression, nonlinear elements should be implemented in oscillators 
with minimal and feasible stiffness. Leveraging these insights, the proposed design achieves a significant extension of broadband 
vibration suppression into lower frequency ranges, accompanied by a notable improvement in its overall effectiveness.

Based on this work, we believe the proposed design is expected to contribute not only to vibration control but also potentially to 
sound radiation control. The proposed technique may lead to better and broader-band noise suppression effects than their linear 
counterparts, which would have economic benefits in areas such as naval vessel stealth, energy saving, and precision manufacturing. 
However, in terms of acoustics, attention should be paid to the contribution of nonlinear higher harmonics, as an increase in frequency 
implies enhanced sound radiation efficiency. The influence of nonlinearity on sound radiation requires further investigation.

Fig. 11. Influence of damping on nonlinearity expression (a) LM&NM 1 model with damping c1 and c2. (b) LM&NM 1 model only with damping c1. 
(c) R for LM model when f1 = 100 Hz, f2 = 150 Hz and f1 = 100 Hz, f2 = 400 Hz, respectively. (d) R for LM and LM&NM 1 models composed of (a). 
(e) R for LM and LM&NM 1 models composed of (b).
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Appendix A.1. Specific expressions

Specific expression of Eq. (6) write: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∫

plate

ρhϕpq(x, y)ϕpq(x, y)q̈pq(t)dxdy +

∫ ∫

plate

Dϕpq(x, y)

(
∂4ϕpq(x, y)

∂x4 + 2
∂4ϕpq(x, y)

∂x2y2 +
∂4ϕpq(x, y)

∂y4

)

qpq(t)dxdy

= − ϕpq(x1, y1)F1(x1, y1) − ϕpq(x2, y2)F1(x2, y2) − ... − ϕpq
(
x30, y30

)
F1
(
x30, y30

)
+ ϕpq(xc, yc)F0(xc, yc)sin(2πft)

m0

∑mc

i=1

∑nc

j=1
ϕij(x1, y1)q̈ij(t) − c1ẇ1

1r − k1w1
1r − k1N

(
w1

1r
)3

− c2ẇ1
2r − k2w1

2r − k2N
(
w1

2r
)3

= F1(x1, y1)

m1

(
∑mc

i=1

∑nc

j=1
ϕij(x1, y1)q̈ij(t) + ẅ1

1r

)

+ c1ẇ1
1r + k1w1

1r + k1N
(
w1

1r
)3

= 0

m2

(
∑mc

i=1

∑nc

j=1
ϕij(x1, y1)q̈ij(t) + ẅ1

2r

)

+ c2ẇ1
2r + k2w1

2r + k2N
(
w1

2r
)3

= 0

...

m0

∑mc

i=1

∑nc

j=1
ϕij
(
x30, y30

)
q̈ij(t) − c1ẇ30

1r − k1w30
1r − k1N

(
w30

1r
)3

− c2ẇ30
2r − k2w30

2r − k2N
(
w30

2r
)3

= F30
(
x30, y30

)

m1

(
∑mc

i=1

∑nc

j=1
ϕij
(
x30, y30

)
q̈ij(t) + ẅ30

1r

)

+ c1ẇ30
1r + k1w30

1r + k1N
(
w30

1r
)3

= 0

m2

(
∑mc

i=1

∑nc

j=1
ϕij
(
x30, y30

)
q̈ij(t) + ẅ30

2r

)

+ c2ẇ30
2r + k2w30

2r + k2N
(
w30

2r
)3

= 0

. (A1) 

Expressions of A1, B1, C1, D1, E1 and F1 write
A1 = [A1q11, A1q12,…, A1qmcnc, A1w1r

1 , A1w2r
1 ,…, A1w1r

30, A1w2r
30]T; B1 = [B1q11, B1q12,…, B1qmcnc, B1w1r

1 , B1w2r
1 ,…, B1w 

r
30, B1w2r

30]T; C1 = [C1q11, C1q12,…, C1qmcnc, C1w1r
1 , C1w2r

1 ,…, C1w1r
30, C1w2r

30]T; D1 = [D1q11, D1q12,…, D1qmcnc, D1w1r
1 , D 

1w2r
1 ,…, D1w1r

30, D1w2r
30]T; E1 = [E1q11, E1q12,…, E1qmcnc, E1w1r

1 , E1w2r
1 ,…, E1w1r

30, E1w2r
30]T; F1 = [F1q11, F1q12,…, F1qmc 

nc, F1w1r
1 , F1w2r

1 ,…, F1w1r
30, F1w2r

30]T.
Expressions of α1, α2, α3, α4, α5 and α6 are 
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⎧
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α1 = 0.75
(
A1

3 + A1B1
2 − A1

2C1 + B1
2C1 + 2A1C1

2 − 2A1B1D1 + 2A1D1
2 + 2A1E1

2 + 2A1F1
2)

α2 = 0.75
(
A1

2B1 + B1
3 + 2A1B1C1 + 2B1C1

2 − A1
2D1 + B1
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−
1
3
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2 − C1

2E1 + D1
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2 − 2C1D1F1 + 2C1F1
2
)

α4 = 0.75
(
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2B1 +
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2 − C1

2F1 + D1
2F1 + 2D1F1

2
)

α5 = 0.75
(

−
1
3
C1

3 + C1D1
2 + 2A1

2E1 + 2B1
2E1 + 2C1

2E1 + 2D1
2E1 + E1

3 + E1F1
2
)

α6 = 0.75
(

− C1
2D1 +

1
3
D1

3 + 2A1
2F1 + 2B1

2F1 + 2C1
2F1 + 2D1

2F1 + E1
2F1 + F1

3
)

. (A2) 

Appendix A.2. Detailed description of sampling points amount and convergence analysis

Fig. A1. Distribution of sampling points and convergence analysis. (a) 5 × 6 sampling points; (b) 10 × 12 sampling points; (c) R of (a) and (b).

To better capture the overall vibration level of the meta-plate, representative sampling points can be selected to calculate the 
parameter R according to Eqs. (9) and (10). Fig. A1 illustrates two different sampling point distributions and their corresponding R 
values. The results from both distributions show only minimal discrepancies: the peak frequencies align exactly, with slight deviations 
occurring at a few peak and valley locations. This is understandable, since within the frequency range of interest, the structural 
wavelength is rather long so that the 5 × 6 spatial sampling scheme, is already enough. Given the negligible difference in accuracy and 
the reduced computational cost, the 5 × 6 sampling scheme—which uses fewer points—was selected as an acceptable trade-off be
tween computational efficiency and result fidelity.

Appendix A.3. Detailed description of FEM

Fig. A2. Finite element mesh generation and convergence analysis. (a) 480 rectangular units and 30 metacells; (b) 1920 rectangular units and 30 
metacells; (c) R of (a) and (b).
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Based on the finite element method and the Kirchhoff–Love plate theory [51,52], we model the 2D meta-plate as shown in Fig. A2, 
with 30 metacells (blue points). A convergence analysis was conducted on the number of finite elements to be used. As shown in Fig. A2
(a, b), the units are discretized into 480 and 1920 rectangular plates, respectively. Fig. A2(c) shows that the two sets of results in terms 
of R exhibit minimal discrepancy between the two discretization schemes: Peak frequency deviations are ≤1 %. Accordingly, the 
former discretization with the fewer elements was selected, as an acceptable compromise between the computational time and ac
curacy of the results. The specific finite element modelling method is detailed in our work [14].

Appendix A.4. Damping of the experimental model

Fig. A3. Damping of the experimental model. (a) Rayleigh Damping ratio of the plate; (b) Transmission in varying Rayleigh damping when ci =

0.02ki/ωi, i = 1, 2; (c) Transmission in varying oscillator damping when α = 34.27 and β = 7.23 × 10⁻⁷.

The damping in the experimental model mainly arises from two sources: the damping inherent in the plate, which is characterized 
by Rayleigh damping model as illustrated in Fig. A3(a), and the damping associated with the oscillators. To quantify the specific 
contributions of these two forms of damping, we examined their individual impacts on the transmission (RT). When the damping of the 
oscillator is held constant, variations in Rayleigh damping affect all the peaks, as shown in Fig. A3(b). Conversely, when Rayleigh 
damping is fixed, the damping of the oscillator influences the peaks and valleys near and beyond the bandgap, also demonstrated in 
Fig. A3(b). Therefore, the calibration procedure consists in first adjusting the Rayleigh damping to achieve consistency in the response 
before the bandgap, and then fine‑tuning the oscillator damping to ensure agreement around and beyond the bandgap. Accordingly, 
the mass proportional coefficient (α) and the stiffness proportional coefficient (β) were initially determined to be 34.27 and 7.23 ×
10–7, respectively. Following this, the damping coefficient of the resonators was set to ci = 0.01ki/ωi, i = 1, 2.
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Appendix A.5. Vibration responses in series and parallel models

Fig. A4. Calculated results and their statistics datas for the meta-plate with oscillators in series and parallel when f1 = 100 Hz and f2 = 300 Hz as F0 
increases. R for the series models of (a-c); for the parallel models of (d-f). (a, d) LM&NM 1 model; (b, e) LM&NM 2 model; (c, f) NM model. (g, h) 
Ratio_Rbmin of the first and second bandgap, respectively. (i, j, k) Ratio_Rpmean of the first, second and third passband, respectively.

Fig. A4 shows the R of the nonlinear meta-plate with oscillators in series and parallel when f1 = 100 Hz and f2 = 300 Hz. We take this 
expample to demonstrate the difference between the series and parallel combination. Within the bandgaps shown in Fig. A2(g, h), 
bandgaps in series models all disappear as the level of nonlinearity increases, while LM&NM 1 and LM&NM 2 models in parallel can 
maintain the first and the second bandgap, respectively. This difference can be attributed to the resonance mechanisms. The resonance of 
a parallel oscillator is caused by the rather independent motion of the two masses, whereas the resonance of a series oscillator is caused by 
the coupled motion of the two masses. Therefore, introducing nonlinearity into a series oscillator with two masses alters the designed 
resonant frequencies of the two oscilattors before they are put into series, thereby affecting the two bandgaps as the same time. 
Furthermore, this also induces different changes in the chaotic bands as the nonlinearity increases. For instance, within the passbands as 
shown in Fig. A4(i–k), LM&NM 1 model in series shows almost the same R with that of LM&NM 2 model in parallel in Fig. A4(d).

According to the statistical data of Fig. A4(g–k), the series models offer additional options for meeting specific vibration suppression 
requirements. For example, LM&NM 1 model in series can be selected to maintain good bandgap effect while suppressing vibration in the 
passband. Although neither bandgap can maintain a complete bandgap, both show a greater Ratio_Rbmin than most other options.

In summary, the parallel configuration offers distinct design advantages over the serial configuration. The primary advantage stems 
from the operational principle of the parallel oscillators, whose resonances arise from the relatively independent motion of two mass 
blocks. This inherent characteristic enables the preservation of a complete bandgap. Furthermore, the parallel configuration offers 
superior vibration reduction within the chaotic band. A comparative analysis reveals that: within the first passband, both configu
rations exhibits comparable performance; within the second passband, the parallel LM&NM1 and NM configurations demonstrate 
outstanding effectiveness; within the third passband, the serial LM&NM1 and NM configurations, alongside the parallel LM&NM2 
configuration, show exceptional performance.
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Data availability

The majority data has been shown in this paper. All data for this study, if not included in this published article, are available from 
the corresponding author on reasonable request.
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