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Nonlinear acoustic meta-materials/structures (NAMs) hold great promise for ultra-low and ultra-
broadband vibration suppression through chaotic band mechanisms, but at the expense of
compromising the original bandgap benefits. To concurrently harness the benefits arising from
both bandgaps and chaotic passbands, we propose a dedicated design paradigm in which both
linear and nonlinear oscillators are integrated in meta-plates. Harmonic balance method and
time-domain integration are utilized to compute the system responses and evaluate the perfor-
mances of two types of meta-plates. Type I design leverages the complementary benefits of linear
acoustic meta-materials/structures (LAMs) and NAMs. The design entails the stability of the
bandgap, in which additional 17 dB improvement is achieved over traditional NAMs, while
maintaining a stable chaotic band. Type II extends the Type I design, elucidating the influence of
nonlinearity location, linear stiffness and damping. Based on the insights gained, broadband vi-
bration suppression has seen a significant extension into the lower frequency range, along with a
notable improvement in vibration suppression effectiveness. Our concept is demonstrated
experimentally on a meta-plate consisting of linear and vibro-impact nonlinear oscillators. The
study alludes to a new route for designing high-performance meta-structures in views of struc-
tural vibration control.

1. Introduction

Acoustic metamaterials (AMs) and metastructures, designed for controlling low-frequency elastic waves, can be customized by
strategically tailoring the constituent artificial microstructural units [1-5]. NAMs [6-12], incorporating nonlinear local resonators,
have garnered increasing attention due to their unique properties unattainable in their linear counterparts. For instance, NAMs can
achieve nonreciprocal wave propagation [13,14] and break the mass law governing the sound insulation for conventional structures
[15]. Crucially, they can enable ultra-low and ultrabroad-band wave suppression, thereby overcoming the narrow-band limitations
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model 1 for type II; LM&NM 2, linear and nonlinear model 2 for type II; NM, nonlinear model for type I and type II; AMM, assumed modes method;

FEM, finite element method.
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inherent to LAMs [16] and offering new avenues for vibration mitigation [17-20] and sound radiation control [17,21-23].

As demonstrated in the literature, the chaotic band in NAMs is an essential mechanism for achieving the broadband vibration
reduction [24-26]. Inside these bands, incident periodic waves can be converted into chaotic transmitted waves [24]. In NAMs with
hardening nonlinearity, chaotic bands can effectively reduce the vibration transmission above the nonlinear resonant bandgaps [26].
This reduction effect remains insensitive to the mass ratio of the local resonators, enabling lightweight and optimized designs [25].
Research has further clarified the influence of design parameters on NAM-induced vibration reduction performance [27], spurring the
development of dedicated NAM unit cells, which are engineered to generate strong nonlinearity under moderate excitation amplitudes
[28-30]. Experimental validation has also confirmed the exceptional ultra-low and ultra-broadband vibration suppression achieved
through chaotic bands in NAM-based beams and plates [16,17]. Subsequent applications have successfully implemented this strategy
in honeycomb sandwich plates [18] and cantilever wing plates [31,32] for mitigating aeroelastic vibration in high-speed flow [19,20].
Further advancing this field, Yu et al. demonstrated that combining vibro-impact motion with proper damping can produce a robust
hyper-damping effect, thereby substantially augmenting the vibration reduction potential of NAMs [33,34].

Although chaotic bands are shown to provide effective vibration suppression within NAMs’ passbands, the beneficial nonlinear
effects arising come at a cost: they impair the performance of locally resonant (LR) bandgaps [24-26], which can also be beneficial in
many applications such as vibration reduction, sound absorption and wave control. Bandgaps in NAMs are dominated by the
degeneration of dispersion curves [13,46] and self-adaptivity of the reduction range [28,46], both stemming from the time-space
amplitude-dependent properties of NAMs [35-45]. When increasing the excitation amplitude, the NAM bandgap shifts down-
ward/upward for softening/hardening nonlinearity [35]. In weakly NAMs structures [35,44], the bending of the dispersion curves
reflects the degeneration (narrowing) of bandgaps as nonlinearity strengthens. In strongly NAMs [46], bandgaps are exemplified by
the shortening, merging, or even disappearance of dispersion curves. These changes are driven by the varying nonlinear strength,
which induce transitions in wave modes and consequently lead to bandgap degeneration. On the other hand, the bandwidth of the total
LR bandgap is self-adaptive with the propagation distance and time, because the reduced wave amplitude shifts the bandgap range
during the wave propagation process, causing the sweeping of the bandgap effect across a broad frequency range, thereby leading to
ultrabroad bandgaps [28,46]. In high-dimensional NAM structures [13], spatial divergence can accelerate this self-adaptivity process.
Consequently, it is difficult for NAMs to sustain stable bandgaps under excitations with varying amplitude or in large-scale and
higher-dimensional structures. In contrast, one of the appealing features of the LAM bandgaps is their proven ability to suppress vi-
brations regardless of the external excitation intensity [47-49]. Also, the vibration reduction level within chaotic bands is usually
lower than that inside the bandgap [24]. Thus, leveraging the advantages of both LAM and NAM through combining linear and
nonlinear oscillators in structural design might be a solution to maintain both ultra-deep bandgaps and ultra-broad chaotic bands
simultaneously. Earlier work has shown that subwavelength nonreciprocal elastic diodes can be realized via combining linear and
nonlinear AMs [13,14]. For vibration reduction, numerical studies also confirmed the efficacy of a combined design in a 1D NAM chain
using gradient nonlinear stiffness coefficients [S0]. However, this strategy has not yet been exploited in high-dimensional NAM
structures, alongside the lack of experimental demonstration and analysis of the underlying physical mechanisms.

To tackle these problems, this paper investigates a high-dimensional meta-plate which incorporates both linear and nonlinear local
oscillators. We develop a comprehensive modeling framework for the meta-plate, predict its vibrational responses, define evaluation
criteria for assessing vibration reduction performance, and validate the approach through time-domain simulations. The study in-
vestigates two distinct combinational systems of LAMs and NAMSs: Type I utilizes equal-frequency oscillators while Type II involves
different-frequency oscillators. We further fabricate a meta-plate and experimentally demonstrate its performance and elucidate the
underlying physical mechanisms, thereby bridging the gap in the field of NAMs.

2. Nonlinear meta-plate and analysis methods
Fig. 1(a) illustrates a nonlinear meta-plate consisting of a rectangular thin plate, over which 5 x 6 periodic metacells are installed. The

substrate plate is made of aluminum alloy with dimensions a x b x h = 0.7 x 0.84 x 0.006 m, density p = 2700 kg/m?>, Young’s modulus
E =67 GPa, and Poisson’s ratio v = 0.3, respectively. The metacell is square, with a lattice constant of 0.04 m. These parameters can form
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Fig. 1. Metamaterial model. (a) Schematic of an finite plate with 30 periodically arranged nonlinear oscillators. (b) Equivalent model of the
nonlinear oscillators. (c) Distribution and positions of the metacells and exctiation.
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efficient LR bandgaps in the meta-plate [17,18,48]. As shown in Fig. 1(b), a concentrated mass my is embedded on the plate and coupled
to two independent oscillators with masses mj, my, linear stiffness kj, ko and damping coefficients ¢y, ¢y, respectively. The displacements
of my, my and my denote wy, wy and wy, respectively. wy; = wi-wy and wy, = wa-wy. Natural frequencies are w; = 2xnf;, i = 1, 2; thus, the
linear stiffness of individual resonators are k; = (w)?m; i = 1, 2. The damping coefficient denotes c¢; = 0.01k;/w; [17]. Damping and
geometrical nonlinearity in the plate are not considered; therefore, nonlinearity only arises from the local oscillators, with kyy and kon
denoting the nonlinear stiffness coefficients (kjn = kan). Thus, the equation of motion for the sth (s=1,2, ..., 30) metacell is given by:

mew(Xs, Ys, t) — kawy, — kin (Wir)n — kowy, — ko (WSZr)" = F(xs,Ys)

m (W(xs,ys, 0+ w;) T, + K (Wh,)° = 0 o

my <W(xs,ys, t) + WZ) + koW, + kaon (wh,)? = 0

where n is a nonlinear factor that can be achieved through oscillating unit design [29]. Here, we adopt the cubic stiffness nonlinearity
(n = 3), as used in many studies [13,28,46], to show the salient phenomena in the system. The nonlinear stiffness coefficients are
specified as kyjy =0 or koy = 1 x 10'® N/m? to ensure the occurrence of the chaotic bands under a moderate excitation level [17,18].

Without nonlinearity, the meta-plate exhibits two distinct band structure configurations: one LR bandgap with two passbands
(achieved when f; = f5); and two LR bandgaps with three passbands (achieved when f; # f>). Consequently, we define two system
types: Type I with f; = fo and Type Il with f; # f». Each type implements four design strategies: Linear model (LM, k;n = kan = 0); Linear
and nonlinear model 1 (LM&NM 1, k;x = 0 and koy = 1 x 10'3 N/m®); Linear and nonlinear model 2 (LM&NM 2, k;x = 1 x 10'2 and
kon = 0 N/m?); Dual nonlinear model (NM, kiy = kony = 1 x 103 N/m®). For Type I systems (f; = f2), LM&NM 1 and LM&NM 2 models
are equivalent due to oscillator symmetry; thus, they are collectively denoted as LM&NM. The following sections investigate the vi-
bration suppression characteristics and the underlying physical mechanisms of both system types. Based on these findings, we develop
tailored design strategies to cope with diverse vibration suppression requirements.

2.1. Modelling of the meta-plate

The vibration of 30-metacell-loaded meta-plate system is characterized by the vibration of the thin plate subjected to the reaction
forces [Fi, Fs, ..., F3o] from the metacells and an external excitation force. Coupled with Eq. (1), the equation governing the entire
meta-plate system motion writes:

2 4 4 4
Fwy,t) o (dwxyt) ,0wxyt) dwxyt)
o ot n2y? ay
= —F1(1,y1)8(x — x1)8(y — y1) — Fa(x2,¥2)8(x — x2)3(y — y2) — ..
—F30(x30,30) 8(x — X30)3(y — ¥30) + Fosin(2zft)3(x — x.)8(y — ye)

mow(x1,y1,t) — kawy, — kin (WL)3 — kowl, — kon (Wér)3 =F;(x1,)1)

ph

. . 3
my <W(X1 Y1, t) + W1r> + k]W%r + klN (W%r) =0

my <W(X1 Y1, t) + W;r) + szér + ng (W;r)3 =0 , (2)

moW(x3o7J/3o7 t) - klwf? —kin (W?S)B - szi? — kon (Wg?)so =F3 (Xso,}’ao)

m <V'l"(x30-,)’307 t) + ng) + kW + ki (WfS)S =0

my <V‘l"(.7€30,_)’307 t) + ng) + kzwg? + k2N (Wg?)s =0

where w denotes the transverse plate displacement; D = #’fﬂ) represents the flexural stiffness; (xs, y;) denotes the location of the st (s
=1, 2, ..., 30) metacell; § is the Dirac delta function; Fy, f and (x., Y.) specify the excitation amplitude, frequency and location,
respectively.

Eq. (2) is solved via modal superposition (Assumed Modes Method (AMM)). Assuming the natural frequencies w;; and the corre-
sponding mode shape functionsg;;(x,y), the displacement solution considering m. x n. modes is expressed as:

Wiy, =33y x,y)au(e). ©)

=1 j=1
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For simply-supported boundary conditions as shown in Fig. 1(a), mode shape functions ¢;(x,y) are analytically known as:

b —sm(ia )sm(”?) (i=1,2,....m;j=1,2,...,n). 4

Substituting Eq. (3) into Eq. (2) yields:

L a i 64 i\ Xy 04 ij \ A
$ 3 (i e +ZZD< ¢J<xy>+2 ;/,é;y)+ ‘”(;y(i‘y))qij(r)

i=1 j=1 i=1 j=1

= —F1(x1,)1)8(x = x1)8(y — y1) — F2(x2,¥2)8(x — x2)8(y = ¥2) —

7F30 (x30,y30)5(x — X30)5(y 7}/30) =+ Fosin(erft)é(x — XC)ECY 7_)/5)

me Ne
mo > >y e1,y1) iy (6) — oW, — kawl, — kan (W) — caviy, — kowd, — kan (wh,)® = Fi (31, 1)
=1 =1

me
<Z Z¢U x17y1 qy +Vl/lr) + clwir + klw%r + ki (w%r)g =0

i=1 j=1

my < ¢y (x1,y1)d(t) + W;) + CaW, + kaw, + Koy (Wh,)* =0 . (5)

me
my Z ¢ij (%m)’so)%(t) - Clw:f? - klwf? —kin (er)s - Czwgg - szi? —kon (W3?)3 = F39 (xaoJ’so)

5 (%30, ¥30) G (£) + W??) + Wil +kawi + kg (W)’ =0

e
/
N 3
N
M™M=

@y (X307}’30)qij(t) +W'§?> + CZW2r + kow3? + ko (WB )3 =0
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&
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Multiplying both sides of the first formula in Eq. (5) by the mode shape function of index p and g, integrating over the entire plate
area and making use of the orthogonality properties of the mode shapes give the coupled equation of the system, expresses in matrix
form as (detailed matrix expressions provided in Appendix A.1):

MQ +CQ + KQ + KaQ® = F, ©
where Q = [q11, q12,---» Gmencs wi, whs,..., Wi, wi3l1T. The above equation is solved using the harmonic balance method. Due to the
cubic nonlinearity of the system, the one-third and third harmonic components are dominant among all subharmonic and super-
harmonic responses. Thus, the steady-state response is assumed to take the form:

1 1
Q = A;sin <§ a)t> + B;cos (5 wt) + Cisin(wt) + D;cos(wt) + E;sin(3wt) + F;cos(3mt). )
Substituting Eq. (7) into (6) and balancing the coefficients in front of the sinsoidal function terms give:

[K - %an} A, — %wCBl +Kqot; =0

1
{K — —sz} B, + 3a)CA1 +Kqa; =0

K — 0°M|C; — wCD; + Kqas = : ®)
K — 0®M|D; + 0CC; + Kqaq =

K — 99*M|E; — 3wCF; + Kgas =

K — 90*M]F; + 30CE; + Kaats =

[
[
[
[

where detailed expressions of A, By, Cq, D1, E; Fq, a1, 0y, 3, &4, a5 and ag are provided in Appendix A.1.
Vibration responses of the plate are evaluated under an force excitation at (x. = 0.385 m, y. = 0.315 m), as shown in Fig. 1(c). The
input point is eccentrical to excite both symmetrical and asymmetrical vibration modes. The solution of A, By, C1, D1, E; and F; in Eq.
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(8) are obtained by the Newton iteration, and their initial values are set to 0 for a given excitation frequency f € [0, 1000] Hz (f =
w/2x). Subsequently, Q is derived from Eq. (7). According to Eq. (3), the displacement response can be obtained at any position of the
meta-plate.

2.2. Evaluation criteria

The overall vibration level V of the meta-plate is quantified by

z (Va(F)*S. /St
viH ="+ Fo : ©)

in which V; represents the velocity at each metacell location (xg, ys) (s =1, 2, ..., 30). A detailed description of sampling points amount
is provided in Appendix A.2. The average vibration transmission writes:

R(f) = 20log,,(V(f)), (10)

where S; and S;q) are the area of the st metcell and that of the entire meta-plate, respectively.

We use the Type [ system to demonstrate the simulation accuracy of the model in terms of the proposed evaluation criteria. Fig. 2
shows the transmission R for the LM model using the aforementioned AMM with two different modal truncations: (m, no) = (10, 12)
and (20, 24), respectively. For comparison, results from the finite element method (FEM) are also shown by the black curve, as detailed
in Appendix A.3. The results obtained by FEM and AMM are in good agreement: Peak frequency deviations are typically <4 % for (10,
12) in AMM and <3 % for (20, 24) in AMM. Balancing the computational efficiency and accuracy, (mc, n.) = (20, 24) is adopted in
AMM in subsequent analyses. Existing errors primarily arise from modal truncation, which neglects the contribution of higher-order
modes to the system’s dynamic response. In contrast, the numerical computation error—comprising round-off error (from finite-
precision calculations) and truncation error (from algorithmic approximations)—is negligible in comparison, given the ~15 deci-
mal digits of precision employed here. In addition, the bandgap frequency range is obtained according to Bloch-Floquet theorem [13,
171, denoted by the shadowed area. The valley of the R is consistent with the bandgap area (99-133 Hz), further verifying the accuracy
of the modelling.

Based on the frequency range of the LM bandgap, the transmission R can be divided into three regions: passband before the
bandgap; bandgap (shaded area); and the passband after the bandgap, as shown in Fig. 2. We take the minimum value of R within the
bandgap valley, denoted as Rbp;,, to quantify the vibration reduction effect. Conversely, to evaluate the broadband vibration sup-
pression in the passbands, we take the average value of R, denoted as Rpmean. Their expressions are written as:

foandgap_end Spassband _end
Rbpin=20log,o(min( Y V(f)))and Rpmen= 20l0g,o(mean( > V(f))). an
f :f 'bandgap —start f :f passband _start

Fig. 3 shows the transmission R calculated by AMM for NM and LM&NM with an increasing excitation force Fy. As F tends to O,
nonlinear solutions converge to linear results, evident in the overlapping curves. Following the linear bandgap reference, R is also
segmented into three frequency bands as shown in Fig. 3(a—c). According to Eq. (11), Rbpin and Rpmean can be extracted as shown in
Fig. 3(d—f). These metrics enable direct comparison of vibration reduction performance across the three Type I design strategies (LM,
NM and LM&NM). Detailed analyses of nonlinear phenomena are provided in subsections.

For Type II system (f; # f2), varying resonant frequencies of the oscilators produce distinct bandgaps. To facilitate cross-case
comparison, results are normalized against linear baselines as follows:

foandgap_end Soandgap_end
Ratio_Rby;, = min > v / min v,

f :fbandgap_smrt f :f bandgap —start

20
40

m -60

©

x -8 — AMM (20,24)
100 — AMM (10,12)

— FEM

-120 ‘ :

0 100 200 300 400 500
Frequency (Hz)

Fig. 2. Transmission R calculated by Eq. (10) for the linear meta-plate by AMM and FEM.



C. Gong et al. Journal of Sound and Vibration 626 (2026) 119614

Within the bandgap

-60
(a) -20 ’ (d) LM
40+ 704 —+— NM
= o —&— LM&NM
S 60| S 80
LM model €
x -80 — F=10N g 904
! Fo=30N x
'1 00 [ Kowye +hywy " Kawye koo " Fo=50N -100+
—— Fe=TON
'120 —— Fo=90N '110 T T T T

(

O
~
|
N
o

Before the bandgap

e) -50
-40 ( ) LM
) — —— NM
-60 m
2 2 —A— LM&NM
LM model ~
X _go LM&NM of Type I 72 “°F = 604
Fo=30N g N_Aﬁ‘__———&_dﬂ’———‘:
L —— Fo=50N
-100 Fo=70N Q%

_120 | . . —— Fo=90N
100 200 300 400 500 o N —
0 20 40 60 80 100
(C) 20 1240 Hz ‘ (f) 50 Behind the bandgap
-40 .
—~ m
%’ 00 % 60
@ .80 g
LM Q’% LM
-100 ¢ — NM —e— NM
1100 Hz. _ — LM&NM —a— LM&NM
-120 i -70 — T T T T T T
0 100 200 300 400 500 0O 20 40 60 80 100
Frequency (Hz) Fo (N)

Fig. 3. AMM responses and their statistics datas for the LM, NM and LM&NM models of Type I with increasing Fy. (a) R of NM. (b) R of LM&NM. (c)
R of Fy = 90 N (d—f) Comparisions of Rbyin and RPyean among the LM, NM and LM&NM models. (d) is within the bandgap; (e) is before the bandgap;
(f) is behind the bandgap.

and

Spassband _end Spassband _end
Ratio_Rpyean = Mean Z VEM(f) / mean Z V() |. (12)

f=f 'passband _start f=f passband _start

2.3. Validation of the time-domain simuation

To validate AMM predictions, time-domain simuations are performed at typical frequencies. Here, we present examples of NM and
LM&NM at two representative excitation frequencies: 100 and 240 Hz. As shown in Fig. 3(c), these two frequencies lie within the
bandgap and the passband, respectively. We selecte an integration time of three seconds which is long enough for the system response
to reach a steady state at these two frequencies. The last 1 s response is taken as the steady velocity signal for further signal processing
such as FFT analysis. Velocity data are collected at 30 measurement points as shown in Fig. 1(c). The spatially averaged velocity
Vaver(f) normalized by the excitation force Fy is shown in Fis. 3(a-d). Meanwhile, the component amplitude Vy(f) are derived from
frequency spectra at each metacell location (xs, ) (s = 1, 2, ..., 30). Following Eq. (9), the numerical V(f) is calculated. Results from
the AMM and the time domian numerical model are compared through a normalized index:

Ratio(f) = V*™(£) /V(f), (13)

where V(D™ denotes V(f) of the LM model.
Consequently, the AMM and numerical Ratio(100) and Ratio(240) are presented in Fig. 4(e, f). At 100 Hz (within the bandgap), the
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numerical results for both models exhibit strong agreement with the AMM predictions. At 240 Hz (within the passband), discrepancies
emerge between the two sets of results when Fj reaches 50 N. This divergence stems from the intensified chaotic dynamics induced by
increasing nonlinearity [24-26], which exceed the predictive capabilities of the numerical methods. As such, the time-domain signal
fails to converge within the three-second simulation window. Despite amplitude deviations, both methods capture a consistent trend.

Thus, the time-domain simulations validate the AMM model within the operational amplitude ranges while highlighting limitations
under strongly chaotic regimes.

3. Type I system: maintaining both bandgap and chaotic passbands for vibration reduction

For the NM model shown in Fig. 3(a), the identical parameters of masses m; and my create a single-degree-of-freedom (1DoF)
oscillator system. While most passband peaks (the region behind the red area) are supressed, the bandgap performance (red area)
under increasing Fy can hardly be maintained. To concurrently maintain both bandgap effectiveness and chaotic passband suppression,
we reconfigure this 1DoF oascilator as a 2DoF oascialtor system through strategic decoupling: one linear resonator for maintaining the

bandgap performance while a parallel nonlinear resonator for enabling chaotic passband suppression. This redesign leads to the
LM&NM configuration shown in Fig. 3b

3.1. Vibration reduction by NM versus LM&NM

To evaluate the vibration reduction in the NM model as Fj increases, we apply the criteria developped in Section 2.2 to both the
bandgap and the passband regions. Within the bandgap as shown in Fig. 3(d), Rbyin for NM increases from —105 to —80 dB, while LM
remains at —105 dB. Due to the bandgap degeneration [13,46], the NM model loses vibration suppression capability in this region.
Within the passbands shown in Fig. 3(e, f), Rpmean remains stable (within 3 dB variation) before the bandgap but decreases from —55 to
—63 dB after the bandgap. The selective impact of the nonlinearity on the passband behind the bandgap will be scrutinized at
subsquent sections. The NM model achieves broadband passband suppression through chaotic band effects [24-26], with stronger
nonlinearity enhancing this suppression.

Despite its broadband performance, NM’s bandgap disappearance is undesirable. While chaotic bands suppress resonance peaks,

Excitation Frequency: 100 Hz Excitation Frequency: 240 Hz

3
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Fig. 4. Numerical reponses and its statistics datas obtained by time-domain simulation with increasing F. (a, ¢) Normlized average velocities of

LM&NM. (b, d) Normlized average velocities of NM. (e, f) Comparisions of Ratio between the AMM and numerical methods. (a, b, ) f = 100 Hz; (c,
d, f) f = 240 Hz.
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they cannot build up deep vibration valleys. Most importantly, linear bandgaps produces consistent vibration valleys regardless of the
excitation amplitudes. As shown in Fig. 3(b), integrating linear oscillators into the NM framework yields the LM&NM model, which
preserves the vibration valley (blue region) under increasing Fy. This valley corresponds to the linear-resonator-induced bandgap.
Simultaneously, the chaotic bands from nonlinear resonators suppress most passband peaks. At Fp = 90 N as shown in Fig. 3(c),
remarkable differences emerge between the two models: Rbyi, of LM&NM dowells and persists at least 93 %, whereas that of NM can
hardly exceed 76 % as shown in Fig. 3(d). Both models exhibit comparable passband suppression with Rpmean increasing by around 8
dB as shown in Fig. 3(f). Thus, the LM&NM model provide more robust and consistent bandgap performance while enabling chaotic
passband suppression.

Furthermore, time-domain simulations validate this characteristic, as shown in Fig. 4. At 100 Hz excitation (within the bandgap),
LM&NM maintains normalized amplitudes below 1 x 1074, whereas NM exhibits amplitudes up to 6 x 10~ as shown in Fig. 4 (a, b).
This confirms LM&NM’s capability to maintain bandgap performance under increasing nonlinearity. At 240 Hz (within the passband),
both models display nearly identical normalized amplitudes that decrease with rising Fy as shown in Fig. 4(c, d). Frequency spectra
exhibit comparable vibration suppression characteristics (Fig. 4(e, f)), validating both models’ passband vibration suppression effi-
cacy. Collectively, these results demonstrate the unique ability of LM&NM to simultaneously maintain bandgap integrity and leverage
chaotic passbands for broadband vibration reduction.

Therefore, design guidance for Type I systems can be summarized as follows:

1. For applications requiring exclusively resonance peak suppression only, the NM model is recommended.
2. When deep vibration valleys are the primary requirement, the LM model should be selected.
3. For scenarios demanding both deep vibration valleys and resonance peak supression, the LM&NM model is the optimal solution.

3.2. Experimental validation

To implement the LM&NM design and validate its numerically predicted performance, we conducte experimental verification.
Achieving strong nonlinearity under moderate excitation amplitudes remains challenging in NAMs. Vibro-impact [18,28,33] provides
a viable approach for realizing the required nonlinearity level. Previous comparative studies demonstrate similar dynamic properties
between vibro-impact and cubic stiffness nonlinearities under weak and strong nonlinearity [29]. Consequently, we employ
vibro-impact oscillators here to generate nonlinearity as shown in Fig. 5(a), enabling chaotic bands for passband vibration suppression.

In the vibro-impact oscillator, the primary mass mg; is a hollow parallelepiped rigidly connected to a thin plate by bolts. The sphere
mjy, held inside myy, is stuck to a cantilever beam whose radius is 10 mm. m; couples to my; by this cantilever beam with a total stiffness
ki. A symmetrical clearance, § = 50 + 20 pm, is provisioned between the sphere m; and the wall mg;. When the relative displacement
wir between them are larger than &, nonlinear interaction takes place through m; colliding with mg;. As shown in Fig. 5(b), the linear
oscillator counterpart uses identical parameters but has an enlarged clearance to prevent collision. The NAM meta-plate thickness is
0.003 m, with all other parameters matching the theoretical and simulation values. Simply-supported boundary conditions are
approximated by clamping limited edge regions (orange area) as shown in Fig. 5(d). This minimal restraint area (small relative to the
total plate area) provides weak constraint to boundary bending, thereby approximating simply-supported behavior. Other parameters
are my = mg1+mpz = 70 g, m; = mg = 32 g, f1 =f> = 280 Hz.

As shown in Fig. 5(c, d), a signal generator (Tektronix, AFG1022X) supplies the input signal coded by a computer, to a power
amplifier (Briiel&Kjar, Type 2706). The power amplifier boosts the input signal by 15 dB and drives the shaker (Briiel&Kjeer, Type
4809). A Doppler Laser Vibrometer (Polytec, PSV-500) records the transient velocity of the plate and transmits the data to a computer
for further processing. White-noise excitation at three voltage levels (1 V, 5 V, 9 V) produces progressively increasing nonlinear levels
as shown in Fig. 6(b). Instead of direct force measurement, we use the transmission T defined as:
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Fig. 5. Experimental setup. (a) Specimen of the vibro-impact nonlinear oscillator. (b) Specimen of the linear oscillator. (c) and (d) System for
measuring the response of the meta-plate with oscillators of (a) and (b) from two perspectives.
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The corresponding evaluation criteria for the bandgaps and passbands can be redefined according to Section 2.2:
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where V) is the velocity of the excitation point.

Fig. 6(a) presents the simulated and experimentally measured transmission RT. Under low (e.g., 1 V) input, no vibro-impact
collision occurs and the system exhibits linear behavior. Rayleigh damping and resonator damping parameters for the experimental
model were deduced from a comparison of the transmissions depicted in Appendix. A.3. The mass proportional coefficient (o) and the
stiffness proportional coefficient (B) were determined to be 34.27 and 7.23 x 1077, respectively. The damping coefficient of the res-
onators was set to ¢; = 0.01k;/w;, i = 1, 2. The close alignment between the experimental and simulated peak frequencies validates the
simply-supported boundary implementation. Minor bandgap discrepancies arise from oscillator resonance frequency variations (280
+ 5 Hz). Fig. 6(b) shows the RT evolution with input voltage escalation (1 V—9 V). Within the bandgap, transmission valleys show
slight elevation; passband behavior diverges: pre-bandgap peaks remain stable while post-bandgap peaks attenuate, consistent with
theoretical predictions. Statistical analysis in Fig. 6(b, ¢) confirms that RTby,;, maintains at least 90 %, and the RTpmean after the
bandgap increase by 2 dB. The experimental results at 9 V input align with Fy = 8 N simulation data, as shown in Fig. 3(d-f),
collectively demonstrating successful bandgap preservation and passband vibration suppression features.

4. Type II system: effects of nonlinearity location, linear stiffness and damping

Type I system constitutes a configuration derived from a 1DoF oscillator nonlinear meta-plate in Section 3.1. Type II system extends
this configuration by separating the two resonant frequencies of the oscillators from f; = f5 to f1 # fo. To investigate this generalization,
we adapt the stiffness ky to cope with the resonant frequencies fo = 150, 200, 250, 300, 350, 400 Hz, while keeping f; = 100 Hz
constant, thus resulting in six distinct cases. Compared with Type I, Type II is more suitable for evaluating the effects of nonlinearity
location, linear stiffness and damping. Furthermore, this system allows for understanding why nonlinearity preferentially suppresses
post-bandgap rather than pre-bandgap passbands. These insights provide useful guidance for optimizing combinational design
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strategies. One may also treat Type I as a special case of Type Il model with f; = fo. All four design strategies (LM, LM&NM 1, LM&NM 2
and NM) are evaluated within this framework.

Fig. 7(a) presents a representative R for the NM model with f; = 100 Hz and f» = 300 Hz under increasing Fy. The spectra comprise
five distinct regions: two bandgaps (the first and second) and three passbands (the first, second and third). For the two bandgaps, the
first valley attenuates with increasing nonlinearity, while the second maintains its transmission valley. For the passbands, peak
suppression intensifies progressively in the second and third passbands compared to the first. To systematically quantify these vari-
ations and elucidate their underlying mechanisms, we conduct a comparative analysis across all six cases using established evaluation
criteria and examine the nonlinear phenomena sequentially.

4.1. Effect of nonlinearity location

As Ratio Rbyin and Ratio_Rpmean are defined in Eq. (12), Ratio_Rbpin <1 indicates that the minimum transmission within the
bandgap exceeds that of the LM model, while Ratio Rpmean <1 signifies higher average passband transmission relative to the LM
baseline.

The first bandgap, as shown in Fig. 7(b) disappear after introducing nonlinearity into k;: Ratio Rby, for all six cases fall below 10
%. Conversely, introducing nonlinearity into ky only affects the second bandgap as shown in Fig. 7(f) rather than the first as shown in
Fig. 7(c). This is because the resonant frequencies are independently determined by the two oscillators in parallel. Therefore, intro-
ducing nonlinearity does not take into account the coupling of the two oscillators. Also, the two oscillators can also be connected in
series (see Appendix A.5). However, the parallel configuration offers key advantages over the serial design. Its operational principle
relies on the relatively independent motion of the two mass blocks, which helps maintain a complete bandgap. Additionally, the
parallel configuration provides superior vibration suppression performance within the chaotic band.

4.2. Effect of linear stiffness

Interestingly, although introducing nonlinearity into k can also affect the second bandgap, the Ratio Rbni, evolution under

(a) -20
LM models
40 — Fe=10N
— Fo=30 N
né -60 — Fs=50 N
x -80 — Fo=70 N
— Fo=90 N
-100
_1 20 1 1 1 1
400 600 800 1000
Frequency (Hz)
------ LM model
LM&NM 2
£ 104 & (©) —s—100-150 Hz
Q 03 2] —4&— 100-200 Hz
x —v— 100-250 Hz
o 067 —e—100-300 Hz
T 041 14— o oo 8- —<— 100-350 Hz
X 2] —»— 100-400 Hz
0.0 T T T T 0 T T T T
0 20 40 60 80 100 O 20 40 60 80 100
s Within the second bandgap
1.2
LM&NM 1 (e)
< 1.0 4
-QE 21 0.8 -
mI 0.6
o
= .| 0.44
©
g 0.2
0 . . . . 0.0 . . . ; ,
0 20 40 60 80 100 O 20 40 60 80 100 0 20 40 60 80 100
Fo (N) Fo (N) Fo (N)
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increasing Fy exhibits distinct trends across the six frequency cases as shown in Fig. 7(f, g). As f» increases, the robustness of the
nonlinear bandgap improves. We analyze this phenomenon through two representative LM&NM 2 cases: (1) f; = 100 Hz, f, = 150 Hz
and (2) f; = 100 Hz, f, = 400 Hz, as shown in Fig. 8. Obviously, nonlinearity causes the disappearance of the second bandgap (blue
area) for fo = 150 Hz but not for f, = 400 Hz, as shown in Fig. 8(a, b). When the resonance frequency f; is shifted to a higher frequency,
the value of kg = (an2)2m2 increases. This causes the nonlinear interaction force F, between my and mg to approach linear behavior as
shown in Fig. 8(d). Consequently, oscillators with higher stiffness exhibit reduced nonlinear sensitivity at the same excitation forces.
Thus, it is necessary to consider whether the excitation force is sufficient to induce the required nonlinearity.

4.3. Effect to the passband after the bandgap

Notably, k;y affects the second passband but not the first passband in all six cases, consistent with the observation made in Section
3.1: Ratio_Rpmean Of the six cases all increase within the second passband, as shown in Fig. 9 (d—f) while remaining almost stable within
the first passband as shown in Fig. 9(a—c). Similarly, koy affects the third passband but not the second passband: Ratio_Rpmean Of the six
cases all increase within the third passband as shown in Fig. 9(g-i) but remains almost unchanged within the second passband as shown
in Fig. 7(e). Thus, introducing nonlinearity into the oscillators with a resonance frequency of f, can suppress the passband after f,. As
explained in our work [24-26], the hardened NAM influences all passbands that are higher than the nonlinear LR bandgap.

To validate this phenomenon, time-domain simulations are conducted at an excitation frequency of 190 Hz (within the second
passband) for the f; = 100 Hz and f» = 300 Hz configuration as shown in Fig. 10. As Fy increases, Ratio_Rpmean rises for both LM&NM 1
and NM, but remains stable for LM&NM 2. This confirms that vibration suppression at 190 Hz requires the presence of kjy. These
findings provide critical design guidance: to maximize chaotic band coverage for vibration suppression, nonlinear elements should be
implemented in oscillators with the minimal feasible stiffness.

4.4. Effect of damping on nonlinear responses

Irrespective of the nonlinearity location, the third passband exhibits consistent vibration suppression evidenced by the increased
Ratio_Rpmeam as shown in Fig. 9(g-i). However, a higher f, reduces the growth rate of Ratio Rpmeam, indicating impaired suppression
efficacy. This attenuation stems from the concurrent increase in damping co = 0.01ky/w». Although this damping is minimal, it reduces
the vibration after the second bandgap (Fig. 11(c)) and constrains the relative displacement w;, between m; and my. This compromises
the nonlinear effects, in the same way as discussed in Ref. [17,29]. Consequently, increasing damping impair the vibration suppression
through chaotic band effects. As shown in Fig. 11(d, e), to highlight this phenomenon, we remove cy, showing that the suppression
effect in the third passband occurs without damping but becomes less effective with damping. Thus, damping-induced suppression of
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nonlinear effects directly causes the observed Ratio Rpmeam growth rate reduction at higher fo.
Guidence for designing Type II system can be summarised as follows:

1. The metacell resonant frequencies can be independently determined by parallel oscillators, eliminating the coupling considerations
during nonlinearity implementation.

2. Oscillators with higher stiffness exhibit reduced nonlinear sensitivity at the same excitation force. Thus, it is necessary to consider
whether the excitation force is sufficient to induce the required nonlinearity.
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(e) R for LM and LM&NM 1 models composed of (b).

3. To maximize chaotic band coverage for vibration suppression, nonlinear elements should be implemented in oscillators with
minimal feasible stiffness.
4. Reduced oscillator damping enhances the manifestation of the nonlinear effect in the meta-plate.

5. Conclusions

This work leverages the complementary benefits of both LAM and NAM to address the degeneration of the linear bandgap caused by
nonlinearity, while preserving broadband vibration suppression in the chaotic band. The combined structure is implemented within a
high-dimensional NAM system to experimentally demonstrate its effectiveness and to elucidate the underlying physical mechanisms.
Two types of systems are investigated: Type I with equal bandgap frequencies f; = f» and Type II with different bandgap frequencies f;
# fo. By integrating the substantial bandgaps of the LAMs with the ultra-broadband suppression of the NAMs, Type I improves the
vibration reduction in bandgap by 17 dB compared to traditional NAMs while maintaining a stable chaotic band with minimal
fluctuation (3 dB). Its superior performance is experimentally validated using a configuration comprising vibro-impact and linear
oscillators.

Type II represents a general case, with resonant frequencies f; and f, independently set to two parallel oscillators, enabling
uncoupled frequency selection to meet specific requirements. In this type, we reveal the effects of the nonlinearity location, linear
stiffness and damping on the suppression effect in different frequency ranges. The results provide guidance for combinational designs:
Elevated stiffness and damping suppress nonlinear effects; thus, necessitating optimized stiffness and damping levels. Moreover,
hardening nonlinearity generates chaotic bands primarily after the bandgap corresponding to the nonlinear resonator, thereby
reducing post-resonance responses. To maximize the vibration suppression, nonlinear elements should be implemented in oscillators
with minimal and feasible stiffness. Leveraging these insights, the proposed design achieves a significant extension of broadband
vibration suppression into lower frequency ranges, accompanied by a notable improvement in its overall effectiveness.

Based on this work, we believe the proposed design is expected to contribute not only to vibration control but also potentially to
sound radiation control. The proposed technique may lead to better and broader-band noise suppression effects than their linear
counterparts, which would have economic benefits in areas such as naval vessel stealth, energy saving, and precision manufacturing.
However, in terms of acoustics, attention should be paid to the contribution of nonlinear higher harmonics, as an increase in frequency
implies enhanced sound radiation efficiency. The influence of nonlinearity on sound radiation requires further investigation.
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Appendix A.1. Specific expressions

Specific expression of Eq. (6) write:
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Expressions of Aj, By, C1, D1, E; and F; write
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a1 = 0.75(A:% + A1B1* — A°C1 + B1°Cy + 2A1G* — 2A1B1D; + 2A, D1 % + 2A:E;* + 2A1F;?)
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Appendix A.2. Detailed description of sampling points amount and convergence analysis
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Fig. Al. Distribution of sampling points and convergence analysis. (a) 5 x 6 sampling points; (b) 10 x 12 sampling points; (c) R of (a) and (b).

To better capture the overall vibration level of the meta-plate, representative sampling points can be selected to calculate the
parameter R according to Egs. (9) and (10). Fig. Al illustrates two different sampling point distributions and their corresponding R
values. The results from both distributions show only minimal discrepancies: the peak frequencies align exactly, with slight deviations
occurring at a few peak and valley locations. This is understandable, since within the frequency range of interest, the structural
wavelength is rather long so that the 5 x 6 spatial sampling scheme, is already enough. Given the negligible difference in accuracy and
the reduced computational cost, the 5 x 6 sampling scheme—which uses fewer points—was selected as an acceptable trade-off be-
tween computational efficiency and result fidelity.

Appendix A.3. Detailed description of FEM
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Fig. A2. Finite element mesh generation and convergence analysis. (a) 480 rectangular units and 30 metacells; (b) 1920 rectangular units and 30
metacells; (¢) R of (a) and (b).
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Based on the finite element method and the Kirchhoff-Love plate theory [51,52], we model the 2D meta-plate as shown in Fig. A2,
with 30 metacells (blue points). A convergence analysis was conducted on the number of finite elements to be used. As shown in Fig. A2
(a, b), the units are discretized into 480 and 1920 rectangular plates, respectively. Fig. A2(c) shows that the two sets of results in terms
of R exhibit minimal discrepancy between the two discretization schemes: Peak frequency deviations are <1 %. Accordingly, the
former discretization with the fewer elements was selected, as an acceptable compromise between the computational time and ac-
curacy of the results. The specific finite element modelling method is detailed in our work [14].

Appendix A.4. Damping of the experimental model
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Fig. A3. Damping of the experimental model. (a) Rayleigh Damping ratio of the plate; (b) Transmission in varying Rayleigh damping when ¢; =
0.02ki/w;, i = 1, 2; (c) Transmission in varying oscillator damping when « = 34.27 and p = 7.23 x 10™".

The damping in the experimental model mainly arises from two sources: the damping inherent in the plate, which is characterized
by Rayleigh damping model as illustrated in Fig. A3(a), and the damping associated with the oscillators. To quantify the specific
contributions of these two forms of damping, we examined their individual impacts on the transmission (RT). When the damping of the
oscillator is held constant, variations in Rayleigh damping affect all the peaks, as shown in Fig. A3(b). Conversely, when Rayleigh
damping is fixed, the damping of the oscillator influences the peaks and valleys near and beyond the bandgap, also demonstrated in
Fig. A3(b). Therefore, the calibration procedure consists in first adjusting the Rayleigh damping to achieve consistency in the response
before the bandgap, and then fine-tuning the oscillator damping to ensure agreement around and beyond the bandgap. Accordingly,
the mass proportional coefficient (a) and the stiffness proportional coefficient (§) were initially determined to be 34.27 and 7.23 x
107, respectively. Following this, the damping coefficient of the resonators was set to ¢; = 0.01ki/w; i = 1, 2.
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Appendix A.5. Vibration responses in series and parallel models
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Fig. A4. Calculated results and their statistics datas for the meta-plate with oscillators in series and parallel when f; = 100 Hz and f» = 300 Hz as Fy
increases. R for the series models of (a-c); for the parallel models of (d-f). (a, d) LM&NM 1 model; (b, e) LM&NM 2 model; (c, f) NM model. (g, h)
Ratio_Rbpy of the first and second bandgap, respectively. (i, j, k) Ratio_Rpmean Of the first, second and third passband, respectively.

Fig. A4 shows the R of the nonlinear meta-plate with oscillators in series and parallel when f; = 100 Hz and f, = 300 Hz. We take this
expample to demonstrate the difference between the series and parallel combination. Within the bandgaps shown in Fig. A2(g, h),
bandgaps in series models all disappear as the level of nonlinearity increases, while LM&NM 1 and LM&NM 2 models in parallel can
maintain the first and the second bandgap, respectively. This difference can be attributed to the resonance mechanisms. The resonance of
a parallel oscillator is caused by the rather independent motion of the two masses, whereas the resonance of a series oscillator is caused by
the coupled motion of the two masses. Therefore, introducing nonlinearity into a series oscillator with two masses alters the designed
resonant frequencies of the two oscilattors before they are put into series, thereby affecting the two bandgaps as the same time.
Furthermore, this also induces different changes in the chaotic bands as the nonlinearity increases. For instance, within the passbands as
shown in Fig. A4(i-k), LM&NM 1 model in series shows almost the same R with that of LM&NM 2 model in parallel in Fig. A4(d).

According to the statistical data of Fig. A4(g-k), the series models offer additional options for meeting specific vibration suppression
requirements. For example, LM&NM 1 model in series can be selected to maintain good bandgap effect while suppressing vibration in the
passband. Although neither bandgap can maintain a complete bandgap, both show a greater Ratio Rbp;, than most other options.

In summary, the parallel configuration offers distinct design advantages over the serial configuration. The primary advantage stems
from the operational principle of the parallel oscillators, whose resonances arise from the relatively independent motion of two mass
blocks. This inherent characteristic enables the preservation of a complete bandgap. Furthermore, the parallel configuration offers
superior vibration reduction within the chaotic band. A comparative analysis reveals that: within the first passband, both configu-
rations exhibits comparable performance; within the second passband, the parallel LM&NM1 and NM configurations demonstrate
outstanding effectiveness; within the third passband, the serial LM&NM1 and NM configurations, alongside the parallel LM&NM2
configuration, show exceptional performance.
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Data availability

The majority data has been shown in this paper. All data for this study, if not included in this published article, are available from
the corresponding author on reasonable request.
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