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ARTICLE INFO ABSTRACT

Editor: Jae-Hung Han Multi-stable deployable structures offer significant advantages in aerospace applications, including energy-
efficient configuration maintenance and switching capabilities. However, broadband noise interference from

Keywords: cosmic microwave background radiation, solar radiation, and spacecraft communications often compromises the

Improved sparse reconstruction method
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Broadband noise

accuracy of dynamic model and effectiveness of actuation strategy. To address the challenge of broadband noise
interference in aerospace applications, we propose a Time-Frequency-Domain Synergistic SINDy (T-F-S SINDy)

- . e approach for accurate and robust model reconstruction, composed of four progressive criteria. First, Criterion 1
Time-frequency-domain synergistic sindy . . K N X K K . N ? X
Optimization multi-stable structure actuation quantifies noise level through a diagnostic matrix and noise level index, determining time-domain data suit-
condition ability for functions library construction and selection; Then, Criterion 2 eliminates irrelevant candidate func-
tions via time-domain analysis when noise level meets the requirements of Criterion 1; Subsequently, Criterion 3
extracts frequency-domain features through Fourier-transformed sparse regression, followed by statistical vali-
dation using Criterion 4 to ensure model accuracy. Numerical simulations and experimental studies on multi-
stable deployable structures demonstrate the method’s effectiveness in predicting dynamic constitutive rela-
tionship expression and minimum energy deployment. The proposed framework significantly enhances robust-
ness under broadband noise by fusing both time-domain and frequency-domain information of the systems with
nonlinearity and multi-stable properties, showing broader applicability in multi-stable systems such as space
deployable structures, robotic actuators, and metamaterial-based vibration isolators.

released from configuration switching. Therefore, multi-stable property
is a significant idea of inspiration for realizing deployable structures.
Accurate identification of the stable configurations of multi-stable
deployable structures relies on the reconstruction of dynamic constitu-
tive relationship. Furthermore, the Basin of Attraction (BOA), which
describes the initial conditions corresponding to different states of a
multi-stable system and the laws governing manifold evolution, facili-
tates the analysis of minimum energy deployment (MED) conditions for
deployable structures by the determination of critical initial conditions
for dynamic state switching in multi-stable systems through its bound-
aries. Both of the aforementioned tasks need to be achieved by accurate
dynamic modeling. Thus, methods for establishing accurate dynamic
models of multi-stable deployable structures are of great importance.
Traditional approaches employing first-principles methods, including
Newton-Raphson scheme [20] and Lagrangian equations [21], remain
prevalent for deriving system governing equations. These theoretical
methods offer dual advantages: reduced computational complexity and
enhanced model interpretability. However, their practical applications

1. Introduction

Deployable structures, reconfigurable systems capable of adapting
their geometric configurations to meet operational demands [1], have
become indispensable in aerospace engineering (e.g., solar arrays [2,3]
and satellite antennas [4,5]) and architectural engineering [6,7]. Con-
ventional implementations predominantly employ monostable designs,
including tensegrity structures [8,9], truss frameworks [10,11], and
thin-walled tubular components [12,13], that require external actuation
through electromechanical motors [14], pneumatic systems [15], or
smart materials [16] to achieve target configurations. In recent years,
multi-stable structures have attracted wide attentions from researchers
owing to their rapid state transition capabilities [17], energy-efficient
configuration maintaining [18], and programmable deformation path-
ways [19]. Introducing multi-stability in deployable structures not only
eases the requirement of continuous energy supply to maintain the
target configuration, but also maximizes the utilization of energy
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Nomenclature
SINDy  Sparse Identification of Nonlinear Dynamics

T-F-S SINDy Time-Frequency-domain Synergistic sparse
identification of nonlinear dynamics

SNR Signal-to-Noise Ratio

BOA Basin of Attraction

PCA Principal Component Analysis

PC Principal Component

NLI Noise Level Index

DOF Degree-of-Freedom

MED Minimum Energy Deployment

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

RNN Recurrent Neural Network

often necessitate simplifying assumptions that may compromise model
accuracy. Furthermore, even with the correct model form, parameter
identification remains essential for system characterization and
behavior prediction. In contrast to first-principles modeling, data-driven
approaches enable direct reconstruction of governing equations from
data of input and output variables. Recent advances in machine learning
have yielded numerous techniques for physical law discovery from
experimental data. Among these, neural network-based implicit
methods establish input-output mappings through nonlinear activation
functions and optimized weight [22,23]. Enhanced variants like LSTM
[24,25] and GRU [26] networks further mitigate gradient-related chal-
lenges inherent in RNNs. Despite their flexibility, these black-box
models inherently lack explicit governing equations, resulting in
limited interpretability and generalization capability.

Explicit regression-based methods provide an alternative paradigm
to construct analytical relationships between variables. The most widely
used regression method is Least squares regression [27], where the co-
efficients are obtained by minimization of mean squared error.
Furthermore, sparse regression methods, such as Lasso regression [28]
and ridge regression [29], are proposed to avoid overfitting by intro-
ducing regularization [30]. The Sparse Identification of Nonlinear Dy-
namics (SINDy), introduced by Brunton et al. [31], exemplifies this
approach through its integration of sparse regression and machine
learning to reconstruct ordinary differential equation-based system
models. Subsequent extensions have adapted SINDy for partial differ-
ential equations [32], variational formulations [33], delay differential
systems [34] and stochastic dynamical equations [35], expanding its
applications across physics [36], fluid dynamics [37], and robotics [38,
39]. However, the application of such data-driven methods to space-
borne deployable structures presents unique challenges. The operational
environment introduces broadband interference from cosmic micro-
wave background radiation, solar emissions, and inter-satellite com-
munications. Such high-noise conditions particularly compromise
SINDy’s performance due to its sensitivity to measurement un-
certainties. This limitation highlights a critical research gap in feature
extraction and enhancement during regression-based equation discov-
ery, particularly for systems operating under significant stochastic
disturbances.

This paper addresses the challenges of broadband strong noise
interference in deployable structure reconstruction by proposing a Time-
Frequency-Domain Synergistic SINDy (T-F-S SINDy) method that syn-
ergistically utilizes time-domain and frequency-domain response char-
acteristics. The methodological innovation lies in the strategic
integration of time-domain and frequency-domain features to enhance
reconstruction robustness. The proposed framework establishes four
fundamental criteria: Criterion 1 evaluates time-domain data suitability
for library selection, Criterion 2 governs library function determination,
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Criterion 3 implements spectral band truncation to preserve high Signal-
to-Noise Ratio (SNR) components, and Criterion 4 establishes statistical
validation metrics for model accuracy. Numerical simulations and
experimental validation demonstrate the efficacy and applications of
this data-driven approach. The paper organization follows a systematic
progression: Section 2 formalizes the problem statement and details the
reconstruction methodology; Section 3 presents numerical verification
through two case studies; Section 4 applies the method to derive gov-
erning equations for a multi-stable deployable structure unit cell in the
experiments, and Section 5 concludes with key findings and
implications.

2. Sparse reconstruction of dynamic model for deployable
structures

2.1. Dynamic model for deployable structures with multi-stable property

Various frame structures are used in satellites as deployable space
antenna, which requires sufficient but saving-energy actuation for
switching the deployed configuration, as shown in Fig. 1(a). For the
deployable structures, both nonlinear force-displacement relationship
with variable-stiffness property and actuation condition for deployed
configuration can be determined based on accurate dynamic model. As
illustrated in Fig. 1(b), quasi-static tension/compression tests are
commonly adopted to obtain the force-displacement relationship in the
conventional ground tests, which is particularly effective for structures
with monostable property. Unfortunately, conducting quasi-static tests
on the deployable structures with multi-stable property to predict dy-
namic behaviors would involve significant limitations. The force-
displacement relationship derived from the quasi-static tests and anal-
ysis diverge from those observed in dynamic processes; And critical
dynamic factors including equivalent dissipation effects cannot be
adequately captured. These limitations fundamentally stem from the
inherent absence of dynamic system information in quasi-static meth-
odologies, necessitating the development of dynamic model recon-
struction techniques, as shown in Fig. 1(c). Dynamic approaches can
reconstruct accurate analytical dynamic model from regression of inputs
and responses, enabling both force-displacement relationship prediction
in dynamic processes and MED analysis via BOA.

The regression process from dynamic information is briefly intro-
duced as follows. Without loss of generality, the analytical dynamic
model for multi-stable deployable structures can generally be expressed
by the following governing equation

x(t) = F(x(1), u(t)), e

where x(t) andx(t)represent the state variables and their derivatives,
respectively, and u(t) denotes the time-varying input of the system.
Considering that in different environments, both functional form and
term coefficient of F(e) could be different, the regression process aims to
identify both the functional form and parameters through dynamic re-
sponses of system under the dynamic input u(t). To transform the model
reconstruction problem into a sparse regression problem, it is assumed
that the derivative terms can be expressed as a linear combination of
candidate functions. Then, by constructing a comprehensive library of
candidate functions encompassing state variables and system inputs, the
regression problem can be formulated as

X(t) = O(x(t), u(t)) =, 2

where O(x(t),u(t)) € R™" is the function library constructed by
candidate functions of state variables and system inputs, and & denotes
the coefficients corresponding to candidate functions. The fundamental
challenge lies in minimizing the residual between actual and recon-
structed derivative terms, leading to various optimization formulations.
The most commonly used regression method is the Least squares
regression [27], whose objective function writes
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Fig. 1. Different approaches to analyze the force-displacement relationship and MED conditions of the deployable structures with multi-stability property. (a) The
application of deployable structures in aerospace, which needs dynamic modeling reconstruction for energy-saving actuation condition for deploying; (b) Quasi-static
approach and the static force-displacement relationship. (c) Dynamic approach for dynamic model reconstruction and the BOA based actuation energy definition.

£ = argmin|| O — X||,. 3)

Considering that the dynamic behaviors of physical systems are
usually dominated by a few terms in the governing equations, SINDy
(proposed in Ref. [31]) is adopted with the following objective function
with L; regularization to consider the sparsity of the model so that the
interpretability and generalization ability could be improved, written as

Z = argmin(|| OF — x|, + 4[| = [1). C))

By introducing L;-penalty term, objective function Eq. (4) imposes
constraints on the number of terms in the reconstruction model, thus
improving the sparsity of the model. Practical implementation in aero-
space applications faces significant challenges from broadband noise
contamination in measured state variables. Cosmic microwave back-
ground radiation, solar/terrestrial radiation, and inter-satellite
communication signals introduce spectral interference that particu-
larly affects time-domain regression methods. Furthermore, elevated
noise levels can interrupt with the characteristics of the multi-stable
system and ultimately lead to algorithm failure. To address these chal-
lenges, this study proposes a T-F-S SINDy method for reconstructing
robust governing equation of the multi-stable deployable structures
operating under broadband noise conditions.

2.2. Improved T-F-S SINDy methodology

This section elaborates the improved model reconstruction meth-
odology by the definition of four criterion, with the algorithmic work-
flow systematically presented in Fig. 2. The process initiates with
narrow-band excitation to generate system responses for function li-
brary construction. A noise level metric is subsequently established to
quantify the SNR of acquired time-domain data, enabling application of
Criterion 1 for assessing data quality suitability in library selection. If
the SNR of the collected data satisfies Criterion 1, the time-domain data

is utilized to eliminate the most irrelevant candidate functions according
to Criterion 2. The proposed improved methodology then transitions to
frequency-domain analysis, and Criterion 3 facilitates noise-resilient
capability via frequency characteristic extraction. The refined data is
integrated by data assembly principle, and the subsequent sparse
regression method is used to solve the inverse problem. Ultimately,
Criterion 4 provides validation of model accuracy through statistical
metrics of residual error. By the proposed improved model-
reconstruction method, called T-F-S SINDy method, concise and accu-
rate dynamic model can be obtained with significant applicability.

2.2.1. Criterion 1: Noise level estimation
For broadband noise environment such in aerospace, the governing
equations of multi-stable systems are reformulated as

k
x(t) = Zs‘ifi(x(t) +e(t),u(t) +e(1)), )

where e(t) represents the broadband measurement/environment noise.
Given the inherent sparsity of governing equations, the condition k<<n
holds. Eq. (5) reveals that when e(t) remains sufficiently small, system
derivatives can be approximated through sparse linear combinations of
candidate functions. Conversely, elevated noise levels violate the
fundamental governing equations Eq. (2), rendering such sparse repre-
sentations invalid. This enables noise quantification through collinearity
analysis between derivative signals and candidate functions. Noise
estimation framework is developed through the following procedure:
First, the diagnostic matrix B is constructed as

B = [O(x(t), u(t))x(t)], ©)

which contains candidate functions and derivative terms. Then, Prin-
cipal Component Analysis (PCA) is applied by conducting singular value
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Fig. 2. Algorithm flow chart of the proposed time-frequency-domain synergistic reconstruction method with four criteria.

decomposition to mean-centeredB, as
= 1
B = B - EJB = UBEBVBy (7)

where J € R™™represents all-ones matrix. The columns of Vg are the
Principal Components (PCs) of matrix B, and diagonal elements of Xg
(o7) are the square root of eigenvalues corresponding to each PC (4;). The

minimum eigenvalue 4,1 vanishes under noise-free conditions (e(t)=
0). The Noise Level Index (NLI) is subsequently defined as

A
K= logwﬁ‘ ®)

This index is equivalent to the condition number of covariance ma-
trix of B, serving as a quantitative measure of column-wise collinearity
degradation caused by noise. Higher NLI values indicate better SNR.
Based on NLI, the first Criterion r is proposed as

r = {klk > xo}, (C)]

where a threshold «q is established to distinguish high-SNR (NLI>x)

from low-SNR (NLI<kp) regimes, enabling automated data quality
assessment.

2.2.2. Criterion 2: Library selection from time-domain information

When state variables and system inputs exhibit high SNR measure-
ments, the rich information of time-domain data can be exploited to pre-
filter candidate functions in the functions library, thereby significantly
reducing the regression dataset requirements. Building upon the pro-
posed NLI, we establish the second criterion in the improved T-F-S
SINDy methodology for library selection, formulated as

ry = {jlmax(x;) &x; > K }, (10)

where j is the index of the eliminated candidate function; «;j the resultant
NLI after removal j candidate function and ; the NLI threshold. The
basic idea of the criterion ry stems from the observation that removing
non-essential candidate functions that are unrelated to derivative rep-
resentation maintains the function library’s ability to express derivatives
through linear combinations of remaining candidate functions, thereby
preserving NLI values above critical thresholds. Through iterative
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elimination of candidate functions demonstrating minimal reduction in
NLI while sustaining high NLI values, the proposed methodology can
effectively prune extraneous candidate functions from the library.

2.2.3. Criterion 3: Feature extraction from frequency-domain analysis
From time-domain analysis, noise contamination permeates every
discrete time-step in the measurement, with individual time-domain
noise intensity being inherently challenging to quantify. Conversely,
frequency-domain analysis reveals distinct spectral characteristics:
under narrow-band excitation, system responses concentrate in specific
frequency bands while noise distributes uniformly across the wide
spectrum. This frequency segregation enables system response features
to dominate over noise in their characteristic bands, manifesting as
enhanced amplitude and superior SNR. Capitalizing on this spectral
disparity, frequency-domain sparse regression effectively isolates noise
from essential system features, thereby enhancing algorithmic robust-
ness and identification accuracy under low-SNR conditions. The meth-
odology initiates with Fourier transformation of the governing
equations, yielding the frequency-domain regression formulation

X=Vx (t)=VO (x (),u (t)) £ = OF, amn

where V is the Fourier transformation matrix; % and © the derivative
terms and function library in frequency-domain. Recognizing that high-
amplitude frequency components inherently correspond to high-SNR
regions, we propose selection criterion rs as

rs = {il]| X ll2 = 8| Xk [l }- (12)

This criterion retains frequency components where response ampli-
tudes exceed 5|| X||,,, with || X|| ,denoting the maximum amplitude in
the k™™ derivative spectrum domain (kth column of derivative matrix §),

I QikHzrepresenting the i frequency amplitude in the k™ derivative
spectrum, and & defining the cut-off threshold ratio. Through this
spectral feature extraction, the sparse regression problem is rigorously
formulated as

X, (i,k) =0 (i,j) E (,k),i€rs,j €rak=1,...n,, 13)

where ny, denotes the number of the Degree-of-Freedom (DOF) for suc-
cinctly describing the dynamic responses of the system.

2.2.4. Criterion 4: Accuracy and algorithm iteration

Following the time-frequency-domain synergistic procedure, the
refined derivative matrix and function library matrix are systematically
integrated through the data assembly principle established in our prior
work [39]. The coefficients in the governing equation are subsequently
obtained by applying sparse regression to Eq. (13). To quantitatively
guarantee the accuracy of the reconstruction dynamic model, we
formulate the fourth criterion r4 that simultaneously evaluates model
precision and reliability. The discrepancy between the true system

response x(t) and reconstructed response X(t) is modeled as a random
variable, as

e(t) = x(t) — x(¢b), a4

whose statistical properties reflect two distinct error sources: systematic
model inaccuracies and stochastic measurement noises. The error
components exhibit fundamentally different characteristics: model-
induced deviations demonstrate stability and pattern consistency,
whereas errors caused by purely measurement noise contributes unbi-
ased random fluctuations. For accurate reconstruction model, the
expectation y of the random variable & should be very close to zero.
Concurrently, the variance o of € serves as an indicator of model reli-
ability, with lower variance values corresponding to higher confidence
in the reconstruction model. This dual-aspect evaluation leads to the
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following accuracy criterion, given as
ry = {p(ex(t)) < po&ol(er(t)) < oo}, (15)

where y and o are the expectation and variance of the difference variable
€.

2.2.5. Overall procedure of T-F-S SINDy

By integrating the proposed four criteria, the overall workflow of the
proposed T-F-S SINDy method is shown in Fig. 2, whose reconstruction
procedure can be summarized as follows:

Step 1: Collect the dynamic response data of multi-stable deployable
structure under narrow-band sweep excitation at a specific configura-
tion and construct the corresponding function library matrix.

Step 2: Calculate the diagnostic matrix B using Eq. (6), and further
apply Eq. (7) to perform principal component analysis on the diagnostic
matrix B. After computing NBI by Eq. (8), the noise level of the response
data is determined by Criterion 1.

Step 3: If the noise level belongs to low SNR category, proceed to the
next step; otherwise, employ Criterion 2 to pre-filter candidate functions
library functions based on the time-domain information of the response.

Step 4: Transfer the regression problem into the frequency domain
by Fourier transform, and implement spectral band truncation to pre-
serve high SNR components by Criterion 3.

Step 5: Apply the data assembly principle [39] to assemble the
refined function library matrix corresponding to different configura-
tions, and conduct the sparse regression method [31] to obtain the
reconstruction model.

Step 6: Criterion 4 is adopted to evaluate the accuracy. If Criterion 4
is satisfied, the reconstruction model can be obtained; otherwise, repeat
the process until Criterion 4 is satisfied.

3. Numerical verifications
3.1. A deployable unit cell structure with bi-stable property

The reconstruction methodology is first validated through a bi-stable
deployable unit cell under varying broadband noise conditions. The
schematic diagram of the bi-stable deployable unit cell is shown in Fig. 3
(a), which is so-called Kresling Origami structure. The dynamic
modeling process of the Kresling origami structure is illustrated in Ap-
pendix A. As Refs. [40,41], with structural parameters a = 1.6, ¢ = 1,
70=30°, the potential energy for different axial deformation is shown in
Fig. 3(b), demonstrating bi-stable property. On the potential energy
curve, two local minimum points correspond to undeployed state (S1)
and deployed state (S2). For the unit cell, vibration inputs with white
Gaussian noise for high-SNR (60 dB) and low-SNR (30 dB) are given. A
seventh-order polynomial function library is employed for model
reconstruction. The reconstruction process is systematically evaluated
through four proposed criteria as Figs. 3(d)-(f).

The first criterion r; in T-F-S SINDy method quantifies measurement
noise levels through zero-mean Gaussian noise analysis (Fig. 3(c)). The
metric effectively discriminates signal quality thresholds, particularly
demonstrating heightened sensitivity below 30 dB where time-domain
data becomes unreliable. As shown in Fig. 3(c) that NBI remains at a
high level and does not show a significant downward trend when SNR is
slightly reduced at high SNR levels. Conversely, at low SNR levels, not
only is NBI small, but it also exhibits a clear downward trend as SNR
decreases. Therefore, for Criterion 1, the threshold of NBI can be
determined by continuously increasing noise until NBI shows a signifi-
cant decrease. Subsequent application of criterion ro under SNR=60 dB
(Fig. 3(d)) successfully prunes non-essential terms while preserving
governing equation components through NLI ranking. The threshold for
Criterion 2 is determined by monitoring the variation of NBI throughout
the candidate function elimination process and selecting the NBI value
before the phase of abrupt decrease. From frequency-domain analysis,
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Fig. 3. Schematic diagram of the bi-stable deployable unit cell and the reconstruction process. (a, b) Mechanical schematic diagram and the potential energy of the
bi-stable deployable unit cell. (c) Noise level estimation criterion r; under different noise level. Schematic diagram of (d) time-domain library selection process, (e)

frequency-domain feature extraction and (f) accuracy criterion.

criterion r3 (Fig. 3(e)) enhances the quality of the data by exploiting
spectral separation: system responses concentrate in narrow bands while
noise distributes broadly, enabling effective frequency-domain feature
extraction. Final model validation via accuracy criterion r4 (Fig. 3(f))
shows rapid convergence of expectation (x) and variance (o). The
changing trends of the mean and variance for difference variable &
during the iterative data assembly process are observed, with the
thresholds determined by excluding initial-stage reconstruction models
exhibiting high mean or variance while retaining those converging to
low mean and low variance. Besides, it could also be observed that by
combining time-domain information, the converge process is acceler-
ated since the number of candidate functions is greatly reduced.

By the proposed model reconstruction method as above, the recon-
struction model of the unit cell is

X+ (x4 ax® 4+ px® +yx’ =0, (16)
where the corresponding coefficients for SNR=60 dB and 30 dB are
shown in Table 1. Reconstruction models demonstrate faithful repro-
duction of essential system characteristics in Fig. 4.

Fig. 4(a, b) shows excellent agreement between actual and recon-
structed potential energy and restoring force profiles across both SNR
conditions. BOA predictions (Fig. 4(c-f)) achieve 0.94 % (60 dB) and
2.46 % (30 dB) error rates, confirming the robustness of the method.
These BOA solutions enable MED analysis. The actuation input for
deployment is equivalent to the initial conditions of the bi-stable
deployable unit cell x(0) = xo, X(0) = Xo. In order to quantify the
input energy, the input energy for deployment is defined as

1 .
En =35 2 4 (V(xo) — V(xs1)), a7
Table 1

Reconstruction model coefficients for different SNR in deployable unit cell
structure with bi-stable property case.

SNR ¢ a B y
60dB 1.99 12.12 -18.03 6.56
30dB 1.98 10.66 -16.05 5.88

which combines kinetic energy and potential energy increments. Phase-
plane analysis (Fig. 4(g-h)) reveals consistent MED conditions at
switching boundaries, demonstrating that MED can be realized through
initial displacement inputs. This is a physical consequence of the
reduced damping dissipation in displacement inputs. The proposed T-F-
S SINDy is compared with the classical SINDy in terms of both compu-
tational efficiency and reconstruction accuracy, and the results are
demonstrated in Appendix B.

Method validation extends to pink noise environments as shown in
Fig. 5, maintaining comparable accuracy in potential energy recon-
struction, BOA prediction, and MED analysis. Particularly noteworthy is
the method’s resilience to 1/f noise spectral characteristics, where
traditional frequency-domain techniques typically degrade due to the
enhanced low-frequency interference.

3.2. A M-DOF deployable structure with multi-stable property

In this case, the model reconstruction of a M-DOF deployable
structure with multi-stable property is demonstrated. Fig. 6 presents the
deployable structure, comprising serially connected Kresling Origami
cells. Fixing structural parameters in Cell 1 as a;=1.6, c;=1, y;=20°and
Cell 2 as ay=1.6, ca=1, y2=28.5°, two cells respectively exhibit mono-
stable and bi-stable properties. The dual objectives of model recon-
struction are detecting monostable configurations from design
imperfections and determining MED condition through BOA analysis. In
order to accomplish these two objectives, not only the number and the
location of each layer need to be correctly identified, but also the
damping terms need to be accurately reconstructed to achieve a good
prediction of BOA. Compared with the S-DOF case, the number of
candidate functions in the function library dramatically increases due to
the increasing number of state variables in the M-DOF case, making it
more difficult to reconstruct the accurate model of the system.

Following the proposed T-F-S SINDy method with four criteria, two
reconstruction processes are performed under white noise environments
at 60 dB and 30 dB SNR, respectively. By the proposed T-F-S SINDy
method with the signals shown in Fig. 6(c), the reconstruction model of
the M-DOF deployable structure with multi-stable property is obtained
as
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Fig. 4. Model reconstruction results for the bi-stable deployable unit cell under white Gaussian noise. (a) Comparison of potential energies among the real model,
reconstructed models with different noise levels. (b) Comparison of restoring forces among the real model, reconstructed models with different noise levels. (c-f) BOA
prediction and corresponding error comparison under different noise levels. (g)-(h) show the MED prediction from the reconstructed models.
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Fig. 5. Model reconstruction results for the bi-stable deployable unit cell under pink noise. (a) Comparison of potential energies among the real model, reconstructed
models with different noise levels. (b) Comparison of restoring forces among the real model, reconstructed ones with different noise levels. (c-f) BOA prediction and
corresponding error comparison under different noise levels. (g) and (h) show the MED predictions from the reconstructed models for two noise levels.

7 7 _
X1+ 8 (0 — Xp) — Ca(xa —X1) + Z ai(x — %) — Zbi(xz Cx) =%,
=1 i=1
Xo 4 Co(Xy — X1) + Zb,—(xz —xl)i =0,
i-1

(18)

where the corresponding coefficients are tabulated in Table 2.

Fig. 7 (a-b) compares actual and reconstructed equivalent restoring
forces for the two cells, successfully capturing Cell 1's monostability and
Cell 2's bistability properties. The results validate the capability of the
proposed method to diagnose parametric design flaws in deployable
structures. Assuming that Cell 2 is initially in undeployed state, a
perturbation is applied at the base of the deployable structure, and the
initial conditions of the system change to x1(0) =xI° + Ax,x2(0) =x3' +
Ax,x1(0) = Xo,%2(0) = Xo. The BOAs and the corresponding error are

shown in Fig. 7(c-f), which exhibits a high accuracy. The obtained BOAs
in Fig. 7(c) and (d) well reflect the deployment conditions of the M-DOF
bi-stable deployable structure, which are then used to predict the MED
condition. The input energy for deployment is also defined as the sum of
the kinetic energy and the incremental potential energy of the bi-stable
unit cells, which is consistent with that in Eq. (17). Phase-plane analysis
(Fig. 7(g-h)) demonstrates consistent MED predictions between both
noise conditions, further confirming the method robustness. Notably,
the results reaffirm the energy-optimal deployment mechanism
observed in SDOF systems: more initial displacement inputs minimize
energy dissipation through reduced damping dissipation.

4. Experiments

This section experimentally investigates the proposed T-F-S SINDy
method for dynamic model reconstruction of multi-stable structure to
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Fig. 6. (a) Schematic diagram of the M-DOF multi-stable deployable structure. (b) Equivalent restoring forces of two cells of the bi-stable deployable structure with
different parameters; (c) Simulation data of responses and excitation of the M-DOF multi-stable deployable structure.

Table 2
Coefficients of functions in the reconstruction model as Eq. (18) of the M-DOF
deployable structure with multi-stable property case.

SNR i
1 2 3 4 5 6 7
60dB o -453 -958 30.83 -2513 695 0 0
b0 458 8.8 0 0 -6.28  3.17
G 0.99 1.00 \ \ \ \ \
30dB  a -468 -914 3036 -2490 690 0 0
b0 -436  7.61 0 0 584 2094
& 098 1.01 \ \ \ \ \

provide its minimum actuation energy for deployment. As shown in
Fig. 8(a), by folding the 2-D crease pattern, a deployable structure based
on Kresling Origami with undeployed and deployed state is constructed.
The crease pattern cut by laser cutting machine breaks the basic
assumption of Continuity and Compatibility at the crease, whose accu-
rate dynamic model need to be reconstructed experimentally. For the
Kresling structure as the illustration experimental prototype, we carry
out both quasi-static tension testing and dynamic reconstruction testing.

(a) (c)

For the quasi-static tension testing by Universal testing machine in Fig. 8
(b), the static force-displacement relation is shown as Fig. 8(c). The
process and results for quasi-static tests are also shown in Video S1
(quasi-static test) in the Supplementary material. For the dynamic
testing, the experimental process is illustrated in Fig. 8(d). The
deployable structure is connected to an exciter, through which dynamic
inputs are given to the deployable structure. The signal generator and
controller provides input signal to the exciter. The system responses and
excitation inputs are measured by Laser vibrometers. In the dynamic
experimental testing, six sets of narrow-band sweep excitation inputs
from 2 Hz to 12 Hz with different amplitudes and sweep speeds are
applied to generate training data. Besides, a set of sweep excitations
from 4 Hz to 8 Hz and 8 sets of sinusoidal excitations are used to
generate testing data. The noise arises from two primary sources: the
inherent noise present in the data acquisition process itself, and the
noise introduced by the numerical differentiation of the acquired
displacement data. Besides, additional Gaussian white noise SNR=60 dB
is added into the data to verify the robustness of the proposed model
reconstruction method. The whole dynamic tests are detailly illustrated
in Video S1 (Dynamic test) in the Supplementary material. Then, based
on the inputs and output signals, the T-F-S SINDy model reconstruction
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Fig. 7. Model reconstruction results for the M-DOF multi-stable deployable structure. (a) and (b) are the comparisons of the dynamic force-displacement re-
lationships of the first and second layer for different noise levels. (c-f) BOA prediction and corresponding error comparisons for different noise levels. (g) and (h) show

the MED prediction from the reconstruction model as Eq. (18).
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Fig. 8. Experimental setups and results obtained by quasi-static tests and proposed T-F-S SINDy method. (a) Experimental prototype of bi-stable deployable unit cell
with undeployed and deployed states. (b) Experimental setup for quasi-static tests by universal testing machine. (c) Experimental reconstruction of static force-
displacement relationship in quasi-static tests. (d) Experimental setup for dynamic tests. (e) Experimental reconstruction of dynamic equivalent constitutive rela-

tionship from the proposed T-F-S SINDy method inputs and outputs.

method is applied to obtain the equivalent dynamic constitutive model
as Fig. 8(e). By the proposed method, the reconstruction model of the
experimental deployable structure with multi-stable property writes

X 4 EX 4 ax + 4 yx° = — Xy, 19

where the coefficients in the reconstructed dynamic model Eq. (19) are
listed in Table 3

From Fig. 8(c) and (e), from both quasi-static testing and dynamic
reconstruction, the structure exhibits two distinct stable configurations,
defined as undeployed (S1) and deployed (S2). Comparative analysis
reveals that both quasi-static testing and dynamic reconstruction suc-
cessfully capture the bistable features and accurately predict stable
equilibrium positions. However, discrepancies in stiffness between these
two results lead to variations in unstable equilibrium prediction, high-
lighting the influence of difference in static and dynamic stiffness on the
constitutive relationship. The difference between static stiffness and
dynamic stiffness originates from the viscoelasticity of the materials in
deployable structures. The experimental deployable structure is made of
Polyethylene terephthalate (PET), which is a polymer with viscoelastic

Table 3
Reconstruction model coefficients in experimental deployable structure with
multi-stable property.

SNR ¢ a Vi y

60dB 1 44.46 —5.82 0.12

properties [42,43]. The stress-strain relationship of this viscoelastic
material depends on the strain rate [44,45], and further combined with
the geometric nonlinearity of the Kresling origami structure, leads to the
difference in static and dynamic stiffness of the deployable structure.
This finding emphasizes the necessity of employing dynamic recon-
struction methods for multi-stable deployable structures operating
under dynamic conditions.

After the dynamic model reconstruction process by the T-F-S SINDy
method, for accuracy validation, two sets of verification tests are con-
ducted. First, another set of sweep excitation from 4 Hz to 8 Hz is applied
to the deployable structure to verify the capability of the proposed T-F-S
SINDy method to predict frequency-domain response. The time history
curve and spectrum of excitation are shown in Fig. 9(a)-(b), and the
comparison results of the frequency-domain responses between experi-
mental data and reconstructed model output signals are given in Fig. 9
(c). The data from reconstruction model demonstrates excellent agree-
ment with the experimental frequency-domain response results, as error
margin of approximately 5 % in predicting the resonant frequencies of
the deployable structure. Notably, the reconstructed model effectively
captures the double-frequency component in the deployable structure’s
frequency response, demonstrating the effectiveness of the proposed T-
F-S SINDy method.

Second, eight sets of experimental deployment tests are conducted
with harmonic base excitations of varying amplitudes and frequencies.
The unit cell is initialized in S1, with successful deployment to S2
occurring when system states entered the S2 region in phase space, as
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Fig. 9. Frequency-domain response prediction of the proposed T-F-S SINDy method. (a) Time history curve of the sweep excitation. (b) Spectrum of the sweep
excitation. (c) Comparison between experimental and reconstructed frequency-domain response.

shown in Fig. 10. Test parameters are strategically selected to produce
contrasting response characteristics: higher frequency excitations
(Fig. 10 (a-b)) generate greater maximum velocities with limited dis-
placements, while lower frequencies (Fig. 10 (c-d)) resulting in larger
displacements at reduced velocities. The reconstruction model accu-
rately predicts deployment process in all eight test cases, demonstrating
its effectiveness in capturing the essential dynamics of configuration
switching. According to the results of quasi-static tests and dynamic tests
(based on the proposed T-F-S SINDy method), the deployment process
and MED conditions are compared in Video S1 (Minimum Energy
Deployment: Quasi-static vs Dynamic) in the Supplementary material,
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Undeployed
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where dynamic deployment shows an 80.39 % reduction in actuation
energy compared with quasi-static deployment.

5. Conclusions and discussions

This study presents a novel Time-Frequency-domain Synergistic
SINDy (T-F-S SINDy) method for dynamic model reconstruction of
nonlinear dynamic systems with/without multi-stable property, specif-
ically addressing the challenge of broadband noise interference in
aerospace applications such as deployable structures. The proposed
methodology synergistically integrates time-domain and frequency-
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Fig. 10. Deployment condition prediction and experimental verification of deployment process. (a) and (b) show the higher frequency excitations with greater
maximum velocities response with limited displacements response. (c) and(d) show the lower frequency excitations with larger displacements response at

reduced velocities.
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domain information to enhance reconstruction robustness through four
innovative criteria: 1) a noise level estimation criterion exploiting the
noise-induced degradation of collinearity between derivative terms and
candidate functions; 2) a library selection criterion leveraging time-
domain dynamics for candidate function elimination; 3) a feature
extraction criterion employing frequency-domain analysis for noise-
signal separation, and 4) an accuracy criterion statistically testing the
fidelity of the reconstruction model. Numerical validations demonstrate
the efficacy of the proposed method in reconstructing equivalent
constitutive relationship of multi-stable deployable structures under
different noise conditions, achieving BOA prediction errors below 3 %.
Experimental validations through bi-stable unit cell testing reveal crit-
ical insights: while both quasi-static and dynamic methods can suc-
cessfully identify stable equilibria, the differences of quasi-static and
dynamic stiffness result in difference of constitutive relationship be-
tween the two stable equilibria. This fundamental distinction un-
derscores the necessity of dynamic reconstruction for operational
scenarios involving configuration switching. The effectiveness of the
proposed T-F-S SINDy method in predicting deployment conditions is
conclusively demonstrated through eight experimental cases with
varying excitation parameters. Successful deployment predictions under
contrasting dynamic regimes (high-frequency velocity-dominant vs.
low-frequency displacement-dominant responses) confirm the accuracy
and the capacity of proposed method. Owing to its robust ability in
identifying equivalent dynamic model for broadband noises, the pro-
posed T-F-S SINDy method shows great promise for structural design
and actuation optimization for deployable structures, flexible robotics
and vibration isolators. Despite the excellent robustness of the proposed
T-F-S SINDy method, Fourier transform may fail to distinguish system
response from non-stationary noise when non-stationary noise is present
in the signal, compromising the effectiveness of the proposed T-F-S

Supplementary materials
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SINDy method. In future work, the integration of time-frequency
domain signal processing techniques such as short-time Fourier trans-
form and wavelet transform could be explored to address non-stationary
noise scenarios.
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Appendix A

This Appendix illustrates the derivation of the dynamic model of Kresling origami based on truss model The crease pattern of Kresling origami
structure and the 3-D mechanical model are shown in Fig. A1l. The crease pattern is determined by three parameters ay, ¢y and yo, where by can be

expressed

Co . . [apsin
by = — % sin <y0 + arcsin (0—70) ) .
siny, Co

(A.1)

In the truss model, the creases of the Kresling origami structure are simplified as springs with stiffnesses k, and kj, and rest lengths ap and byp. When
the height h and angle 6 of the Kresling origami structure are determined, the crease length can be expressed as

a=4/h*+ 4R?2sin? (g) ,
b= \/h2 + 4R?sin? (g + g) :

(A.2)

(A.3)

where R is the circumradius of the base regular hexagon. Based on the truss model, the potential energy U of the Kresling origami structure can be

expressed as

1 1
U= 6<§ka(a —ao)? + ks b — bo)z).

(A4

Neglecting the moment of inertia of the end plate, the kinetic energy E, and the generalized force Q are

1 2
E, :Emh ,

Q = 7Cdfl.

(A.5)

(A.6)
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Substituting Egs. (A.4-A.6) and h = x-x( into Lagrange equation, the dynamic equation could be obtained
.. . da ob
mx + cq(x — o) +3ka(a—ao)@+3kb(b—bo)@:0. (A.7)
Since no external torque is applied to the Kresling origami structure, the free torque condition T = 0 needs to be satisfied:

7= % _ 6p2k, (1 - %’) sind + 6R%k, (1 - bi’) sin(eﬂ) —o. (A.8)

T 00 b 3
ix =xoth

Therefore, the dynamic model of the Kresling origami structure can be expressed by Eq. (A.7) and Eq. (A.8).

(a) (b)_

bo Yo [ ao h

Co

Fig. Al. (a) 2-D crease pattern and corresponding geometric parameters. (b) 3-D truss mechanical model for Kresling origami structure.

Appendix B

To compare the computational cost and reconstruction model accuracy between the proposed T-F-S SINDy method and the classical SINDy method,
the multi-stable deployable structure in Section 3.1 is adopted. Under SNR = 30 dB, both methods are employed for model reconstruction using
identical training data. The reconstruction result of T-F-S SINDy has already been demonstrated in Eq. (16) and Table 1. The reconstruction result of
classical SINDy is

X4 17.09x — 27.73x + 223.46x°> — 179.24x* — 151.83x° + 182.60x° — 43.21x” =0 (B.1)

In order to compare the computation cost, the dimension of the function library matrix and computation time are concerned. Besides, a Regularized
MSE (R-MSE) is defined to evaluate the accuracy of the reconstruction model on test data, which is defined as

NgE

2
% y (Xtest - xpredict)
R-MSE=—+————

1
n

||
-

(B.2)

-

I
—

2
Xtest
L

The R-MSE is the MSE normalized by variance of response data. Then, the dimension of the function library matrix, computation time, and
regularized MSE are summarized in Table 2.

Table B1
Comparison of computational cost and reconstruction accuracy between T-F-S SINDy and classical SINDy.

Method Dimension of function library matrix computation time R-MSE
T-F-S SINDy 2143x28 4.4s 0.0045
Classical SINDy 200,020 36 120.72's 0.0332

As illustrated in Table B1, the T-F-S SINDy method outperforms SINDy in both computational efficiency and reconstruction accuracy. Regarding
computational efficiency, T-F-S SINDy substantially reduces the dimension of the function library matrix through additional criteria, thereby
decreasing regression computational costs. Furthermore, during sparsification parameter optimization, it is required to solve regression problems
under varying sparsification parameters. A smaller function library matrix can significantly enhance computational efficiency.
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