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A B S T R A C T

Multi-stable deployable structures offer significant advantages in aerospace applications, including energy- 
efficient configuration maintenance and switching capabilities. However, broadband noise interference from 
cosmic microwave background radiation, solar radiation, and spacecraft communications often compromises the 
accuracy of dynamic model and effectiveness of actuation strategy. To address the challenge of broadband noise 
interference in aerospace applications, we propose a Time-Frequency-Domain Synergistic SINDy (T-F-S SINDy) 
approach for accurate and robust model reconstruction, composed of four progressive criteria. First, Criterion 1 
quantifies noise level through a diagnostic matrix and noise level index, determining time-domain data suit
ability for functions library construction and selection; Then, Criterion 2 eliminates irrelevant candidate func
tions via time-domain analysis when noise level meets the requirements of Criterion 1; Subsequently, Criterion 3 
extracts frequency-domain features through Fourier-transformed sparse regression, followed by statistical vali
dation using Criterion 4 to ensure model accuracy. Numerical simulations and experimental studies on multi- 
stable deployable structures demonstrate the method’s effectiveness in predicting dynamic constitutive rela
tionship expression and minimum energy deployment. The proposed framework significantly enhances robust
ness under broadband noise by fusing both time-domain and frequency-domain information of the systems with 
nonlinearity and multi-stable properties, showing broader applicability in multi-stable systems such as space 
deployable structures, robotic actuators, and metamaterial-based vibration isolators.

1. Introduction

Deployable structures, reconfigurable systems capable of adapting 
their geometric configurations to meet operational demands [1], have 
become indispensable in aerospace engineering (e.g., solar arrays [2,3] 
and satellite antennas [4,5]) and architectural engineering [6,7]. Con
ventional implementations predominantly employ monostable designs, 
including tensegrity structures [8,9], truss frameworks [10,11], and 
thin-walled tubular components [12,13], that require external actuation 
through electromechanical motors [14], pneumatic systems [15], or 
smart materials [16] to achieve target configurations. In recent years, 
multi-stable structures have attracted wide attentions from researchers 
owing to their rapid state transition capabilities [17], energy-efficient 
configuration maintaining [18], and programmable deformation path
ways [19]. Introducing multi-stability in deployable structures not only 
eases the requirement of continuous energy supply to maintain the 
target configuration, but also maximizes the utilization of energy 

released from configuration switching. Therefore, multi-stable property 
is a significant idea of inspiration for realizing deployable structures.

Accurate identification of the stable configurations of multi-stable 
deployable structures relies on the reconstruction of dynamic constitu
tive relationship. Furthermore, the Basin of Attraction (BOA), which 
describes the initial conditions corresponding to different states of a 
multi-stable system and the laws governing manifold evolution, facili
tates the analysis of minimum energy deployment (MED) conditions for 
deployable structures by the determination of critical initial conditions 
for dynamic state switching in multi-stable systems through its bound
aries. Both of the aforementioned tasks need to be achieved by accurate 
dynamic modeling. Thus, methods for establishing accurate dynamic 
models of multi-stable deployable structures are of great importance. 
Traditional approaches employing first-principles methods, including 
Newton-Raphson scheme [20] and Lagrangian equations [21], remain 
prevalent for deriving system governing equations. These theoretical 
methods offer dual advantages: reduced computational complexity and 
enhanced model interpretability. However, their practical applications 
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often necessitate simplifying assumptions that may compromise model 
accuracy. Furthermore, even with the correct model form, parameter 
identification remains essential for system characterization and 
behavior prediction. In contrast to first-principles modeling, data-driven 
approaches enable direct reconstruction of governing equations from 
data of input and output variables. Recent advances in machine learning 
have yielded numerous techniques for physical law discovery from 
experimental data. Among these, neural network-based implicit 
methods establish input-output mappings through nonlinear activation 
functions and optimized weight [22,23]. Enhanced variants like LSTM 
[24,25] and GRU [26] networks further mitigate gradient-related chal
lenges inherent in RNNs. Despite their flexibility, these black-box 
models inherently lack explicit governing equations, resulting in 
limited interpretability and generalization capability.

Explicit regression-based methods provide an alternative paradigm 
to construct analytical relationships between variables. The most widely 
used regression method is Least squares regression [27], where the co
efficients are obtained by minimization of mean squared error. 
Furthermore, sparse regression methods, such as Lasso regression [28] 
and ridge regression [29], are proposed to avoid overfitting by intro
ducing regularization [30]. The Sparse Identification of Nonlinear Dy
namics (SINDy), introduced by Brunton et al. [31], exemplifies this 
approach through its integration of sparse regression and machine 
learning to reconstruct ordinary differential equation-based system 
models. Subsequent extensions have adapted SINDy for partial differ
ential equations [32], variational formulations [33], delay differential 
systems [34] and stochastic dynamical equations [35], expanding its 
applications across physics [36], fluid dynamics [37], and robotics [38,
39]. However, the application of such data-driven methods to space
borne deployable structures presents unique challenges. The operational 
environment introduces broadband interference from cosmic micro
wave background radiation, solar emissions, and inter-satellite com
munications. Such high-noise conditions particularly compromise 
SINDy’s performance due to its sensitivity to measurement un
certainties. This limitation highlights a critical research gap in feature 
extraction and enhancement during regression-based equation discov
ery, particularly for systems operating under significant stochastic 
disturbances.

This paper addresses the challenges of broadband strong noise 
interference in deployable structure reconstruction by proposing a Time- 
Frequency-Domain Synergistic SINDy (T-F-S SINDy) method that syn
ergistically utilizes time-domain and frequency-domain response char
acteristics. The methodological innovation lies in the strategic 
integration of time-domain and frequency-domain features to enhance 
reconstruction robustness. The proposed framework establishes four 
fundamental criteria: Criterion 1 evaluates time-domain data suitability 
for library selection, Criterion 2 governs library function determination, 

Criterion 3 implements spectral band truncation to preserve high Signal- 
to-Noise Ratio (SNR) components, and Criterion 4 establishes statistical 
validation metrics for model accuracy. Numerical simulations and 
experimental validation demonstrate the efficacy and applications of 
this data-driven approach. The paper organization follows a systematic 
progression: Section 2 formalizes the problem statement and details the 
reconstruction methodology; Section 3 presents numerical verification 
through two case studies; Section 4 applies the method to derive gov
erning equations for a multi-stable deployable structure unit cell in the 
experiments, and Section 5 concludes with key findings and 
implications.

2. Sparse reconstruction of dynamic model for deployable 
structures

2.1. Dynamic model for deployable structures with multi-stable property

Various frame structures are used in satellites as deployable space 
antenna, which requires sufficient but saving-energy actuation for 
switching the deployed configuration, as shown in Fig. 1(a). For the 
deployable structures, both nonlinear force-displacement relationship 
with variable-stiffness property and actuation condition for deployed 
configuration can be determined based on accurate dynamic model. As 
illustrated in Fig. 1(b), quasi-static tension/compression tests are 
commonly adopted to obtain the force-displacement relationship in the 
conventional ground tests, which is particularly effective for structures 
with monostable property. Unfortunately, conducting quasi-static tests 
on the deployable structures with multi-stable property to predict dy
namic behaviors would involve significant limitations. The force- 
displacement relationship derived from the quasi-static tests and anal
ysis diverge from those observed in dynamic processes; And critical 
dynamic factors including equivalent dissipation effects cannot be 
adequately captured. These limitations fundamentally stem from the 
inherent absence of dynamic system information in quasi-static meth
odologies, necessitating the development of dynamic model recon
struction techniques, as shown in Fig. 1(c). Dynamic approaches can 
reconstruct accurate analytical dynamic model from regression of inputs 
and responses, enabling both force-displacement relationship prediction 
in dynamic processes and MED analysis via BOA.

The regression process from dynamic information is briefly intro
duced as follows. Without loss of generality, the analytical dynamic 
model for multi-stable deployable structures can generally be expressed 
by the following governing equation 

ẋ(t) = F(x(t),u(t)), (1) 

where x(t) andẋ(t)represent the state variables and their derivatives, 
respectively, and u(t) denotes the time-varying input of the system. 
Considering that in different environments, both functional form and 
term coefficient of F(•) could be different, the regression process aims to 
identify both the functional form and parameters through dynamic re
sponses of system under the dynamic input u(t). To transform the model 
reconstruction problem into a sparse regression problem, it is assumed 
that the derivative terms can be expressed as a linear combination of 
candidate functions. Then, by constructing a comprehensive library of 
candidate functions encompassing state variables and system inputs, the 
regression problem can be formulated as 

ẋ(t) = Θ(x(t),u(t))Ξ, (2) 

where Θ(x(t),u(t)) ∈ Rm×n is the function library constructed by 
candidate functions of state variables and system inputs, and Ξ denotes 
the coefficients corresponding to candidate functions. The fundamental 
challenge lies in minimizing the residual between actual and recon
structed derivative terms, leading to various optimization formulations. 
The most commonly used regression method is the Least squares 
regression [27], whose objective function writes 

Nomenclature

SINDy Sparse Identification of Nonlinear Dynamics
T-F-S SINDy Time-Frequency-domain Synergistic sparse 

identification of nonlinear dynamics
SNR Signal-to-Noise Ratio
BOA Basin of Attraction
PCA Principal Component Analysis
PC Principal Component
NLI Noise Level Index
DOF Degree-of-Freedom
MED Minimum Energy Deployment
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
RNN Recurrent Neural Network
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Ξ = argmin‖ ΘΞ − ẋ‖2. (3) 

Considering that the dynamic behaviors of physical systems are 
usually dominated by a few terms in the governing equations, SINDy 
(proposed in Ref. [31]) is adopted with the following objective function 
with L1 regularization to consider the sparsity of the model so that the 
interpretability and generalization ability could be improved, written as 

Ξ = argmin(‖ ΘΞ − ẋ‖2 + λ‖ Ξ ‖1). (4) 

By introducing L1-penalty term, objective function Eq. (4) imposes 
constraints on the number of terms in the reconstruction model, thus 
improving the sparsity of the model. Practical implementation in aero
space applications faces significant challenges from broadband noise 
contamination in measured state variables. Cosmic microwave back
ground radiation, solar/terrestrial radiation, and inter-satellite 
communication signals introduce spectral interference that particu
larly affects time-domain regression methods. Furthermore, elevated 
noise levels can interrupt with the characteristics of the multi-stable 
system and ultimately lead to algorithm failure. To address these chal
lenges, this study proposes a T-F-S SINDy method for reconstructing 
robust governing equation of the multi-stable deployable structures 
operating under broadband noise conditions.

2.2. Improved T-F-S SINDy methodology

This section elaborates the improved model reconstruction meth
odology by the definition of four criterion, with the algorithmic work
flow systematically presented in Fig. 2. The process initiates with 
narrow-band excitation to generate system responses for function li
brary construction. A noise level metric is subsequently established to 
quantify the SNR of acquired time-domain data, enabling application of 
Criterion 1 for assessing data quality suitability in library selection. If 
the SNR of the collected data satisfies Criterion 1, the time-domain data 

is utilized to eliminate the most irrelevant candidate functions according 
to Criterion 2. The proposed improved methodology then transitions to 
frequency-domain analysis, and Criterion 3 facilitates noise-resilient 
capability via frequency characteristic extraction. The refined data is 
integrated by data assembly principle, and the subsequent sparse 
regression method is used to solve the inverse problem. Ultimately, 
Criterion 4 provides validation of model accuracy through statistical 
metrics of residual error. By the proposed improved model- 
reconstruction method, called T-F-S SINDy method, concise and accu
rate dynamic model can be obtained with significant applicability.

2.2.1. Criterion 1: Noise level estimation
For broadband noise environment such in aerospace, the governing 

equations of multi-stable systems are reformulated as 

ẋ(t) =
∑k

i=1
ξifi(x(t)+ e(t),u(t)+ e(t)), (5) 

where e(t) represents the broadband measurement/environment noise. 
Given the inherent sparsity of governing equations, the condition k<<n 
holds. Eq. (5) reveals that when e(t) remains sufficiently small, system 
derivatives can be approximated through sparse linear combinations of 
candidate functions. Conversely, elevated noise levels violate the 
fundamental governing equations Eq. (2), rendering such sparse repre
sentations invalid. This enables noise quantification through collinearity 
analysis between derivative signals and candidate functions. Noise 
estimation framework is developed through the following procedure: 
First, the diagnostic matrix B is constructed as 

B = [Θ(x(t),u(t))ẋ(t)], (6) 

which contains candidate functions and derivative terms. Then, Prin
cipal Component Analysis (PCA) is applied by conducting singular value 

Fig. 1. Different approaches to analyze the force-displacement relationship and MED conditions of the deployable structures with multi-stability property. (a) The 
application of deployable structures in aerospace, which needs dynamic modeling reconstruction for energy-saving actuation condition for deploying; (b) Quasi-static 
approach and the static force-displacement relationship. (c) Dynamic approach for dynamic model reconstruction and the BOA based actuation energy definition.
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decomposition to mean-centeredB, as 

B = B −
1
m

JB = UBΣBVB, (7) 

where J ∈ Rm×mrepresents all-ones matrix. The columns of VB are the 
Principal Components (PCs) of matrix B, and diagonal elements of ΣB 
(σi) are the square root of eigenvalues corresponding to each PC (λi). The 
minimum eigenvalue λm+1 vanishes under noise-free conditions (e(t)––– 
0). The Noise Level Index (NLI) is subsequently defined as 

κ = log10
λ1

λm+1
. (8) 

This index is equivalent to the condition number of covariance ma
trix of B, serving as a quantitative measure of column-wise collinearity 
degradation caused by noise. Higher NLI values indicate better SNR. 
Based on NLI, the first Criterion r1 is proposed as 

r1 = {κ|κ ≥ κ0}, (9) 

where a threshold κ0 is established to distinguish high-SNR (NLI≥κ0) 

from low-SNR (NLI<κ0) regimes, enabling automated data quality 
assessment.

2.2.2. Criterion 2: Library selection from time-domain information
When state variables and system inputs exhibit high SNR measure

ments, the rich information of time-domain data can be exploited to pre- 
filter candidate functions in the functions library, thereby significantly 
reducing the regression dataset requirements. Building upon the pro
posed NLI, we establish the second criterion in the improved T-F-S 
SINDy methodology for library selection, formulated as 

r2 =
{
j|max

(
κj
)
&κj > κ1

}
, (10) 

where j is the index of the eliminated candidate function; κj the resultant 
NLI after removal jth candidate function and κ1 the NLI threshold. The 
basic idea of the criterion r2 stems from the observation that removing 
non-essential candidate functions that are unrelated to derivative rep
resentation maintains the function library’s ability to express derivatives 
through linear combinations of remaining candidate functions, thereby 
preserving NLI values above critical thresholds. Through iterative 

Fig. 2. Algorithm flow chart of the proposed time-frequency-domain synergistic reconstruction method with four criteria.
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elimination of candidate functions demonstrating minimal reduction in 
NLI while sustaining high NLI values, the proposed methodology can 
effectively prune extraneous candidate functions from the library.

2.2.3. Criterion 3: Feature extraction from frequency-domain analysis
From time-domain analysis, noise contamination permeates every 

discrete time-step in the measurement, with individual time-domain 
noise intensity being inherently challenging to quantify. Conversely, 
frequency-domain analysis reveals distinct spectral characteristics: 
under narrow-band excitation, system responses concentrate in specific 
frequency bands while noise distributes uniformly across the wide 
spectrum. This frequency segregation enables system response features 
to dominate over noise in their characteristic bands, manifesting as 
enhanced amplitude and superior SNR. Capitalizing on this spectral 
disparity, frequency-domain sparse regression effectively isolates noise 
from essential system features, thereby enhancing algorithmic robust
ness and identification accuracy under low-SNR conditions. The meth
odology initiates with Fourier transformation of the governing 
equations, yielding the frequency-domain regression formulation 

̂̇x = Vẋ (t) = VΘ (x (t),u (t)) Ξ = Θ̂Ξ, (11) 

where V is the Fourier transformation matrix; ̂̇x and Θ̂ the derivative 
terms and function library in frequency-domain. Recognizing that high- 
amplitude frequency components inherently correspond to high-SNR 
regions, we propose selection criterion r3 as 

r3 = {i|‖ ̂̇xik ‖2 ≥ δ‖ ̂̇xk ‖∞}. (12) 

This criterion retains frequency components where response ampli
tudes exceed δ‖ ̂̇xk‖∞, with ‖ ̂̇xk‖∞denoting the maximum amplitude in 
the kth derivative spectrum domain (kth column of derivative matrix ̂̇x), 
‖ ̂̇xik‖2representing the ith frequency amplitude in the kth derivative 
spectrum, and δ defining the cut-off threshold ratio. Through this 
spectral feature extraction, the sparse regression problem is rigorously 
formulated as 

̂̇xr (i, k) = Θ̂ (i, j) Ξ (j, k), i ∈ r3, j ∈ r2, k = 1, ..., ny, (13) 

where ny denotes the number of the Degree-of-Freedom (DOF) for suc
cinctly describing the dynamic responses of the system.

2.2.4. Criterion 4: Accuracy and algorithm iteration
Following the time-frequency-domain synergistic procedure, the 

refined derivative matrix and function library matrix are systematically 
integrated through the data assembly principle established in our prior 
work [39]. The coefficients in the governing equation are subsequently 
obtained by applying sparse regression to Eq. (13). To quantitatively 
guarantee the accuracy of the reconstruction dynamic model, we 
formulate the fourth criterion r4 that simultaneously evaluates model 
precision and reliability. The discrepancy between the true system 
response ẋ(t) and reconstructed response ̃̇x(t) is modeled as a random 
variable, as 

ε(t) = ẋ(t) − ̃̇x(t), (14) 

whose statistical properties reflect two distinct error sources: systematic 
model inaccuracies and stochastic measurement noises. The error 
components exhibit fundamentally different characteristics: model- 
induced deviations demonstrate stability and pattern consistency, 
whereas errors caused by purely measurement noise contributes unbi
ased random fluctuations. For accurate reconstruction model, the 
expectation μ of the random variable ε should be very close to zero. 
Concurrently, the variance σ of ε serves as an indicator of model reli
ability, with lower variance values corresponding to higher confidence 
in the reconstruction model. This dual-aspect evaluation leads to the 

following accuracy criterion, given as 

r4 = {μ(εk(t)) ≤ μ0&σ(εk(t)) ≤ σ0}, (15) 

where μ and σ are the expectation and variance of the difference variable 
ε.

2.2.5. Overall procedure of T-F-S SINDy
By integrating the proposed four criteria, the overall workflow of the 

proposed T-F-S SINDy method is shown in Fig. 2, whose reconstruction 
procedure can be summarized as follows:

Step 1: Collect the dynamic response data of multi-stable deployable 
structure under narrow-band sweep excitation at a specific configura
tion and construct the corresponding function library matrix.

Step 2: Calculate the diagnostic matrix B using Eq. (6), and further 
apply Eq. (7) to perform principal component analysis on the diagnostic 
matrix B. After computing NBI by Eq. (8), the noise level of the response 
data is determined by Criterion 1.

Step 3: If the noise level belongs to low SNR category, proceed to the 
next step; otherwise, employ Criterion 2 to pre-filter candidate functions 
library functions based on the time-domain information of the response.

Step 4: Transfer the regression problem into the frequency domain 
by Fourier transform, and implement spectral band truncation to pre
serve high SNR components by Criterion 3.

Step 5: Apply the data assembly principle [39] to assemble the 
refined function library matrix corresponding to different configura
tions, and conduct the sparse regression method [31] to obtain the 
reconstruction model.

Step 6: Criterion 4 is adopted to evaluate the accuracy. If Criterion 4 
is satisfied, the reconstruction model can be obtained; otherwise, repeat 
the process until Criterion 4 is satisfied.

3. Numerical verifications

3.1. A deployable unit cell structure with bi-stable property

The reconstruction methodology is first validated through a bi-stable 
deployable unit cell under varying broadband noise conditions. The 
schematic diagram of the bi-stable deployable unit cell is shown in Fig. 3
(a), which is so-called Kresling Origami structure. The dynamic 
modeling process of the Kresling origami structure is illustrated in Ap
pendix A. As Refs. [40,41], with structural parameters a = 1.6, c = 1, 
γ0=30◦, the potential energy for different axial deformation is shown in 
Fig. 3(b), demonstrating bi-stable property. On the potential energy 
curve, two local minimum points correspond to undeployed state (S1) 
and deployed state (S2). For the unit cell, vibration inputs with white 
Gaussian noise for high-SNR (60 dB) and low-SNR (30 dB) are given. A 
seventh-order polynomial function library is employed for model 
reconstruction. The reconstruction process is systematically evaluated 
through four proposed criteria as Figs. 3(d)-(f).

The first criterion r1 in T-F-S SINDy method quantifies measurement 
noise levels through zero-mean Gaussian noise analysis (Fig. 3(c)). The 
metric effectively discriminates signal quality thresholds, particularly 
demonstrating heightened sensitivity below 30 dB where time-domain 
data becomes unreliable. As shown in Fig. 3(c) that NBI remains at a 
high level and does not show a significant downward trend when SNR is 
slightly reduced at high SNR levels. Conversely, at low SNR levels, not 
only is NBI small, but it also exhibits a clear downward trend as SNR 
decreases. Therefore, for Criterion 1, the threshold of NBI can be 
determined by continuously increasing noise until NBI shows a signifi
cant decrease. Subsequent application of criterion r2 under SNR=60 dB 
(Fig. 3(d)) successfully prunes non-essential terms while preserving 
governing equation components through NLI ranking. The threshold for 
Criterion 2 is determined by monitoring the variation of NBI throughout 
the candidate function elimination process and selecting the NBI value 
before the phase of abrupt decrease. From frequency-domain analysis, 
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criterion r3 (Fig. 3(e)) enhances the quality of the data by exploiting 
spectral separation: system responses concentrate in narrow bands while 
noise distributes broadly, enabling effective frequency-domain feature 
extraction. Final model validation via accuracy criterion r4 (Fig. 3(f)) 
shows rapid convergence of expectation (μ) and variance (σ). The 
changing trends of the mean and variance for difference variable ε 
during the iterative data assembly process are observed, with the 
thresholds determined by excluding initial-stage reconstruction models 
exhibiting high mean or variance while retaining those converging to 
low mean and low variance. Besides, it could also be observed that by 
combining time-domain information, the converge process is acceler
ated since the number of candidate functions is greatly reduced.

By the proposed model reconstruction method as above, the recon
struction model of the unit cell is 

ẍ + ζẋ + αx5 + βx6 + γx7 = 0, (16) 

where the corresponding coefficients for SNR=60 dB and 30 dB are 
shown in Table 1. Reconstruction models demonstrate faithful repro
duction of essential system characteristics in Fig. 4.

Fig. 4(a, b) shows excellent agreement between actual and recon
structed potential energy and restoring force profiles across both SNR 
conditions. BOA predictions (Fig. 4(c-f)) achieve 0.94 % (60 dB) and 
2.46 % (30 dB) error rates, confirming the robustness of the method. 
These BOA solutions enable MED analysis. The actuation input for 
deployment is equivalent to the initial conditions of the bi-stable 
deployable unit cell x(0) = x0, ẋ(0) = ẋ0. In order to quantify the 
input energy, the input energy for deployment is defined as 

Ein =
1
2

mẋ2
0 + (V(x0) − V(xS1)), (17) 

which combines kinetic energy and potential energy increments. Phase- 
plane analysis (Fig. 4(g-h)) reveals consistent MED conditions at 
switching boundaries, demonstrating that MED can be realized through 
initial displacement inputs. This is a physical consequence of the 
reduced damping dissipation in displacement inputs. The proposed T-F- 
S SINDy is compared with the classical SINDy in terms of both compu
tational efficiency and reconstruction accuracy, and the results are 
demonstrated in Appendix B.

Method validation extends to pink noise environments as shown in 
Fig. 5, maintaining comparable accuracy in potential energy recon
struction, BOA prediction, and MED analysis. Particularly noteworthy is 
the method’s resilience to 1/f noise spectral characteristics, where 
traditional frequency-domain techniques typically degrade due to the 
enhanced low-frequency interference.

3.2. A M-DOF deployable structure with multi-stable property

In this case, the model reconstruction of a M-DOF deployable 
structure with multi-stable property is demonstrated. Fig. 6 presents the 
deployable structure, comprising serially connected Kresling Origami 
cells. Fixing structural parameters in Cell 1 as a1=1.6, c1=1, γ1=20◦and 
Cell 2 as a2=1.6, c2=1, γ2=28.5◦, two cells respectively exhibit mono
stable and bi-stable properties. The dual objectives of model recon
struction are detecting monostable configurations from design 
imperfections and determining MED condition through BOA analysis. In 
order to accomplish these two objectives, not only the number and the 
location of each layer need to be correctly identified, but also the 
damping terms need to be accurately reconstructed to achieve a good 
prediction of BOA. Compared with the S-DOF case, the number of 
candidate functions in the function library dramatically increases due to 
the increasing number of state variables in the M-DOF case, making it 
more difficult to reconstruct the accurate model of the system.

Following the proposed T-F-S SINDy method with four criteria, two 
reconstruction processes are performed under white noise environments 
at 60 dB and 30 dB SNR, respectively. By the proposed T-F-S SINDy 
method with the signals shown in Fig. 6(c), the reconstruction model of 
the M-DOF deployable structure with multi-stable property is obtained 
as 

Fig. 3. Schematic diagram of the bi-stable deployable unit cell and the reconstruction process. (a, b) Mechanical schematic diagram and the potential energy of the 
bi-stable deployable unit cell. (c) Noise level estimation criterion r1 under different noise level. Schematic diagram of (d) time-domain library selection process, (e) 
frequency-domain feature extraction and (f) accuracy criterion.

Table 1 
Reconstruction model coefficients for different SNR in deployable unit cell 
structure with bi-stable property case.

SNR ζ α β γ

60dB 1.99 12.12 − 18.03 6.56
30dB 1.98 10.66 − 16.05 5.88
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẍ1 + ζ1(ẋ1 − ẋb) − ζ2(ẋ2 − ẋ1) +
∑7

i=1
ai(x1 − xb)

i
−
∑7

i=1
bi(x2 − x1)

i
= ẍb,

ẍ2 + ζ2(ẋ2 − ẋ1) +
∑7

i=1
bi(x2 − x1)

i
= 0,

(18) 

where the corresponding coefficients are tabulated in Table 2.
Fig. 7 (a-b) compares actual and reconstructed equivalent restoring 

forces for the two cells, successfully capturing Cell 1′s monostability and 
Cell 2′s bistability properties. The results validate the capability of the 
proposed method to diagnose parametric design flaws in deployable 
structures. Assuming that Cell 2 is initially in undeployed state, a 
perturbation is applied at the base of the deployable structure, and the 
initial conditions of the system change to x1(0) = xs0

1 + Δx,x2(0) = xs1
2 +

Δx, ẋ1(0) = ẋ0, ẋ2(0) = ẋ0. The BOAs and the corresponding error are 

shown in Fig. 7(c-f), which exhibits a high accuracy. The obtained BOAs 
in Fig. 7(c) and (d) well reflect the deployment conditions of the M-DOF 
bi-stable deployable structure, which are then used to predict the MED 
condition. The input energy for deployment is also defined as the sum of 
the kinetic energy and the incremental potential energy of the bi-stable 
unit cells, which is consistent with that in Eq. (17). Phase-plane analysis 
(Fig. 7(g-h)) demonstrates consistent MED predictions between both 
noise conditions, further confirming the method robustness. Notably, 
the results reaffirm the energy-optimal deployment mechanism 
observed in SDOF systems: more initial displacement inputs minimize 
energy dissipation through reduced damping dissipation.

4. Experiments

This section experimentally investigates the proposed T-F-S SINDy 
method for dynamic model reconstruction of multi-stable structure to 

Fig. 4. Model reconstruction results for the bi-stable deployable unit cell under white Gaussian noise. (a) Comparison of potential energies among the real model, 
reconstructed models with different noise levels. (b) Comparison of restoring forces among the real model, reconstructed models with different noise levels. (c-f) BOA 
prediction and corresponding error comparison under different noise levels. (g)-(h) show the MED prediction from the reconstructed models.

Fig. 5. Model reconstruction results for the bi-stable deployable unit cell under pink noise. (a) Comparison of potential energies among the real model, reconstructed 
models with different noise levels. (b) Comparison of restoring forces among the real model, reconstructed ones with different noise levels. (c-f) BOA prediction and 
corresponding error comparison under different noise levels. (g) and (h) show the MED predictions from the reconstructed models for two noise levels.
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provide its minimum actuation energy for deployment. As shown in 
Fig. 8(a), by folding the 2-D crease pattern, a deployable structure based 
on Kresling Origami with undeployed and deployed state is constructed. 
The crease pattern cut by laser cutting machine breaks the basic 
assumption of Continuity and Compatibility at the crease, whose accu
rate dynamic model need to be reconstructed experimentally. For the 
Kresling structure as the illustration experimental prototype, we carry 
out both quasi-static tension testing and dynamic reconstruction testing. 

For the quasi-static tension testing by Universal testing machine in Fig. 8
(b), the static force-displacement relation is shown as Fig. 8(c). The 
process and results for quasi-static tests are also shown in Video S1 
(quasi-static test) in the Supplementary material. For the dynamic 
testing, the experimental process is illustrated in Fig. 8(d). The 
deployable structure is connected to an exciter, through which dynamic 
inputs are given to the deployable structure. The signal generator and 
controller provides input signal to the exciter. The system responses and 
excitation inputs are measured by Laser vibrometers. In the dynamic 
experimental testing, six sets of narrow-band sweep excitation inputs 
from 2 Hz to 12 Hz with different amplitudes and sweep speeds are 
applied to generate training data. Besides, a set of sweep excitations 
from 4 Hz to 8 Hz and 8 sets of sinusoidal excitations are used to 
generate testing data. The noise arises from two primary sources: the 
inherent noise present in the data acquisition process itself, and the 
noise introduced by the numerical differentiation of the acquired 
displacement data. Besides, additional Gaussian white noise SNR=60 dB 
is added into the data to verify the robustness of the proposed model 
reconstruction method. The whole dynamic tests are detailly illustrated 
in Video S1 (Dynamic test) in the Supplementary material. Then, based 
on the inputs and output signals, the T-F-S SINDy model reconstruction 

Fig. 6. (a) Schematic diagram of the M-DOF multi-stable deployable structure. (b) Equivalent restoring forces of two cells of the bi-stable deployable structure with 
different parameters; (c) Simulation data of responses and excitation of the M-DOF multi-stable deployable structure.

Table 2 
Coefficients of functions in the reconstruction model as Eq. (18) of the M-DOF 
deployable structure with multi-stable property case.

SNR i

1 2 3 4 5 6 7

60dB ai − 4.53 − 9.58 30.83 − 25.13 6.95 0 0
bi 0 − 4.58 8.08 0 0 − 6.28 3.17
ζi 0.99 1.00 \ \ \ \ \

30dB ai − 4.68 − 9.14 30.36 − 24.90 6.90 0 0
bi 0 − 4.36 7.61 0 0 − 5.84 2.94
ζi 0.98 1.01 \ \ \ \ \

Fig. 7. Model reconstruction results for the M-DOF multi-stable deployable structure. (a) and (b) are the comparisons of the dynamic force-displacement re
lationships of the first and second layer for different noise levels. (c-f) BOA prediction and corresponding error comparisons for different noise levels. (g) and (h) show 
the MED prediction from the reconstruction model as Eq. (18).

J. Qian et al.                                                                                                                                                                                                                                     Aerospace Science and Technology 168 (2026) 111268 

8 



method is applied to obtain the equivalent dynamic constitutive model 
as Fig. 8(e). By the proposed method, the reconstruction model of the 
experimental deployable structure with multi-stable property writes 

ẍ + ζẋ + αx + βx2 + γx3 = − ẍb, (19) 

where the coefficients in the reconstructed dynamic model Eq. (19) are 
listed in Table 3

From Fig. 8(c) and (e), from both quasi-static testing and dynamic 
reconstruction, the structure exhibits two distinct stable configurations, 
defined as undeployed (S1) and deployed (S2). Comparative analysis 
reveals that both quasi-static testing and dynamic reconstruction suc
cessfully capture the bistable features and accurately predict stable 
equilibrium positions. However, discrepancies in stiffness between these 
two results lead to variations in unstable equilibrium prediction, high
lighting the influence of difference in static and dynamic stiffness on the 
constitutive relationship. The difference between static stiffness and 
dynamic stiffness originates from the viscoelasticity of the materials in 
deployable structures. The experimental deployable structure is made of 
Polyethylene terephthalate (PET), which is a polymer with viscoelastic 

properties [42,43]. The stress-strain relationship of this viscoelastic 
material depends on the strain rate [44,45], and further combined with 
the geometric nonlinearity of the Kresling origami structure, leads to the 
difference in static and dynamic stiffness of the deployable structure. 
This finding emphasizes the necessity of employing dynamic recon
struction methods for multi-stable deployable structures operating 
under dynamic conditions.

After the dynamic model reconstruction process by the T-F-S SINDy 
method, for accuracy validation, two sets of verification tests are con
ducted. First, another set of sweep excitation from 4 Hz to 8 Hz is applied 
to the deployable structure to verify the capability of the proposed T-F-S 
SINDy method to predict frequency-domain response. The time history 
curve and spectrum of excitation are shown in Fig. 9(a)-(b), and the 
comparison results of the frequency-domain responses between experi
mental data and reconstructed model output signals are given in Fig. 9
(c). The data from reconstruction model demonstrates excellent agree
ment with the experimental frequency-domain response results, as error 
margin of approximately 5 % in predicting the resonant frequencies of 
the deployable structure. Notably, the reconstructed model effectively 
captures the double-frequency component in the deployable structure’s 
frequency response, demonstrating the effectiveness of the proposed T- 
F-S SINDy method.

Second, eight sets of experimental deployment tests are conducted 
with harmonic base excitations of varying amplitudes and frequencies. 
The unit cell is initialized in S1, with successful deployment to S2 
occurring when system states entered the S2 region in phase space, as 

Fig. 8. Experimental setups and results obtained by quasi-static tests and proposed T-F-S SINDy method. (a) Experimental prototype of bi-stable deployable unit cell 
with undeployed and deployed states. (b) Experimental setup for quasi-static tests by universal testing machine. (c) Experimental reconstruction of static force- 
displacement relationship in quasi-static tests. (d) Experimental setup for dynamic tests. (e) Experimental reconstruction of dynamic equivalent constitutive rela
tionship from the proposed T-F-S SINDy method inputs and outputs.

Table 3 
Reconstruction model coefficients in experimental deployable structure with 
multi-stable property.

SNR ζ α β γ

60dB 1 44.46 − 5.82 0.12
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shown in Fig. 10. Test parameters are strategically selected to produce 
contrasting response characteristics: higher frequency excitations 
(Fig. 10 (a-b)) generate greater maximum velocities with limited dis
placements, while lower frequencies (Fig. 10 (c-d)) resulting in larger 
displacements at reduced velocities. The reconstruction model accu
rately predicts deployment process in all eight test cases, demonstrating 
its effectiveness in capturing the essential dynamics of configuration 
switching. According to the results of quasi-static tests and dynamic tests 
(based on the proposed T-F-S SINDy method), the deployment process 
and MED conditions are compared in Video S1 (Minimum Energy 
Deployment: Quasi-static vs Dynamic) in the Supplementary material, 

where dynamic deployment shows an 80.39 % reduction in actuation 
energy compared with quasi-static deployment.

5. Conclusions and discussions

This study presents a novel Time-Frequency-domain Synergistic 
SINDy (T-F-S SINDy) method for dynamic model reconstruction of 
nonlinear dynamic systems with/without multi-stable property, specif
ically addressing the challenge of broadband noise interference in 
aerospace applications such as deployable structures. The proposed 
methodology synergistically integrates time-domain and frequency- 

Fig. 9. Frequency-domain response prediction of the proposed T-F-S SINDy method. (a) Time history curve of the sweep excitation. (b) Spectrum of the sweep 
excitation. (c) Comparison between experimental and reconstructed frequency-domain response.

Fig. 10. Deployment condition prediction and experimental verification of deployment process. (a) and (b) show the higher frequency excitations with greater 
maximum velocities response with limited displacements response. (c) and(d) show the lower frequency excitations with larger displacements response at 
reduced velocities.
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domain information to enhance reconstruction robustness through four 
innovative criteria: 1) a noise level estimation criterion exploiting the 
noise-induced degradation of collinearity between derivative terms and 
candidate functions; 2) a library selection criterion leveraging time- 
domain dynamics for candidate function elimination; 3) a feature 
extraction criterion employing frequency-domain analysis for noise- 
signal separation, and 4) an accuracy criterion statistically testing the 
fidelity of the reconstruction model. Numerical validations demonstrate 
the efficacy of the proposed method in reconstructing equivalent 
constitutive relationship of multi-stable deployable structures under 
different noise conditions, achieving BOA prediction errors below 3 %. 
Experimental validations through bi-stable unit cell testing reveal crit
ical insights: while both quasi-static and dynamic methods can suc
cessfully identify stable equilibria, the differences of quasi-static and 
dynamic stiffness result in difference of constitutive relationship be
tween the two stable equilibria. This fundamental distinction un
derscores the necessity of dynamic reconstruction for operational 
scenarios involving configuration switching. The effectiveness of the 
proposed T-F-S SINDy method in predicting deployment conditions is 
conclusively demonstrated through eight experimental cases with 
varying excitation parameters. Successful deployment predictions under 
contrasting dynamic regimes (high-frequency velocity-dominant vs. 
low-frequency displacement-dominant responses) confirm the accuracy 
and the capacity of proposed method. Owing to its robust ability in 
identifying equivalent dynamic model for broadband noises, the pro
posed T-F-S SINDy method shows great promise for structural design 
and actuation optimization for deployable structures, flexible robotics 
and vibration isolators. Despite the excellent robustness of the proposed 
T-F-S SINDy method, Fourier transform may fail to distinguish system 
response from non-stationary noise when non-stationary noise is present 
in the signal, compromising the effectiveness of the proposed T-F-S 

SINDy method. In future work, the integration of time-frequency 
domain signal processing techniques such as short-time Fourier trans
form and wavelet transform could be explored to address non-stationary 
noise scenarios.
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Appendix A

This Appendix illustrates the derivation of the dynamic model of Kresling origami based on truss model The crease pattern of Kresling origami 
structure and the 3-D mechanical model are shown in Fig. A1. The crease pattern is determined by three parameters a0, c0 and γ0, where b0 can be 
expressed 

b0 =
c0

sinγ0
sin

(

γ0 + arcsin
(

a0sinγ0

c0

))

. (A.1) 

In the truss model, the creases of the Kresling origami structure are simplified as springs with stiffnesses ka and kb and rest lengths a0 and b0. When 
the height h and angle θ of the Kresling origami structure are determined, the crease length can be expressed as 

a =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

h2 + 4R2sin2
(

θ
2

)√

, (A.2) 

b =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

h2 + 4R2sin2
(

θ
2
+

π
6

)√

, (A.3) 

where R is the circumradius of the base regular hexagon. Based on the truss model, the potential energy U of the Kresling origami structure can be 
expressed as 

U = 6
(

1
2
ka(a − a0)

2
+

1
2
kb(b − b0)

2
)

. (A.4) 

Neglecting the moment of inertia of the end plate, the kinetic energy Ev and the generalized force Q are 

Ev =
1
2

mḣ
2
, (A.5) 

Q = − cdḣ. (A.6) 
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Substituting Eqs. (A.4-A.6) and h = x-x0 into Lagrange equation, the dynamic equation could be obtained 

mẍ + cq(ẋ − x0) + 3ka(a − a0)
∂a
∂θ

+ 3kb(b − b0)
∂b
∂θ

= 0. (A.7) 

Since no external torque is applied to the Kresling origami structure, the free torque condition T = 0 needs to be satisfied: 

T =
∂U
∂θ

= 6R2ka

(
1 −

a0

a

)
sinθ + 6R2kb

(

1 −
b0

b

)

sin
(

θ+
π
3

)
= 0. (A.8) 

Therefore, the dynamic model of the Kresling origami structure can be expressed by Eq. (A.7) and Eq. (A.8).

Fig. A1. (a) 2-D crease pattern and corresponding geometric parameters. (b) 3-D truss mechanical model for Kresling origami structure.

Appendix B

To compare the computational cost and reconstruction model accuracy between the proposed T-F-S SINDy method and the classical SINDy method, 
the multi-stable deployable structure in Section 3.1 is adopted. Under SNR = 30 dB, both methods are employed for model reconstruction using 
identical training data. The reconstruction result of T-F-S SINDy has already been demonstrated in Eq. (16) and Table 1. The reconstruction result of 
classical SINDy is 

ẍ + 17.09ẋ − 27.73x + 223.46x3 − 179.24x4 − 151.83x5 + 182.60x6 − 43.21x7 = 0 (B.1) 

In order to compare the computation cost, the dimension of the function library matrix and computation time are concerned. Besides, a Regularized 
MSE (R-MSE) is defined to evaluate the accuracy of the reconstruction model on test data, which is defined as 

R − MSE =

1
n
∑n

i=1

(
xtest − xpredict

)2

1
n
∑n

i=1
xtest

2
. (B.2) 

The R-MSE is the MSE normalized by variance of response data. Then, the dimension of the function library matrix, computation time, and 
regularized MSE are summarized in Table 2.

Table B1 
Comparison of computational cost and reconstruction accuracy between T-F-S SINDy and classical SINDy.

Method Dimension of function library matrix computation time R-MSE

T-F-S SINDy 2143×28 4.4 s 0.0045
Classical SINDy 200,020×36 120.72 s 0.0332

As illustrated in Table B1, the T-F-S SINDy method outperforms SINDy in both computational efficiency and reconstruction accuracy. Regarding 
computational efficiency, T-F-S SINDy substantially reduces the dimension of the function library matrix through additional criteria, thereby 
decreasing regression computational costs. Furthermore, during sparsification parameter optimization, it is required to solve regression problems 
under varying sparsification parameters. A smaller function library matrix can significantly enhance computational efficiency.

Data availability

Data will be made available on request.
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