
Smart Materials and
Structures      

PAPER • OPEN ACCESS

Customized broadband structural vibration control
using piezoelectric shunt absorbers
To cite this article: Hangxing Li et al 2025 Smart Mater. Struct. 34 115014

 

View the article online for updates and enhancements.

You may also like
Magnetostrictive shunt for vibration control
and isolation: model, characteristics and
similarities with piezoelectric shunt
M Berardengo, M Mercato and S Manzoni

-

Adaptive multi-mode resonant
piezoelectric shunt damping
Dominik Niederberger, Andrew Fleming, S
O Reza Moheimani et al.

-

Saturation correction for a piezoelectric
shunt absorber based on 2:1 internal
resonance using a cubic nonlinearity
Zein Alabidin Shami, Christophe Giraud-
Audine and Olivier Thomas

-

This content was downloaded from IP address 175.159.23.238 on 15/11/2025 at 01:23

https://doi.org/10.1088/1361-665X/ae190f
/article/10.1088/1361-665X/ad996f
/article/10.1088/1361-665X/ad996f
/article/10.1088/1361-665X/ad996f
/article/10.1088/0964-1726/13/5/007
/article/10.1088/0964-1726/13/5/007
/article/10.1088/1361-665X/acc994
/article/10.1088/1361-665X/acc994
/article/10.1088/1361-665X/acc994
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsvpWrOJdDC7Ylp5h8hK7R_XyotsSQ8sh_PXhMtIQS2h_7CHlaatxbFiCSF7Jao98x1K_zcoV3JowS648TtHxN_qZhUTaAb1DFADtosqaNfqeWGJEnzSKrsS_WLCjsimBqO3gaikKvqIB9IkRT8mwmskJRlhPuFDUnwy0G6DTtn6Ig0OdpqK_hopi-Fvw_iBFmHvxiqQPhbDgLMORKOcZDKcqjMegY_iw9mtnrUybm1K4k730DtEuOJnyGB6XramV0AC6Viwv4UvHqrEUTuR-rXX0YxH5k5p8ZCfQsYmk_Dt1kY_RGTDArFSWR8IN00DYWoJlKBqKBcurDtbCbgd8Zjgna26X5Q_4ATtuIjX8VrQzJ3072uBKwtL&sig=Cg0ArKJSzIEmyYTQPCPV&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.electrochem.org/249%3Futm_source%3DIOP%26utm_medium%3Dbanners%26utm_campaign%3DIOP_249_abstract_submission%26utm_id%3DIOP%2B249%2BAbstract%2BSubmission


Smart Materials and Structures

Smart Mater. Struct. 34 (2025) 115014 (21pp) https://doi.org/10.1088/1361-665X/ae190f

Customized broadband structural
vibration control using piezoelectric
shunt absorbers

Hangxing Li, Waion Wong and Li Cheng∗

Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong Special
Administrative Region of China, People’s Republic of China

E-mail: li.cheng@polyu.edu.hk

Received 30 June 2025, revised 20 September 2025
Accepted for publication 29 October 2025
Published 11 November 2025

Abstract
Piezoelectric (PZT) shunt absorbers have shown promise for the control of vibrating structures
due to their appealing lightweight and tunable features. However, the complex coupling among
multiple structural components including the PZT patches presents a significant challenge in
achieving optimal design, which turns out to be tedious and computationally costly. In this
study, based on the experimentally measured or numerically simulated vibration response of
primary structures, casted in terms of extracted Excitation-Dependent Representative Basis, a
novel design methodology is proposed to optimally design the parameters of a
multi-degree-of-freedom shunt circuit over an arbitrarily given thin-walled structure to achieve
pre-defined target vibration reduction. The proposed analysis framework alongside the
corresponding simplified model greatly reduces the complexity of the dynamic analysis while
still retaining the essential electromechanical interaction effects taking place inside the coupled
system, thereby offering practical benefits for the design of the shunt absorbers. In particular, an
inverse design method is proposed to achieve customized vibration control. The whole approach
is shown to be computationally efficient, as the solutions can be directly derived from analytical
expressions. The effectiveness of the proposed approach is verified through both numerical
simulations and experiments.

Keywords: customized vibration control, inverse design strategy, coupling analysis,
piezoelectric shunt absorbers

1. Introduction

The control of structural vibration and its sound radiation
holds considerable practical significance across a wide range
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of engineering applications [1–3]. Among various pass-
ive vibration control techniques, piezoelectric (PZT) shunt
absorbers have attracted considerable attention due to their
appealing features like compactness, lightweight, and adapt-
ability. However, the intricate electromechanical coupling
within the system, together with themutual interactions among
shunt absorbers and the tuning of numerous parameters in the
fully coupled system, render the design process highly com-
plex and challenging.

Similar to conventional dynamic vibration absorbers
(DVAs), analytical approaches based on H2 and H∞ optim-
ization criteria have been widely employed to determine the
optimal shunt absorber parameters using lumped-parameter

1 © 2025 The Author(s). Published by IOP Publishing Ltd
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models [4]. This method requires the accurate identification
of the primary system’s parameters, which is not always
possible in practice. As an alternative, data-driven methods
have emerged, including machine learning strategies based on
time-averaged root mean square (RMS) structural responses
[5], and energy-based design strategies that aim to maximize
the average electrical power dissipated by the shunt circuits
[6]. However, when PZT patches are employed for flexural
vibration suppression of thin-walled structures, the accur-
acy of the lumped-parameter models is often compromised,
thereby hindering the accurate determination of optimal shunt
parameters [7].

A more logical approach consists in considering the coup-
ling effects, particularly when a multi-degree-of-freedom
shunt circuit is deployed with PZT elements integrated into
the structure for broadband vibration control. To address the
analytical complexity associated with such coupled systems,
several methodologies have been proposed for the optimal
design of shunt absorbers. One strategy consists in incorpor-
ating an LC filter circuit for each degree of freedom within
the shunt configuration, as an attempt to decouple differ-
ent degrees of freedom. This method results in a system
with minimal coupling between shunt absorbers, thus sim-
plifying the design process [8–12]. As an alternative, correc-
tion methods for residual mode contributions [13, 14] and
sequential tuning procedures [15] have been introduced to
account for the coupling effects involved in the design. To
alleviate the reliance on explicit system modeling and to
cope with the need for real-time monitoring, recent studies
have introduced self-tuning strategies that operate independ-
ently of sophisticated system identification [16]. Furthermore,
a frequency-swept shunt absorber has been developed, with
parameters designed to vary periodically within predefined
ranges [17, 18]. This class of absorbers eliminates the
need for manual fine-tuning and demonstrates strong robust-
ness against operational condition variations of the primary
structure.

PZT patches attached to the primary structure offer a useful
means to achieve effective vibration control. Although adjust-
ing the physical layout of PZT patches such as dimension
or position is challenging, the use of electrical shunt circuit,
to form the so-called shunt absorbers, provides the flexibil-
ity one would need for structural vibration control. The integ-
ration of multiple degrees of freedom into the shunt circuit
for suppressing a single resonant peak in the primary struc-
ture was shown to enhance both vibration attenuation perform-
ance and robustness against parameter mismatches [19, 20].
Moreover, for the simultaneous suppression of multiple reson-
ant responses, a multi-port impedance network was shown to
outperform the conventional RLC resonant circuits [21, 22].
Additionally, incorporating nonlinear capacitive components
into shunt absorbers [23, 24] or integrating negative capacit-
ance circuits [25–27] has also been shown to further improve
the vibration control effectiveness.

To suppress the resonant responses of multiple vibration
modes in thin-walled structures, multiple PZT patches are

typically required, with each individually tuned to target a
specific mode [28]. However, this approach tends to res-
ult in a bulky and impractical configuration. As an alternat-
ive, multi-degree-of-freedom resonant shunt circuit has been
proposed, allowing a single PZT patch to control multiple
structural modes [29, 30]. To optimize the parameters of the
shunt circuit, machine learning techniques [5, 31] can be
employed to learn the system’s input–output behaviors dir-
ectly from vibration data, demonstrating strong application
potential. However, such approaches require a large amount
of high-quality, labeled experimental data, which is often
difficult to obtain in practice. As an alternative, the system
identification-based method allows for explicit characteriza-
tion of the structural dynamics and provides a base model to
guide the design of the shunt circuit. Nevertheless, achieving
high-performance control using this method critically relies
on accurate modeling, which is particularly challenging for
structures with high modal overlap [7, 32]. To address this
challenge, the present work introduces a model-free approach
for extracting the resonant dynamics of the PZT structure
within the vector space spanned by the so-called Excitation-
Dependent Representative Basis (EDRB) [33, 34]. The sali-
ent feature of this method lies in its independence from sys-
tem modeling, making it applicable to arbitrary thin-walled
structures.

To this end, a generic structure equipped with a single PZT
patch connected to a multi-degree-of-freedom resonant shunt
is investigated. This way, a single PZT patch would serve
as multiple shunt absorbers. The salient challenge associated
with this system stems from the intricate electromechanical
coupling of the PZT patch with the primary structure, as well
as the mutual interactions among multiple shunts. To address
these limitations and achieve pre-defined vibration suppres-
sion targets, a novel design methodology is proposed based
on the EDRB, which can be readily extracted from the exper-
imentally measured data on an arbitrary vibrating structure.
Specifically, a coupling analysis framework, along with a cor-
responding simplified model, is introduced to reduce the com-
plexity of the dynamic analysis while retaining the essen-
tial electromechanical interaction effects inside the coupled
system, thereby streamlining the design of shunt absorbers.
Furthermore, contrary to the common practice of relying on
fixed or predefined capacitance values in conventional design
approaches, we further propose an inverse design approach to
enable customized vibration control without prior assumptions
on circuit parameters.

The outline of this paper is as follows. Section 2 presents
the theoretical framework and establishes the proposed meth-
odology. Section 3 substantiates the proposed approach and
demonstrates its efficacy in dealing with two typical cases.
The first case involves a rectangular plate, where a strin-
gent response control requirement is imposed to evalu-
ate the efficacy of the proposed method. In the second
case, a square plate is used to assess the suitability of
the proposed method for systems with symmetric modes
and its capability to achieve all-equal-peak response control.
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Section 4 presents and discusses the results of the experi-
mental validation, with the main conclusions summarized in
section 5.

2. Theoretical formulation and design methodology

2.1. Coupled formulation of a PZT structure

Consider a generic thin-walled structure subjected to an
external excitation force Fs(s). A PZT patch is attached to the
structure and interfaced through a shunt circuit characterized
by its electrical admittance Y(s), as shown in figure 1.

Dynamic equation of the PZT structure can be derived from
Hamilton’s principle [35, 36] and cast into the following gen-
eral form:

s2MsX(s)+KsX(s)+γv(s) = Fs(s)

γTX(s)−Cv(s) = q(s) (1)

where s denotes complex variable; Ms and Ks the mass and
stiffness matrices of the coupled system, respectively; X(s)
and Fs(s) the vectors of nodal displacement response and
external force vectors, respectively; γ the PZT coupling vec-
tor; C the inherent capacitance of the PZT patch; v(s) and q(s)
the voltage and charge boundary conditions of the PZT patch,
respectively.

While this matrix equation can theoretically be decom-
posed in modal space, its accurate representation becomes
increasingly difficult for complex structures. To overcome this
challenge, this equation is projected into the subspace spanned
by the EDRB, which can be derived from either experiment-
ally measured or numerically simulated response data. The use
of the EDRB was first introduced in [33] to address the chal-
lenges associated with closely spaced modes in a structure.
In that work, the authors demonstrated the use of EDRB for
optimizing a DVA, by following similar design procedure as
the mode-based approaches. Subsequently, in [34], the authors
mathematically proved that the singular vectors obtained
through singular value decomposition (SVD) of measured
structural responses are equivalent to the EDRB. Since the
measured vibration response depends on both the structural
dynamics of the primary structure and the spatial/temporal
characteristics of the applied excitation, the resulting singular
vectors obtained via SVD are inherently excitation-dependent.
As a result, the acquired structural response can be decom-
posed as:

X(s) = UΣVH (s) , (2)

where matrices U and V contain the left and right singular
vectors, corresponding to the spatial and frequency-domain
information of the system response, respectively. The diag-
onal entries of the singular valuematrixΣ represent the associ-
ated singular values, which are non-negative real numbers. The
number of retained singular vectors is determined based on
a cumulative energy criterion, i.e. only the smallest subset of

Figure 1. Schematic of a generic structure coupled with one
piezoelectric patch.

dominant singular vectors is retained, such that the sum of their
corresponding singular values exceeds 90% of the total sum of
all singular values. Substituting equation (2) into equation (1)
yields:

s2Mη(s)+Kη(s)+θv(s) = F(s)

θTη(s)−Cv(s) = q(s) (3)

where

M= UTMsU,K= UTKsU, θ= UTγ, η=ΣVH. (4)

According to Ohm’s law,

q(s) =
Y(s)
s

v(s) , (5)

where Y(s) denotes the admittance of a shunt circuit.
Substitution of this equation into equation (3) gives

s2Mη(s)+Kη(s)+θv(s) = F(s), (6.a)

θTη(s)− 1
h(s)

v(s) = 0, (6.b)

where

h(s) =
s

Y(s)+ sC
. (7)

After substituting equations (6.b) into equation (6.a), the
following expression is obtained:[

s2M+K+ h(s)θθT
]
η(s) = F(s) . (8)

In the above equation, structural matrixZ(s) = s2M+K+
h(s)θθT is non-diagonal, indicating the coupling among dif-
ferent EDRBs due to the electromechanical interaction intro-
duced by the PZT patch. The presence of the off-diagonal
terms introduces significant complexity in the design of the
shunt absorber. Nevertheless, diagonalization of the structural
matrix can be achieved through appropriate reformulation of
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the governing equation. For example, equation (8) can be
reformulated as:

det[Z(s)]
adj[Z(s)]1,1

· · · 0
...

. . .
...

0 · · · det[Z(s)]
adj[Z(s)]I,I

η(s)

=


1 · · · adj[Z(s)]1,I

adj[Z(s)]1,1
...

. . .
...

adj[Z(s)]I,1
adj[Z(s)]I,I

· · · 1

F(s) , (9)

where det [Z(s)] and adj [Z(s)] represent the determinant and
the adjugate matrix of Z(s), respectively, with adj [Z(s)]i,j
(i,j = 1,2,…,I) denoting the element at the ith row and jth
column. With the structural matrix now diagonalized, the
transfer function of the coupled system can be derived as:

Hi (s) =
adj[Z(s)]i,i
det [Z(s)]

. (10)

To derive the analytical expression of equation (10), it
is necessary to compute both the determinant of the struc-
tural matrix and the diagonal elements of its adjugate matrix.
Specifically, the diagonal element adj [Z(s)]i,i can be obtained
by computing the determinant of the submatrix formed by
removing the ith row and ith column from Z(s). According
to the matrix determinant lemma [37, 38]:

det
(
A+uvT

)
= det(A)

(
1+ vTA−1u

)
. (11)

Using this equation, equation (10) writes

Hi (s) =
1+ h(s)

∑I
j=1, j ̸=i

ϑ2
j

s2Mj+Kj

(s2Mi+Ki)
[
1+ h(s)

∑I
j=1

ϑ2
j

s2Mj+Kj

] , (12)

in which Mi and Ki represent the ith diagonal elements of
matrices M and K, respectively, and ϑj the jth element of
vector θ. It should be noted that, since the expression in
equation (12) is explicit which relies only on scalar operations,
the proposed approach remains numerically stable and scal-
able even for large EDRB bases.

2.2. Design methodology for shunt absorbers with coupling

The resonant shunt circuit with multiple degrees of freedom
employed in this study is illustrated in figure 2.

Using equation (7), the transfer function of this resonant
circuit is given by

h(s) =
1

C+
∑N

n=1
ω2
nC

s2 + 2sωnξ n+ω2
n
C
Cn

, (13)

Figure 2. Schematic of the resonant shunt circuit with multiple
degrees of freedom. C denotes the inherent capacitance of the
piezoelectric patch, while Rn, Ln, and Cn represent the resistance,
inductance, and capacitance of the nth branch, respectively.

where Cn denotes the capacitance of the nth branch in figure 2,
and the frequency ωn and damping ratio ξ n are defined as

ωn =

√
1
LnC

, ξ n =
Rn

2Lnωn
, (14)

in which Rn and Ln represent the resistance and inductance of
the nth branch. Substituting equation (13) into equation (12)
yields

Hi (s) =
1

s2Mi+Ki+
ϑ2
i

C+Cs+Cp

s2+2sωnξ n+ω2
n
C
Cn

s2+2sωnξ n+ω2
n

(
C
Cn

+ C
C+Cs+Cp

) ,

(15)
where

Cs =
N∑

m=1, m̸=n

ω2
mC

s2 + 2sωmξ m+ω2
mC/Cm

Cp =
I∑

j=1, j ̸=i

ϑ2
j

s2Mj+Kj
. (16)

In the above equations,Cs represents the contribution of the
residual degrees of freedom of the shunt circuit (m ̸= n), while
Cp reflects the influence of the residual degrees of freedom of
the primary system (j ̸= i). Since both terms are frequency-
dependent and involve unknown parameters ωm andξ m, two
assumptions are introduced to approximate these functions as
known constants.

1) For a resonant structure, response around frequency Ωi =√
Ki
Mi

(equation (15)) represents the transfer function of

the ith EDRB, indicating that the response Hi should be
analyzed around the resonant frequency Ωi), which is far
from the resonant frequency ωm (residual degrees of free-

dom of the shunt circuit (m ̸= n)) and Ωj =
√

Kj
Mj

(residual

degrees of freedom of the primary system (j ≠ i)), remains
relatively flat (figure 3). This suggests that Cs and Cp in

4
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Figure 3. Dynamic response of resonant structure.

equation (16) can be approximated as constant by making
ω =Ωi.
Note this assumption applies to the EDRB instead of struc-
tural modes. The EDRB framework, originally developed
in [33, 34], is particularly powerful to handle systems
with closely spaced or overlapping structural modes. A
key appealing feature is that even when multiple structural
modes share nearly identical natural frequencies, their com-
bined effect can be captured by a single dominant EDRB
through SVD of the measured response data. This effect-
ively ‘merges’ closely spaced dynamics into one EDRB,
thereby avoiding the need to resolve them individually.
Consequently, the resulting EDRBs typically exhibit well-
separated peaks. This built-in filtering mechanism ensures
that the final EDRB set satisfies the required separation for
the approximation.

2) Additionally, when the equivalent stiffness ratio µ (as
defined in equation (20)) of the absorber is much smaller
than 1 (which is generally the case for resonant absorbers),
the resonant frequency of the absorber should be very close
to the targeted resonant frequency of the primary system,
and the damping coefficient is usually small.

Taking these two assumptions (to be verified by sub-

sequent analyses), i.e. ω2
m

(
C
Cm

+ C
C+Cp

)
=Ω2

m, ξ m = 0,s=

jΩi, equation (16) can be approximated by

Cs =
N∑

m=1,m ̸=n

Ω2
m

C/Cm+ C
C+Cp

C

−Ω2
i +

Ω2
m

C/Cm+ C
C+Cp

C/Cm

Cp =
I∑

j=1,j ̸=i

ϑ2
j

−Ω2
iMj+Kj

. (17)

Substituting equation (17) into equation (15), the resid-
ual degrees of freedom associated with both the shunt circuit
and the primary system are eliminated, with their dynamic
effects approximately preserved. This enables the complex
PZT coupled system to be simplified as a two-degree-of-
freedom mechanical system, as shown in figure 4.

Figure 4. Equivalent mechanical model of piezoelectric structure.

The parameter mapping relationship between this equival-
ent mechanical model and the PZT structure is summarized as
follows (see appendix A for more details),

m1 =
Mi

ϑ2
i

, k1 =
Ki
ϑ2
i

, k0 =
1

C+Cs +Cp

k2 =
1
Cn

, m2 = Ln, c2 = Rn. (18)

With the PZT structure approximated as a two-degree-of-
freedom system, the fixed-point theory becomes applicable for
the design of the shunt absorber. Accordingly, the normalized
magnitude of equation (15) writes

Hi (s)Ki

=
−λ2 +β2 + 2λγjξ n

(−λ2 +β2)(−λ2 + 1)+µ(−λ2 + γ2C/Cn)+ 2λγ [−λ2 + 1+µ] jξ n
,

(19)

where

λ=
ω

Ωi
,γ =

ωn
Ωi

,β =
ωn
Ωi

√
C
Cn

+
C

C+Cs +Cp
,

µ=
ϑ2
i

Ki (C+Cs +Cp)
. (20)

According to the fixed-point theory, the frequency response
curve of equation (19) always passes through two invariant
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points, p and q, regardless of ξ n. These points can be determ-
ined by solving

−λ2 +β2

(−λ2 +β2)(−λ2 + 1)+µ(−λ2 + γ2C/Cn)

=− 1
−λ2 + 1+µ

. (21)

Solving this equation yields the expressions for the two
fixed points, given by

λ2
p,q =

1+µ+β2 ±
√

(1+µ+β2)2 − 2β2 (2+µ)− 2µγ2 C
Cn

2
.

(22)

The optimization procedure first equalizes the amplitudes
of the two fixed points p and q by adjusting the frequency ratio
γ. According to equation (21), one has

1(
−λ2

p+ 1
)
+µ

=− 1(
−λ2

q+ 1
)
+µ

. (23)

By substituting equation (22) into equation (23), the
optimal frequency ratio can be determined as

γopt =

√
1+µ

C
Cn

+ C
C+Cs+Cp

. (24)

Variations of the optimal frequency ratio γopt with µ and
Cn

C+Cs+Cp
are shown in figure 5. It can be observed that the

optimal frequency ratio may be either greater than or less than
1, depending on the value of Cn. When µ is small (which is
usually the case for resonant absorbers), the value of γopt ×√

C
Cn

+ C
C+Cs+Cp

is very close to 1.

Subsequently, the optimal damping ratio can be determined
by making the response of these two fixed points the peak val-
ues, i.e.

∂(Hi (s)Ki)
2

∂λ2
= 0. (25)

Two damping ratios ξ p and ξ q can then be derived by sub-
stituting equation (22) into equation (25), which however can-
not be satisfied simultaneously. In practice, one can use their
RMS value as the optimal damping ratio as

ξ opt =

√
ξ 2
p+ ξ 2

q

2
. (26)

Analytical expression of the optimal damping
ratio can then be derived through this equation,

ξ opt =

√√√√√√√√√√√√

−µ(Cr−Ce)
(
−Crµ+µCe+

√
2Ceα

)
+ 2

√
−µ3(Cr−Ce)

3
(
−Crµ+ 3µCe+ 2

√
2Ceα+ 2Ce

)
32µ(µ+ 1)(Ce−Cr)+ 8

√
2α(3µCe−Crµ+ 2Ce)

−µ(Cr−Ce)
(
Crµ−µCe+

√
2Ceα

)
+ 2

√
µ3(Cr−Ce)

3
(
Crµ− 3µCe+ 2

√
2Ceα− 2Ce

)
32µ(µ+ 1)(Cr−Ce)+ 8

√
2α(3µCe−Crµ+ 2Ce)

(27)

where

Cr =
C
Cn

Ce = Cr+
C

C+Cs +Cp

α=

√
µ(Ce−Cr)(µ+ 1)

Ce
. (28)

Variations of the optimal damping ratio ξ opt with µ and
Cn

C+Cs+Cp
are presented in figure 6. It can be observed that

the optimal damping ratio approaches zero as µ becomes
small.

2.3. Customization of vibration control

The average power spectral density of the structural displace-
ment can be expressed as:

SXX =
XHX
Ndim

, (29)

where Ndim is the number of the measurement/estimation
points.

Substituting equation (2) into equation (29) yields:

SXX =
VΣHMΣVH

m
, (30)

where

M=∆SmsU
HU,m=∆SmsNdim, (31)

6
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Figure 5. Variation of optimal frequency ratio γopt with µ and
Cn

C+Cs+Cp
.

Figure 6. Variation of optimal damping ratio ξ opt with µ and
Cn

C+Cs+Cp
.

in which ms is the normalized mass [32]; ∆S denotes the sur-
face area of the sampling unit as shown in figure 7m represents
the total mass of the primary structure.

Equation (30) can be reformulated for the ith EDRB’s res-
onant response as

Si =
η2iMi

m
, (32)

Figure 7. Surface area of a sampling unit.

Figure 8. Variation of maximum amplitude η2i
∣∣
max

with µ and
Cn

C+Cs+Cp
.

where ηi represents the ith element of vector η. According to
equation (19), the maximum normalized magnitude is given
by

Hi (s)Ki|max =
1(

−λ2
p+ 1

)
+µ

. (33)

By substituting equations (22) and (24) into the above
equation, the maximum response can be expressed as

η2i |max =
2F2

i (C+Cs +Cp +Cn)

K2
i µ [1+µ]Cn

. (34)

Variations of η2i
∣∣
max

with µ and Cn
C+Cs+Cp

are shown in
figure 8, which shows that the improved vibration control per-
formance can be achieved by:

7
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(a) increasing µ of the PZT patch. As indicated by
equation (20), µ is influenced by the coupling factor ϑi,
the inherent capacitance C, and the shunt circuit’s residual
effect Cs. Consequently, this entails the following design
strategies: (a1) employing a larger PZT patch to strengthen
the coupling; (a2) choosing a patch with small inherent
capacitance; (a3) Incorporating a negative capacitance
into the shunt circuit (in series or parallel) to decrease Cs

(refer to table 7 in appendix B for more details).
(b) utilizing a negative capacitance Cn. As shown in figure 8,

a negative Cn can always outperform positive capacitance
in terms of control performance, which however requires
external power. To achieve fully passive control, a pos-
itive capacitance with a larger value can be employed to
improve the performance while avoiding the need for act-
ive components.

We now discuss how to achieve a pre-defined control target.
Assuming that the absorber is designed to achieve Si|max = Ti.
According to equations (32) and (34), one has

Si =
Mi

m

2F2
i (s)(C+Cs +Cp +Cn)

K2
i µ [1+µ]Cn

= Ti, (35)

in which the unknown parameter Fi (s) can be determined
through the following optimization process,

argmin
Fi(s)

∥∥∥∥ηi (s)− Fi (s)
s2Mi+Ki

∥∥∥∥
2

. (36)

Substituting equation (36) into equation (35), the analytical
expression for the capacitance can be derived to achieve the
prescribed vibration reduction level as

Cn =
C+Cs +Cp

TiK2
i

2F2
i (s)Mi/m

µ(µ+ 1)− 1

. (37)

It should be noted that the expression of capacitance expli-
citly includes the generalized force term Fi (s), identified
based on the measured response data. As such, the proposed
design method is not restricted to specific excitation condi-
tions, but remains valid under arbitrary excitation scenarios.

In summary, the shunt absorber design procedure for cus-
tomized response control is as follows:

1. Extract the EDRB shapes: Measure or numerically simu-
late the structural response before attaching the PZT patch.
Apply SVD to the response data to extract the spatial shapes
of the EDRB.

2. Determine patch placement: Use the extracted EDRB
shapes to identify an attachment location for the PZT patch,
ensuring strong electromechanical coupling.

3. Identify the generalized force Fi (s): After mounting
the patch, measure the system’s frequency response
under short-circuit conditions. Analyze the response using
equations (2) and (36) to identify the generalized force
Fi (s).

4. Determine the electromechanical coupling coefficient θ:
Re-measure the response under open-circuit conditions
and compute θ based on the shift in resonant frequen-
cies relative to the short-circuit case, following the method
in [39].

5. Design shunt capacitance Cn: Employ equation (37) to cal-
culate the required shunt capacitance values that achieve the
desired vibration suppression performance.

6. Compute optimal inductance and resistance: Substitute the
derived Cn into equations (24) and (27) to obtain the
optimal frequency ratio and damping ratio, from which the
corresponding inductance Ln and resistance Rn can be cal-
culated using equation (14).

3. Numerical simulations and discussions

This section presents two case studies to validate the effic-
acy of the proposed design methodology. The first one
involves a rectangular plate, where a stringent response
control requirement is imposed to evaluate the feasibil-
ity of the method described in section 2. In the second
case, a square plate is used to assess the suitability of
the proposed method for systems with symmetric modes
and its capability to achieve all-equal-peak response
control.

3.1. Case 1: customized vibration control of a rectangular
plate

In this case, a simply supported aluminum plate with dimen-
sions of 500 × 200 × 1 mm is employed to numerically
demonstrate the effectiveness of the proposed design method-
ology. A unit point force is applied to the structure at the loca-
tion (10 mm, 10 mm), measured from the plate corner. A PZT
patch is attached at the center of the plate, with its geometric
dimensions and material properties provided in table 1. Since
in this case, the material properties and geometric parameters
of the PZT patch are known a priori, the electromechanical
coupling coefficient θ can be computed analytically using the
method described in [18].

Assume the objective is to design the absorber so that the
maximum displacement amplitude of the 1st peak is limited to
10 dB (with dB defined in equation (38)), and of the 3rd peak
to 30 dB. This control target requires the consideration of the
strong coupling between different degrees of freedom in the
shunt circuit, making it a good case to demonstrate whether the
proposed design method can effectively apprehend such coup-
ling in the absorber design. Notably, the second peak cannot
be affected because of the central location of the PZT patch.
Let us define

PSDdB = 10log10
PSD
P2
ref

, (38)

in which Pref = 2× 10−5m2Hz−1.
According to equation (37), achieving the desired vibra-

tion control requires the determination of the generalized force
Fi (s), which can be identified from the measured response

8
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Table 1. Geometric dimensions and material properties of piezoelectric patch.

Parameter Value

Length l = 10 mm
Width w = 10 mm
Thickness h = 1 mm
Young’s modulus Y = 5× 1010 N m−2

Poisson ratio v = 0.35
Strain/charge constants d31 = d32 =−190× 10−12 m V−1

Permittivity ε0 = 8.9× 10−12 Fm−1

Relative dielectric constant KT
33 = 1200

Capacitance C=
KT
33ε0lw
h

= 1.06× 10−9 F

Figure 9. Generalized coordinates of the two targeted EDRBs as defined by V in equation (2). The y-axis represents the values of the
corresponding singular vectors.

using equation (36). Figure 9 shows that the curve of Fi (s)×
Hi (s) closely matches the curve of ηi around resonant fre-
quency, indicating that the identified Fi (s) effectively cap-
ture the structural resonant response. The presence of the anti-
resonance followed by the resonance arises from the numerical
decomposition process inherent to the SVD algorithm.

The optimal frequencies and damping ratios can then be
obtained using equations (24) and (27), as tabulated in table 2.

It should be noted that the shunt absorber frequency defined
in equation (14) differs from the true resonant frequency
observed when the absorber is coupled with the PZT structure.
As given by equation (15), the coupled resonant frequency of

the absorber is equal to ω2
n

(
C
Cn

+ C
C+Rs+Rp

)
, which is affected

by the coupling introduced through the residual degrees of
freedom of both the primary system (as represented by Cp)
and the shunt circuit (as represented by Cs). Therefore, the
observation that the frequency of the 2nd absorber in table 2
deviates from the targeted peak frequency indicates that this
control requirement indeed creates a strong coupling condi-
tion for the shunt absorber.

The overall structural response (represented by the
displacement power spectral density, calculated using
equation (29) for 50 × 20 uniformly distributed measurement
points) of the primary structure before and after connecting
the shunt circuit is shown in figure 10. It shows that the max-
imum amplitude of the 1st resonant peak is indeed reduced

9
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Table 2. Optimal parameters of piezoelectric shunt absorbers.

Capacitance/Cn Inductance/Ln Resistance/Rn Frequency/ωn Damping ratio/ξ n

1st absorber 2.2× 10−9 F 6.2× 103 H 2.7× 105 Ω 62.2 Hz 0.057
2nd absorber 2.5× 10−12 F 4.4× 105 H 2.8× 106 Ω 7.3 Hz 0.068

Figure 10. Power spectral density displacement of structure. Response before connecting the shunt circuit is labeled as ‘Bare plate’, while
response after connecting the shunt circuit is labeled as ‘Plate + shunt circuit’.

to approximately 10 dB, and that of the 3rd resonant peak
roughly down to 30 dB. This demonstrates the effectiveness
of the proposed method and highlights its capability to achieve
customized vibration control. Additionally, equal peak amp-
litudes are observed around each controlled peak, indicating
that the proposed method effectively incorporates the complex
coupling effects into the absorber design.

The proposed design method, based on undamped systems,
is re-evaluated for damped systems by using a plate with vary-
ing damping ratios (figure 11). It can be seen that the method
remains effective for lightly damped structures (damping ratio
ξ < 1%). For highly damped systems, vibrational energy is
inherently dissipated to a significant extent, resulting in less
pronounced resonant responses, thus reducing the necessity of
using passive shunt absorbers.

3.2. Case 2: customized all-equal-peak vibration control of a
square plate

This numerical case investigates a simply supported square
plate with dimensions of 500 × 500 × 1 mm, subjected to a
point force applied at (125 mm, 125 mm), measured from the
plate corner. A PZT patch, 30 × 30 × 1 mm, is bonded again

to the center of the plate, with the same material parameters as
the ones used in section 3.1, tabulated in table 1.

The control objective for this case is to achieve an all-equal-
peak response across the targeted frequencies, with each peak
amplitude reduced to 40 dB. Similar to Case 1, the generalized
force Fi(s) should first be identified. The response of the plate
is numerically simulated and subsequently decomposed using
equation (2), followed by numerical optimization, as shown
in equation (36) to calculate the generalized force. Figure 12
demonstrates that the identified generalized force again well
characterizes resonant response of square plate with symmet-
ric modes.

Optimal frequencies and damping ratios are then determ-
ined using equations (24) and (27), yielding the final results
listed in table 3.

The overall response (represented by the displacement
power spectral density, calculated using equation (29) for
50 × 50 uniformly distributed measurement points) of the
primary structure before and after connecting the shunt cir-
cuit is shown in figure 13. The results demonstrate that the
two targeted resonant peaks have been effectively attenuated
to the pre-defined vibration level of 40 dB, which validates
the effectiveness of the proposed method for structures with

10
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Figure 11. Power spectral density displacement of structure for different damping ratios.

symmetric modes and its capability to achieve an all-equal-
peak response design.

4. Experimental validations

This section presents the experimental setup and the testing
results to validate the efficacy of the proposed absorber design
methodology. As illustrated in figure 14, a square stainless
steel plate of 500 × 500 × 1 mm with clamped boundary
conditions was tested. Nine small PZT patches, each meas-
uring 45× 45× 2 mm, were electrically connected in parallel
to form one single PZT patch. The plate was excited using
an electrodynamic shaker and a force transducer was used to
measure the applied force. Response of this system was col-
lected using a laser vibrometer (PSV 500).

Instead of using analog electrical components such as res-
istors, inductors, and capacitors, the designed shunt admit-
tance was emulated using dSPACE for experimental con-
venience. The analog circuit [12, 21], used to interface the
dSPACE systemwith the PZT patch, is shown in figure 15 (see
appendix C for more details).

Resistor values used in the circuit (figure 15) are given in
table 4.

As discussed in section 2, determining the optimal val-
ues of the shunt absorbers requires prior identification of two
parameters: the coupling coefficient θ and the generalized
force Fi(s). The electromechanical coupling coefficient θ

was determined from the shift in resonant frequencies
measured under short-circuit and open-circuit conditions of
the PZT patch [39]. The measurement using laser vibro-
meter (PSV-500) gave the corresponding results shown in
figure 16.

The resonant frequencies of the plate under short-circuit
(fsc) and open-circuit (foc) conditions are presented in table 5.

The generalized force Fi (s)was then determined by optim-
izing equation (36). It should be noted that equation (36)
assumes an undamped primary system, while experimental
data include unavoidable structural damping. Therefore, dir-
ect fitting across all frequencies may introduce bias near the
resonance peaks. To alleviate this, the identification algorithm
avoids the narrow resonance regions and focuses on the rest
of the curve where the undamped model provides a suffi-
ciently accurate approximation. To verify the correctness of
this optimization, the resulting Fi (s)Hi (s) is compared with
Vi (s), which corresponds to the ith column of V(s) derived
from equation (2). As shown in figure 17, the generalized
force F1 (s) accurately portraits the resonant behavior near
30 Hz, while F2 (s) fails to well match the frequency distribu-
tion of the 2nd EDRB. This is because, as shown in figure 16,
the structural response around 117 Hz is low in amplitude,
which hinders the accurate extraction of the EDRB during
the SVD operation on the measured response performed using
equation (2).

Once the control requirement was defined, the capacitance
values can be determined by substituting the identified

11
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Figure 12. Generalized coordinates of the two targeted EDRBs as defined by V in equation (2). The y-axis represents the values of the
corresponding singular vectors.

Table 3. Optimal parameters of piezoelectric shunt absorbers.

Capacitance/Cn Frequency/ωn
Damping
ratio/ξ n

1st absorber 2.6× 10−9 F 9.6 Hz 0.085
2nd absorber 3.3× 10−12 F 1.9 Hz 0.122

parameters into equation (37). The optimal frequencies and
damping ratios of the shunt absorber were then obtained using
equations (24) and (27), respectively. Since a digital circuit
was used to emulate the transfer function of the analog res-
onant circuit, the parameters (capacitance values, frequencies
and damping ratios) obtained in the previous steps need to be
updated to compensate for the influence caused by the time
delay introduced by the digital processing [40]. This com-
pensation turned out to be particularly important to ensure the

accurate design of the shunts. Corresponding details can be
found in appendix B.

As illustrated in figure 18, the discretized transfer func-
tion implemented in dSPACE matches well with the designed
response after being updated according to the correction for-
mulas detailed in appendix B. The updated transfer function
was injected into dSPACE, enabling the realization of the
desired transfer behavior between VADC and VDAC, as shown
in figure 19.

The overall response (represented by the displacement
power spectral density, calculated using equation (29) for
16 × 16 uniformly distributed measurement points) under
two different control targets is presented in figure 20. In the
first case, the control objective predefines a response level
of 12 dB around 30 Hz and −9 dB around 117 Hz. In
the second case, the desired levels are set to 9 dB around
30 Hz and—7 dB around 117 Hz, respectively. These two
different control requirements help eliminate experimental

12



Smart Mater. Struct. 34 (2025) 115014 H Li et al

Figure 13. Power spectral density displacement of structure. Response before connecting the shunt circuit is labeled as ‘Bare plate’, while
response after connecting the shunt circuit is labeled as ‘Plate + shunt circuit’.

Figure 14. Experimental setup.
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Figure 15. Analog circuit for the interface between dSPACE and the piezoelectric patch.

Table 4. Values of resistors in figure 15.

Rp1 Rp2 R1 R2 R3 R4 Rs

50k Ω 50k Ω 10k Ω 10k Ω 10k Ω 50k Ω 50k Ω

Figure 16. The response of the plate under short-circuit and open-circuit conditions of the shunt circuit.

Table 5. Resonant frequencies under short-circuit and open-circuit conditions.

fsc,1 foc,1 fsc,2 foc,2 fsc,3 foc,3

29.023 Hz 29.063 Hz 117.266 Hz 117.734 Hz 188.789 Hz 190.117 Hz

14
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Figure 17. Generalized coordinates and vibration shapes of the two targeted EDRBs as defined by V and U in equation (2). The y-axes in
subfigures (a1) and (a2) represent the values of the corresponding singular vectors contained in matrix V.

variability and ensure robust validation of themethod. The res-
ults in figure 20 demonstrate that the proposed design method
effectively controls the overall response of the primary struc-
ture to meet the pre-specified performance targets, despite
some noticeable deviations due to the inaccuracies in the iden-
tification of the generalized force and the coupling coefficient.
Nevertheless, we believe the ability of the proposed design
method in achieving customized vibration reduction target
(within the physical limitation of course) is reasonably con-
firmed through this experimental campaign.

5. Conclusions

In this study, a novel design methodology is proposed to
optimize the parameters of a multi-degree-of-freedom shunt
circuit feeding a PZT absorber based on the EDRB extracted
from themeasured structural response of the primary structure.
Due to the complex coupling induced by the multiple degrees
of freedom of both the primary system and the shunt circuit,
two simplifying assumptions are introduced to approximate
the continuous PZT structure as an equivalent two-degree-
of-freedom mechanical system. This approximation/simpli-
fication significantly reduces the complexity of the analysis
and the absorber design while approximately preserving the
structural-electrical interaction effects taking place inside the

coupled system. Based on this simplified model, an inverse
approach is proposed to customize the absorber design to
achieve pre-defined vibration control target. The validity of the
proposed approach is demonstrated through both numerical
analyses and experiments. The key conclusions drawn from
this work are summarized as follows:

(1) The proposed coupling analysis method and the simpli-
fied model effectively capture the salient dynamic features
of the PZT structure, offering practical advantages for the
design of the shunt absorbers.

(2) The proposed inverse design method provides an efficient
framework for achieving customized broadband vibration
control. Moreover, the optimization process is computa-
tionally straightforward, as the solutions can be directly
derived using analytical expressions.

(3) When using dSPACE to emulate the required shunt admit-
tance, system parameters need to be updated to com-
pensate for the effects of time delay introduced by digital
processing.

As a final note, a single PZT patch may be insufficient
to achieve adequate electromechanical coupling for all struc-
tural resonant frequencies. Consequently, the implementation
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Figure 18. Transfer function value of the attached shunt circuit. Response calculated by equation (13) is labeled as ‘Continuous h(s)’. After
digital processing, the transfer function implemented in dSPACE is labeled as ‘Discrete h(s)’. When parameters of shunt absorber are
updated using the formulas in appendix B, transfer function injected into dSPACE is labeled as ‘Discrete h(s) after updating’.

Figure 19. Measured signals of VADC and VDAC.
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Figure 20. Power spectral density displacement of structure. Response before connecting the shunt circuit is labeled as ‘Bare plate’, while
response after connecting the shunt circuit is labeled as ‘Plate + shunt circuit’.

of multiple PZT patches becomes necessary. This limitation
warrants further investigation in future studies.
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Appendix A. Modeling of the mechanical model in
figure 4

The equation of motion of the structure shown in figure 4
writes (

s2m1 + k1
)
x1 + k0 (x1 − x2) = f

k0 (x1 − x2)−
(
s2m2 + sc2 + k2

)
x2 = 0, (39)

where m1 and k1 denote the mass and stiffness of the primary
system, respectively; m2, k2, and c2 the mass, stiffness, and
damping of the absorber, respectively; k0 the stiffness of the
spring connecting the two mass blocks; x1 and x2 the displace-
ments of the primary system and the absorber, respectively;
and f the external force applied to the primary system. The
transfer function of the system can then be derived as:

H1 =
x1
f1

=
1

s2m1 + k1 + k0
s2m2+sc2+k2

s2m2+sc2+k2+k0

. (40)

According to section 2.1, the transfer function of the piezo-
electric structure is

Hi =
1
ϑ2
i

1

s2Mi

ϑ2
i
+ Ki

ϑ2
i
+ 1

C+Rs+Rp

s2Ln+sRn+ 1
Cn

s2Ln+sRn+ 1
Cn

+ 1
C+Rs+Rp

. (41)

By comparing the two transfer functions, namely
equations (40) and (41), it can be observed that the two
equations exhibit identical forms when:

m1 =
Mi

ϑ2
i

, k1 =
Ki
ϑ2
i

, k0 =
1

C+Rs +Rp

k2 =
1
Cn

, m2 = Ln, c2 = Rn. (42)

Appendix B. Time delay compensation method

When dSPACE is employed to emulate the behavior of an
analog circuit, the theoretically derived admittance Ȳ(s) devi-
ates from the actual admittance implemented in the dSPACE
system, denoted as Y(s). This discrepancy arises from the
time delay τ introduced during digital processing, and the two
admittance terms are linked by [40]:

Y(s) = Ȳ(s)
1− e−τs

τs
. (43)
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Table 6. Analytical expression for the updated parameters of shunt circuit containing single degree of freedom.

 ω̄1 =
√

1
1−τω1ξ 1

ω1

ξ̄ 1 =
ξ 1+

τ
4
ω1√

1−τω1ξ 1


ω̄1 =

√
1

1−τω1ξ 1
ω1

ξ̄ 1 =
4ξ 1+ω1τ

4

√
1

1−τω1ξ 1

C̄0 = C0


ω̄1 = ω1

ξ̄ 1 =
C2ω1τ+4C2ξ 1+8CC1ξ 1+4C2

1ξ 1

4C2−4CC1ω1τξ 1+8CC1−4C2
1ω1τξ 1+4C2

1

C̄0 = C0

{
ω̄1 = ω1

√
1− ξ 1τω1

ξ̄ 1 =
ξ 1+ω1

τ
4√

1−ξ 1τω1


ω̄1 = ω1

√
1− ω1ξ 1τ

1+C0/C

ξ̄ 1 =
4ξ 1−

ω1τ
1+C/C0

+ω1τ

4

√
1− ω1ξ 1τ

1+C0/C

C̄0 = C0


ω̄1 = ω1

ξ̄ 1 =
−4CC0ξ 1−C2

0ω1τ−4C2
0ξ 1

4C2ω1τξ 1+4CC0ω1τξ 1−4CC0−4C2
0

C̄0 = C0

Expanding the exponential function e−τs using Taylor’s
series expansion gives

e−τs = 1+
−τs
1!

+
τ 2s2

2!
+ . . . . (44)

Keeping the first three terms and substituting the resulting
expression into equation (43) yield

Ȳ(s) =
Y(s)
1− τs

2

. (45)

By equating the coefficients of different terms of the same
order, the updated natural frequency ω̄n, damping ratio ξ̄ n, and
capacitance C̄n can be analytically derived. The results for sev-
eral commonly used shunt circuits are summarized in tables 6
and 7.

where

ω1 =
1√
L1C

ξ 1 =

{
R1

2L1ω1
For Series RL Shunt Circuit

1
2R1Cω1

For Parallel RL Shunt Circuit
(46)

where

B1 =


N∑

m=1

ω2
mC

s2+2sωmξ m+ω2
mC/Cm

For Series RLCs Shunt Circuit

N∑
m=1

s2C/Cm
s2+2sωmξ mC/Cm+ω2

mC/Cm
For Parallel RLCs Shunt Circuit

B2 =


N∑

p=1,p̸=n

ω2
pC

s2+2sωpξ̄ p+ω2
pC/Cp

For Series RLCs Shunt Circuit

N∑
p=1,p̸=n

s2C/Cp

s2+2sωpξ pC/Cp+ω2
pC/Cp

For Parallel RLCs Shunt Circuit

.

(47)
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Table 7. Analytical expression for the updated parameters of shunt circuit containing multiple degrees of freedom.

ξ̄ n =
∣∣∣ ωnC/(2s)
(1+τs/2)B1−B2

− s2+ω2
nC/Cn

2sωn

∣∣∣ ξ̄ n =
∣∣∣ s/(2ωn)
(1−τs/2)B1−B2

− s2Cn/C+ω2
n

2sωn

∣∣∣

ξ̄ n =

∣∣∣∣ ωnC/(2s)
1

(1/B1+1/C0)(1−τ s/2)−1/C0
−B2

− s2+ω2
nC/Cn

2sωn

∣∣∣∣ ξ̄ n =
∣∣∣ s/(2ωn)
(B1+C/C0)(1−τs/2)−C/C0−B2

− s2Cn/C+ω2
n

2sωn

∣∣∣

ξ̄ n =
∣∣∣ ωnC/(2s)
(1+τs/2)(C0+B1)−C0−B2

− s2+ω2
nC/Cn

2sωn

∣∣∣ ξ̄ n =

∣∣∣∣ s/(2ωn)
C

(1+τ s/2)(C0+C/B1)−C0
−B2

− s2Cn/C+ω2
n

2sωn

∣∣∣∣
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Appendix C. Function of the analog circuit in
figure 15

The current i flowing into the piezoelectric patch is given by:

i = gcVDAC+ δc
VADC
α

, (48)

where

gc =
β (1− γ)

Rs
, δc =

(αγβ− 1)(Rp1 +Rp2)−Rs

Rs (Rp1 +Rp2)

α=
Rp2

Rp1 +Rp2
,β = 1+

R4

R3
,γ =

R1

R1 +R2
. (49)

When the admittance Y(s) is emulated across the two elec-
trodes of the piezoelectric patch, the following expression can
be obtained:

Y(s) =
i
Vp

=−gcα
VDAC
VADC

− δc. (50)

According to this equation, transfer function of the digital
unit can be derived:

F(s) =
VDAC
VADC

=−Y(s)+ δc
gcα

. (51)

To fully utilize the operational range of the op-amp, the
resistors in figure 15 should be selected such that the output
voltage approaches its maximum allowable amplitude.
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