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Abstract

®

CrossMark

The self-sensing damper is an effective vibration suppression actuator, particularly in scenarios
where installing additional sensors is prohibited. This study proposes a self-sensing
electromagnetic shunt damper to improve the linear model-based velocity prediction accuracy
and extricate the heavy dependence on external sensors. By introducing a gradient boosting
regression (GBR) model with feature-engineered voltage signals, lagged derivatives, and
polarity information for data-driven velocity inference, the prediction error is reduced by 14%
versus the traditional GBR model. The model is optimized and pruned via cross-validated grid
search to fit 32 KB microcontroller flash memory, enabling real-time computation. An
integrated balance logic algorithm is then adopted for energy-efficient adaptive control with the
adjusted load resistance based on the predicted velocity. Moreover, the experimental results with
swept sinusoidal excitation confirm the high-precision velocity prediction accuracy and
effective vibration suppression performance. This sensor-free and low-cost solution simplifies
system architecture, reduces installation complexity, thereby holding great promise for broad
applications in civil engineering, automotive engineering, and precision machinery.

Keywords: self-sensing actuator, electromagnetic shunt damper, velocity prediction,
adaptive vibration control

Nomenclature

EMF
EMSD
GBR
MCU
MI
RFE
RMS
RMSE
SDOF
SHAP
SS-EMSD

Electromotive force
Electromagnetic shunt damper
Gradient boosting regression
Microcontroller unit

Mutual information

Recursive feature elimination
Root mean Square

Root mean square error
Single-degree-of-freedom
Shapley additive explanations
Self-sensing electromagnetic shunt damper

* Author to whom any correspondence should be addressed.

1. Introduction

Ranging from precision instrumentation and seismic mit-
igation to mechanical system design, vibration suppression
remains a critical determinant of performance, reliability,
and service life across applications. Conventional passive
strategies, while structurally simple and inherently stable,
often struggle to reconcile efficiency with adaptability under
complex and variable dynamics. This has shifted attention
to semi-active control with tunable damping-particularly the
EMSD, which employs adjustable resistor networks to modu-
late damping on demand and offers prospects for self-powered
operation.

Over recent years, EMSD development has followed two
prominent trends: bidirectional energy-damping flow and

© 2025 IOP Publishing Ltd. All rights, including for text and
data mining, Al training, and similar technologies, are reserved.
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tunable electromechanical coupling. Li and Zhu [1] proposed
a hybrid bidirectional energy-regenerative electromagnetic
damper with synthetic impedance that emulates multiple con-
ventional devices while harvesting energy. Shen et al [2] integ-
rated inerters into a tuned electromagnetic damper to enhance
tunability and generate electrical energy on a full-scale cable
test. For structural and base isolation, Li ez al [3] coupled eddy-
current damping with inertial effects in tuned mass damper-
inerter systems, Sun et al [4, 5] developed quasi-zero-stiffness
Gough-Stewart isolation platforms with active control. In
automotive engineering, Tan et al [6] realized semi-active
suspensions capable of simultaneously modulating damping
and inertial forces, showing superior multi-band performance
over hydraulic counterparts. Moreover, self-sensing windings
have been embedded into electromagnetic shunt dampers to
unify damping and velocity measurement [7], and Zaccardo
and Buckner [8] addressed position-estimation errors from
magnetic saturation and duty-cycle variation in active mag-
netic dampers. With interdisciplinary mechanisms such as tri-
boelectric energy harvesting and artificial intelligence, Cui
et al [9] developed adaptive vibration suppression-energy har-
vesting systems, while Tang et al [10] integrated Al-driven
magnetic-friction hybrid generators with structural-state iden-
tification for train vibration monitoring. These efforts lay a
foundation for multifunctional, multiphysics-coupled EMSD
technologies, yet they also expose a continuing reliance on
internal state awareness-motivating the following discussion
on self-sensing techniques.

For self-sensing capacity, the goal is to acquire struc-
tural state and actuation signals without external sensors.
Shen et al [11] used piezoelectric elements to harvest energy
while detecting optimal switching instants, overcoming tim-
ing delays inherent in synchronized switching damping on
inductor systems. Qin et al [12] transplanted a permanent-
magnet synchronous motor model into a semi-active EMSD to
estimate displacement and velocity online. Earlier, Hong and
Pang reduced modal amplitudes by 50%—75% in dual-stage
hard-disk suspensions using indirect drive-based approaches
[13], and Freyer et al [14] validated around 10 dB attenu-
ation at a tool’s primary mode via hardware-in-the-loop self-
sensing control. Since then, applications have expanded rap-
idly: Li et al [15] developed an ultrasonic elliptical-vibration
cutting system with real-time tool-path estimation; Mao and
Dankowicz [16] exploited amplitude ratios of coupled oscil-
lators for nanoscale mass detection; Li ef al [17] combined
digital-twin modeling with SVM-based self-sensing sliding-
mode control to suppress chatter in high-dynamic machin-
ing. With actuator functionality, Chang et al [18] introduced
an impedance-current estimation method, and Hu et al [19]
proposed a two-dimensional compensation strategy advan-
cing piezoelectric actuators toward fully closed-loop, self-
sensing active control. Collectively, these studies show that
self-sensing can deliver sufficiently accurate state information
to underpin real-time adaptive control.

For semi-active strategies, researchers have combined
self-sensing with intelligent algorithms and reconfigurable

structural units to approach a low-power, high-performance
paradigm. Piezoelectric circuit systems, such as synchron-
ized switch damping on voltage sources [20] and on negative
capacitance [21], achieve significant damping with milliwatt-
level power via synchronized switching. Jiang et al [22]
utilized data-driven model identification for low-frequency
vibration control. In industrial robotics, Neubauer et al
[23] applied an H, co-design strategy to reduce trajectory-
tracking errors by 42.7%, while Zhang et al [24] used an
LSTM prediction-fuzzy control framework to coordinate seis-
mic mitigation of adjacent tall buildings. To accommodate
long-span or complex structures, co-evolving devices and
algorithms have been explored, including cross-floor cable-
based displacement amplification [25], the unconditionally
stable SSE-a integration scheme [26], bio-inspired struc-
tures [27], and high-utilization displacement amplification
devices [28]. Meanwhile, high-damping cables [29], nonlin-
ear tool-damper coupling [30], and centrifugal pendulum-
mixed mechanisms [31] broaden operating bandwidths and
load ranges. Cross-domain integration with energy harvesting
is also accelerating: bio-inspired structures [32], monostable
harvesters [33], bistable harvesters [34], tristable harvesters
[35], hybrid train-based energy collection systems [36], and
magnetorheological elastomer-based absorbers [37] all val-
idate the feasibility of closed-loop systems that couple self-
sensing, energy supply, and damping tuning. Beyond classical
platforms, Tian et al [38] applied self-parametric optimiza-
tion to quantum sensing for low-frequency active vibration
isolation.

Despite these advances, the deployment of EMSD in
advanced applications still faces two principal challenges.
First, traditional linear models are inadequate to capture the
strongly nonlinear coupling between induced coil voltage and
relative velocity, leading to prediction errors. Second, depend-
ence on external displacement or acceleration sensors inflates
hardware cost, system complexity, power consumption, and
installation difficulty in space-constrained settings. To address
these issues, this study proposes a SS-EMSD framework that
integrates data-driven modeling with embedded real-time con-
trol, aiming to improve vibration suppression while simplify-
ing system architecture. The key innovations of this work are
threefold:

(1) Nonlinear mapping via GBR: the GBR algorithm is
applied in the proposed SS-EMSD, employing feature
engineering and lagged-term combinations to accurately
characterize the complex voltage-velocity relationship.
This method reduces the prediction error by 14% com-
pared with the traditional GBR method.

(2) Prediction optimization through hyperparameter tuning
and model pruning: a system optimization approach
that includes cross-validated hyperparameter search and
lightweight model pruning is implemented, thereby
striking a balance between the predictive performance
and the resource requirement. This ensures the GBR



Smart Mater. Struct. 34 (2025) 105021

Q Xu et al

model achieves minimal error while meeting the strin-
gent memory and computation constraints of embedded
platforms.

(3) Embedded adaptive damping control logic: by compress-
ing and porting the optimized GBR model into resource-
constrained microcontrollers (e.g. Arduino), millisecond-
scale velocity prediction and online damping-force adjust-
ment are realized. This self-sensing scheme eliminates
dependency on external sensors, simplifies the control
architecture, and reduces energy consumption.

This paper provides the theoretical analysis of the self-
sensing real-time control for EMSDs and the experimental
verification of the semi-active vibration control performance
with the proposed SS-EMSD, thereby offering new direc-
tions for future developments in precision vibration mitiga-
tion. This paper provides the theoretical foundation and exper-
imental validation of a self-sensing real-time control frame-
work for EMSDs, aiming to enable sensor-free, adaptive vibra-
tion mitigation. The rest of the paper is organized as follows.
Section 2 introduces the self-sensing mechanism and the asso-
ciated damping control logic. Section 3 presents the experi-
mental setup and system identification procedure. Section 4
discusses the test results under various operating conditions to
evaluate both sensing accuracy and vibration suppression per-
formance. Section 5 concludes the paper with a summary of
findings and future perspectives.

2. Design and modeling

This section elaborates on the working principle and modeling
method of the proposed SS-EMSD. Firstly, the mechanism and
theoretical basis of electromagnetic damping and force track-
ing control are introduced. Then, the GBR procedure is derived
in detail to predict the relative velocity accurately. Moreover,
the real-time damping control algorithm of the system is also
interpreted.

2.1. Tunable EMSD

For EMSDs, Faraday’s law of induction underpins the energy
conversion from mechanical motion into electrical power.
‘When a conductor with the effective length I moves at the velo-
city of v through the magnetic flux density 3, the resulting
EMF is

£ = Blv. (1
In principle, if the conductor moves in a spatially varying
magnetic field B, (x, r) at velocity x, the induced EMF is given

by
= —yﬁBr (x,r)dlx, 2)

which highlights the two influence factors of the EMF: the
magnetic flux density and the relative velocity.

The transduction factor K; is a key parameter describing
how the mechanical energy is converted into electrical energy.
For a single loop, it can be written as

K= —%Br (x,r)dl. 3)

For the entire coil (with length I, and cross-sectional area
Across), it often involves the integration of the magnetic flux
density over the coil region:

o X2

K =— hvire B, (x,r)dx dr.
ACI‘OSS
reoxi

“

When the coil is connected to an external resistor Rjy,q, the
combination of coil resistance R;, and Rjy,q yields the circuit
impedance Z. The EMSD then exerts an equivalent damping
force on the vibrating structure:

KZ

Fe—*tza

> 5)

where 7 is the relative velocity between the coil and the mag-
netic column. For a purely resistive circuit with total resistance
Riy and Ryy,4, the damping coefficient ¢, becomes

K

—. (6)
Rin + Rload

Ce =

As shown in figure 1(a), several N32 NdFeB ring-shaped
permanent magnets are utilized to build the opposing magnetic
column in this study. The inner hole diameter of the magnet is
5 mm, the outer diameter is 35 mm, and the thickness is 6 mm.
Two magnets are arranged in opposite polarities with screw-
nuts so that the two S magnetic poles are physically connected
in figure 1. The magnetic flux density with the arranged mag-
net column is simulated using a magnetic analysis software for
the transduction factor K; calculation. Moreover, the induction
coil is fabricated from high-purity enameled copper wire with
a diameter of 1.2 mm and an overall wound length of 120 mm,
ensuring a low-resistance path and high sensitivity to motion-
induced EMF in the core region.

2.2. Self-sensing with GBR model’

Since the EMF is related to the relative velocity, the EMSD
velocity is possible to be obtained by the real-time meas-
ured voltage u of the external resistor Rj,,q. The relationship
between the relative velocity z and the measured voltage u can
be expressed by

u

. 7
)

= f
load
K (Rin+Rload

To obtain a more accurate measure of the SS-EMSD velo-
city, a data-driven model based on GBR in figure 2 is proposed
for real-time prediction of relative velocity from the induced
voltage. Suppose N discrete samples are collected, denoted
{1, ui,vi}f.vzl, where ¢; is the time step, u; is the coil voltage,
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Figure 1. Detailed schematic diagram of the magnetic column structure of the electromagnetic damper prototype.

and v; is the ground-truth relative velocity measured by a
high-precision laser displacement sensor. Because the velo-
city changes only moderately within each interval [¢; _1, 7], the
time derivative of the voltage is approximated by a backward
difference

Ui —ui—1

, Ati=1,—
Atl i i

i = ti—1,i 22, u1=0 (8)

Because practical electromagnetic dampers exhibit
memory and lag effects, the feature vector X; is augmented
with lagged terms up to order L = 4:

T e R,
9

Xi = [ui, ity sgn (i) ,ui 1,01, Wi —p, Ui 1]

If i < L,insufficient lags are padded with the initial voltage
uy and i1; = 0, preventing boundary information loss. The sign
function sgn (i;) is used to classify the instantaneous motion
into rising, steady, or falling phases, thereby capturing the dir-
ectional dependence inherent in electromagnetic hysteresis.
This representation retains the instantaneous magnitude and
slope of the voltage while encoding the non-stationary, path-
dependent characteristics of the system simultaneously.

For regression, a gradient-boosted ensemble of regression
trees with squared-error loss is adopted. For each training

sample set Dy the model output is

M
y :Znhm(X,-;am), 0<n<l,

m=1

(10)

where 4, is a classification and regression tree of depth at
most 3, M is the number of base learners, and 7 is the learn-
ing rate; and each tree is trained on a random subsample of size
ratio S to mitigate overfitting. The parameter set § = {am}i‘n"(:1
minimizes the empirical risk £ (6):

>

i €D,

0 (Xi;0))”. D

IDtrl

The model performance on the independent test set Dy, is
quantified by the RMS error

1 12
RMSE = — Vi—Vi) .
\/ ] 2 )

i eDte

(12

To qualify the model predictions performance with the true
values, the coefficient of determination R* can be defined as:

A N2
ZiEDw (vi =)
ziEDte (Vi -V

RP=1-— (13)
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Figure 2. Structure diagram of the self-sensing velocity prediction
model of the SS-EMSD based on GBR.

) Final Prediction

Velocity

where the closer R? is to 1, the better the prediction. And the
predicted velocity is:

(14)

_ 1
V= |Dle| Z Vi.

€D,

The complete mapping is shown in figure 2, which shows
the complete data-driven model process from extracting fea-
tures of the induced voltage (including voltage difference and
historical lag terms) to using the GBR algorithm for real-time
relative speed prediction.

2.3. Feature selection and parameter optimization of the
GBR model

To improve the predictive accuracy of the GBR model under
on-board constraints, the voltage-derived features directly
from induced EMF in time domain are heeded. Because the
coil EMF is proportional to the time rate of change of the flux
linkage, the first derivative i (implemented as a discrete differ-
ence) carries information that is approximately proportional to
the relative velocity, while its polarity sgn (Au;) resolves the
motion direction. Since the SS-EMSD exhibits hysteresis and
circuit/core memory, a short set of lags is included to encode
rate- and path-dependent effects.

MI, RFE, and SHAP are commonly used feature selec-
tion techniques to quantify the relative contribution of each.

Specifically, the MI was computed between the candidate fea-
ture X and target velocity Y using:

1xn=Y">»p (x,y)logpp(x’y) (15)

et x)p ()’

where p(x,y) is the joint probability distribution of feature
value x and target value y, while p(x) and p(y) are their
respective marginal probabilities. This quantity captures the
reduction in uncertainty about Y and the given knowledge of
X, and thus quantifies the feature information for predicting
the target.

In addition to MI, RFE was applied to iteratively prune less
relevant features based on feature importance derived from the
GBR model. Furthermore, SHAP was utilized to provide a
more interpretable and theoretically-grounded quantification
of the feature impact. The SHAP value ¢ for a feature i is
computed as:

[SILCAE] = 18] = 1!
|£]!

fsugiy (xsugiy) —fs (xs)] -

(16)

where F is the full set of input features, S is any subset without
containing feature i, and fs (xs) is the model’s prediction when
only features in S are known. The SHAP formulation reflects
the average marginal contribution of feature i across all pos-
sible feature subsets, weighted by the number of permutations
in which the subset appears. This approach ensures a fair and
consistent attribution of the prediction to each input feature,
grounded in cooperative game theory.

The predictive capability of the GBR model is highly sens-
itive to its hyperparameters: number of trees (M), learning
rate (1), tree depth (dmax), subsample ratio (S), and the full
set of input features F. To find optimal hyperparameter set-
tings, a grid search combined with 10-fold cross-validation
was applied to minimize the empirical loss function:

k
1
Best parameters = arg ;ni(ral p E RMSE, (6). a7
€
i=1

In parallel, Bayesian optimization was employed as a
complementary search strategy to efficiently explore optimal
hyperparameter spaces.

2.4. Damping control logic

Figure 3 shows the application principle of SS-EMSD.
Following the data-driven identification of the voltage-to-
velocity relationship, the prediction model must be embed-
ded in a real-time firmware so that the EMSD can adjust its
electrical load online. The microcontroller collects coil voltage
samples at a frequency of 50 Hz. Then, the measured voltage
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Figure 3. A real-time closed-loop control integrated a single-degree-of-freedom (SDOF) vibration system combined with SS-EMSD,
including the control strategy, the electromagnetic damper, and the circuit components.

signals from four rapid analog-to-digital converters are aver-
aged to attenuate quantization noise as

ADCyo, iy
k42 Vier, (18)

1023

where Vit is the reference voltage of the firmware.
With a fixed step At, the discrete derivative of the averaged
voltage can be expressed as

U — Up—1

o (19)

iy =
which provides the directional information for accurate velo-
city inference (proved in section 3).

To reach the flash constraint of the MCU while preserving
the nonlinear accuracy of the GBR model in Section 2.2, the
full ensemble is compressed. The real-time calculation of the
speed v in the MCU is converted to:

(20)

M/
Vi = Z Ynhm (Xk) s
m=1

where M’ is the number of trees after compression, 7, is scal-
ing weights, and X}, is the voltage feature set except that u;, is
collected by the MCU in real time.

In this paper, a balance-logic adaptive damping control is
proposed. The essence of balance logic is that the damper is
engaged only when the relative displacement x; and the relat-
ive velocity v, have opposite signs (or v¢ = 0), i.e. when. Under
this condition, the damper functions as the mass moves back
toward its equilibrium position. When x;v; > 0, the damper is

switched off so that it does not inject additional energy into the
system.

The inferred status of {x;, v} drives the piece-wise damp-
ing law to set the control damping force

n@:{

where k; is the balance-logic gain that scales the damping force
in proportional to the instantaneous displacement magnitude
|xx|; a larger &, yields a greater real-time damping action.

The balance logic strategy, first introduced by Rakheja and
Sankar [39] and later refined by Stammers & Sireteanu [40],
is widely adopted for reducing chassis acceleration in semi-
active suspensions and adapted to EMSD in this paper.

In the proposed SS-EMSD, the mechanical damping is
inversely related to the total circuit resistance; equating with
the electrodynamic expression equation (5) yields the target
load resistance Reyc (k),

kg |xi| sgn (vi) , 0 <0,

0,x,v >0 @h)

K
2550 Rt Ve~ Rin > 2550
Reae (k) = mfgve—Rin 02 < % — Rin <2550
09 00 < 7tV — Rin

(22)

where the adjustable resistance range in this study is 0-255 €.

In summary, equations (15)—(19) constitute an integ-
rated firmware workflow that links the statistically inferred
voltage-to-velocity mapping to an adaptive damping mech-
anism. The system measures voltage, predicts velocity in
real time, calculates the necessary damping coefficient, con-
verts it to an electrical load, and actuates the corresponding
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relay configuration-while broadcasting precise displacement
for supervisory monitoring simultaneously. This closed-loop
implementation demonstrates that the predictive model can
develop earlier transitions into a practical, low-latency control
strategy seamlessly for the velocity-adaptive electromagnetic
damping adjustment.

3. Experimental setup and parameter identifications

To verify the expected control force tracking and relative velo-
city prediction performance under excitation, an SS-EMSD
prototype was fabricated and installed on the exciter for test-
ing, as shown in figure 4. In this section, the corresponding
model parameter identification process is also elaborated in
detail.

3.1. Experiment setup

In the experimental platform, an SDOF spring-mass sys-
tem with SS-EMSD is mounted on a non-contact shaker.
The key components comprise an EMSD with the opposed-
magnet-column, an eight-channel solid-state relay array, and
an adjustable resistor network. All components are rigidly
affixed to an optical table to ensure the smooth experimental
operation of the system. Excitation signals are produced by
a signal generator and amplified by a power amplifier. Then
the non-contact exciter is driven to shake under specific
waves, thereby inducing relative motion in the upper mass-
spring-EMSD assembly. A variable resistor connected with
the EMSD coil in series is governed by Arduino UNO R3 (an
MCU switches the relays in real time), discretely adjusting the
external load resistance to generate the required damping force
specified by the control algorithm.

To realize the real-time damping-force control with the
self-sensing capability, the acquisition of the EMSD state
has been shifted from an external laser displacement sensor
to an AC voltage transducer. The coil voltage is first rec-
tified and filtered to obtain an equivalent DC RMS value.
This signal is then galvanically isolated by the voltage trans-
ducer and converted into the coil’s relative velocity by the
MCU, which serves as the sole state variable of the closed
loop. Consequently, the control loop is completely freed
from external displacement or acceleration sensors, redu-
cing energy consumption and eliminating additional assembly
errors. Two HG-C1100 laser displacement sensors are retained
exclusively for off-line validation: after each experiment, the
displacement-velocity sequences measured by these sensors
are compared with the self-sensed velocity by SS-EMSD to
assess damping force tracking errors.

The adopted balance logic strategy is a real-time damping-
force control scheme. During every sampling period, the MCU
reads the coil relative velocity provided by the AC voltage
transducer and immediately calculates the desired damping
force. Relay switching follows a forward look-up table: within
a 0.1 s update interval, the MCU selects the next resistance
level that minimizes the squared error between the previ-
ous desired force and the attainable discrete force. Therefore,

a real-time approximation of the target damping curve is
achieved without altering the underlying damping-force com-
putation. The remaining equipment for the experimental test
is listed in table 1.

3.2. Model parameters identification

When the platform is excited by a swept-sinusoidal wave from
0.1 Hz to 10 Hz, the measured response curve of the SDOF
system is plotted in figure 5 to obtain the characteristics of the
system. As the excitation frequency increases, the vibration
amplitude of the system gradually increases and reaches a peak
at the natural frequency of the SDOF system (about 5 Hz), then
decreases after crossing the resonant peak. Figure 5 illustrates
the frequency response of the SDOF system in the open-circuit
condition, which exhibits the classical bell-shaped amplitude
profile typical of a lightly damped system, where the peak
appears at the natural frequency due to resonance. In order to
verify the resonance suppression and energy harvesting per-
formance, this experiment is conducted with the excitation fre-
quency band around 5 Hz.

4. Training on self-sensing data

This section describes the formulation, training, and valida-
tion of the voltage-to-velocity model; reports cross-validated
performance metrics; and specifies the compression strategy
that enables embedded deployment with a 32-KB memory
constraint.

4.1. Model training

In this section, the training procedure and performance eval-
uation of the voltage-velocity mapping model based on GBR
are presented. Firstly, the measured signal samples are used
to extract the time series ¢, the coil induced voltage u, and
the true velocity v calculated by the laser displacement
sensor and smoothed by the first derivative as shown in
figure 6. Unlike conventional force-displacement hysteresis,
the voltage-velocity loop captures the nonlinear conversion
effects in the electromagnetic domain, as the coil EMF is
induced by the relative motion within a spatially varying mag-
netic field. To express the hysteresis and memory effects expli-
citly in the model, all the sample points should contain the
current voltage iy, its time derivative i, direction symbol
sgn (1), and the fourth-order lag {uk_[,itk_[};;l dimensions
of characteristic vector Xy.

To estimate the relative velocity of the EMSD accurately
from the measured voltage, a GBR model is developed and
optimized. The raw dataset includes voltage signals u (¢), time
sequences t, and the corresponding ground-truth velocity v (z).
To weigh the model accuracy, a set of 14 derived features was
constructed, incorporating the first and second-order voltage
derivatives (du/dt, dzu/dtz), moving statistics, polarity sign,
and up to four lagged terms. The contribution of each fea-
ture was first assessed using two ranking strategies: MI and
RFE. As shown in figure 7(a), the MI analysis indicates that
the derivative-related features contribute most significantly to
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Figure 4. Experimental setup of the SDOF vibration system with the proposed SS-EMSD.

Table 1. Component parameters.

No. Equipment name Model and specifications

1 Microcontroller Arduino UNO R3

2 Sensors Panasonic HG-C1100

3 Digital oscilloscope PIGOL DS4082

4 Power amplifier Aigtek ATA-309 C

5 24V sensor battery Taiwan Mean Well DC Switching
Power Supply LRS-50-2

6  Adjustable resistor 3296 W potentiometer, adjustable
range 0-200 2

7 AC voltage transmitter ~ Anhui Qidian AC voltage transmitter
customized version

8  Solid-state relay module Shenzhen Risym, 8-channel 5 V

high/low level solid-state relay

velocity prediction. Furthermore, RFE results in figure 7(b)
confirm that the selected 8 optimal features include all high-
value derivative and lag terms, which supports their import-
ance in mapping the measured voltage to the velocity.

Subsequently, the dataset was divided into training and test
sets (Dy: Die = 80% : 20%), and a 10-fold cross-validated grid
search was conducted to tune the GBR model. The optimal
hyperparameters were: the learning rate, the maximum tree
depth dp,x =4, the number of estimators M = 400, and the
subsampling ratio 0.8. The model converges quickly with
squared loss training, which is also evaluated on the test set.

As shown in figure 8, the averaged cross-validation RMSE
across folds is 0.02313 m s~ !, and the standard deviation is
0.00758 m s~!. The averaged cross-validation RMSE results
are consistently low, which validates the model’s generaliza-
tion capacity and confirms the absence of overfitting.

Further testing for the velocity reconstruction task is illus-
trated in figure 9, which compares the true velocity against
the predicted results. In figure 9(a), the standard GBR model
shows good agreement in both amplitude and phase, although
minor underestimation is visible between 3.10-3.20 s. To

12
—— Open circuit
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£ 4
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Q
s 0r
)
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_12 1 | | 1
0 2 4 6 8 10
Time (s)

Figure 5. Displacement response of the SDOF system with swept
sinusoidal excitation.

enhance alignment, the GBR model is optimized in figure 9(b).
Compared with the traditional R*> =0.921 and RMSE of
0.04035 m s~ !, the final model achieves a determination coef-
ficient R> = 0.942 and a test-set RMSE of 0.03461 ms~!. The
prediction error is reduced by 14% versus the traditional GBR
model, which is well within the accuracy bounds for real-time
damping control.

4.2. Application of self-sensing model in MCU

The selected MCU for this experiment is Arduino UNO
R3, whose internal Flash memory size is only 32KB. To
meet the 32 KB flash constraint of the Arduino UNO R3
while preserving the nonlinear accuracy of the GBR model
in Section 2.2, the full ensemble is compressed rather than
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Figure 7. Feature selection results: (a) feature importance based on MI; (b) ranking results from RFE, where red bars indicate selected
features. (MA [u(f)] is moving average of voltage u (), STD [u(7)] is standard deviation in sliding window and At is time step between

samples).

retrained. Each tree depth is pruned to less than 3, corres-
ponding thresholds and leaf values are quantized to 16-bit
signed integers, which reduces the MCU memory by 84%.
The remaining M’ trees are exported as a sequence of ‘if-else’
statements through a code-generation script, so the MCU only
executes integer comparisons and additions. The runtime com-
plexity for evaluating the ensemble is O (M'd), where M’ is the
number of compressed trees and d is the maximum tree depth.
The complexity corresponds to approximately 45 comparison-
and-addition operations per sample, which remains well below
the 20 ms sampling interval of the MCU. In this way, the ori-
ginal GBR mapping is evaluated on board with almost no loss
of the test-set obtained offline. The code generation was per-
formed with micro-GBDT (gradient boosting decision tree in
Python script, open source); the resulting C header occupies
8.2 KB in flash and 520 bytes in SRAM (static random-access

memory), which is well within UNO R3 limits. Compared
with the linear surrogate (), the compressed-GBR keeps the
full nonlinear mapping (R*> = 0.942) as shown in figure 6(b).
And the increased instruction cycle (less than 5 us) has a con-
siderable performance improvement on the closed-loop vibra-
tion control. Finally, the red feature item in figure 7(b) is selec-
ted as the reference feature for prediction. In addition, con-
sidering the hardware limit of the electromagnetic damper,
the initial balance logic parameter k; is set to 8 N m~!. The
remaining parameters are listed in table 2.

5. Experimental results and discussion

In order to validate the theoretical model and verify the
feasibility of the system, experiments are required. With the
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Table 2. Identified parameters.

System Notation ~ Value
ms 3.2787 kg
my 0.0423 kg
EMSD k 640 Nm™!
K 34
Rin 0.8Q
Vref 5V
M 400
n 0.03
Self-sensing ~ R? 0.942
RMSE 0.03461 m s~
M’ 15
ks §Nm™!

experimental setup in section 3 and the identified system para-
meters in section 4, the measured experimental results are ana-
lyzed in this section.

5.1 Vibration suppression performance using the balance
logic

The experimental validation for the SS-EMSD was compre-
hensively conducted with the 1-10 Hz excitation. The dis-
placement responses under both controlled conditions (bal-
ance logic and open circuit) are shown in figures 10-12. Since
the mass effect is dominant rather than the damping effect in
the low-frequency range (1-2 Hz in figure 10), there is no
effective vibration reduction in this frequency range.

The vibration attenuation is particularly evident when the
excitation is near the system’s natural frequency. The vibra-
tional amplitude is approximately decreased from 3 mm to
2 mm after the damping is tuned with the balance logic con-
trol strategy. In the intermediate frequency spectrum (3-6 Hz,
figure 11), the system shows robust suppression performance
continuously and consistently.

After crossing the resonant peaks, the tunable damping is
still effective, but not as good as the resonant frequency range.
Particularly, the balance logic control strategy shows adaptive
capability for the higher frequencies (7-10 Hz) as shown in
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Figure 11. The displacement response curves with the 4—6 Hz sinusoidal excitation.

figure 12. The vibration response amplitude is cut by almost
half with 10 Hz sinusoidal excitation.

The vibration control sustains its damping efficiency, albeit
with slightly diminished magnitude, further highlighting the
robustness and broad-spectrum adaptability of the balance
logic mechanism. Overall, a peak vibration attenuation of
approximately 15% at resonance and an average suppression
consistently exceeding 10% across the tested frequency range,

1

which confirms the significant practical implications of the
proposed SS-EMSD system.

5.2. Velocity prediction performance

The velocity predicted by the GBR model and the actual meas-
ured velocity obtained from high-precision laser displace-
ment sensors are compared in figure 13. These results clearly
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Figure 13. Velocity prediction accuracy performance evaluation of damping force under 5 Hz excitation condition: detailed comparison
between the real-time predicted speed of the model and the real speed waveform measured in the experiment.

underscore the model’s advanced capability of reconstruct-
ing the SS-EMSD relative velocity with remarkable precision
in terms of both amplitude and phase alignment. Even with

minor deviations during transient dynamics, the phase consist-
ency is preserved at over 85% accuracy, demonstrating reliable
alignment between predicted and measured waveforms. The
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high phase fidelity strengthens confidence in the model’s suit-
ability for real-time control and validates the efficacy of the
data-driven approach for accurate, dependable embedded
velocity inference.

5.3. Step excitation response

This section illustrates the SS-EMSD system’s dynamic
response with the step excitation, assessing its robustness
and adaptability under unpredictable and variable vibrational
scenarios. When the system is under step excitations, the
response curves in figure 14(a) reveal that the SS-EMSD sys-
tem can reduce the vibration amplitudes significantly com-
pared to the uncontrolled open-circuit case.

The balance logic algorithm, which tunes the damping
force application based on the signs of relative displace-
ment and relative velocity, plays a crucial role in this per-
formance. As shown in figure 14(b), the damper is activ-
ated and exerts a damping force when the relative displace-
ment and relative velocity have opposite signs. During this
system’s energy absorption phase, the damper reduces the
vibrational amplitude and dissipates the dynamic energy
effectively. Conversely, when displacement and velocity share
the same sign, indicating that the damper would not func-
tion, the balance logic deactivates the damping force to pre-
vent unintended energy addition. This selective engagement
of the damper effectively maximizes energy dissipation during
energy absorption phases and minimizes detrimental energy
input during release phases, enhancing the overall efficiency
and stability of the vibration control.

The response amplitude is considerably minimized in
figure 14, demonstrating the system’s capability of adapt-
ing to the rapidly varying conditions with the strategic con-
trol logic strategy. The inherent robustness and the rapid
adaptive control capability highlight the practical applicability
and reliability of the proposed self-sensing damping control
strategy. Such consistent performance under step excitation
validates the potential deployment of the SS-EMSD system
in real-world scenarios characterized by stochastic and non-
deterministic vibrational disturbances.

To summarize, the comprehensive experimental results in
figures 10-14 thoroughly validate both the theoretical model
and the practical efficacy of the proposed SS-EMSD system.
These results underscore the damper’s exceptional adaptab-
ility, superior vibration attenuation capabilities, and reliable
real-time control performance across an extensive frequency
range.

The experiments discussed in this study are conducted
within 1-10 Hz, which covers the dominant resonance of the
SDOF test rig used in this paper. All sensing and control
results should therefore be interpreted within this frequency
band. The proposed self-sensing and damping mechanism is
not intrinsically limited to a particular frequency range. The
data-driven mapping and control parameters, however, need to
be identified for the target frequency bands. When moving to
frequencies far from the trained band or multi-mode structures,
re-identification and re-training would be required, leading to
different performance. A rigorous evaluation outside 1-10 Hz
is beyond the scope of this work and will be addressed in future
studies on broader frequency bands using multi-mode test
rigs.

6. Conclusions

This paper proposes a SS-EMSD combined with a physic-
ally informed GBR model to achieve adaptive vibration con-
trol with the balance logic. The GBR model predicts relative
velocity directly from the SS-EMSD voltage and drives online
damping adjustment without external displacement or accel-
eration sensors. This predicting process simplifies the control
architecture while preserving adaptability. Experiments on the
test rig show that the proposed system entails over 10% aver-
age vibration-amplitude attenuation across non-resonant fre-
quencies and up to 15% at resonance, while capping the pre-
diction accuracy over 85%. Results also indicate that the sens-
ing accuracy is adequate for closed-loop semi-active control
and the proposed integrated SS-EMSD offers an efficient and
practical solution for precision vibration mitigation. Future
work will extend the evaluation to broader working frequency
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bands, multi-mode configurations. The proposed methodo-
logy can also be further refined for embedded implementation
toward robust, long-term field deployment.
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