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A B S T R A C T

Unidirectional transmission is attracting increasing attention for applications in wave manipulation and sensing. 
Although asymmetric wave scattering in acousto-elastic systems is well-studied, asymmetric dynamic responses 
of finite structures remain less exploited and poorly understood, in terms of underlying mechanisms and design 
strategy. This work proposes a universal principle, referred to as eigenfrequency-transmissibility correlation, to 
elucidate how the unidirectional vibration transmissibility (UVT) would occur and behave in asymmetric finite 
structures. We analytically demonstrate such correlation through a simplified model to show that transmissibility 
extrema occur at the anti-resonance frequencies with vanishing response at excitation point, which strictly 
correspond to the eigenfrequencies of the adjoint subsystem or complementary subsystem with the excitation 
point fixed. Guided by this principle, a periodic beam with inherent asymmetry and broadband bandgap is 
designed, in which both theoretical and experimental results demonstrate a bilateral transmissibility difference 
exceeding 20 dB across a 4500 Hz bandwidth, testifying a broadband high-efficiency UVT. These findings pro
vide a fundamental understanding on asymmetric dynamics and a generalized design framework for high- 
performance unidirectional wave devices.

1. Introduction

Unidirectional transmission (UT), which refers to the phenomenon of 
one-way wave scattering or asymmetric dynamic response, has garnered 
increasing attention owing to its wide applications in wave manipula
tion, sensing, imaging, and communications. UT is typically achieved by 
introducing nonlinearities into systems [1], such as strongly nonlinear 
material [2,3], nonlinear circuits [4], nonlinear springs [5–7], and 
nonlinear Hertz contact force [8], etc. Other approaches to achieve UT 
consist in breaking the time-reversal symmetry by utilizing additional 
perturbation [9], magnetic field [10], flow field [11–14] or spatiotem
poral modulation [15–18]. By adding the ingredients such as band to
pology [19–21] and non-Hermiticity [22,23], robust and nonreciprocal 
wave propagation can be achieved as well. Though effective for the 
attainment of non-reciprocity, these approaches face limitations in 
practical implementation especially in terms of nonlinearity control and 
massive external energy or field modulation.

A promising alternative strategy involves breaking structural sym
metry exclusively through linear designs to achieve reciprocal UT. 
Asymmetric wave scattering has been widely investigated in both 
acoustic and elastic wave systems. Examples include gradient structures 
with asymmetric refraction [24–27] or diffraction [28–31], 
mode-converted superlattices [32–36], topological insulators with 
localized states [37–40], non-Hermitian systems with exceptional points 
[41–43], as well as directional waveguide through partial bandgaps of 
PCs [44–48]. As for the dynamic response of relevant finite structures, 
the above scattering analysis may apply to certain extent when the ef
fects of boundary conditions are insignificant, such as expected 
non-trivial localized states in most finite topological insulators accord
ing to the principle of bulk-boundary correspondence [49–51]. How
ever, in most cases, the dynamic response of finite structures 
significantly differs from the predictions based solely on wave propa
gation in infinite media, exemplified by the resonances within bandgap 
regions induced by the boundary truncations [52–57]. Studies of wave 
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scatterings in infinite systems cannot be directly applied to finite 
systems.

Unfortunately, existing works on asymmetric dynamic responses in 
finite systems remain limited, with only preliminary investigations on 
one-dimensional gradient structures via the so-called pass-band splitting 
effects [58–60]. While these studies indicate that both structural 
asymmetry and bandgaps are essential for triggering asymmetric dy
namic responses [58–60], the underlying mechanisms remain elusive. 
Furthermore, existing techniques face critical challenges in practical 
applications, such as complex fabrication of gradient structures, narrow 
operational bandwidths, and low transmission efficiency. Consequently, 
developing new theoretical frameworks and design strategies is imper
ative for creating broadband, efficient, and readily manufacturable 
unidirectional wave devices.

Motivated by this, a generalized finite mass-spring chain model is 
introduced to investigate the asymmetric response, characterized by 
unidirectional vibration transmissibility (UVT) under bidirectional 
excitation. The novelty of this work does not lie in the model itself, but in 
the novel physical insights and the general design principle derived from 
it. Section 2 elucidates the underlying mechanisms, establishing an 
explicit correlation between the transmissibility extrema and the 
eigenfrequencies of adjoint subsystems. Section 3 applies and validates 
the identified mechanisms through the design of a periodic beam 
featuring asymmetrical thickness profiles and wide bandgaps to achieve 
broadband and efficient UVT. Subsequently, Section 4 presents experi
mental results that corroborate both the observed UVT phenomena and 
corresponding theoretical predictions. Finally, conclusions are drawn 
synthesizing the key findings. This study provides a new and systematic 
framework for the design of broadband unidirectional elastic wave 
functional devices.

2. Universal spring-mass model for unidirectional vibration 
transmissibility

This section investigates a generalized spring-mass model to analyze 
UVT in both general and periodic chain systems. The objectives are to 
explore the underlying mechanisms of UVT and establish an explicit 
correlation between the transmissibility extrema and the eigen
frequencies of adjoint subsystems. The effect of structural asymmetry, 
boundary conditions, bandgaps, and structural unit-cell number on UVT 
is addressed through eigen analysis and transmissibility inspection.

2.1. UVT in a generalized n-dimensional spring-mass chain system

Consider a general n-dimensional spring-mass chain composed of n 
masses and n + 1 springs, as illustrated in Fig. 1(a). The masses and the 

springs can be adjusted to tailor the symmetry of the system, allowing 
for the investigation of UVT in this representative and general asym
metrical system. By fixing mi, the (i-1)-dimensional subsystem is defined 
as the left-side system consisting of masses mj with j smaller than i, while 
the (n-i)-dimensional complementary subsystem is the right-side system 
consisting of masses mj with j larger than i. Specifically, the (n − 1)- 
dimensional subsystem is defined as the system by fixing mass mn, 
while the (n − 1)-dimensional complementary subsystem corresponds to 
the system with fixed mass m1. Particularly, the n-dimensional subsys
tem or the complementary subsystem is the n-dimensional system itself. 
When subjected to an excitation force F, the governing vibration equa
tion of the n-dimensional system can be expressed as 

Mẍ + Kx = F, (1) 

where M ––– diag[mi],K ≡ tridiag
[
kii,ki,i+1,ki+1 , i

]
withkii = ki− 1 + ki,

ki,i+1, = ki+1 , i = − ki. Considering a general case with the excitation 
applied at an arbitrary mass mi, namelyF=[0...0Fi0...0]′sinωt, and 
substituting the harmonic response x =Xsinωtinto Eq. (1), one can get 
[
K − ω2M

]
X = F. (2) 

Then, the displacement response X can be obtained by X = D− 1F, 
where D is the eigenmatrix of the system, expressed as D ≡ K −

ω2M ≡ tridiag
[
Dii,Di,i+1,Di+1 , i

]
withDii = ki− 1 + ki − miω2, Di,i+1, =

Di+1 , i = − ki. Specifically, the response of mi,m1 and mn can be expressed 
as [61] 

Xii = FiΔi− 1δn− i/Δn, (3) 

X1i = Fik1k2...ki− 1δn− i/Δn, (4) 

Xni = Fikiki+1...kn− 1Δi− 1/Δn, (5) 

where Xij denotes the displacement amplitude of the mass mi with the 
force applied on the mass mj; Δiorδi the characteristic determinant of the 
i-dimensional subsystem or complementary subsystem. Δn(ω) = 0 cor
responds to the eigenfrequencies of the n-dimensional system, at which 
all the displacement response approach infinity as deduced from Eqs. (3)
to (5). Moreover, the displacement response Xii vanishes at the eigen
frequencies of the (i-1)-dimensional subsystem or the (n-i)-dimensional 
complementary subsystem, i.e. Δi − 1(ω) = 0 or δn − i(ω) = 0, as shown in 
Eq. (3). In another word, the anti-resonance frequencies with vanishing 
response at excitation point are equal to the eigenfrequencies of either 
the left-side (i-1)-dimensional subsystem or the right-side (n-i)-dimen
sional complementary subsystem with the mass at the excitation point 
being fixed.

The left and right vibration transmissibility from the excitation point 

Fig. 1. (a) A general n-dimensional spring-mass system: its (i-1)-dimensional subsystem and (n-i)-dimensional complementary subsystem with fixed mi; (b) a periodic 
spring-mass system.
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can be respectively obtained through Eqs. (3) to (5) by 

Tl = 20log
Xni

Xii
= 20log

kiki+1...kn− 1

δn− i
, (6) 

Tr = 20log
X1i

Xii
= 20log

k1k2...ki− 1

Δi− 1
. (7) 

Apparently, the eigenfrequencies of the (n-i)-dimensional comple
mentary subsystem withδn − i(ω) = 0 correspond to the poles of the 
transmissibility function of the left-side excitation Tl, while the eigen
frequencies of the (i-1)-dimensional subsystem withΔi − 1(ω) = 0 corre
spond to the poles of the transmissibility function of the right-side 
excitation Tr. In more detail, as can be seen from Eqs. (3) to (7), when the 
right-side (n-i)-dimensional complementary subsystem resonates (δn −

i(ω) = 0), the displacement of both masses m1 and mi vanishes (X1i = Xii 
= 0), allowing vibration response exclusively from the excitation point 
to the right side with extremum value of Tl. Conversely, vibration is only 
observed on the left side to the excitation point when the left-side (i-1)- 
dimensional subsystem resonates (Δi − 1(ω) = 0). This implies that 
tailoring the structural symmetry with different eigenfrequencies of the 
bilateral subsystems can achieve UVT.

To quantify the UVT efficiency, the difference between the left and 
right vibration transmissibilities is obtained by 

Tl − Tr = 20log
Xni

X1i
= 20log

kiki+1...kn− 1Δi− 1

k1k2...ki− 1δn− i
. (8) 

It can be observed that the bilateral transmissibility difference is 
intrinsically linked to the left and right springs separated by the exci
tation point, as well as the properties of the (i-1)-dimensional subsystem 
and the (n-i)-dimensional complementary subsystem. As such, any 
structural asymmetries in either mass distribution, stiffness configura
tion, or boundary conditions would result in the bilateral trans
missibility difference and lead to UVT. Notably, as can be seen from Eqs. 
(8), the extremum values of the transmissibility difference coincide with 
the zeros of δn − i(ω) or Δi − 1(ω), i.e. the eigenfrequencies of either the 
complementary subsystem or the subsystem. This correlation, which is 

referred to as eigenfrequency-transmissibility correlation, facilitates the 
investigation of the vibration response under a specific excitation 
through eigenfrequency and eigenvector analyses of the corresponding 
subsystem and complementary subsystem.

Consider the special case, i.e. excitation and response are respec
tively applied and retrieved at the two ends of the spring-mass chain, the 
bilateral transmissibility difference writes 

Tl − Tr = 20log
Δn− 1

δn− 1
. (9) 

Detailed derivation procedure can be referred to Appendix A. Simi
larly, the poles of the transmissibility difference equate to the eigen
frequencies of either the (n-1)-dimensional subsystem or 
complementary subsystem. The stronger the asymmetry between the 
subsystem and complementary subsystem is, the greater the trans
missibility difference is.

2.2. UVT in a periodic spring-mass system

To further investigate the UVT of periodic asymmetrical structures 
and figure out how bandgap affects UVT, a periodic spring-mass system 
is analyzed. As shown in Fig. 1(b), masses m1 and m2 are periodically 
arranged by interconnecting springs k1 and k2. The boundaries are 
modulated via the left and right springs kL and kR. Section 2.1 shows that 
the system’s UVT behavior is intrinsically tied with the structural 
asymmetry of the subsystem and the complementary subsystems derived 
from fixing the excitation point. For subsequent analysis, the periodic 
unit count is set as N = 10, with baseline parameters m2 = 1 kg, k2 = 1 N/ 
m, and kR = 1 N/m. By modulating the mass ratios m1/m2, and the spring 
stiffness ratios k1/k2 and kL/kR, the periodicity and the asymmetry of the 
system can by systematically control.

The eigenfrequencies and the corresponding eigenvectors of the 
subsystems can fully reflect the dynamic responses at the poles of 
displacement transmissibility, as demonstrated in Section 2.1. As such, 
the eigenfrequencies of the subsystem under right-side excitation and 

Fig. 2. (a) Symmetrical (m1/m2 = 1) and (b) asymmetrical (m1/m2 = 0.5) structure, eigenfrequencies of the subsystem (right panels) and the complementary 
subsystem (left panels), along with (c) the corresponding bilateral transmissibility differences, for varying spring stiffness ratios. The light grey areas correspond to 
the frequency range within bandgaps obtained in the infinite structures. The region with smaller dashed rectangular is enlarged as shown in the adjacent bigger 
dashed box.
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the complementary subsystem under left-side excitation are employed to 
investigate the effects of the mass and stiffness ratios on the left and right 
vibration transmissibilities of the whole system, respectively, as shown 
in Fig. 3. The eigenfrequencies are color coded according to a localiza
tion factor P, which is defined as 

P =
∑2N

i=1
L(i)Yi, (10) 

with 

L(i) =
{
− eN+1− i, i ≤ N
ei− N, i > N i ∈ [1, 2N], (11) 

with Yi being the i th element of the 2N*1 eigenvector. L(x) is a weight 
function. The value of P indicates the amplitude and direction of the 
mode localization, i.e., a larger P signifies the stronger rightward mode 
localization while a lower P signifies leftward localization. The bandgap 
ranges of the infinite system are shaded in light gray for reference.

When m1/m2 = 1, the systems remain mirror symmetric regardless of 
k1/k2. The subsystem and its complementary subsystem are strictly 
equivalent, thus resulting in the same eigenfrequencies, as shown in the 
left and right panels of Fig. 2(a). According to the above-deduced 
eigenfrequency-transmissibility correlation, there will be no poles or 
zeros for the bilateral transmissibility difference as a result of the 
coinciding anti-resonances of Δn − 1 and δn − 1 in Eq. (9). This is further 
confirmed by the vanishing transmissibility differences calculated from 
Eqs. (A.6) and (A.11), as shown in the upper panel of Fig. 2(c).

However, for the asymmetric configuration (m1/m2 = 0.5, Fig. 2(b)), 
the two eigenfrequencies diverge (Fig. 2(b)) and transmissibility dif
ference appears (lower panel of Fig. 2(c)). Eq. (9) indicates that the 
eigenfrequency of the complementary subsystem coincides exactly with 
the maximum value of transmissibility difference, and the 

eigenfrequency of the subsystem coincides with the minimum value, 
confirmed again by comparing Fig. 2(b) and the lower panel of Fig. 2(c).

Bragg scattering effects intensify with the increasing ratios of spring 
stiffness k1/k2, broadening the bandgap width. The sign of localization 
factor changes around k1/k2 = 1, suggesting a shift of the localization 
position within bandgaps. Crucially, the localization intensity of the 
eigenvectors within the bandgaps of the (complementary) subsystem 
appears apparently higher than those within the bands as shown in Fig. 2
(a) and (b). The bandgaps act as a barrier to spatially cut off the vi
brations between the two ends of the system and lead to such single-side 
localization. This also indicates the significance of wide bandgaps for the 
UVT with high localization.

A fixed spring stiffness ratio, k1/k2 = 10− 0.1(marked by dashed line 
in Fig. 2) is selected to further show the corresponding transmissibility 
spectrum and displacement fields in Fig. 3. For the periodic symmetrical 
structure (Fig. 3(a)), the left and right transmissibility curves are iden
tical. While for the periodic asymmetrical structure (Fig. 3(b)), UVT 
appears as the extrema of the transmissibility at peaks within both 
passband and bandgap. Within the passband, although the selected two 
peaks (peaks I and II) manifest the UVTs for the left-side and right-side 
excitation, respectively, the displacement fields tend to be uniform 
throughout the whole chain (left two panels of Fig. 3(c)), as a result of 
their strong couplings with the nearby vibrational modes of the chain. 
Such couplings are largely cut off when the modes are spectrally isolated 
by bandgaps. This leads to the high-localized displacement fields of 
peaks within bandgaps such as peaks III and IV as shown in the two right 
panels of Fig. 3(c). It again underscores the critical role of bandgaps in 
achieving high-performance asymmetric wave control.

Apart from the asymmetry that comes from every single unit cell, the 
asymmetry from the boundary conditions significantly alters the 
behavior of UVT as well. Compared with the case of symmetrical 
boundary condition (kL = kR = 1N/m shown in the left panel of Fig. 4

Fig. 3. Vibration transmissibility comparisons of (a) symmetrical (m1/m2 = 1) and (b) asymmetrical (m1/m2 = 0.5) structure at the condition of k1/k2 = 10− 0.1. (c) 
Normalized displacement at picked frequencies I-IV in Fig. 3(b).
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(a)), the asymmetrical case (kL = 100.4, kR = 1 N/m shown in the right 
panel of Fig. 4(a)) yields intriguing phenomenon such as the vanishment 
and the merging of UVT. On one hand, the effect induced by boundary 
asymmetry can be neutralized by structural asymmetry; this would lead 
to the equal value of eigenfrequencies of the subsystem and comple
mentary subsystem (e.g., point V marked in the right panel of Fig. 4(a)) 
and result in the vanishment of UVT (Fig. 4(b)). The left panel of Fig. 4
(c) further showcase how vibration transmissibility evolves at specific 
spring stiffness ratios around point V (marked with dashed line in Figs. 4
(a) and (b)). At point V, left and right transmissibility peaks coincide, 
and their difference no longer attains local extrema within the bandgap 
range. On the other hand, UVT can also be reinforced at specific spring 
stiffness ratios (e.g., point VI). The multiple subsystem eigenfrequencies 
can merge to broaden the operational bandwidth of the unidirectional 
wave control, as demonstrated in Fig. 4(b) and the right panel of Fig. 4
(c).

The strong dependence of the transmissibility magnitude (i.e., UVT 
efficiency) on structural unit-cell number should be particularly 
emphasized, as demonstrated in Fig. 5. With the number of unit cells 
increasing, as shown in Figs. 5(a) to 5(c), eigenfrequencies of the sub
systems remain different from those of the complementary subsystems, 
indicating the persistence of UVT regardless of unit-cell number. 
Notably, the eigienfrequencies within bandgaps remain invariant, which 
is attributed to the high-localized displacement fields insensitive to the 
unit-cell number, and further confirmed by the invariant peak fre
quencies of bilateral transmissibility within bandgaps shown in Fig. 5
(d). However, both the left and right transmissibility magnitudes within 

the bandgaps reduce due to the bandgap-induced vibration attenuation. 
Excessive number of unit cells (egs. N = 10 and N = 20) would signifi
cantly reduce the UVT efficiency that challenges practical engineering 
applications. Consequently, except for the periodic asymmetrical 
structural unit itself, the number of unit cell should also be meticulously 
designed to achieve highly efficient UVT.

3. Application and validation in continuous systems

In Section 2, discrete spring-mass systems are examined to demon
strate that UVT intrinsically originates from the structural symmetry and 
is governed by an eigenfrequency-transmissibility correlation. This 
section extends this theoretical framework to continuous structures by 
designing and analyzing a periodic beam with intentional asymmetry. 
The primary objective is to examine whether the established 
eigenfrequency-transmissibility correlation persists in continuous sys
tems and to explore how this correlation contributes to efficient UVTs.

To determine whether this correlation persists in continuous sys
tems, a periodic beam is designed to incorporate two critical parameters 
identified in Section 2: strong structural asymmetry and broad bandg
aps. This beam serves as a continuous realization of the discrete model 
studied previously, wherein the spatial variation in thickness corre
sponds to the intentional non-uniformity of masse and spring elements 
in the spring-mass chain model. Specifically, the local mass per unit 
length is proportional to the cross-sectional area, which depends on the 
local thickness, while the local bending stiffness analogous to the spring 
stiffness with the scale proportional to the cube of the thickness, 

Fig. 4. Effect of asymmetry from the boundary conditions. When m1/m2 = 0.5 and kR = 1 N/m, (a) the eigenfrequencies of the subsystem (red dash lines) and the 
complementary subsystem (blue dash lines) for symmetrical (left panel) and asymmetrical (right panel) boundary conditions with their kL being 1 N/m and 100.4 N/ 
m, respectively. (b) The spectrum of the bilateral transmissibility differences as log(k1/k2) ranging from − 0.5 to 0.5. The color denotes magnitude of the difference. 
(c) The selected spectrum of vibration transmissibility around point V with log(k1/k2) being − 0.3(top), − 0.375(middle), − 0.45 (bottom), as well as point VI with log 
(k1/k2) being 0.15 (top), 0.196(middle), 0.25(bottom), which correspond to the dashed lines in (a) and (b).
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according to Euler-Bernoulli beam theory. Consequently, a beam with 
spatially varying thickness effectively introduces continuous distribu
tions of mass and stiffness, thus mirroring the deliberate variation of 
masses and springs in the discrete model. This continuous-discrete 
analogy helps intuitively understand the origin of UVT in continuous 
structures so that the same design framework can be applied to achieve 
enhanced UVT.

As depicted in Fig. 6(a), the unit cell (length a) features a uniform left 
segment (thickness 2hu, length lu), a thickness-varying middle segment 
(length lABH), and a uniform right segment (length a- lu -lABH). The 
middle segment follows a power-law thickness profile h(x) = ε(x − lu)m 

+ h0, which is a highly asymmetrical configuration, characteristic of the 
so-called Acoustic Black Hole (ABH) structures [62–68]. This design 
enables precise tuning of left-right asymmetry by adjusting segment 
lengths. Critically, periodic beam [69–77] or plate [78–83] structures 
with ABH elements have been shown to entail broadband bandgaps 
through combined local resonances and Bragg scattering mechanisms. 

For reference, Fig. 6(b) shows a symmetrical counterpart with paired 
ABH profiles.

Consider a free finite beam comprising three unit cells under left-side 
or right-side excitation, respectively. Our previously developed wavelet- 
decomposed and energy-based model [68,69] is applied to calculate the 
vibration transmissibility of a finite structure and the band structures of 
an infinite system. The modeling principle is briefly recalled in Appendix 
B for the benefit of readers. The thickness of the uniform beam portion 
2hu and the length a of the unit cell are set to be 0.32 cm and 8 cm, 
respectively. The ABH profile features length labh = 2 cm, truncation 
thickness h0 = 0.02 cm and m = 2. The length lu of the asymmetrical 
beam is zero. The material is steel with a mass density of 7800 kg/m3, 
Young’s modulus of 210 GPa, and damping loss factor of 0.001.

Analogous to discrete systems, the subsystem and complementary 
subsystem of the continuous systems are respectively defined when its 
left-side and right-side ends are pinned. Fig. 7(a) presents the eigen
frequencies of these subsystems and complementary subsystems for 

Fig. 5. Effect of structural unit-cell number. When m1/m2 = 0.5 and kL = kR = 1 N/m, the eigenfrequencies of the subsystem (red dash lines) and the complementary 
subsystem (blue dash lines) for different unit cells with (a) N = 5, (b) N = 10, and N = 20, respectively. (d) Left (left panel) and right (right panel) transmissibility 
comparison for different unit cells at the condition of k1/k2 = 10− 0.25.

Fig. 6. Sketch of periodic beams with (a) asymmetrical single ABH indentation and (b) two symmetrical ABH indentations: two ends of beams are supported by 
translational and rotational springs to mimic various boundary conditions.
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periodic asymmetrical ABH structures with varying asymmetry levels 
(controlled by lu). A comparison with bilateral transmissibility differ
ences in Fig. 7(b) shows that the maxima of these differences align well 
with the complementary subsystem eigenfrequencies and the minima 
with the subsystem eigenfrequencies. This confirms that the 

eigenfrequency-transmissibility correlation established for discrete sys
tems can be well extended to continuous systems.

The discrepancy between the eigenfrequencies of subsystems and 
their complementary counterparts would lead to UVT. Such discrepancy 
generally originates from the asymmetry from structure itself or 

Fig. 7. (a) Eigenfrequencies of the subsystem (right-side excitation, red dots) and the complementary subsystem (left-side excitation, blue dots) for varying lu. (b) The 
corresponding bilateral transmissibility differences and (c) transmissibility comparisons at the condition of lu = 0 cm (top), lu = 6 cm (middle), and the referenced 
symmetrical beam (bottom). (d) Normalized displacement responses at two resonant frequencies I@3121 Hz and II@6972 Hz as marked in (c).

Fig. 8. (a) Left and (b) right transmissibility of the asymmetrical ABH beam with different unit cells at the condition of lu = 0 cm. (c) Normalized displacement 
responses at picked frequencies for the beam with different cells, respectively.

L. Tang et al.                                                                                                                                                                                                                                    International Journal of Mechanical Sciences 307 (2025) 110927 

7 



boundary condition. In Fig. 7(a), as lu increases from 0 to 6 cm, the 
bandgap range of the infinite structure remains invariant, whereas the 
asymmetry difference decreases and then increases. The stronger 
asymmetry (e.g., lu = 0 cm or 6 cm) generates more pronounced 
broadband asymmetric transmission. Moreover, consistent with discrete 
systems, transmissibility differences within bandgaps exhibit signifi
cantly greater magnitude, thus conducive to more efficient UVT, as 
shown in Fig. 7(c). It is noteworthy that asymmetrical ABH beams with 
varying asymmetry levels can exhibit identical bandgaps despite their 
markedly different UVT behaviors in finite configurations, which ne
cessitates the proposed eigenfrequency-transmissibility correlation 
specially for the dynamics of the finite asymmetric systems.

Moreover, as suggested by Eq. (8) and the analysis of the boundary 
condition effects on UVTs in the discrete system (Fig. 4), even under 

symmetric boundary conditions, the structural asymmetry introduced 
by the ABH design suffices to achieve significant UVT. This flexibility 
allows for maintaining the UVT functionality with different boundary 
constraints. Therefore, by tuning internal geometric parameters such as 
lu, the UVT behavior can be optimized irrespective of external boundary 
conditions, enhancing its applicability in various real-life engineering 
contexts.

Fig. 7(c) further presents the transmissibility spectra for different lu. 
For asymmetrical beams, left-side excitation transmissibility (Tl) ex
hibits fundamentally distinct behavior from right-side excitation (Tr ), a 
hallmark of UVT, contrasting sharply with the identical responses in the 
symmetrical case. Specifically, varying the asymmetry parameter (lu) 
between 0 cm and 6 cm permits the tuning of both effective UVT fre
quencies and transmission efficiency, the latter being significantly 

Fig. 9. Experimental setup: (a) overall diagram; (b) partial detail; (c) specimens with three- and six-unit cells respectively.

Fig. 10. (a) Experimental (left) and theoretical (right) transmissibility of the beam with three asymmetrical ABH cells under left-side and right-side excitations, 
respectively; (b) experimental and (c) theoretical displacement responses at selected frequencies I (top), II (middle), III (bottom) marked in (a); (d) corresponding 
theoretical mode shape of the subsystem (right-side excitation, red dots) and the complementary subsystem (left-side excitation, blue dots).
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enhanced within bandgaps. When lu = 0, within the second and third 
broadband bandgap ranges (2544~3613 Hz and 5467~9240 Hz), Tl 
remains below − 20 dB, demonstrating significant vibration attenuation, 
while Tr predominantly exceeds 0 dB and even manifests multiple 
resonance peaks, indicative of vibration amplification instead of atten
uation. Normalized displacement responses at two resonant frequencies 
(shown in Fig. 7(d)) confirm this directional asymmetry that vibrations 
attenuate rapidly under left-side excitation but amplify substantially 
under right-side excitation. Remarkably, this asymmetrical periodic 
ABH beam achieves over 20 dB directional transmissibility differences 
across a broad frequency range up to 4500 Hz.

The dependence of the transmissibility magnitude on structural unit- 
cell number is also revisited in the continuous system scenario, as 
demonstrated in Fig. 8. Consistent with discrete systems, UVT func
tionality persists with increasing unit cells, yet bandgap-induced atten
uation markedly reduces the bilateral transmissibility magnitudes 
within bandgap regions. Notably, although the peak frequencies of the 
right transmissibility remain invariant (see representative points II and 
III), the magnitude evolves from vibration amplification (n = 3) to 
strong attenuation (n = 9), indicating severe UVT efficiency degrada
tion. This efficiency reduction is corroborated by normalized displace
ment responses for different unit cells, as shown in Fig. 8(c). The 
invariant peak frequencies stem from the localized displacement field’s 
insensitivity to unit-cell quantity.

4. Experimental validation

This section describes experiments designed to validate the afore
mentioned UVT and examine the proposed correlation between the 
measured transmissibility spectra and the calculated eigenfrequencies of 
subsystems/complementary subsystems. Tests are performed on two 
steel beams with three and six asymmetric ABH unit cells under free 
boundary conditions. Using swept-sine excitation and laser vibrometer 
measurement, bilateral vibration transmissibility and displacement 
fields are measured.

As shown in Fig. 9(c), two tested beams are processed by wire cutting 
with steel material, with a mass density of 7657 kg/m3, Young’s 
modulus of 200 GPa, and damping loss factor of 0.001. Their geomet
rical parameters are: hu = 0.16 cm, a = 8 cm, labh = 2 cm, h0 = 0.019 cm, 
m = 2.15, lu = 0. The tested beam is suspended by two thin strings to 
mimic free boundaries. An electromagnetic shaker (East China Testing 
DH40020) is used to excite the beam at either end depending on the test 
requirement. The shaker is driven by a sinusoidal signal sweeping from 
0 to 10 kHz generated by a signal generator (East China Testing 
DH1301). A Polytec scanning laser vibrometer (PSV-500 HR) is used to 
scan the whole beam for response measurement. The force is measured 
through an impedance head (Kistler 8770A5) with the measured signal 
fed back to the laser vibrometer as reference.

Fig. 10 presents a comparison of the vibration transmissibility of the 

Fig. 11. (a) Experimental (left) and theoretical (right) transmissibility of the beam with six cells under middle point excitation; (b)experimental and (c) theoretical 
displacement responses at selected frequencies I (top), II (middle), III(bottom) in (a); (d) corresponding theoretical mode shape of the subsystem and comple
mentary subsystem.
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three-unit asymmetrical ABH beam under left-side and right-side exci
tations. Distinct differences in bilateral vibration transmissibility are 
observed across a broad frequency range, particularly within the 
bandgap ranges of 2330~3564 Hz and 5152~9133 Hz. Notably, the 
transmissibility under the right-side excitation exceeds 0 dB and sur
passes left-side excitation transmissibility by over 20 dB, demonstrating 
an efficient broadband UVT of the tested asymmetrical ABH. Moreover, 
in terms of the measured displacement field at peaks, those peaks iso
lated within bandgaps (such as peak III) show largely localized feature 
than those peaks close to the band (peak I and II), as compared in Fig. 10
(b), consistent with the spring-mass model developed in Section 2 as 
well. Those experimental results exhibit good agreement with the 
theoretical calculations, both in terms of transmissibility (right panel of 
Fig. 10(a)) and displacement field (Fig. 10(c)), thus validating the 
theoretical framework proposed in Section 2. To further validate the 
derived eigenfrequency-transmissibility correlation, the eigen
frequencies and modal shapes of the subsystem and the complementary 
subsystem of the beam are calculated and shown in Fig. 10(d). The 
eigenfrequencies agree well with the corresponding peak frequencies, 
while the mode shapes are also aligned with the displacement field, 
providing the direct supporting evidence. Note minor discrepancies 
between the measured and calculated results are observed which can be 
primarily attributed to three factors. First, machining error occurs when 
achieving the ultrathin ABH thickness profile. Second, the inevitable 
deviation of the excited force from the central axis would cause torsional 
effect, which is neglected in the theoretical model. Finally, challenges 
arise in accurately measuring the subtle vibration within the bandgap 
range during experiments.

Experiments also show that the above UVT phenomena appear more 
intuitive when the number of unit cell is double with excitation applied 
at the central point of ABH beam. In this case, the UVT is directly re
flected through one single excitation by investigating the contrast vi
bration transmissibility (Fig. 11(a)) and displacement fields (Fig. 11(b)) 
of the left and right parts of the six-unit asymmetric ABH. More specif
ically, Fig. 11(b) shows that, at peak I, the displacement field within the 
right part is significantly larger than that within the left part, while at 
peaks II and III, the situation reverses. Once again, the experimental 
results are consistent with the theoretical calculations (right panel of 
Fig. 11(a) and Fig. 11(c)). Meanwhile, both the eigenfrequencies and 
mode shapes of the subsystem and the complementary subsystem 
comply to the eigenfrequency-transmissibility correlation.

5. Conclusions

In this study, a theoretical framework governing the occurrence of 
UVT in asymmetric finite structures is established. The core finding is 
the eigenfrequency-transmissibility correlation, a principle that is 
derived from a spring-mass chain model which, owing to its generality, 
is shown to pinpoint the intrinsic physical behavior of more general 

continuous systems. This correlation demonstrates that the extrema of 
bilateral transmissibility occur at the anti-resonance frequencies with 
vanishing response at the excitation point, strictly corresponding to the 
eigenfrequencies of the adjoint subsystem or complementary subsystem 
with the excitation point fixed. It provides a universal explanation for 
UVT phenomena and shows that UVT arises from structural asymmetry 
(mass, stiffness or boundary conditions). Furthermore, the way in which 
UVT occurs in periodic systems and interacts with bandgaps is eluci
dated, demonstrating the crucial role that bandgaps play in modulating 
the bandwidth and efficiency of UVT.

Guided by this theoretical principle, a periodic continuous beam 
with ABH indentations is designed, fabricated and measured. Such 
structure inherently offer strong asymmetry and broadband bandgaps, 
which contribute to the experimentally measured over 20 dB bilateral 
transmission difference across a 4500 Hz bandwidth, in agreement with 
the theoretical prediction.

Although developed using a discrete model, the eigenfrequency- 
transmissibility correlation serves as a universal principle applicable 
to any linear asymmetric systems, continuous or discrete. This work 
addresses the challenge of designing finite structures for unidirectional 
transmission by providing a predictive theory and a general design 
framework. Future work will focus on extending this principle to more 
complex and practical structures, e.g., plates, trusses and exploring its 
applications for vibration control or energy harvesting in more practical 
engineering scenarios.

CRediT authorship contribution statement

Liling Tang: Writing – original draft, Methodology, Investigation, 
Funding acquisition, Formal analysis, Conceptualization. Shuowei An: 
Writing – review & editing, Visualization, Methodology, Investigation, 
Formal analysis, Conceptualization. Yuguang Chen: Validation, Inves
tigation, Data curation. Debin Li: Validation, Data curation. Li Cheng: 
Writing – review & editing, Supervision, Methodology, 
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgements

This work was supported by the Guangdong Basic and Applied Basic 
Research Foundation (No. 2024A1515011511), and the Opening Project 
from State Key Laboratory for Strength and Vibration of Mechanical 
Structures (No. SV2023-KF-16).

Appendix A Bilateral transmissibility for excitation and response at two ends of the spring-mass chain

With an excitation force applied at the left mass m1, namely F=[F10...0]′sinωt, the response of m1 and mn, as well as the left vibration trans
missibility can be respectively expressed as 

X11 = F1δn− 1/Δn, (A.1) 

Xn1 = F1k1k2...kn− 1/Δn, (A.2) 

Tl = 20log
Xn1

X11
= 20log

k1k2...kn− 1

δn− 1
. (A.3) 

Eq. (A.1) shows that the anti-resonance frequencies of X11 equal to the eigenfrequencies of the (n-1)-dimensional complementary subsystem with 
δn − 1(ω) = 0. Moreover, they also correspond to the poles of transmissibility of the left-side excitation Tl.

Similarly, when a harmonic excitation is applied on the right mass mn, namely F=[0...0Fn]′sinωt, the displacement response and the right vibration 
transmissibility write 

L. Tang et al.                                                                                                                                                                                                                                    International Journal of Mechanical Sciences 307 (2025) 110927 

10 



X1n = Fnk1k2...kn− 1/Δn, (A.4) 

Xnn = FnΔn− 1/Δn, (A.5) 

Tr = 20log
X1n

Xnn
= 20log

k1k2...kn− 1

Δn− 1
. (A.6) 

Analogously, the eigenfrequencies of the (n-1)-dimensional subsystem withΔn − 1(ω) = 0 are equivalent to the poles of transmissibility of the right- 
side excitation.

Appendix B Theoretical model for continuous beam systems

Based on the Euler-Bernoulli beam theory, the displacement field of the beam is expressed as {u, w} =

{

− z ∂w
∂x, w(x, t)

}

, with the flexural 

displacement w being expanded by Mexican Hat Wavelets (MHW) φi,s(x) as 

w(x, t) =
∑h

i=0

∑

s
ai,s(t)φi,s(x), (B.1) 

where i and s being the scaling and translation parameter of the MHW.
The Lagrangian of the system writes 

L = Ek − Ep + W, (B.2) 

where Ek denotes the kinetic energy of the system; Ep the potential energy and W the work done by excitation forces. They can be obtained, 
respectively, by 

Ek =
1
2

∫ ρ(∂w
∂t

)2

dV, (B.3) 

Ep =
1
2

∫ E

I(x)
(

∂2w
∂x2

)2

dx +
1
2
Klw(xl, t)2

+
1
2
Ql

(
∂w(xl, t)

∂x

)2

+
1
2
Krw(xr, t)2

+
1
2
Qr

(
∂w(xr, t)

∂x

)2

,

(B.4) 

W = f(t)⋅w
(
xf , t

)
. (B.5) 

Applying the Lagrange’s equations d
dt

(
∂L

∂ȧi,s(t)

)

− ∂L
∂ai,s(t)

= 0in the harmonic regime, one can get the vibration response of the structure by solving the 

following matrix equation 
[
K − ω2M

]
A = F, (B.6) 

with K and M being the stiffness and mass matrices, respectively; A and F being the vectors of the response and the excitation force, respectively. 
Setting the force vector in Eq. (B.6) to zero leads to the following eigenvalue equation 

M− 1KA = ω2A, (B.7) 

which gives the eigenfrequencies and the corresponding mode shape functions.
For an infinite system, with consideration of periodic boundary conditions, i.e. wn+1(x+a) = ejkawn(x) and wʹ́

n+1(x + a) = ejkawʹ́
n(x), the Lagrangian 

of the whole system can be obtained by the sum of Lagrangians of every unit cell as 

L =
∑+∞

n=− ∞
Ln = Ln

∑+∞

q=− ∞
e2qjka. (B.8) 

Therefore, the Lagrange’s equations of the entire infinite system can be expressed in terms of the Largrangians of one unit cell as 

d
dt

(
∂Ln

∂ȧi,s(t)

)

−
∂Ln

∂ai,s(t)
= 0. (B.9) 

Namely, the band structure of an infinite system can be obtianed by solving the Lagranges’s equations of one unit cell. Submitting the displacement 
expression with the periodic boundary conditions wn(a) = ejkawn(0) andw′n(a) = ejkaw′n(0)into Eq. (B.9), a matrix equation similar to Eq. (7) can be 
obtained. Sweeping the wave vector k along the irreducible Brillouin zone from 0 toπ/a, the corresponding eigenfrequencies and mode shape functions 
can be obtained. Details can be referred to Ref. [69].
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