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Unidirectional transmission is attracting increasing attention for applications in wave manipulation and sensing.
Although asymmetric wave scattering in acousto-elastic systems is well-studied, asymmetric dynamic responses
of finite structures remain less exploited and poorly understood, in terms of underlying mechanisms and design
strategy. This work proposes a universal principle, referred to as eigenfrequency-transmissibility correlation, to
elucidate how the unidirectional vibration transmissibility (UVT) would occur and behave in asymmetric finite
structures. We analytically demonstrate such correlation through a simplified model to show that transmissibility
extrema occur at the anti-resonance frequencies with vanishing response at excitation point, which strictly
correspond to the eigenfrequencies of the adjoint subsystem or complementary subsystem with the excitation
point fixed. Guided by this principle, a periodic beam with inherent asymmetry and broadband bandgap is
designed, in which both theoretical and experimental results demonstrate a bilateral transmissibility difference
exceeding 20 dB across a 4500 Hz bandwidth, testifying a broadband high-efficiency UVT. These findings pro-
vide a fundamental understanding on asymmetric dynamics and a generalized design framework for high-

performance unidirectional wave devices.

1. Introduction

Unidirectional transmission (UT), which refers to the phenomenon of
one-way wave scattering or asymmetric dynamic response, has garnered
increasing attention owing to its wide applications in wave manipula-
tion, sensing, imaging, and communications. UT is typically achieved by
introducing nonlinearities into systems [1], such as strongly nonlinear
material [2,3], nonlinear circuits [4], nonlinear springs [5-7], and
nonlinear Hertz contact force [8], etc. Other approaches to achieve UT
consist in breaking the time-reversal symmetry by utilizing additional
perturbation [9], magnetic field [10], flow field [11-14] or spatiotem-
poral modulation [15-18]. By adding the ingredients such as band to-
pology [19-21] and non-Hermiticity [22,23], robust and nonreciprocal
wave propagation can be achieved as well. Though effective for the
attainment of non-reciprocity, these approaches face limitations in
practical implementation especially in terms of nonlinearity control and
massive external energy or field modulation.

* Corresponding author.

A promising alternative strategy involves breaking structural sym-
metry exclusively through linear designs to achieve reciprocal UT.
Asymmetric wave scattering has been widely investigated in both
acoustic and elastic wave systems. Examples include gradient structures
with asymmetric refraction [24-27] or diffraction [28-31],
mode-converted superlattices [32-36], topological insulators with
localized states [37-40], non-Hermitian systems with exceptional points
[41-43], as well as directional waveguide through partial bandgaps of
PCs [44-48]. As for the dynamic response of relevant finite structures,
the above scattering analysis may apply to certain extent when the ef-
fects of boundary conditions are insignificant, such as expected
non-trivial localized states in most finite topological insulators accord-
ing to the principle of bulk-boundary correspondence [49-51]. How-
ever, in most cases, the dynamic response of finite structures
significantly differs from the predictions based solely on wave propa-
gation in infinite media, exemplified by the resonances within bandgap
regions induced by the boundary truncations [52-57]. Studies of wave
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Fig. 1. (a) A general n-dimensional spring-mass system: its (i-1)-dimensional subsystem and (n-i)-dimensional complementary subsystem with fixed m;; (b) a periodic

spring-mass system.

scatterings in infinite systems cannot be directly applied to finite
systems.

Unfortunately, existing works on asymmetric dynamic responses in
finite systems remain limited, with only preliminary investigations on
one-dimensional gradient structures via the so-called pass-band splitting
effects [58-60]. While these studies indicate that both structural
asymmetry and bandgaps are essential for triggering asymmetric dy-
namic responses [58-60], the underlying mechanisms remain elusive.
Furthermore, existing techniques face critical challenges in practical
applications, such as complex fabrication of gradient structures, narrow
operational bandwidths, and low transmission efficiency. Consequently,
developing new theoretical frameworks and design strategies is imper-
ative for creating broadband, efficient, and readily manufacturable
unidirectional wave devices.

Motivated by this, a generalized finite mass-spring chain model is
introduced to investigate the asymmetric response, characterized by
unidirectional vibration transmissibility (UVT) under bidirectional
excitation. The novelty of this work does not lie in the model itself, but in
the novel physical insights and the general design principle derived from
it. Section 2 elucidates the underlying mechanisms, establishing an
explicit correlation between the transmissibility extrema and the
eigenfrequencies of adjoint subsystems. Section 3 applies and validates
the identified mechanisms through the design of a periodic beam
featuring asymmetrical thickness profiles and wide bandgaps to achieve
broadband and efficient UVT. Subsequently, Section 4 presents experi-
mental results that corroborate both the observed UVT phenomena and
corresponding theoretical predictions. Finally, conclusions are drawn
synthesizing the key findings. This study provides a new and systematic
framework for the design of broadband unidirectional elastic wave
functional devices.

2. Universal spring-mass model for unidirectional vibration
transmissibility

This section investigates a generalized spring-mass model to analyze
UVT in both general and periodic chain systems. The objectives are to
explore the underlying mechanisms of UVT and establish an explicit
correlation between the transmissibility extrema and the eigen-
frequencies of adjoint subsystems. The effect of structural asymmetry,
boundary conditions, bandgaps, and structural unit-cell number on UVT
is addressed through eigen analysis and transmissibility inspection.

2.1. UVT in a generalized n-dimensional spring-mass chain system

Consider a general n-dimensional spring-mass chain composed of n
masses and n + 1 springs, as illustrated in Fig. 1(a). The masses and the

springs can be adjusted to tailor the symmetry of the system, allowing
for the investigation of UVT in this representative and general asym-
metrical system. By fixing m;, the (i-1)-dimensional subsystem is defined
as the left-side system consisting of masses m; with j smaller than i, while
the (n-i)-dimensional complementary subsystem is the right-side system
consisting of masses m; with j larger than i. Specifically, the (n — 1)-
dimensional subsystem is defined as the system by fixing mass my,
while the (n — 1)-dimensional complementary subsystem corresponds to
the system with fixed mass m;. Particularly, the n-dimensional subsys-
tem or the complementary subsystem is the n-dimensional system itself.
When subjected to an excitation force F, the governing vibration equa-
tion of the n-dimensional system can be expressed as

M5 + Kx =F, )

where M = dlag[ml] ,K = tridiag [kii‘ki.i+1‘ki+l.i} Withkii = kifl + ki,
kiiy1, = ki;1,; = — ki. Considering a general case with the excitation
applied at an arbitrary mass m;, namelyF=[0...0F,0...0]'sinwt, and
substituting the harmonic response x =Xsinwtinto Eq. (1), one can get

[K—-o’M]X =F. @)

Then, the displacement response X can be obtained by X = D'F,
where D is the eigenmatrix of the system, expressed as D=K-—
a)ZM = tridiag[Dﬁ_Di_iH‘DHl‘i]withDﬁ = ki—l + ki— TTliCl)z7 Di‘i+l, =

D1 ; = —k;. Specifically, the response of m;;m; and m, can be expressed
as [61]

Xii = FiAi 1651/ An, 3)
X1; = Fikika...ki_164-i/ An, “4)
Xy = Fikiki1..kn 1A 1/ An, (5)

where Xj; denotes the displacement amplitude of the mass m; with the
force applied on the mass m;; A;ord; the characteristic determinant of the
i-dimensional subsystem or complementary subsystem. An(®) = O cor-
responds to the eigenfrequencies of the n-dimensional system, at which
all the displacement response approach infinity as deduced from Egs. (3)
to (5). Moreover, the displacement response Xj; vanishes at the eigen-
frequencies of the (i-1)-dimensional subsystem or the (n-i)-dimensional
complementary subsystem, i.e. A; _ 1(®) =0 or §, _ (@) = 0, as shown in
Eq. (3). In another word, the anti-resonance frequencies with vanishing
response at excitation point are equal to the eigenfrequencies of either
the left-side (i-1)-dimensional subsystem or the right-side (n-i)-dimen-
sional complementary subsystem with the mass at the excitation point
being fixed.

The left and right vibration transmissibility from the excitation point
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Fig. 2. (a) Symmetrical (m;/m; = 1) and (b) asymmetrical (m;/my = 0.5) structure, eigenfrequencies of the subsystem (right panels) and the complementary
subsystem (left panels), along with (c) the corresponding bilateral transmissibility differences, for varying spring stiffness ratios. The light grey areas correspond to
the frequency range within bandgaps obtained in the infinite structures. The region with smaller dashed rectangular is enlarged as shown in the adjacent bigger

dashed box.

can be respectively obtained through Egs. (3) to (5) by

_ Xni kiki1...kn1

T, = Zologx—ﬁ = 20log A (6)
_ X kiks..kiq

T, = 2010gX—ﬁ = 20log AL @)

Apparently, the eigenfrequencies of the (n-i)-dimensional comple-
mentary subsystem withd, _ j(@) = 0 correspond to the poles of the
transmissibility function of the left-side excitation Tj;, while the eigen-
frequencies of the (i-1)-dimensional subsystem withA; _ 1(®) = O corre-
spond to the poles of the transmissibility function of the right-side
excitation T,. In more detail, as can be seen from Egs. (3) to (7), when the
right-side (n-i)-dimensional complementary subsystem resonates (5, —
i(®) = 0), the displacement of both masses m; and m; vanishes (X;; = Xj;
= 0), allowing vibration response exclusively from the excitation point
to the right side with extremum value of T;. Conversely, vibration is only
observed on the left side to the excitation point when the left-side (i-1)-
dimensional subsystem resonates (A; _ 1(w) = 0). This implies that
tailoring the structural symmetry with different eigenfrequencies of the
bilateral subsystems can achieve UVT.

To quantify the UVT efficiency, the difference between the left and
right vibration transmissibilities is obtained by

kikis..kn_1Ai 1

Xni
Ti = T: = 20log s - = 20log 5 - =

(®

It can be observed that the bilateral transmissibility difference is
intrinsically linked to the left and right springs separated by the exci-
tation point, as well as the properties of the (i-1)-dimensional subsystem
and the (n-i)-dimensional complementary subsystem. As such, any
structural asymmetries in either mass distribution, stiffness configura-
tion, or boundary conditions would result in the bilateral trans-
missibility difference and lead to UVT. Notably, as can be seen from Egs.
(8), the extremum values of the transmissibility difference coincide with
the zeros of &, _ i(w) or A; _ 1(w), i.e. the eigenfrequencies of either the
complementary subsystem or the subsystem. This correlation, which is

referred to as eigenfrequency-transmissibility correlation, facilitates the
investigation of the vibration response under a specific excitation
through eigenfrequency and eigenvector analyses of the corresponding
subsystem and complementary subsystem.

Consider the special case, i.e. excitation and response are respec-
tively applied and retrieved at the two ends of the spring-mass chain, the
bilateral transmissibility difference writes

T,— T, = 20log 2. ©)
511—1

Detailed derivation procedure can be referred to Appendix A. Simi-
larly, the poles of the transmissibility difference equate to the eigen-
frequencies of either the (n-1)-dimensional subsystem or
complementary subsystem. The stronger the asymmetry between the
subsystem and complementary subsystem is, the greater the trans-
missibility difference is.

2.2. UVT in a periodic spring-mass system

To further investigate the UVT of periodic asymmetrical structures
and figure out how bandgap affects UVT, a periodic spring-mass system
is analyzed. As shown in Fig. 1(b), masses m; and my are periodically
arranged by interconnecting springs k; and ky. The boundaries are
modulated via the left and right springs k;, and kg. Section 2.1 shows that
the system’s UVT behavior is intrinsically tied with the structural
asymmetry of the subsystem and the complementary subsystems derived
from fixing the excitation point. For subsequent analysis, the periodic
unit count is set as N = 10, with baseline parameters my = 1 kg, ko =1 N/
m, and kg = 1 N/m. By modulating the mass ratios m;/mp, and the spring
stiffness ratios k1/ks and ki /kg, the periodicity and the asymmetry of the
system can by systematically control.

The eigenfrequencies and the corresponding eigenvectors of the
subsystems can fully reflect the dynamic responses at the poles of
displacement transmissibility, as demonstrated in Section 2.1. As such,
the eigenfrequencies of the subsystem under right-side excitation and
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Normalized displacement at picked frequencies I-IV in Fig. 3(b).

the complementary subsystem under left-side excitation are employed to
investigate the effects of the mass and stiffness ratios on the left and right
vibration transmissibilities of the whole system, respectively, as shown
in Fig. 3. The eigenfrequencies are color coded according to a localiza-
tion factor P, which is defined as

P=>""Li)Y. (10)
with

N1
L(i) = {effvv oy Nie,2n) an

with Y; being the i th element of the 2N*1 eigenvector. L(x) is a weight
function. The value of P indicates the amplitude and direction of the
mode localization, i.e., a larger P signifies the stronger rightward mode
localization while a lower P signifies leftward localization. The bandgap
ranges of the infinite system are shaded in light gray for reference.
When m;/my = 1, the systems remain mirror symmetric regardless of
k1/ks. The subsystem and its complementary subsystem are strictly
equivalent, thus resulting in the same eigenfrequencies, as shown in the
left and right panels of Fig. 2(a). According to the above-deduced
eigenfrequency-transmissibility correlation, there will be no poles or
zeros for the bilateral transmissibility difference as a result of the
coinciding anti-resonances of A, _ ; and 8, _ ; in Eq. (9). This is further
confirmed by the vanishing transmissibility differences calculated from
Egs. (A.6) and (A.11), as shown in the upper panel of Fig. 2(c).
However, for the asymmetric configuration (m;/my = 0.5, Fig. 2(b)),
the two eigenfrequencies diverge (Fig. 2(b)) and transmissibility dif-
ference appears (lower panel of Fig. 2(c)). Eq. (9) indicates that the
eigenfrequency of the complementary subsystem coincides exactly with
the maximum value of transmissibility difference, and the

eigenfrequency of the subsystem coincides with the minimum value,
confirmed again by comparing Fig. 2(b) and the lower panel of Fig. 2(c).

Bragg scattering effects intensify with the increasing ratios of spring
stiffness kj/kg, broadening the bandgap width. The sign of localization
factor changes around k;/kz = 1, suggesting a shift of the localization
position within bandgaps. Crucially, the localization intensity of the
eigenvectors within the bandgaps of the (complementary) subsystem
appears apparently higher than those within the bands as shown in Fig. 2
(a) and (b). The bandgaps act as a barrier to spatially cut off the vi-
brations between the two ends of the system and lead to such single-side
localization. This also indicates the significance of wide bandgaps for the
UVT with high localization.

A fixed spring stiffness ratio, k1/kz = 10%!(marked by dashed line
in Fig. 2) is selected to further show the corresponding transmissibility
spectrum and displacement fields in Fig. 3. For the periodic symmetrical
structure (Fig. 3(a)), the left and right transmissibility curves are iden-
tical. While for the periodic asymmetrical structure (Fig. 3(b)), UVT
appears as the extrema of the transmissibility at peaks within both
passband and bandgap. Within the passband, although the selected two
peaks (peaks I and II) manifest the UVTs for the left-side and right-side
excitation, respectively, the displacement fields tend to be uniform
throughout the whole chain (left two panels of Fig. 3(c)), as a result of
their strong couplings with the nearby vibrational modes of the chain.
Such couplings are largely cut off when the modes are spectrally isolated
by bandgaps. This leads to the high-localized displacement fields of
peaks within bandgaps such as peaks III and IV as shown in the two right
panels of Fig. 3(c). It again underscores the critical role of bandgaps in
achieving high-performance asymmetric wave control.

Apart from the asymmetry that comes from every single unit cell, the
asymmetry from the boundary conditions significantly alters the
behavior of UVT as well. Compared with the case of symmetrical
boundary condition (k;, = kg = 1N/m shown in the left panel of Fig. 4
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(a)), the asymmetrical case (k, = 10%* kg = 1 N/m shown in the right
panel of Fig. 4(a)) yields intriguing phenomenon such as the vanishment
and the merging of UVT. On one hand, the effect induced by boundary
asymmetry can be neutralized by structural asymmetry; this would lead
to the equal value of eigenfrequencies of the subsystem and comple-
mentary subsystem (e.g., point V marked in the right panel of Fig. 4(a))
and result in the vanishment of UVT (Fig. 4(b)). The left panel of Fig. 4
(c) further showcase how vibration transmissibility evolves at specific
spring stiffness ratios around point V (marked with dashed line in Figs. 4
(a) and (b)). At point V, left and right transmissibility peaks coincide,
and their difference no longer attains local extrema within the bandgap
range. On the other hand, UVT can also be reinforced at specific spring
stiffness ratios (e.g., point VI). The multiple subsystem eigenfrequencies
can merge to broaden the operational bandwidth of the unidirectional
wave control, as demonstrated in Fig. 4(b) and the right panel of Fig. 4
(o).

The strong dependence of the transmissibility magnitude (i.e., UVT
efficiency) on structural unit-cell number should be particularly
emphasized, as demonstrated in Fig. 5. With the number of unit cells
increasing, as shown in Figs. 5(a) to 5(c), eigenfrequencies of the sub-
systems remain different from those of the complementary subsystems,
indicating the persistence of UVT regardless of unit-cell number.
Notably, the eigienfrequencies within bandgaps remain invariant, which
is attributed to the high-localized displacement fields insensitive to the
unit-cell number, and further confirmed by the invariant peak fre-
quencies of bilateral transmissibility within bandgaps shown in Fig. 5
(d). However, both the left and right transmissibility magnitudes within

the bandgaps reduce due to the bandgap-induced vibration attenuation.
Excessive number of unit cells (egs. N = 10 and N = 20) would signifi-
cantly reduce the UVT efficiency that challenges practical engineering
applications. Consequently, except for the periodic asymmetrical
structural unit itself, the number of unit cell should also be meticulously
designed to achieve highly efficient UVT.

3. Application and validation in continuous systems

In Section 2, discrete spring-mass systems are examined to demon-
strate that UVT intrinsically originates from the structural symmetry and
is governed by an eigenfrequency-transmissibility correlation. This
section extends this theoretical framework to continuous structures by
designing and analyzing a periodic beam with intentional asymmetry.
The primary objective is to examine whether the established
eigenfrequency-transmissibility correlation persists in continuous sys-
tems and to explore how this correlation contributes to efficient UVTs.

To determine whether this correlation persists in continuous sys-
tems, a periodic beam is designed to incorporate two critical parameters
identified in Section 2: strong structural asymmetry and broad bandg-
aps. This beam serves as a continuous realization of the discrete model
studied previously, wherein the spatial variation in thickness corre-
sponds to the intentional non-uniformity of masse and spring elements
in the spring-mass chain model. Specifically, the local mass per unit
length is proportional to the cross-sectional area, which depends on the
local thickness, while the local bending stiffness analogous to the spring
stiffness with the scale proportional to the cube of the thickness,
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according to Euler-Bernoulli beam theory. Consequently, a beam with
spatially varying thickness effectively introduces continuous distribu-
tions of mass and stiffness, thus mirroring the deliberate variation of
masses and springs in the discrete model. This continuous-discrete
analogy helps intuitively understand the origin of UVT in continuous
structures so that the same design framework can be applied to achieve
enhanced UVT.

As depicted in Fig. 6(a), the unit cell (length a) features a uniform left
segment (thickness 2hy, length 1), a thickness-varying middle segment
(length Iapy), and a uniform right segment (length a- I, -Iapy). The
middle segment follows a power-law thickness profile h(x) = e(x — [,)™
+ ho, which is a highly asymmetrical configuration, characteristic of the
so-called Acoustic Black Hole (ABH) structures [62-68]. This design
enables precise tuning of left-right asymmetry by adjusting segment
lengths. Critically, periodic beam [69-77] or plate [78-83] structures
with ABH elements have been shown to entail broadband bandgaps
through combined local resonances and Bragg scattering mechanisms.

For reference, Fig. 6(b) shows a symmetrical counterpart with paired
ABH profiles.

Consider a free finite beam comprising three unit cells under left-side
or right-side excitation, respectively. Our previously developed wavelet-
decomposed and energy-based model [68,69] is applied to calculate the
vibration transmissibility of a finite structure and the band structures of
an infinite system. The modeling principle is briefly recalled in Appendix
B for the benefit of readers. The thickness of the uniform beam portion
2h,, and the length a of the unit cell are set to be 0.32 cm and 8 cm,
respectively. The ABH profile features length lpp = 2 cm, truncation
thickness hy = 0.02 cm and m = 2. The length I, of the asymmetrical
beam is zero. The material is steel with a mass density of 7800 kg/m°,
Young’s modulus of 210 GPa, and damping loss factor of 0.001.

Analogous to discrete systems, the subsystem and complementary
subsystem of the continuous systems are respectively defined when its
left-side and right-side ends are pinned. Fig. 7(a) presents the eigen-
frequencies of these subsystems and complementary subsystems for
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periodic asymmetrical ABH structures with varying asymmetry levels
(controlled by L,). A comparison with bilateral transmissibility differ-
ences in Fig. 7(b) shows that the maxima of these differences align well
with the complementary subsystem eigenfrequencies and the minima

with the subsystem eigenfrequencies.

This confirms

that the

eigenfrequency-transmissibility correlation established for discrete sys-

tems can be well extended to continuous systems.
The discrepancy between the eigenfrequencies of

subsystems and

their complementary counterparts would lead to UVT. Such discrepancy
generally originates from the asymmetry from structure itself or
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responses at picked frequencies for the beam with

different cells, respectively.
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Fig. 9. Experimental setup: (a) overall diagram; (b) partial detail; (c) specimens with three- and six-unit cells respectively.

boundary condition. In Fig. 7(a), as [, increases from O to 6 cm, the
bandgap range of the infinite structure remains invariant, whereas the
asymmetry difference decreases and then increases. The stronger
asymmetry (e.g., I, = 0 cm or 6 cm) generates more pronounced
broadband asymmetric transmission. Moreover, consistent with discrete
systems, transmissibility differences within bandgaps exhibit signifi-
cantly greater magnitude, thus conducive to more efficient UVT, as
shown in Fig. 7(c). It is noteworthy that asymmetrical ABH beams with
varying asymmetry levels can exhibit identical bandgaps despite their
markedly different UVT behaviors in finite configurations, which ne-
cessitates the proposed eigenfrequency-transmissibility correlation
specially for the dynamics of the finite asymmetric systems.

Moreover, as suggested by Eq. (8) and the analysis of the boundary
condition effects on UVTs in the discrete system (Fig. 4), even under

symmetric boundary conditions, the structural asymmetry introduced
by the ABH design suffices to achieve significant UVT. This flexibility
allows for maintaining the UVT functionality with different boundary
constraints. Therefore, by tuning internal geometric parameters such as
I, the UVT behavior can be optimized irrespective of external boundary
conditions, enhancing its applicability in various real-life engineering
contexts.

Fig. 7(c) further presents the transmissibility spectra for different [,.
For asymmetrical beams, left-side excitation transmissibility (T} ex-
hibits fundamentally distinct behavior from right-side excitation (T} ), a
hallmark of UVT, contrasting sharply with the identical responses in the
symmetrical case. Specifically, varying the asymmetry parameter ([,)
between 0 cm and 6 cm permits the tuning of both effective UVT fre-
quencies and transmission efficiency, the latter being significantly

@3410 H
@ @iose . "R 1gesso 1@1956 Hz 4 @212 1116508 1y
é; 40 l M EXp. v The.
£ 20
Z 0
2
g 20
g
s
& -40
| | | 1
0 2 4 £(kHz)6 8 10 0 2 4 £(kHz) 6 8 10
(b)2 1@1986Hz (c) g l@1956Hz (d) o l@956Hz
~ Exp‘ 6 - The. {0 _ = Mode shape
g 1R J 13 B _ 4 138 5054 ! 4
k ['“‘u ?\ T E . 29 f
Lo "-cu i W02 ¢ 0 j05 goof ! i 1
-1t J W33 2T 3% 5-05¢ ' /
. 1.6 = 8¢ 6 ©
_2 1 L 1 L 1 1 1 1 _1.0 1 1
1@3410 Hz 1@3492 Hz 1o N@3492 Hz
—_ 1 [ T T T /ﬁ' ] 1 /é\ . 4 L T T 3 . T T T
& ; 4N © 3 L ]
lo'fﬂ"@#ﬁfﬁolé TE O_A 1 %0_5
SR I ¥ 12 g Ay b2 £00 /\f\.’\z
[ -2 2 ~ QS S ;
o d {3 = 8;' 3% 205 .
3 ! | I | 4 -12 1 1 L L 1-4 -1.0 L 1 1 1 1
M@6550Hz |5 M@6528Hz s . oM@6528Hz
&) 2+ TE o 0 SN ——— 7
D () bt e s — 1‘0°|° & H 7 1»0"\ = 0.5 j". h
Im w [ L
é 2 ] b 058 é -1 E | 05% g 0.0 T S ————
ks 7 L —— e U e > 5t i
4% 0.0 s 2 0.0 2 205
- 1 L L 1 - 5 _3 1 1 1 1 _10 1 1 1 1
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
x (cm) x (cm) x (cm)
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enhanced within bandgaps. When [, = 0, within the second and third
broadband bandgap ranges (2544~3613 Hz and 5467~9240 Hz), T;
remains below —20 dB, demonstrating significant vibration attenuation,
while T, predominantly exceeds 0 dB and even manifests multiple
resonance peaks, indicative of vibration amplification instead of atten-
uation. Normalized displacement responses at two resonant frequencies
(shown in Fig. 7(d)) confirm this directional asymmetry that vibrations
attenuate rapidly under left-side excitation but amplify substantially
under right-side excitation. Remarkably, this asymmetrical periodic
ABH beam achieves over 20 dB directional transmissibility differences
across a broad frequency range up to 4500 Hz.

The dependence of the transmissibility magnitude on structural unit-
cell number is also revisited in the continuous system scenario, as
demonstrated in Fig. 8. Consistent with discrete systems, UVT func-
tionality persists with increasing unit cells, yet bandgap-induced atten-
uation markedly reduces the bilateral transmissibility magnitudes
within bandgap regions. Notably, although the peak frequencies of the
right transmissibility remain invariant (see representative points II and
I11), the magnitude evolves from vibration amplification (n = 3) to
strong attenuation (n = 9), indicating severe UVT efficiency degrada-
tion. This efficiency reduction is corroborated by normalized displace-
ment responses for different unit cells, as shown in Fig. 8(c). The
invariant peak frequencies stem from the localized displacement field’s
insensitivity to unit-cell quantity.

4. Experimental validation

This section describes experiments designed to validate the afore-
mentioned UVT and examine the proposed correlation between the
measured transmissibility spectra and the calculated eigenfrequencies of
subsystems/complementary subsystems. Tests are performed on two
steel beams with three and six asymmetric ABH unit cells under free
boundary conditions. Using swept-sine excitation and laser vibrometer
measurement, bilateral vibration transmissibility and displacement
fields are measured.

As shown in Fig. 9(c), two tested beams are processed by wire cutting
with steel material, with a mass density of 7657 kg/m®, Young’s
modulus of 200 GPa, and damping loss factor of 0.001. Their geomet-
rical parameters are: h, = 0.16 cm, a = 8 cm, Igpp = 2 cm, hg = 0.019 cm,
m = 2.15, [, = 0. The tested beam is suspended by two thin strings to
mimic free boundaries. An electromagnetic shaker (East China Testing
DH40020) is used to excite the beam at either end depending on the test
requirement. The shaker is driven by a sinusoidal signal sweeping from
0 to 10 kHz generated by a signal generator (East China Testing
DH1301). A Polytec scanning laser vibrometer (PSV-500 HR) is used to
scan the whole beam for response measurement. The force is measured
through an impedance head (Kistler 8770A5) with the measured signal
fed back to the laser vibrometer as reference.

Fig. 10 presents a comparison of the vibration transmissibility of the
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three-unit asymmetrical ABH beam under left-side and right-side exci-
tations. Distinct differences in bilateral vibration transmissibility are
observed across a broad frequency range, particularly within the
bandgap ranges of 2330~3564 Hz and 5152~9133 Hz. Notably, the
transmissibility under the right-side excitation exceeds 0 dB and sur-
passes left-side excitation transmissibility by over 20 dB, demonstrating
an efficient broadband UVT of the tested asymmetrical ABH. Moreover,
in terms of the measured displacement field at peaks, those peaks iso-
lated within bandgaps (such as peak III) show largely localized feature
than those peaks close to the band (peak I and II), as compared in Fig. 10
(b), consistent with the spring-mass model developed in Section 2 as
well. Those experimental results exhibit good agreement with the
theoretical calculations, both in terms of transmissibility (right panel of
Fig. 10(a)) and displacement field (Fig. 10(c)), thus validating the
theoretical framework proposed in Section 2. To further validate the
derived eigenfrequency-transmissibility —correlation, the eigen-
frequencies and modal shapes of the subsystem and the complementary
subsystem of the beam are calculated and shown in Fig. 10(d). The
eigenfrequencies agree well with the corresponding peak frequencies,
while the mode shapes are also aligned with the displacement field,
providing the direct supporting evidence. Note minor discrepancies
between the measured and calculated results are observed which can be
primarily attributed to three factors. First, machining error occurs when
achieving the ultrathin ABH thickness profile. Second, the inevitable
deviation of the excited force from the central axis would cause torsional
effect, which is neglected in the theoretical model. Finally, challenges
arise in accurately measuring the subtle vibration within the bandgap
range during experiments.

Experiments also show that the above UVT phenomena appear more
intuitive when the number of unit cell is double with excitation applied
at the central point of ABH beam. In this case, the UVT is directly re-
flected through one single excitation by investigating the contrast vi-
bration transmissibility (Fig. 11(a)) and displacement fields (Fig. 11(b))
of the left and right parts of the six-unit asymmetric ABH. More specif-
ically, Fig. 11(b) shows that, at peak I, the displacement field within the
right part is significantly larger than that within the left part, while at
peaks II and III, the situation reverses. Once again, the experimental
results are consistent with the theoretical calculations (right panel of
Fig. 11(a) and Fig. 11(c)). Meanwhile, both the eigenfrequencies and
mode shapes of the subsystem and the complementary subsystem
comply to the eigenfrequency-transmissibility correlation.

5. Conclusions

In this study, a theoretical framework governing the occurrence of
UVT in asymmetric finite structures is established. The core finding is
the eigenfrequency-transmissibility correlation, a principle that is
derived from a spring-mass chain model which, owing to its generality,
is shown to pinpoint the intrinsic physical behavior of more general
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continuous systems. This correlation demonstrates that the extrema of
bilateral transmissibility occur at the anti-resonance frequencies with
vanishing response at the excitation point, strictly corresponding to the
eigenfrequencies of the adjoint subsystem or complementary subsystem
with the excitation point fixed. It provides a universal explanation for
UVT phenomena and shows that UVT arises from structural asymmetry
(mass, stiffness or boundary conditions). Furthermore, the way in which
UVT occurs in periodic systems and interacts with bandgaps is eluci-
dated, demonstrating the crucial role that bandgaps play in modulating
the bandwidth and efficiency of UVT.

Guided by this theoretical principle, a periodic continuous beam
with ABH indentations is designed, fabricated and measured. Such
structure inherently offer strong asymmetry and broadband bandgaps,
which contribute to the experimentally measured over 20 dB bilateral
transmission difference across a 4500 Hz bandwidth, in agreement with
the theoretical prediction.

Although developed using a discrete model, the eigenfrequency-
transmissibility correlation serves as a universal principle applicable
to any linear asymmetric systems, continuous or discrete. This work
addresses the challenge of designing finite structures for unidirectional
transmission by providing a predictive theory and a general design
framework. Future work will focus on extending this principle to more
complex and practical structures, e.g., plates, trusses and exploring its
applications for vibration control or energy harvesting in more practical
engineering scenarios.
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Appendix A Bilateral transmissibility for excitation and response at two ends of the spring-mass chain

With an excitation force applied at the left mass m;, namely F=[F;0...0]'sint, the response of m; and my, as well as the left vibration trans-

missibility can be respectively expressed as

X1 = F1601/An,

Xn = Fikiks.. ko1 /A,

X, kika.. K
Ti = 20log L 2010g%.
11 n—1

(A1)

(A.2)

(A.3)

Eq. (A.1) shows that the anti-resonance frequencies of X1; equal to the eigenfrequencies of the (n-1)-dimensional complementary subsystem with
8n — 1(®) = 0. Moreover, they also correspond to the poles of transmissibility of the left-side excitation Tj.
Similarly, when a harmonic excitation is applied on the right mass my,, namely F=[0...0F,]'sinot, the displacement response and the right vibration

transmissibility write
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Xin = Fnklkz"'kn—l/An: (A.4)

er = FnAnfl/Anv (A-5)
_ Xln _ k1k2'~kn—l

T, = 2010gﬂ = 2010gT. (A.6)

Analogously, the eigenfrequencies of the (n-1)-dimensional subsystem withA, _ 1(w) = 0 are equivalent to the poles of transmissibility of the right-
side excitation.

Appendix B Theoretical model for continuous beam systems

Based on the Euler-Bernoulli beam theory, the displacement field of the beam is expressed as {u,w} = {7 2% w(x, t)}, with the flexural

displacement w being expanded by Mexican Hat Wavelets (MHW) ¢; ;(x) as

h
W(X, t) = Z Zai-s (t)wi.s (x)> (B.1)

i—

where i and s being the scaling and translation parameter of the MHW.
The Lagrangian of the system writes

L=FE —E,+W, (B.2)

where Ey denotes the kinetic energy of the system; E, the potential energy and W the work done by excitation forces. They can be obtained,
respectively, by

1 (” (ow\>
Ry (5) o -
1 /% Pw 2 1 1 ow(xy, t) 2
E, = E/ I(x) <ﬁ) dx + EKIW(XM t>2 + §Q1( axl )
N 2 (B.4)
1 2 1 ow Xr, t
KW, 0" +5Q <T> ’
W = f(t)-w(x,t). o

Applying the Lagrange’s equations 4 (MLL(I)) — da(»)L(t) = 0in the harmonic regime, one can get the vibration response of the structure by solving the

following matrix equation

[K— o*M]A =F, (B.6)

with K and M being the stiffness and mass matrices, respectively; A and F being the vectors of the response and the excitation force, respectively.
Setting the force vector in Eq. (B.6) to zero leads to the following eigenvalue equation

M KA = 0’A (B.7)

which gives the eigenfrequencies and the corresponding mode shape functions.
For an infinite system, with consideration of periodic boundary conditions, i.e. Wn.1 (X +a) = &*%wy,(x) and W), ; (x +a) = €*%w,(x), the Lagrangian
of the whole system can be obtained by the sum of Lagrangians of every unit cell as

+o0 +o0
L= Z L,=L, Z ke, (B.8)
n=-—oo q=—c0

Therefore, the Lagrange’s equations of the entire infinite system can be expressed in terms of the Largrangians of one unit cell as

d( dL, oL,
dt (aai_s(t)> " a, () 0. (8.9

Namely, the band structure of an infinite system can be obtianed by solving the Lagranges’s equations of one unit cell. Submitting the displacement
expression with the periodic boundary conditions wp(a) = ejkawn(O) andw'y(a) = ejk“w'n(O)into Eq. (B.9), a matrix equation similar to Eq. (7) can be
obtained. Sweeping the wave vector k along the irreducible Brillouin zone from 0 ton/a, the corresponding eigenfrequencies and mode shape functions
can be obtained. Details can be referred to Ref. [69].
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