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 A B S T R A C T

Delayed resonator (DR) is an active vibration absorber capable of achieving complete vibration 
suppression at a specific frequency by distinctively incorporating appropriate time delays 
into the control loop. Existing works drive the DR mainly following the absorber-based 
feedback control laws. Alternatively, we here propose a hybrid control law that integrates both 
feedforward and feedback control, in which the feedforward control is based on excitation and 
the feedback one is based on the states of the primary structure instead of the absorber. A 
resulting key benefit is that system stability analysis can be significantly simplified thanks to 
the decoupling between the control parameters to be tuned and the characteristic equation. In 
addition to this, enhanced control performance over classical DRs is achieved in both cases of 
single- and multiple-frequency vibration suppression. Results show that the hybrid control law 
can extend the operable frequency band, expedite setting the transient process, and extend the 
antiresonance valley to suppress residual vibrations in steady states. Particularly, the alleviated 
stability issues in the multiple-frequency case allow the hybrid control law to fully leverage the 
strength of the delayed control in raising system order so that a single-mass absorber can yield 
multiple zero antiresonance points at multiple given frequencies. This work establishes a basic 
design and analysis framework for applying feedforward control to the DR and combining it 
with feedback control strategies to maximize control performance.

. Introduction

Vibration absorbers suppress vibrations by canceling forces on primary structures. To perfect force cancellation for complete 
ibration suppression independent of absorber structural parameters, Olgac and Holm-Hansen [1] proposed a concept of delayed 
esonator (DR) by driving the absorber using the delayed control, which generated current active forces as per passive system states. 
ompared to the delay-free control laws (e.g., PD control [2]), the use of delay as a control parameter can directly alter the phase 
f the active force without increasing control terms while maintaining system linearity. As such, displacement [1], velocity [3], and 
cceleration [4] can all be individually used as feedback states to simplify sensor deployments and enhance robustness.
The research on DR has yielded fruitful results. Focusing on the past decade, Sun et al. [5] and Xu et al. [6] identified the 

oop delay, which was then increased to enhance vibration reduction. Pilbauer et al. [7] and Kučera et al. [8] adopted distributed-
elayed control laws to reduce measurement noise by generating active forces based on the sum of all the absorber states within 
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a past time interval. Liu et al. [9] further opined that ignoring the loop delay when using the distributed control, even though 
it is small, can possibly result in no vibration suppression. To reduce the effects of the mismatch between the detected and in-
situ vibration frequencies, Pilbauer et al. [10] extended the antiresonance valley by properly assigning distributed delays, see 
also [11] for achieving the task by assigning double imaginary roots to the DR subsystem. Eris et al. [12] injected an additional 
non-delayed control term and expedited the transient process by optimizing characteristic spectra. Vyhlídal et al. [13] compared 
the tuning mechanisms of control parameters when incorporating different absorber states. Cai et al. [14,15] further unified such 
tuning mechanisms using a fractional-order operator. Zhang et al. [16] integrated the DR into a seat suspension to cope with both 
harmonic and random excitations, see also [17]. Furthermore, the nonlinear effects of stiffness and friction on DR tuning were 
investigated in [18–20]. The DR was also generalized to multiple-degree-of-freedom (MDOF) structures for multiple-dimensional 
vibration control in robotic applications [21–23] and to achieve non-collected vibration suppression [24–26]. In addition to complete 
vibration suppression, delayed control has also been widely used to enhance vibration reduction [27–33].

We notice from the existing works that stability analysis always accounts for a significant portion of the efforts when determining 
the operable frequency band to achieve complete vibration suppression since control parameters affect system stability. However, 
the existing delays lead to an infinite-dimensional system with infinite characteristic roots [34], which prevents a complete stability 
analysis as the control task becomes more complex, thus requiring advanced numerical tools to perform spectral checks at each 
frequency where vibration suppression is to be achieved, e.g., [10,23,26]. This can obviously hamper the application of DR. It should 
also be noted that feedback control, which has been used since the invention of DR, is the root of the stability problem given that 
instability or destabilization is essentially an inappropriate interaction between system input (active forces) and output (responses). 
Motivated by this, we alternatively consider feedforward control since feedforward control based on disturbances (i.e., excitations 
in a vibrating system) as input is independent of system output and thus does not affect system stability.

In fact, the feedforward control has been used to enhance vibration suppression. For instance, Zhu et al. [35] proposed an 
adaptive feedforward controller to settle a piezoelectric cantilever beam under unknown excitation frequencies. Matsui et al. [36] 
used feedforward control to achieve anti-sway transport of a suspended load in a crane system. Beijen et al. [37] minimized the 
measurement noises and improved vibration isolation efficacy using the feedforward control. In the meantime, feedforward control 
is often combined with feedback control to maximize the control performance. In this case, Yan et al. [38] improved a nonlinear 
vibration isolator by reducing the peak transmissibility while maintaining the isolation efficacy. Lang et al. [39] reduced vibrations 
of a helicopter fuselage using partial system states. Zhou et al. [40] eliminated nonlinear hysteretic or creep issues of a camber 
wing. More discussions on the benefits of combining feedback and feedforward can also be referred to [41–44].

Since the purpose of using feedforward control is to simplify the stability analysis in the classical feedback-controlled cases, it 
may seem paradoxical if we also additionally introduce feedback control to drive the DR for combined benefits. To understand this, 
we further point out that the classical feedback-controlled DRs are based on absorber states. Differently, we here use the states of 
the primary structure for feedback control, and we activate the resulting feedback force only when the primary is not fully settled. 
That is, the feedforward force yields complete vibration suppression in steady states where the feedback force takes no effect. In this 
way, the feedback force does not affect the tuning of the control parameters governing the feedforward force for complete vibration 
suppression. On the other hand, such feedforward control parameters do not affect stability that depends only on feedback force. 
Thus, the tuning mechanisms of feedforward and feedback forces can be completely decoupled from each other for simplification, 
forming the basis of proposing a hybrid feedforward (based on excitation) and feedback (based on the primary) control law. This 
also further simplifies our recent works [45,46], where the control logic is combined with the states of the primary and absorber.

We focus on two tasks to show the benefits of the hybrid control law: (1). The commonly studied problem of single-frequency 
vibration suppression, and (2). The multiple-frequency case by still using a single-mass absorber, which is a unique strength of the 
delayed control thanks to the raised system order [47,48]. In both cases, we show how the severe stability issues of the classical 
DRs limit the operable frequency band and how to address or avoid them by the proposed hybrid control law. Besides, the feature 
that feedback forces are activated when the primary structure is not settled makes it possible to enhance transient performances 
and reduce residual vibrations in steady states. Overall, twofold comparisons are conducted: (1). Comparisons with the classical 
absorber-based DRs, and (2) between the cases where the feedforward control is and is not combined with the feedback one, to 
justify the benefits and design rules of the ‘hybrid’ control mode.

The paper is structured as follows. Section 2 establishes the system model. Section 3 proposes the hybrid control law with the 
motivation and necessity of the active control highlighted. Stability issues are addressed in Section 4. Sections 5 and 6 discuss 
the single- and multiple-frequency vibrations, respectively. Numerical and experimental verifications are conducted in Section 7. 
Conclusions are drawn in Section 8. Italic symbols without the bar superscript ‘□’ are dimensionless throughout the text.

2. System model and governing equations

A common operating mode of the DR is shown in Fig.  1(a), in which an actuation force 𝑢̄ based on actively delayed system 
states is injected into the vibration absorber. By properly tuning 𝑢̄, the DR aims to completely settle the primary structure that is 
harmonically excited by 𝑓𝑒. Once achieved, the resulting settled system acts like Fig.  1(b), i.e., the primary structure is fixed and 
only the absorber oscillates to neutralize or cancel the effect of 𝑓𝑒 ≠ 0, yielding the so-called complete vibration suppression.

As marked in Fig.  1, structural dynamics between each two among the primary structure, absorber, and slides are modeled by a 
pair of spring and damper, in which the stiffness between the absorber and slides is omitted due to its small values compared with 
the absorber support stiffness denoted as 𝑘̄𝑎. Dynamics of the primary structure and the absorber are then governed by 

{

𝑚̄𝑎 ̈̄𝑥𝑎 + 𝑐𝑔 ̇̄𝑥𝑎 + 𝑐𝑎
( ̇̄𝑥𝑎 − ̇̄𝑥𝑝

)

+ 𝑘̄𝑎
(

𝑥̄𝑎 − 𝑥̄𝑝
)

= 𝑢̄,
̈ ̇ ̄ ( ̇ ̇ ) ̄ ( ) ̄ (1)
𝑚̄𝑝𝑥̄𝑝 + 𝑐𝑝𝑥̄𝑝 + 𝑘𝑝𝑥̄𝑝 + 𝑐𝑎 𝑥̄𝑝 − 𝑥̄𝑎 + 𝑘𝑎 𝑥̄𝑝 − 𝑥̄𝑎 = 𝑓𝑒 − 𝑢̄,

2 
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Fig. 1. (a). An operating mode of DR to settle a primary structure. (b). Reduced model when the primary is completely settled.

where 𝑚̄(⋅), 𝑐(⋅), 𝑘̄(⋅), and 𝑥̄(⋅) represent mass, damping, stiffness, and absolute displacement, respectively; 𝑥̄(⋅), 𝑢̄, and 𝑓𝑒 are functions 
of the time 𝑡. Introducing the following variable transformations 

𝜔̄𝑝 =
√

𝑘̄𝑝∕𝑚̄𝑝, 𝜔̄𝑎 =
√

𝑘̄𝑎∕𝑚̄𝑎, 𝜁𝑝 =
𝑐𝑝

2𝑚̄𝑝𝜔̄𝑝
, 𝜁𝑎 =

𝑐𝑎
2𝑚̄𝑎𝜔̄𝑎

, 𝜁𝑔 =
𝑐𝑔

2𝑚̄𝑎𝜔̄𝑎
,

𝜇 =
𝑚̄𝑎
𝑚̄𝑝

, 𝑣 =
𝜔̄𝑎
𝜔̄𝑝

, 𝑥𝑎 =
𝑥̄𝑎
𝑙
, 𝑥𝑝 =

𝑥̄𝑝
𝑙
, 𝑡 = 𝑡𝜔̄𝑝, 𝑓𝑒 =

𝑓𝑒
𝑘̄𝑝𝑙

, 𝑢 = 𝑢̄
𝑘̄𝑝𝑙

,
(2)

in which 𝑙 denotes the unit length, Eq. (1) can be reshaped into the dimensionless form as 
{

𝜇
[

𝑥̈𝑎 + 2𝜁𝑔𝑣𝑥̇𝑎 + 2𝜁𝑎𝑣
(

𝑥̇𝑎 − 𝑥̇𝑝
)

+ 𝑣2
(

𝑥𝑎 − 𝑥𝑝
)]

= 𝑢,
𝑥̈𝑝 + 2𝜁𝑝𝑥̇𝑝 + 𝑥𝑝 + 𝜇

[

2𝜁𝑎𝑣
(

𝑥̇𝑝 − 𝑥̇𝑎
)

+ 𝑣2
(

𝑥𝑝 − 𝑥𝑎
)]

= 𝑓𝑒 − 𝑢.
(3)

The desired complete vibration suppression is to achieve ||
|

𝑥𝑝
|

|

|

= 0 when |
|

𝑓𝑒|| ≠ 0 by properly constructing the form of the controlled 
active actuation force 𝑢, and accordingly, tuning the control parameters.

Remark 1.  Like most studies on DRs, the circuit dynamics within the actuator for generating 𝑢 are not considered. This agrees 
with our physical implementation of 𝑢 by directly applying the driving current in the coil of a voice coil motor, as to be further 
introduced in Section 7.1. If the motor driving is based on voltage, then the effects of the coil inductance and resistance need to 
be considered for correcting the coil current [2,38,49]. Note that in both implementation methods, the force output 𝑢 is linearly 
proportional to the coil current. From this perspective, directly driving 𝑢 via the current can simplify the analysis given also the 
complexity of the time-delayed system itself. In addition to the extensive studies on DRs, one can also refer to [50–52] for the force 
control of voice coil motors based on the direct-current-driven methods.  ■

3. Proposition of the hybrid control law

To facilitate comparisons, we start with reviewing the most commonly considered absorber displacement-based control logic 

𝑢𝑎
(

𝑡, 𝑔[𝑖]𝑎 , 𝜏[𝑖]𝑎
)

=
𝑁𝑎
∑

𝑖=1
𝑔[𝑖]𝑎 𝑥𝑎

(

𝑡 − 𝜏[𝑖]𝑎
)

, (4)

where 𝑁𝑎 ∈ Z+, 𝑔[𝑖]𝑎  is the gain, and 𝜏[𝑖]𝑎  is the time delay. The introduction of the time delay 𝜏[𝑖]𝑎  renders a single control term 
with two manipulatable parameters without affecting system linearity, in addition to modeling the inevitable loop delay in real 
applications. Note that 𝑢𝑎 is a feedback control law based on system responses (output).

3.1. System responses with a general actuation force 𝑢

Revisiting Fig.  1(a), the excitation 𝑓𝑒 independent of system states (𝑥𝑎, 𝑥𝑝
) can be seen as a disturbance, and the coupled system 

contains a single input (𝑢) and two outputs (𝑥𝑎, 𝑥𝑝
)

. To enhance performance, we generalize the classical control law 𝑢𝑎 in (4) by 
incorporating all three states (𝑓𝑒, 𝑥𝑎, 𝑥𝑝

) into the generation of the active force 𝑢 by considering 

𝑢
(

𝑢𝑎, 𝑢𝑓 , 𝑢𝑝
)

= 𝑢𝑎 (𝑡) + 𝑢𝑓 (𝑡) + 𝑢𝑝 (𝑡) , (5)

where 𝑢𝑎, 𝑢𝑝, and 𝑢𝑓  can be taken as the general forms of linear control terms related to 𝑥𝑎, 𝑥𝑝, and 𝑓𝑒 (including their derivatives), 
respectively. Particularly, 𝑢𝑓  based on the disturbance 𝑓𝑒 is a feedforward force. The Laplace transform of 𝑢 is 

𝑈
(

𝑈 ,𝑈 ,𝑈
)

= 𝑈 𝑠 𝑋 + 𝑈 𝑠 𝑋 + 𝑈 𝑠 𝐹 , (6)
𝑎 𝑝 𝑓 𝑎 ( ) 𝑎 𝑝 ( ) 𝑝 𝑓 ( ) 𝑒

3 
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where 𝑠 is the Laplace variable, 𝑋𝑎 = ℒ
(

𝑥𝑎
)

, 𝑋𝑝 = ℒ
(

𝑥𝑝
)

, and 𝐹𝑒 = ℒ
(

𝑓𝑒
)

, with ℒ (⋅) denoting Laplace transform operation, and 
accordingly, 𝑈𝑎 (𝑠) = ℒ

(

𝑢𝑎
)

∕𝑋𝑎, 𝑈𝑝 (𝑠) = ℒ
(

𝑢𝑝
)

∕𝑋𝑝, and 𝑈𝑓 (𝑠) = ℒ
(

𝑓𝑒
)

∕𝐹𝑒. Substituting (6) into (3), the governing equations in 
the Laplace domain can be cast into a matrix form of 

𝐙
(

𝑠, 𝑈𝑎, 𝑈𝑝
)

[

𝑋𝑎
𝑋𝑝

]

=
[

𝑈𝑓 (𝑠)𝐹𝑒
(

1 − 𝑈𝑓 (𝑠)
)

𝐹𝑒

]

, (7)

where 𝐙 is the impedance matrix and is defined as 

𝐙
(

𝑠, 𝑈𝑎, 𝑈𝑝
)

=
[

𝐴
(

𝑠, 𝑈𝑎
)

𝐵
(

𝑠, 𝑈𝑝
)

𝐶
(

𝑠, 𝑈𝑎
)

𝐷
(

𝑠, 𝑈𝑝
)

]

, (8)

in which 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐴
(

𝑠, 𝑈𝑎
)

= 𝜇
(

𝑠2 + 2
(

𝜁𝑎 + 𝜁𝑔
)

𝑣𝑠 + 𝑣2
)

− 𝑈𝑎 (𝑠) ,
𝐵
(

𝑠, 𝑈𝑝
)

= −𝜇𝑣
(

2𝜁𝑎𝑠 + 𝑣
)

− 𝑈𝑝 (𝑠) ,
𝐶
(

𝑠, 𝑈𝑎
)

= −𝜇𝑣
(

2𝜁𝑎𝑠 + 𝑣
)

+ 𝑈𝑎 (𝑠) ,
𝐷
(

𝑠, 𝑈𝑝
)

= 𝑠2 + 2𝜁𝑝𝑠 + 1 + 𝜇𝑣
(

2𝜁𝑎𝑠 + 𝑣
)

+ 𝑈𝑝 (𝑠) .

(9)

One can then obtain the transfer function from 𝑓𝑒 to 𝑥𝑝, 

𝐺𝑓𝑒→𝑥𝑝
(

𝑠, 𝑈𝑎, 𝑈𝑝, 𝑈𝑓
)

=
𝑋𝑝

𝐹𝑒
= 𝑈𝑓 (𝑠)𝐙−1

(2,1)
(

𝑠, 𝑈𝑎, 𝑈𝑝
)

+
[

1 − 𝑈𝑓 (𝑠)
]

𝐙−1
(2,2)

(

𝑠, 𝑈𝑎, 𝑈𝑝
)

, (10)

where 𝐙−1
(2,1) and 𝐙−1

(2,2) represent the (2, 1) and (2, 2) elements of the matrix 𝐙−1, respectively. We next write the transfer function 
(10) into a more concise form as 

𝐺𝑓𝑒→𝑥𝑝
(

𝑠, 𝑈𝑎, 𝑈𝑝, 𝑈𝑓
)

=
𝑁

(

𝑠, 𝑈𝑎, 𝑈𝑓
)

|

|

|

𝐙
(

𝑠, 𝑈𝑎, 𝑈𝑝
)

|

|

|

, (11)

where |⋅| means calculating the determinant, and 𝑁 is a function of (𝑠, 𝑈𝑎, 𝑈𝑓
)

, i.e., 

𝑁
(

𝑠, 𝑈𝑎, 𝑈𝑓
)

= −𝑈𝑓 (𝑠)𝐶
(

𝑠, 𝑈𝑎
)

+
[

1 − 𝑈𝑓 (𝑠)
]

𝐴
(

𝑠, 𝑈𝑎
)

. (12)

Hence, the active force 𝑢 affects the responses of the primary by injecting (𝑈𝑎, 𝑈𝑝, 𝑈𝑓
) terms into the transfer function (10).

3.2. Motivation for the hybrid multiple-delayed control law

The complete vibration suppression ||
|

𝑥𝑝
|

|

|

≡ 0 necessitates an ideal zero antiresonance point of the primary structure at a given 
frequency, say 𝜔𝑡 ∈ R+ in the dimensionless form. To this end, we let 𝐺 (

𝑠 = 𝑗𝜔𝑡
)

= 0, which is equivalent to 

𝑁
(

𝑠 = 𝑗𝜔𝑡, 𝑈𝑎, 𝑈𝑓
)

= 0, (13)

where 𝑗 =
√

−1. On the other hand, the active force 𝑢 makes sense only if the coupled system is stable, which requires that the 
spectrum of the characteristic equation 

𝐶𝐸
(

𝑠, 𝑈𝑎, 𝑈𝑝
)

= |

|

|

𝐙
(

𝑠, 𝑈𝑎, 𝑈𝑝
)

|

|

|

= 0 (14)

all lies on the left half of the complex plane. Eqs. (13) and (14) signify two basic design rules of 𝑢, regardless of control laws.
From the form of (14), the feedforward control force 𝑢𝑓  signified by 𝑈𝑓  does not appear in the characteristic equation and thus 

does not affect system stability. This is expected since 𝑓𝑒 which 𝑢𝑓  depends on is independent of system states. On the other hand, 
the feedback force 𝑢𝑝 related to the primary structure does not appear in (13), thus posing no effects on the tuning mechanisms of 
the control parameters governing (𝑈𝑎, 𝑈𝑓

) for complete vibration suppression. Considering that 𝑈𝑎 appears in both (13) and (14), 
one can adopt a control law in the form of 

𝑢ℎ
(

𝑢𝑓 , 𝑢𝑝
)

= 𝑢𝑓 (𝑡) + 𝑢𝑝 (𝑡) , (15)

which excludes the feedback force 𝑢𝑎 related to absorber states. By adopting (15), we have 𝑈𝑎 = 0 so that the tuning process for 
complete vibration suppression only involves 𝑈𝑓  as per (13) and is decoupled from system stability which is now only tied to 𝑈𝑝
as per (14). From this perspective, the operable frequency band for complete vibration suppression, which is known to be severely 
limited by stability issues when absorber states are involved in 𝑢 [13,14,45,48], can be extended. Note that the system is always 
stable when adopting (15) with 𝑢𝑝 = 0 since Eq. (14) with 𝑈𝑎 = 𝑈𝑝 = 0 reduces to the passive case.

3.3. Necessity of the active vibration absorber

Given that the information of the excitation 𝑓𝑒 is required in 𝑢𝑓 , the necessity of the active vibration absorber may be questioned 
since it seems that one can now directly apply a counter force −𝑓  on the primary to neutralize 𝑓  for complete vibration suppression 
𝑒 𝑒

4 
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|

|

|

𝑥𝑝
|

|

|

= 0. To explain the necessity, we substitute the condition ||
|

𝑥𝑝
|

|

|

= 0 into (3), yielding 
{

𝜇
(

𝑥̈𝑎 + 2𝜁𝑔𝑣𝑥̇𝑎 + 2𝜁𝑎𝑣𝑥̇𝑎 + 𝑣2𝑥𝑎
)

= 𝑢𝑎 + 𝑢𝑓 + 𝑢𝑝,
−𝜇

(

2𝜁𝑎𝑣𝑥̇𝑎 + 𝑣2𝑥𝑎
)

= 𝑓𝑒 −
(

𝑢𝑎 + 𝑢𝑓 + 𝑢𝑝
)

,
(16)

where we let 𝑢𝑝 = 0 when ||
|

𝑥𝑝
|

|

|

= 0 and have 𝑢𝑎 ≡ 0 when adopting (15). Summing the two equations in (16) gives 

𝜇
(

𝑥̈𝑎 + 2𝜁𝑔𝑣𝑥̇𝑎
)

= 𝑓𝑒. (17)

Combining Eq. (17) and the first equation of (16), one can obtain the transfer function from 𝑓𝑒 to 𝑢𝑓 , 

𝐺𝑓𝑒→𝑢𝑓 (𝑠) =
𝑈𝑓

𝐹𝑒
=

𝑠2 + 2
(

𝜁𝑔 + 𝜁𝑎
)

𝑣𝑠 + 𝑣2

𝑠2 + 2𝜁𝑔𝑣𝑠
. (18)

The amplitude of (18) is 

𝐺𝑓𝑒→𝑢𝑓 (𝜔) =
|

|

|

𝑢𝑓
|

|

|

|

|

𝑓𝑒||
=

√

√

√

√

(

𝑣2 − 𝜔2
)2 + 4

(

𝜁𝑔 + 𝜁𝑎
)2 𝑣2𝜔2

𝜔4 + 4𝜁2𝑔 𝑣2𝜔2
=
√

1 + 𝑣2𝜗 (𝜔), (19)

where 𝜔 ∈ R+ is the dimensionless excitation frequency, and 

𝜗 (𝜔) = 2
(

2𝜁2𝑎 + 4𝜁𝑔𝜁𝑎 − 1
)

𝜔2 + 𝑣2. (20)

Note that 𝐺𝑓𝑒→𝑢𝑓 (𝜔) < 1 means that the active force combined with a vibration absorber to achieve ||
|

𝑥𝑝
|

|

|

= 0 is smaller than the one 
directly applied on the primary to neutralize 𝑓𝑒. To achieve this, we require 𝜗 < 0. Given that 𝜁𝑔 , 𝜁𝑎 ≪ 1, one needs 

𝜔2 > 𝑣2

2
(

1 − 2𝜁2𝑎 − 4𝜁𝑔𝜁𝑎
) . (21)

Hence, by properly designing (𝑣, 𝜁𝑎, 𝜁𝑔
) related to the absorber structure, the solution of active vibration absorber can achieve 

|

|

|

𝑢𝑓
|

|

|

< |

|

𝑓𝑒|| (22)

within a sufficiently broad frequency band. This favorably reduces the power and size requirements of the actuator. On the other 
hand, when the primary structure is far from the frame or base making directly apply forces to neutralize 𝑓𝑒 difficult, which is 
common in engineering practice, the absorber substructure can provide mounting space for the actuator to generate 𝑢𝑓 .

In this work, we consider an example system with 
𝜇 = 0.5285, 𝑣 = 0.9862, 𝜁𝑎 = 0.1097, 𝜁𝑔 = 0.051, 𝜁𝑝 = 0.0665,

𝜔̄𝑎 = 38.42 rad∕s (6.11 Hz) , 𝜔̄𝑝 = 38.96 rad∕s (6.2 Hz) .
(23)

The corresponding experimental setup is to be introduced in Section 7. According to (21), we can achieve (22) when 𝜔 > 0.714 or 
𝜔̄ = 𝜔𝜔̄𝑝 > 4.428 Hz. Note that Eq. (19) monotonically decreases with 𝜔, and 𝐺𝑓𝑒→𝑢𝑓 (𝜔) = 0.63 ≪ 1 when 𝜔̄ = 5 Hz.

3.4. Specification of the hybrid multiple-delayed control law

To demonstrate the strength of the hybrid multiple-delayed control law (15), we specify 𝑢ℎ based on 
(

𝑓𝑒, 𝑥𝑝
) following 

𝑢ℎ ∶⇒ 𝑢𝐹𝑃
(

𝑓𝑒, 𝑥𝑝
)

=
𝑁𝑓
∑

𝑖=1
𝑔[𝑖]𝑓 𝑓𝑒

(

𝑡 − 𝜏[𝑖]𝑓
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑢𝑓

+ 𝑔𝑝𝑥𝑝
(

𝑡 − 𝜏𝑝
)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑢𝑝

, (24)

where 𝑁𝑓 ∈ Z+, 
(

𝑔[𝑖]𝑓 , 𝑔𝑝
)

 are gain parameters, and 
(

𝜏[𝑖]𝑓 , 𝜏𝑝
)

 are manipulable delay parameters similar to 𝜏[𝑖]𝑎  of the classical control 
law 𝑢𝑎 in (4) to seek enhanced performance by manipulating the state phase. Note that 𝑢𝐹𝑃  is a hybrid multiple-delayed control 
law consisting of both delayed feedforward and feedback states, as graphically illustrated in Fig.  2. Particularly, to minimize the 
number of control terms for robustness and simplification, only one feedback control term 𝑢𝑝 (𝑡) = 𝑔𝑝𝑥𝑝

(

𝑡 − 𝜏𝑝
) is used to show how 

to manipulate the interplay between the feedforward and feedback forces for better performance, given also that the form of 𝑢𝑝 does 
not affect the tuning of 𝑢𝑓  for complete vibration suppression, see Section 3.2. Besides, 𝑁𝑓 = 1 and 𝑁𝑓 > 1 correspond to single- 
and multiple-frequency vibration suppressions, respectively, as to be further introduced.

Next, the DR actuated with the classical control law 𝑢𝑎 and the hybrid one 𝑢𝐹𝑃  is called A-DR and FP-DR, respectively. The 
reduced case of FP-DR with 𝑔𝑝 = 0, which corresponds to pure feedforward control, is called F-DR. The benefits of the FP-DR over 
F-DR and A-DR are sought in two aspects: (1). Single-frequency vibration suppression, followed by (2). The multiple-frequency case. 
Before such discussions, stability issues governed by (14) of the FP-DR are addressed.
5 
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Fig. 2. Proposed hybrid multiple-delayed control logic (𝑢𝐹𝑃 ) with both delayed feedforward (𝑢𝑓 ) and feedback (𝑢𝑝) states.

4. System stability analysis on FP-DR for stable pairs of (𝒈𝒑, 𝝉𝒑)

Since the characteristic Eq. (14) in the FP-DR case is only related to 𝑈𝑝, the operable pairs of 
(

𝑔𝑝, 𝜏𝑝
) rendering a stable system 

hold whether complete vibration suppression is achieved at single or multiple frequencies, as to be determined next.

4.1. Stability boundaries

When adopting the FP-DR driven by 𝑢𝐹𝑃  in (24), we according to (6) have 
⎧

⎪

⎨

⎪

⎩

𝑈𝑎 (𝑠) = 0, 𝑈𝑝 (𝑠) = 𝑔𝑝𝑒
−𝜏𝑝𝑠,

𝑈𝑓 (𝑠) =
𝑁𝑓
∑

𝑖=1
𝑔[𝑖]𝑓 𝑒−𝜏

[1]
𝑓 𝑠.

(25)

Substituting (𝑈𝑎, 𝑈𝑝
) in (25) into (14) and combining the terms related to 𝑔𝑝𝑒−𝜏𝑝𝑠 of the resulting equation yield 

𝐶𝐸ℎ
(

𝑠, 𝑔𝑝, 𝜏𝑝
)

= 𝛼 (𝑠) 𝑔𝑝𝑒
−𝜏𝑝𝑠 + 𝛽 (𝑠) = 0, (26)

where (𝛼, 𝛽) are two complex polynomials in the forms of 
{

𝛼 (𝑠) = 𝜇
(

𝑠2 + 2𝜁𝑔𝑣𝑠
)

,
𝛽 (𝑠) = 𝜇

(

𝑠2 + 2
(

𝜁𝑎 + 𝜁𝑔
)

𝑣𝑠 + 𝑣2
) [

𝑠2 + 2𝜁𝑝𝑠 + 1 + 𝜇𝑣
(

2𝜁𝑎𝑠 + 𝑣
)]

− 𝜇2𝑣2
(

2𝜁𝑎𝑠 + 𝑣
)2 .

(27)

Linear systems lose stability at the critical moment when the rightmost pair of characteristic roots crosses the imaginary axis from 
the left to the right. Hence, substituting 𝑠 = 𝑗𝜔𝑐 , 𝜔𝑐 ∈ R+ into (26) leads to 

𝑔𝑝𝑒
−𝑗𝜏𝑝𝜔𝑐 = −

𝛽
(

𝑗𝜔𝑐
)

𝛼
(

𝑗𝜔𝑐
) = 𝛾𝑅

(

𝜔𝑐
)

+ 𝑗𝛾𝐼
(

𝜔𝑐
)

, (28)

where the subscript (⋅)𝑐 means ‘critical’, and 
(

𝛾𝑅, 𝛾𝐼
)

∈ R2+ denote the expansion. Balancing the real and imaginary parts of (28), 
the pairs of (𝑔𝑝, 𝜏𝑝

) yielding at least one pair of imaginary roots 𝑠 = ±𝑗𝜔𝑐 can be obtained as 
⎧

⎪

⎨

⎪

⎩

𝑔𝑝,𝑐
(

𝜔𝑐
)

= 𝜌𝑐
√

𝛾2𝑅
(

𝜔𝑐
)

+ 𝛾2𝐼
(

𝜔𝑐
)

,

𝜏𝑝,𝑐
(

𝜔𝑐
)

= 1
𝜔𝑡

[

a tan
(−𝛾𝐼

(

𝜔𝑐
)

𝛾𝑅
(

𝜔𝑐
)

)

+ 2𝜋 (𝑞 − 1) +
|

|

𝜌𝑐 ||−𝜌𝑐
2 𝜋

]

,
(29)

where 𝜌𝑐 = ±1, and 𝑞 = 1, 2,… stem from the periodicity of 𝑒−𝑗𝜏𝑝,𝑐𝜔𝑐 . By exhaustively sweeping 𝜔𝑐 , the resulting critical pairs of 
(

𝑔𝑝,𝑐 , 𝜏𝑝,𝑐
) signify all positions where destabilization can occur, and thus the curves constituted by (𝑔𝑝,𝑐 , 𝜏𝑝,𝑐

) are called stability 
boundaries. The stability analysis based on stability boundaries is known as the D-subdivision method [53].

4.2. Stability map

The stability boundaries (𝑔𝑝,𝑐 , 𝜏𝑝,𝑐
) resulting from (29) for the coupled system (23) are shown as the solid curves in Fig.  3, which 

divide the (𝑔𝑝, 𝜏𝑝
) plane into infinite parametric pockets. Parameter pairs (𝑔𝑝, 𝜏𝑝

) within each pocket do not alter stability since no 
boundary crossings occur. To determine the stable regions for operable pairs of (𝑔𝑝, 𝜏𝑝

)

, we start with the pocket covering 𝑔𝑝 = 0, 
which is the F-DR case and is always stable since the characteristic Eq. (26) with 𝑔𝑝 = 0 is reduced to the passive case, see also 
Section 3.2. Then, the stability of rest pockets can be checked by the required boundary crossings from the stable one via the root 
tendency (RT) [54] defined as 

𝑅𝑇 = sgn

[

Re

(

𝑑𝑠
𝑑𝜆

|

|

| 𝑠=𝑗𝜔𝑐

)]

, (30)

| 𝜆=𝜆𝑐

6 
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Fig. 3. Stability map regarding Eq. (26) for the system (23). Colored region is stable. Shaded region is delay-independent stable.

where 𝜆 ∈
[

𝑔𝑝, 𝜏𝑝
] corresponds to the variable that crosses stability boundaries. Clearly, the crossings with 𝑅𝑇 = +1 and 𝑅𝑇 = −1

shift the imaginary roots 𝑠 = ±𝑗𝜔𝑐 rightward and leftward, respectively. By counting the number of unstable roots based on RT, the 
stable regions can be determined, as colored in Fig.  3.

4.3. Delay-independent stability

The stable region shown in Fig.  3 signifies the operable (𝑔𝑝, 𝜏𝑝
) pairs of the FP-DR regardless of the feedforward force 𝑢𝑓  governed 

by 
(

𝑔[𝑖]𝑓 , 𝜏[𝑖]𝑓
)

. Clearly, the delay 𝜏𝑝 can significantly affect stability. Note that there exists an interval ||
|

𝑔𝑝
|

|

|

< 0.316 where the system 
is stable independent of 𝜏𝑝, yielding the so-called delay-independent stability (DIS) [55–57].

The mechanism of DIS is to ensure that no boundary crossing occurs when varying 𝜏𝑝 for a given 𝑔𝑝, which requires that ||
|

𝑔𝑝
|

|

|

is smaller than the smallest ||
|

𝑔𝑝,𝑐
|

|

|

, say 𝑔[min]
𝑝,𝑐 ∈ R+, which agrees with the DIS distribution in Fig.  3. To determine 𝑔[min]

𝑝,𝑐 , we first 
determine all the grids of 𝜔𝑐 where ||

|

𝑔𝑝,𝑐
|

|

|

 exhibits an extremum. According to (28), such 𝜔𝑐 grids are obtained as 

𝝎[exm]
𝑐 =

{

𝜔𝑐

|

|

|

|

|

𝜕𝛽𝑎𝑏𝑠
(

𝜔𝑐
)

𝜕𝜔𝑐
𝛼𝑎𝑏𝑠

(

𝜔𝑐
)

−
𝜕𝛼𝑎𝑏𝑠

(

𝜔𝑐
)

𝜕𝜔𝑐
𝛽𝑎𝑏𝑠

(

𝜔𝑐
)

= 0

}

, (31)

where 𝛽𝑎𝑏𝑠 = |

|

|

𝛽
(

𝑗𝜔𝑐
)

|

|

|

 and 𝛼𝑎𝑏𝑠 = |

|

|

𝛼
(

𝑗𝜔𝑐
)

|

|

|

. Then, one can obtain the minimum 𝑔[min]
𝑝,𝑐  as 

𝑔[min]
𝑝,𝑐 = min

{

𝑔𝑝,𝑐
(

𝜔[exm]
𝑐

)

,∀𝜔[exm]
𝑐 ∈ 𝝎[exm]

𝑐
}

, (32)

leading to the DIS condition 
|

|

|

𝑔𝑝
|

|

|

< 𝑔[min]
𝑝,𝑐 . (33)

For the system (23), we have 𝑔[min]
𝑝,𝑐 = 0.316, concurring with Fig.  3. We stress that the determination process of 𝑔[min]

𝑝,𝑐  based on (31) 
and (32) is nonconservative since 𝝎[exm]

𝑐  can be exhaustive thanks to the polynomial forms of 𝛼𝑎𝑏𝑠
(

𝜔𝑐
) and 𝛽𝑎𝑏𝑠

(

𝜔𝑐
)

. Selecting 
𝑔𝑝 following (33) to achieve the DIS can enhance control robustness when the loop delay is large (e.g., hardware delay and 
delay of numerical filter) and when delay perturbation is non-ignorable. Stability analyses for operable (𝑔𝑎, 𝜏𝑎

) of the A-DR in 
the single-frequency case have been addressed in our previous work [45] and are only spectrally examined next.

5. Complete suppression of single-frequency vibrations

In this single-frequency case using the A-DR, FP-DR, or its special case F-DR, we let 𝑔[𝑖]𝑎 , 𝑔[𝑖]𝑓 = 0, for 𝑖 ⩾ 2, to minimize the 
number of control terms. Accordingly, the tuning mechanisms of 

(

𝑔[1]𝑓 , 𝜏[1]𝑓

)

 for the FP-DR and F-DR and 
(

𝑔[1]𝑎 , 𝜏[1]𝑎

)

 for the A-DR 
are established, and comparisons are conducted to demonstrate the selection rules of (𝑔𝑝, 𝜏𝑝

)

.

5.1. Tuned control parameters for complete vibration suppression

Substituting 𝑈𝑓  in (25) with 𝑔[𝑖]𝑓 = 0, 𝑖 ⩾ 2 into (13) yields 

𝑁
(

𝑗𝜔𝑡, 𝑔
[1], 𝜏[1]

)

= 𝑗𝜇𝑣
(

2𝜁𝑎𝜔𝑡 + 𝑣
)

𝑔[1]𝑒−𝑗𝜏
[1]
𝑓 𝜔𝑡 +

(

1 − 𝑔[1]𝑒−𝜏
[1]
𝑓 𝜔𝑡

)

[

𝜇
(

−𝜔2
𝑡 + 2𝑗

(

𝜁𝑎 + 𝜁𝑔
)

𝑣𝜔𝑡 + 𝑣2
)]

= 0. (34)
𝑓 𝑓 𝑓 𝑓

7 
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Fig. 4. Comparisons of the tuned pairs between the FP-DR (and F-DR) and the A-DR for the coupled system (23), in which 𝑔[𝑖]𝑎 , 𝑔[𝑖]𝑓 = 0, 𝑖 ⩾ 2. 
(a). Tuned gain parameters 

(

𝑔[1]𝑓,𝑡, 𝑔
[1]
𝑎,𝑡

)

 with (𝜌𝑓 < 0, 𝜌𝑎 < 0
) versus 𝜔𝑡. (b). The first two branches of the tuned delays 

(

𝜏 [1]𝑓,𝑡 , 𝜏
[1]
𝑎,𝑡

)

 versus 𝜔𝑡.

Separating 𝑔[1]𝑓 exp
(

−𝑗𝜏[1]𝑓 𝜔𝑡

)

 from Eq. (34) and separating the real and imaginary parts of the reminder term arrive at 

𝑔[1]𝑓 𝑒−𝑗𝜏
[1]
𝑓 𝜔𝑡 = 𝜎

(

𝜔𝑡
)

+ 𝑗𝜛
(

𝜔𝑡
)

, (35)

where (𝜎,𝜛) ∈ R2 are parameterized in 𝜔𝑡, satisfying 

𝜎
(

𝜔𝑡
)

+ 𝑗𝜛
(

𝜔𝑡
)

=
𝑣2 − 𝜔2

𝑡 + 2𝑗
(

𝜁𝑎 + 𝜁𝑔
)

𝑣𝜔𝑡

−𝜔2
𝑡 + 2𝑗𝜁𝑔𝑣𝜔𝑡

. (36)

Note that Eq. (35) corresponds to the transfer function (18) in the frequency domain. Balancing the real and imaginary parts on 
both sides of (36) leads to the tuned pair of 

(

𝑔[1]𝑓 , 𝜏[1]𝑓

)

 denoted as 

⎧

⎪

⎨

⎪

⎩

𝑔[1]𝑓,𝑡
(

𝜔𝑡
)

= 𝜌𝑓
√

𝜎2
(

𝜔𝑡
)

+𝜛2
(

𝜔𝑡
)

,

𝜏[1]𝑓,𝑡
(

𝜔𝑡
)

= 1
𝜔𝑡

[

a tan
(−𝜛

(

𝜔𝑡
)

𝜎
(

𝜔𝑡
)

)

+ 2𝜋 (𝑏 − 1) +
|

|

|

𝜌𝑓
|

|

|

−𝜌𝑓
2 𝜋

]

,
(37)

where 𝜌𝑓 = ±1, and 𝑏 ∈ Z+ similar to 𝑞 in (29) is called branch number. Note that 
(

𝑔[1]𝑓,𝑡, 𝜏
[1]
𝑓,𝑡

)

 are independent of (𝑔𝑝, 𝜏𝑝
)

, and they 
hold for both FP-DR and F-DR. On the other hand, to achieve complete vibration suppression using the A-DR driven by (4) with 
𝑔[𝑖]𝑎 = 0, 𝑖 ⩾ 2, the tuned pairs of 

(

𝑔[1]𝑎 , 𝜏[1]𝑎

)

 have been obtained in [13] and are rewritten following (2) as 

⎧

⎪

⎨

⎪

⎩

𝑔[1]𝑎,𝑡
(

𝜔𝑡
)

= 𝜌𝑎𝜇
√

(

𝑣2 − 𝜔2
𝑡
)2 + 4𝑣2𝜔2

𝑡
(

𝜁𝑎 + 𝜁𝑔
)2,

𝜏[1]𝑎,𝑡
(

𝜔𝑡
)

= 1
𝜔𝑡

[

a tan
(

−2
(

𝜁𝑎+𝜁𝑔
)

𝑣𝜔𝑡

𝑣2−𝜔2
𝑡

)

+ 2𝜋 (𝑏 − 1) +
|

|

𝜌𝑎||−𝜌𝑎
2 𝜋

]

,
(38)

where 𝜌𝑎 = ±1. We point out that 
(

𝑔[1]𝑓,𝑡, 𝜏
[1]
𝑓,𝑡

)

 and 
(

𝑔[1]𝑎,𝑡 , 𝜏
[1]
𝑎,𝑡

)

 are both multiple-valued for a given tuning frequency 𝜔𝑡 due to the 
optional values of (𝜌𝑓 , 𝜌𝑎, 𝑏

)

. In addition, one can conclude in light of the forms of (35), (36) and (38) that 

𝑔[1]𝑎,𝑡 𝑒
−𝑗𝜏[1]𝑎,𝑡 𝜔𝑡

𝜇
(

−𝜔2
𝑡 + 2𝑗𝜁𝑔𝑣𝜔𝑡

) = 𝑔[1]𝑓,𝑡𝑒
−𝑗𝜏[1]𝑓,𝑡𝜔𝑡 , (39)

which signifies the differences in amplitude and phase between 𝑓𝑒 and 𝑥𝑎 since the required active force 𝑢 to achieve complete 
vibration suppression is independent of control laws, see the form of (16).

Remark 2.  The branch number 𝑏 corresponds to the periodic delay shift of 2𝑏𝜋∕𝜔𝑡. To facilitate discussion, we next use 𝑏 = 1 to 
define the branch that yields the smallest positive values of the tuned delays (𝜏[1]𝑓,𝑡 , 𝜏

[1]
𝑎,𝑡 ) regardless of 𝜌𝑓 = ±1 and 𝜌𝑎 = ±1.  ■

5.2. Analysis of the tuned pairs

Still considering the coupled system (23), the variations of the tuned pairs 
(

𝑔[1]𝑓,𝑡, 𝜏
[1]
𝑓,𝑡

)

 that are the same for the FP-DR and the 
F-DR, as well as 

(

𝑔[1]𝑎,𝑡 , 𝜏
[1]
𝑎,𝑡

)

 of the A-DR with respect to the tuning frequency 𝜔𝑡 for 
(

𝜌𝑓 < 0, 𝜌𝑎 < 0
) are shown in Fig.  4.

Let us first focus on Fig.  4(b), which depicts the first two branches 𝑏 = 1, 2 of the tuned delays. It is obvious that both 𝜏[1]𝑓,𝑡 and 𝜏
[1]
𝑎,𝑡

decrease as 𝜔  increases, a direct result of the fact that a small time gap in the high-frequency band can yield a large difference of 
𝑡

8 
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Fig. 5. (a). Variations of 𝜎𝑑𝑜𝑚 with respect to 
(

𝑔𝑝, 𝜏𝑝
) for the coupled system (23). Grids represent 𝜎𝑑𝑜𝑚 = 0. (b). 2D color map focusing on the 

stable region (𝜎𝑑𝑜𝑚 < 0). DIS represents delay-independent stable. 𝑔𝑝 = 0 corresponds to the F-DR.

state phase. However, this can result in an unfavorable consequence limiting the practical applications of the A-DR, i.e., the tuned 
delay in the high-frequency band is too small to be practically implemented [13]. In contrast, FP-DR and F-DR always exhibit a 
larger delay as 𝜏[1]𝑓,𝑡 > 𝜏[1]𝑎,𝑡 , which can be analytically proved by the condition (39) given ∡

(

−𝜔2
𝑡 + 2𝑗𝜁𝑔𝑣𝜔𝑡

)

∈ [0, 𝜋]. On the other 
hand, one can prolong the tuned delay by increasing the branch number 𝑏, as signified by the upward delay shifts marked in Fig. 
4(b), whereas it usually leads to stability issues when adopting the A-DR [15]. As for the FP-DR, system stability can be guaranteed 
by selecting the pair of (𝑔𝑝, 𝜏𝑝

)

, which governs the feedback force 𝑢𝑝, within the stable region in Fig.  3. Besides, the system is always 
stable in the F-DR case with 𝑔𝑝 = 0, as aforementioned.

Then, from the tuned gain parameters 
(

𝑔[1]𝑓,𝑡, 𝑔
[1]
𝑎,𝑡

)

 shown in Fig.  4(a), the gain amplitudes in both cases are minimized around 
𝜔𝑡 = 𝑣 since it corresponds to the natural frequency of the passive absorber so a smaller active force |𝑢| is required to resonate the 
passive absorber to achieve complete vibration suppression. Furthermore, the amplitudes of 𝑔[1]𝑓,𝑡 and 𝑔

[1]
𝑎,𝑡  differ much in the low- 

and high-frequency bands. To explain this, we let ||
|

𝑥𝑝
|

|

|

= 0 or ||
|

𝑥̄𝑝
|

|

|

= 0, so Eq. (1) reduces to 
{

𝑚̄𝑎 ̈̄𝑥𝑎 + 𝑐𝑔 ̇̄𝑥𝑎 + 𝑐𝑎 ̇̄𝑥𝑎 + 𝑘̄𝑎𝑥̄𝑎 = 𝑢̄,
−
(

𝑐𝑎 ̇̄𝑥𝑎 + 𝑘̄𝑎𝑥̄𝑎
)

= 𝑓𝑒 − 𝑢̄,
(40)

which corresponds to the dimensional form of (16). Note that the first equation of (40) governs the dynamics of the SDOF absorber 
in Fig.  1(b), and the second one indicates that all dynamic forces on the primary structure are neutralized, an obvious condition for 
complete vibration suppression ||

|

𝑥̄𝑝
|

|

|

= 0. The dimensional form of (17) leads to 

𝑚̄𝑎 ̈̄𝑥𝑎 + 𝑐𝑔 ̇̄𝑥𝑎 = 𝑓𝑒 ⇒ |

|

𝑥̄𝑎|| =
|

|

𝑓𝑒||
√

(

𝑚̄𝑎𝜔̄2
)2 +

(

𝑐𝑔𝜔̄
)2

, (41)

which indicates that the absorber motion amplitude |
|

𝑥𝑎|| is large and small in the low- and high-frequency bands, respectively. 
Since (𝑐𝑎, 𝑘̄𝑎

) and |
|

𝑓𝑒|| are constant in the second equation of (40), ||
|

𝑔[1]𝑎,𝑡
|

|

|

 governing the amplitude of 𝑢𝑎 should follow the opposite 
variations of |

|

𝑥𝑎|| in the A-DR case. On the other hand, since 𝑢𝑓  of the FP-DR and F-DR is based on 𝑓𝑒 that is independent of 𝑥𝑎, 
|

|

|

𝑔[1]𝑓,𝑡
|

|

|

 should follow the amplitude variations of |
|

𝑥𝑎||, agreeing with Fig.  4(a).

5.3. Spectrum-based optimization by tuning (𝑔𝑝, 𝜏𝑝)

We next investigate the benefits of the feedback force 𝑢𝑝 from the spectral perspective following [9,10,12]. Since (𝑔𝑝, 𝜏𝑝
) appear 

in the characteristic Eq. (26), they affect spectral distribution although do not affect 
(

𝑔[1]𝑓,𝑡, 𝜏
[1]
𝑓,𝑡

)

. The duration of 98% reduction of 
the transient responses is used to estimate the settling time, say 𝑡𝑠 in the dimensionless form as per (2). Then, 

𝑒𝜎𝑑𝑜𝑚𝑡𝑠 < 0.02 ⇒ 𝑡𝑠 = − 4
𝜎𝑑𝑜𝑚

, 𝜎𝑑𝑜𝑚 < 0, (42)

where 𝜎𝑑𝑜𝑚 = Re
(

𝑠𝑑𝑜𝑚
)

, with 𝑠𝑑𝑜𝑚 denoting the dominant (i.e., the rightmost) pair of characteristic roots of Eq. (26). Clearly, a smaller 
𝜎𝑑𝑜𝑚 is preferred. Fig.  5 shows the variations of 𝜎𝑑𝑜𝑚 with respect to 

(

𝑔𝑝, 𝜏𝑝
) for the system (23) using the QPmR (quasi-polynomial 

root-finder) method [58].
First, Fig.  5 also reflects system stability with respect to (𝑔𝑝, 𝜏𝑝

)

. The stable cases 𝜎𝑑𝑜𝑚 < 0 in Fig.  5(a) are extracted in Fig. 
5(b). The results verify the previous stable and DIS regions in Fig.  3. Then, properly designing (𝑔𝑝, 𝜏𝑝

) can reduce 𝜎𝑑𝑜𝑚, yielding 
a minimum 𝜎[min] = −0.237 at (𝑔 , 𝜏

)

= 0.266, 3.166 , i.e., 𝑃  in Fig.  5. Note that 𝑔 = 0 corresponds to the F-DR case where no 
𝑑𝑜𝑚 𝑝 𝑝 ( ) 1 𝑝

9 
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Fig. 6. (a). Variations of 𝜎𝑑𝑜𝑚 with respect to 𝜔̄𝑡 = 𝜔𝜔̄𝑝 in the A-DR case for the coupled system (23). (b). Reduction of the settling time 𝑡𝑠 of 
the A-DR by the FP-DR optimized with (𝑔𝑝, 𝜏𝑝

)

= (0.266, 3.166) to achieve 𝜎[min]
𝑑𝑜𝑚  as per Fig.  5.

feedback force 𝑢𝑝 is deployed, and we have 𝜎[𝐹𝐷𝑅]
𝑑𝑜𝑚 = −0.074 in this case in light of Fig.  5(b). Comparing 𝜎[𝐹𝐷𝑅]

𝑑𝑜𝑚  with 𝜎[min]
𝑑𝑜𝑚  based on 

(42), one can conclude that introducing and properly designing the feedback force 𝑢𝑝 can reduce the settling time 𝑡𝑠 in the F-DR case 
by 68.8%, as marked in Fig.  5(b). Furthermore, the observation that the minimum 𝜎[min]

𝑑𝑜𝑚  is achieved with 𝜏𝑝 ≠ 0 again demonstrates 
the benefits of taking the delay as a control parameter, and it is a counter-intuitive conclusion that increasing the state delay of the 
primary structure in the feedback force 𝑢𝑝 can help expedite the settlement of the primary itself. Next, the variations of 𝜎𝑑𝑜𝑚 in the 
A-DR case are shown in Fig.  6(a).

Different from Fig.  5, 𝜎𝑑𝑜𝑚 in Fig.  6(a) concerning the A-DR now varies with the tuning frequency 𝜔̄𝑡 since 
(

𝑔[1]𝑎 , 𝜏[1]𝑎

)

 must be 
tuned as per (38) to achieve complete vibration suppression (see Fig.  4) and since 

(

𝑔[1]𝑎 , 𝜏[1]𝑎

)

 appear in the characteristic equation 
as per (14). In this example, both cases 𝑔[1]𝑎.𝑡 < 0 and 𝑔[1]𝑎.𝑡 > 0 with 𝜏[1]𝑎.𝑡  at 𝑏 = 1 are considered. From the limited frequency interval 
where 𝜎𝑑𝑜𝑚 < 0, the operable frequency bands of the A-DR in both cases are bounded due to stability issues. This reflects the strength 
of the proposed FP-DR to extend the operable frequency band of the A-DR given that system stability at any stable pair of (𝑔𝑝, 𝜏𝑝

)

in Fig.  5 holds regardless of 𝜔̄𝑡.
On the other hand, 𝜎𝑑𝑜𝑚 in the A-DR case exhibits a minimum at 𝜎𝑑𝑜𝑚 = 𝜎[𝐴𝐷𝑅]

𝑑𝑜𝑚 = −0.076 when 𝜔̄𝑡 = 6.9 Hz. Given 𝜎[𝐴𝐷𝑅]
𝑑𝑜𝑚 ≈ 𝜎[𝐹𝐷𝑅]

𝑑𝑜𝑚 , 
the proposed FP-DR, even if it is purely feedforward-controlled with 𝑢𝑝 = 0, can expedite the response speed of the A-DR in the 
entire frequency band. Focusing on the operable frequency band of the A-DR, Fig.  6(b) further shows that the FP-DR achieving 𝜎[min]

𝑑𝑜𝑚
beneficially reduces the settling time 𝑡𝑠 of the A-DR by up to 68% at least.

5.4. Frequency response optimization by tuning (𝑔𝑝, 𝜏𝑝
)

The distribution of dominant roots 𝑠𝑑𝑜𝑚 signified by 𝜎𝑑𝑜𝑚 reflects system performance in the transient process. To exploit the 
benefits of the FP-DR in steady states, we consider the frequency response curves governed by the amplitude 

𝐴𝐺 (𝜔) = |

|

|

𝐺𝑓𝑒→𝑥𝑝 (𝑠 = 𝑗𝜔)||
|

, (43)

where 𝐺𝑓𝑒→𝑥𝑝 is defined in (11). Focusing on 𝜔̄𝑡 = 6.9 Hz, where the A-DR tuned with (𝜌𝑎 > 0, 𝑏 = 1
)

, or more specifically, 
(

𝑔[1]𝑎,𝑡 , 𝜏
[1]
𝑎,𝑡

)

= (0.233, 3.655), yields a minimum of 𝜎𝑑𝑜𝑚 as per Fig.  6(a), the variations of 𝐴𝐺 in several elaborated cases with a passive 
absorber, a tuned A-DR, a tuned F-DR, and a tuned FP-DR for the coupled system (23) are shown in Fig.  7(a).

From the frequency response curve 𝐶1 in Fig.  7(a), a passive vibration absorber creates an antiresonance valley around its 
natural frequency 𝜔̄𝑎 = 6.11 Hz, whereas the resulting vibration suppression is far from complete. Once a tuned A-DR is activated, 
the resulting curve 𝐶2 exhibits an antiresonance valley and an ideal zero antiresonance point at the designated tuning frequency 𝜔̄𝑡
independent of 𝜔̄𝑎. Besides, the F-DR (𝑔𝑝 = 0) and the FP-DR (𝑔𝑝 ≠ 0) tuned with (𝜌𝑓 > 0, 𝑏 = 1

)

, i.e., 
(

𝑔[1]𝑓,𝑡, 𝜏
[1]
𝑓,𝑡

)

=(0.355, 0.751), are 
also considered, which achieve the zero antiresonance at 𝜔̄𝑡 for complete vibration suppression independent of the 

(

𝑔𝑝, 𝜏𝑝
) values 

that govern the feedback force 𝑢𝑝, agreeing with (37).
Clearly, a broader antiresonance valley helps suppress residual vibrations in practice by lowering the response sensitivity of the 

primary. On the other hand, the resonance peaks should also be limited to control the maximum vibrations to reduce the risks of 
possible resonance perturbations [59,60]. Following [46], we define the height of the resonance peaks as 

ℎ = max
{

𝐴𝐺 (𝜔)
}

, (44)

and define the width of the antiresonance valley as 
𝑊

(

𝐴[𝑉 ]
)

= 𝜔 − 𝜔 , (45)
𝐺 2 1

10 
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Fig. 7. (a). Frequency responses of the primary structure concerning the coupled system (23) for various parametric compositions. The A-DR, 
F-DR, and FP-DR adopted in cases 𝐶2-𝐶6 are tuned with 

(

𝜌𝑎, 𝜌𝑓 > 0, 𝑏 = 1
)

. (b). Comparisons of the height of resonance peaks and the width of 
the antiresonance valley for different frequency response curves in (a).

where 𝐴[𝑉 ]
𝐺  needs to be specified, and (𝜔1, 𝜔2

) are the two frequencies closest to 𝜔𝑡 additionally satisfying 
{

𝜔1 < 𝜔𝑡 < 𝜔2,
𝐴𝐺

(

𝜔1
)

= 𝐴𝐺
(

𝜔2
)

= 𝐴[𝑉 ]
𝐺 .

(46)

Note that a smaller ℎ and a larger 𝑊  are preferred. We select 𝐴[𝑉 ]
𝐺 = 0.2 for the cases in Fig.  7(a), and the associated values of (ℎ,𝑊 )

are summarized in Fig.  7(b). Comparing curves 𝐶2 and 𝐶3, the F-DR increases 𝑊  while slightly raising ℎ compared to the A-DR. 
Furthermore, the FP-DR achieving 𝜎[min]

𝑑𝑜𝑚  as per Fig.  5 for the shortest settling time 𝑡𝑠 corresponds to 𝐶4, which increases 𝑊  while 
reducing ℎ, thus enhancing the performance of the A-DR in both transient processes and steady states. Curves (𝐶5, 𝐶6, 𝐶7

) evaluate 
the effects of the feedback force 𝑢𝑝 governed by 

(

𝑔𝑝, 𝜏𝑝
) on the FP-DR, and one can conclude that increasing 𝑔𝑝 while reducing 𝜏𝑝

helps extend the antiresonance valley to suppress residual vibrations. However, revisiting Figs.  3 and 5, the increase in 𝑔𝑝 outside 
the DIS region (33) should be limited to avoid a narrow stable interval of 𝜏𝑝 and thus to benefit the control robustness against 
destabilization due to delay perturbations.

Next, we investigate the behaviors of (ℎ,𝑊 ) in more general cases by sweeping 𝜔̄𝑡 within the operable frequency band of the 
A-DR according to Fig.  6. Fig.  8(a, b) show the case (𝜌𝑎, 𝜌𝑓 > 0, 𝑏 = 1

)

, where the marked frequency 𝜔̄𝑡 = 6.9 Hz corresponds to 
the results in Fig.  7. Besides, the case (𝜌𝑎, 𝜌𝑓 < 0, 𝑏 = 1

) is depicted in Fig.  8(c, d). From Fig.  8(a, c), the F-DR and FP-DR do not 
significantly raise the resonance peak ℎ of the A-DR, and instead, ℎ can be significantly reduced at most frequencies. Then, from Fig. 
8(b, d) for the width 𝑊  of the antiresonance valley, the F-DR and the optimized FP-DR for 𝜎[min]

𝑑𝑜𝑚  can possibly reduce 𝑊 , although 
they can both expedite the response speed of the A-DR as per in Figs.  5 and 6. Alternatively, the FP-DR with (𝑔𝑝, 𝜏𝑝

)

= (0.5, 0) yields 
a large 𝑊  within a sufficiently broad frequency band. To maximize the performance of the FP-DR, one can switch the two control 
parameters (𝑔𝑝, 𝜏𝑝

) to achieve 𝜎[min]
𝑑𝑜𝑚  in the transient process for reducing 𝑡𝑠 and to extend 𝑊  while limiting ℎ in the steady states 

for suppressing residual vibrations.
At last, comparisons between Figs.  6 and 8 suggest that tuning A-DR needs to handle the trade-off of gain polarity between 

the positive case 𝜌𝑎 > 0 for smaller values of (ℎ, 𝜎𝑑𝑜𝑚
) and the negative case 𝜌𝑎 < 0 for a broader operable frequency band plus a 

larger 𝑊 . Hence, it can increase the implementation complexity as the excitation frequency varies. As for the FP-DR, the operable 
frequency band and 𝜎𝑑𝑜𝑚 both only depend on the feedback force 𝑢𝑝, and thus 𝜌𝑓  governing the polarity of the feedforward force 𝑢𝑓
only needs to be determined as per (ℎ,𝑊 ), thus simplifying the analysis. Comparing Figs.  8(a, b) and 8(c, d), one can simply apply 
𝜌𝑓 > 0 within the whole frequency band when adopting the FP-DR for the given system (23).

6. Complete suppression of multiple-frequency vibrations

To completely suppress the multiple-frequency vibration with 𝑃 (

𝑃 ∈ Z+, 𝑃 ⩾ 2
) frequency components, Eq. (13) must have 𝑃

solutions of 𝜔𝑡 lying at such components. Note that the degree of Eq. (13) is two when no delayed control terms are used, and thus a 
single single-mass absorber driven by a non-delayed control law can only handle single-frequency vibrations (𝑃 = 1). Alternatively, 
the equation degree (i.e., system order) raised by exponents makes it possible to handle the case 𝑃 ⩾ 2 while keeping linearity, 
reflecting the unique strength of delayed control. Existing work [48] based on the A-DR will be compared.
11 
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Fig. 8. Variations of (ℎ,𝑊 ) associated with several tuned A-DR, F-DR, and FP-DR versus the tuning frequency 𝜔̄𝑡 within the operable 
frequency band of the A-DR as per Fig.  6. (a, b). The case (𝜌𝑎, 𝜌𝑓 > 0, 𝑏 = 1

)

. (c, d). The case (𝜌𝑎, 𝜌𝑓 < 0, 𝑏 = 1
)

. FP-DR for 𝜎[min]
𝑑𝑜𝑚  corresponds 

to (𝑔𝑝, 𝜏𝑝
)

= (0.266, 3.166). The example is based on the system (23).

6.1. Tuning mechanism of the FP-DR

When adopting the FP-DR, substituting 𝑈𝑓  in (25) into (13) yields 

𝑁
(

𝑗𝜔𝑡, 𝑔
[

1,…,𝑁𝑓
]

𝑓 , 𝑔
[

1,…,𝑁𝑓
]

𝑓

)

=𝑗𝜇𝑣
(

2𝜁𝑎𝜔𝑡 + 𝑣
)

𝑁𝑓
∑

𝑖=1
𝑔[𝑖]𝑓 𝑒−𝑗𝜏

[𝑖]
𝑓 𝜔𝑡

+
⎛

⎜

⎜

⎝

1 −
𝑁𝑓
∑

𝑖=1
𝑔[𝑖]𝑓 𝑒−𝑗𝜏

[𝑖]
𝑓 𝜔𝑡

⎞

⎟

⎟

⎠

[

𝜇
(

−𝜔2
𝑡 + 2𝑗

(

𝜁𝑎 + 𝜁𝑔
)

𝑣𝜔𝑡 + 𝑣2
)]

= 0,

(47)

which is expected to have 𝑃  solutions of 𝜔𝑡 ∈ R+ at the given 𝑃  frequency components. We rewrite Eq. (47) as 
𝑁𝑓
∑

𝑖=1
𝑔[𝑖]𝑓 𝑒−𝑗𝜏

[𝑖]
𝑓 𝜔[𝑝]

𝑡 = 𝜎𝑝
(

𝜔[𝑝]
𝑡

)

+ 𝑗𝜛𝑝

(

𝜔[𝑝]
𝑡

)

, (48)

where 𝜔[𝑝]
𝑡 , 𝑝 = 1, 2,… , 𝑃 , corresponds to the frequency components, and (𝜎𝑝, 𝜛𝑝

)

∈ R2 result from 

𝜎𝑝
(

𝜔[𝑝]
𝑡

)

+ 𝑗𝜛𝑝

(

𝜔[𝑝]
𝑡

)

=
𝑣2 −

(

𝜔[𝑝]
𝑡

)2
+ 2𝑗

(

𝜁𝑎 + 𝜁𝑔
)

𝑣𝜔[𝑝]
𝑡

−
(

𝜔[𝑝]
𝑡

)2
+ 2𝑗𝜁𝑔𝑣

(

𝜔[𝑝]
𝑡

)2
. (49)

Note that Eq. (48) is the general form of (35). Clearly, one solution of 𝜔𝑡 corresponds to two real equations stemming from the real 
and imaginary parts of Eq. (48), and thus handling 𝑃  frequency components 𝜔[1,…,𝑃 ]

𝑡  necessitates 𝑁𝑓 ⩾ 𝑃 . Here, we let 𝑁𝑓 = 𝑃  to 
minimize the number of control terms to enhance control robustness, yielding 2𝑃  control parameters 

(

𝑔[1,…,𝑃 ], 𝜏[1,…,𝑃 ]
)

 to be tuned 
𝑓 𝑓

12 
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as per 𝜔[1,…,𝑃 ]
𝑡 . In this case, Eq. (48) can be expanded into 2𝑃  real equations as 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃
∑

𝑖=1
𝑔[𝑖]𝑓,𝑡 cos

(

𝜏[𝑖]𝑓,𝑡𝜔
[𝑝]
𝑡

)

= 𝜎𝑝
(

𝜔[𝑝]
𝑡

)

,

𝑃
∑

𝑖=1
𝑔[𝑖]𝑓,𝑡 sin

(

𝜏[𝑖]𝑓,𝑡𝜔
[𝑝]
𝑡

)

= −𝜛𝑝

(

𝜔[𝑝]
𝑡

)

,

𝑝 = 1, 2,… , 𝑃 . (50)

Hence, the tuned control parameters 
(

𝑔[1,…,𝑃 ]
𝑓,𝑡 , 𝜏[1,…,𝑃 ]

𝑓,𝑡

)

 can be numerically determined. However, the periodicity of trigonometric 
functions in Eq. (50) leads to multiple solutions, which can be unfavorable to the solving process. To this end, we confine the search 
region of 𝜏[𝑖]𝑓,𝑡 using the concept of the branch number 𝑏 ∈ Z+ in (37) and (38) by defining the 𝑏th branch as 

2 (𝑏 − 1)𝜋
𝜔[max]
𝑡

< 𝜏[𝑖]𝑓,𝑡 <
2𝑏𝜋
𝜔[max]
𝑡

, (51)

where 𝜔[max]
𝑡 = max

{

𝜔[1]
𝑡 , 𝜔[2]

𝑡 ,… , 𝜔[𝑃 ]
𝑡

}

. Besides, we stress that different from the single-frequency case 𝑃 = 1 in Section 5.1, the 
shifted tuned delays 𝜏[𝑖]𝑓,𝑡 ±2𝜋∕𝜔[𝑝]

𝑡  are no longer solutions of (50) due to the coupling between 𝜏[1,…,𝑃 ]
𝑓,𝑡  and 𝜔[1,…,𝑃 ]

𝑡 . This means that 
when 𝑃 ⩾ 2, one cannot simply shift 𝜏[𝑖]𝑓,𝑡 to satisfy the possible hardware requirement 𝜏

[𝑖]
𝑓,𝑡 > 𝜏𝑙𝑜𝑜𝑝, where 𝜏𝑙𝑜𝑜𝑝 > 0 is the inherent 

loop delay.

6.2. Tuning mechanism of the A-DR

For the A-DR driven by the feedback control logic (4) in terms of 
(

𝑔[𝑖]𝑎 , 𝜏[𝑖]𝑎
)

, one following (48) and (49) can arrive at 
𝑁𝑎
∑

𝑖=1
𝑔[𝑖]𝑎 𝑒−𝑗𝜏

[𝑖]
𝑎 𝜔[𝑝]

𝑡 = 𝜇
(

𝑣2 −
(

𝜔[𝑝]
𝑡

)2
+ 2𝑗

(

𝜁𝑎 + 𝜁𝑔
)

𝑣𝜔[𝑝]
𝑡

)

, (52)

which agrees with (39) given (49). We first consider the case 𝑁𝑎 = 𝑃  to minimize the number of control terms as the FP-DR in (50), 
yielding 2𝑃  control parameters 

(

𝑔[1,…,𝑃 ]
𝑎 , 𝜏[1,…,𝑃 ]

𝑎

)

 to be tuned as per 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃
∑

𝑖=1
𝑔[𝑖]𝑎,𝑡 cos

(

𝜏[𝑖]𝑎,𝑡𝜔
[𝑝]
𝑡

)

= 𝜇
(

𝑣2 −
(

𝜔[𝑝]
𝑡

)2
)

,

𝑃
∑

𝑖=1
𝑔[𝑖]𝑎,𝑡 sin

(

𝜏[𝑖]𝑎,𝑡𝜔
[𝑝]
𝑡

)

= −2𝜇
(

𝜁𝑎 + 𝜁𝑔
)

𝑣𝜔[𝑝]
𝑡 ,

𝑝 = 1, 2,… , 𝑃 , (53)

where the tuned delays 𝜏[1,…,𝑃 ]
𝑎,𝑡  satisfying 2 (𝑏 − 1)𝜋 < 𝜏[𝑖]𝑎,𝑡𝜔

[max]
𝑡 < 2𝑏𝜋 are defined as the 𝑏th branch in light of (51).

On the other hand, Valasek et al. [48] taking a further step from [47] proposed a control logic with 𝑁𝑎 = 2𝑃  for the A-DR, 

𝑢𝑎 (𝑡) =
2𝑃
∑

𝑖=0
𝑔[𝑖]𝑎 𝑥𝑎

(

𝑡 − 𝜏[𝑖]𝑎
)

, (54)

where 𝜏[𝑖]𝑎 = 𝑖𝜏[0]𝑎 , in which 𝜏[0]𝑎 ∈ R+ needs to be artificially specified. In this case, the control parameters are the 2𝑃  gains 𝑔[1,…,2𝑃 ]
𝑎 . 

Similar to (53), the tuned gains can be determined as per the 2𝑃  equations 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

2𝑃
∑

𝑖=1
𝑔[𝑖]𝑎,𝑡 cos

(

𝑖𝜏[0]𝑎,𝑡 𝜔
[𝑝]
𝑡

)

= 𝜇
(

𝑣2 −
(

𝜔[𝑝]
𝑡

)2
)

,

2𝑃
∑

𝑖=1
𝑔[𝑖]𝑎,𝑡 sin

(

𝑖𝜏[0]𝑎,𝑡 𝜔
[𝑝]
𝑡

)

= −2𝜇
(

𝜁𝑎 + 𝜁𝑔
)

𝑣𝜔[𝑝]
𝑡 ,

𝑝 = 1, 2,… , 𝑃 . (55)

Different from (53), Eq. (55) is purely polynomial in 𝑔[1,…,2𝑃 ]
𝑎,𝑡  since 

(

cos
(

𝑖𝜏[0]𝑎,𝑡 𝜔
[𝑝]
𝑡

)

, sin
(

𝑖𝜏[0]𝑎,𝑡 𝜔
[𝑝]
𝑡

))

 are real values once 
(

𝜏[0]𝑎 , 𝜔[𝑝]
𝑡

)

are given, thus simplifying the solving process. For discrimination, we call the A-DR corresponding to (53) and (55) as A-DR-1 and 
A-DR-2, respectively. Note that the simplified tuning mechanism of A-DR-2 compromises the increased number of control terms 
(i.e., 𝑃  terms for A-DR-1 and 2𝑃  terms for A-DR-2), although such two A-DRs have the same number (2𝑃 ) of control parameters, 
and thus trade-offs need to be considered in practical applications.

6.3. Stability analysis in the A-DR case

As per Section 3.2, system stability in the FP-DR case can be guaranteed by selecting (𝑔𝑝, 𝜏𝑝
) within the stable region in Figs.  3 

or 5, independent of the values of 
(

𝑔[1,…,𝑃 ]
𝑓 , 𝜏[1,…,𝑃 ]

𝑓

)

. Besides, the FP-DR with 𝑔𝑝 = 0 reduces to the F-DR, which is always stable. In 
this part, we investigate the stability issues when adopting the A-DR to handle multiple-frequency vibrations 𝑃 ⩾ 2. Still focusing 
on the system (23), we consider the case 𝑃 = 2 for demonstration. For the A-DR-1, the tuned pairs 

(

𝑔[1]𝑎,𝑡 , 𝑔
[2]
𝑎,𝑡 , 𝜏

[1]
𝑎,𝑡 , 𝜏

[2]
𝑎,𝑡

)

 following 
(53) are shown in Fig.  9, where 

(

𝜏[1], 𝜏[2]
)

 at the smallest branch 𝑏 are sought.
𝑎,𝑡 𝑎,𝑡

13 
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Fig. 9. Variations of the tuned pairs 
(

𝑔[1]𝑎,𝑡 , 𝑔
[2]
𝑎,𝑡 , 𝜏

[1]
𝑎,𝑡 , 𝜏

[2]
𝑎,𝑡

)

 of the A-DR-1 when 𝑃 = 2 with respect to 
(

𝜔̄[1]
𝑡 , 𝜔̄[2]

𝑡

)

 for the system (23). (a). Variations 
of 𝑔[1]𝑎,𝑡 . (b). Variations of 𝑔[2]𝑎,𝑡 . (a). Variations of 𝜏[1]𝑎,𝑡 . (d). Variations of 𝜏 [2]𝑎,𝑡 . Curves 1 and 2 correspond to the reduced case 𝜔̄[1]

𝑡 = 𝜔̄[2]
𝑡  where we 

let 
(

𝑔[1]𝑎,𝑡 , 𝜏
[1]
𝑎,𝑡

)

=
(

𝑔[2]𝑎,𝑡 , 𝜏
[2]
𝑎,𝑡

)

 and 𝑔[1]𝑎,𝑡 , 𝑔
[2]
𝑎,𝑡 < 0 to seek numerical solutions.

Fig. 10. Variations of 𝜎𝑑𝑜𝑚 with respect to 
(

𝜔̄[1]
𝑡 , 𝜔̄[1]

𝑡

)

 for the coupled system (23). (a). A-DR-1 case corresponding to (53). Tuned pairs 
(

𝑔[1]𝑎,𝑡 , 𝑔
[2]
𝑎,𝑡 , 𝜏

[1]
𝑎,𝑡 , 𝜏

[2]
𝑎,𝑡

)

 follow Fig.  9. (b). A-DR-2 case corresponding to (55) with 𝜏 [0]𝑎 = 1. Grids denote 𝜎𝑑𝑜𝑚 = 0.

From Fig.  9, 
(

𝑔[1]𝑎,𝑡 , 𝑔
[2]
𝑎,𝑡 , 𝜏

[1]
𝑎,𝑡 , 𝜏

[2]
𝑎,𝑡

)

 are all symmetrical about the line 𝜔̄[1]
𝑡 = 𝜔̄[2]

𝑡  since a linear dual-frequency excitation is the 
superposition of two single-frequency excitations at 𝜔̄[1]

𝑡  and 𝜔̄[2]
𝑡 . Particularly, to avoid solution multiplicity of (53) when 𝜔̄[1]

𝑡 = 𝜔̄[2]
𝑡 , 

we let 
(

𝑔[1]𝑎,𝑡 , 𝜏
[1]
𝑎,𝑡

)

=
(

𝑔[2]𝑎,𝑡 , 𝜏
[2]
𝑎,𝑡

)

 with 𝑔[1]𝑎,𝑡 , 𝑔
[2]
𝑎,𝑡 < 0. Results in this reduced case are marked as Curves 1 and 2, which agree with the 

tuned pairs in the single-frequency case, see Eq. (37). For system stability, we substitute 
(

𝑔[1]𝑎,𝑡 , 𝑔
[2]
𝑎,𝑡 , 𝜏

[1]
𝑎,𝑡 , 𝜏

[2]
𝑎,𝑡

)

 into (14) and calculate 
the real part 𝜎𝑑𝑜𝑚 of the dominant roots 𝑠𝑑𝑜𝑚 following Fig.  5, yielding Fig.  10(a).

Curve 3 in Fig.  10(a) corresponds to the case 𝜔̄[1]
𝑡 = 𝜔̄[2]

𝑡 , and it concurs with the blue dashed curve in Fig.  6(a), as expected. 
One can find that no stable region appears when 𝜔̄[1]

𝑡 ≠ 𝜔̄[2]
𝑡 , indicating that the A-DR-1 is inoperable to handle multiple-frequency 

vibrations. As for the A-DR-2, we select 𝜏[0]𝑎 = 1 in (55) for instance. Following the same analysis procedure as the A-DR-1, variations 
of 𝜎𝑑𝑜𝑚 with respect to 

(

𝜔̄[1]
𝑡 , 𝜔̄[2]

𝑡

)

 in the A-DR-2 case are shown in Fig.  10(b), where Curve 3 for 𝜔̄[1]
𝑡 = 𝜔̄[2]

𝑡  concurs with the 
namesake one in Fig.  10(a). However, stable regions still do not exist when 𝜔̄[1]

𝑡 ≠ 𝜔̄[2]
𝑡 . Since the A-DR-2 has a manipulatable 

parameter 𝜏[0]𝑎 , we now sweep 𝜏[0]𝑎  while fixing 
(

𝜔̄[1]
𝑡 , 𝜔̄[2]

𝑡

)

= (6.5 Hz, 8.5 Hz) to search stable regions. The resulting variations of 
𝜎𝑑𝑜𝑚 with respect to 𝜏[0]𝑎  are shown in Fig.  11.

From Fig.  11, a stable system requiring 𝜎𝑑𝑜𝑚 < 0 is still unavailable, although both frequencies (6.5 Hz, 8.5 Hz) are operable in 
the single-frequency case as per Fig.  6(a). Further attempts to seek operable control parameters include re-designing the structural 
14 
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Fig. 11. Variations of 𝜎𝑑𝑜𝑚 with respect to 𝜏 [0]𝑎  for the A-DR-2 of the coupled system (23) to handle dual-frequency vibration with 
(

𝜔̄[1]
𝑡 , 𝜔̄[2]

𝑡

)

=
(6.5 Hz, 8.5 Hz). A stable system requires 𝜎𝑑𝑜𝑚 < 0.

Fig. 12. Frequency responses of the primary structure for the coupled system (23) with an F-DR or FP-DR tuned as per 
(

𝜔̄[1]
𝑡 , 𝜔̄[2]

𝑡

)

=(6.5 Hz, 8.5 Hz)

and 𝑏 = 1. 𝜎[min]
𝑑𝑜𝑚  corresponds to (𝑔𝑝, 𝜏𝑝

)

= (0.266, 3.166).

parameters or the control laws (e.g., the fixed delay parameters in (54)), which, however, are still open problems, as also pointed 
out in [48]. Consequently, the applicability of the classical A-DR techniques can be limited.

On the other hand, based on the analysis procedures here, one can further conclude that even if an absorber-based feedback 
control logic exists to yield operable control parameters in the multiple-frequency case 𝑃 ⩾ 2, the application of the corresponding 
A-DR can still be challenging given the complexity in analyzing system stability, or more specifically, in determining such operable 
control parameters. The reason is that no analytical methods exist to intuitively determine operable control parameters as Fig.  3 and 
the numerical sweeping procedures as Fig.  11 to examine characteristic spectrum can become inefficient as the number of delayed 
control terms increases. Such issues are unfavorable to real-time updating control parameters in cases where excitation frequencies 
can vary [61]. In comparison, the stability and spectrum analyses in the FP-DR case are rather simple, see Section 4 and Section 5.3.

6.4. Frequency response analysis in the FP-DR case

As aforementioned, stability and spectrum analyses in the FP-DR case completely solved in Figs.  3 and 5 hold regardless of the 
values of 

(

𝑔[𝑖]𝑓 , 𝜏[𝑖]𝑓
)

 and thus the number of frequency components. We now investigate the frequency responses of the primary 
structure in the FP-DR case and show how can the feedback force 𝑢𝑝 governed by 

(

𝑔𝑝, 𝜏𝑝
) enhance the performance. Still focusing on 

the example 
(

𝜔̄[1]
𝑡 , 𝜔̄[2]

𝑡

)

= (6.5 Hz, 8.5 Hz), we have 
(

𝑔[1]𝑓,𝑡, 𝑔
[2]
𝑓,𝑡, 𝜏

[1]
𝑓,𝑡 , 𝜏

[2]
𝑓,𝑡

)

= (0.805, 0.508, 0.761, 3.569) when 𝑏 = 1 as per (50) for tuning 
both the FP-DR and its reduced case F-DR, see also Fig.  9. The resulting frequency response curves for several stable pairs of (𝑔𝑝, 𝜏𝑝

)

following (43) and Fig.  7 are shown in Fig.  12.
From Fig.  12, the desired zero antiresonance at the given frequencies 

(

𝜔̄[1]
𝑡 , 𝜔̄[2]

𝑡

)

= (6.5 Hz, 8.5 Hz) is achieved in both the F-DR 
and the FP-DR cases, as expected. Note that achieving multiple ideal zero antiresonance points by the F-DR and the FP-DR does 
not compromise the raised resonance peaks compared with the passive case. Particularly, two pairs of (𝑔 , 𝜏

) are considered for 
𝑝 𝑝

15 
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the FP-DR following Fig.  8. One is (𝑔𝑝, 𝜏𝑝
)

= (0.266, 3.166), which achieves 𝜎[min]
𝑑𝑜𝑚  for the minimum settling time 𝑡𝑠 as per Fig.  5 and 

(42). We reiterate that 𝜎[min]
𝑑𝑜𝑚  holds regardless of the single- and multiple-frequency cases. One can find that reducing 𝑡𝑠 of the F-DR 

by the FP-DR can possibly narrow the antiresonance valley at the tuning frequency 𝜔̄[𝑖]
𝑡 . The solution is simple to switch 

(

𝑔𝑝, 𝜏𝑝
)

in steady states similar to the single-frequency case in Section 5.4. The given example (𝑔𝑝, 𝜏𝑝
)

= (0.5, 0) shows that increasing 𝑔𝑝
while reducing 𝜏𝑝 can also extend multiple antiresonance valleys at multiple frequencies thus enhancing the vibration suppression 
in steady states, as to be experimentally verified next.

Remark 3.  Increasing 𝑔𝑝 and reducing 𝜏𝑝 to suppress residual vibrations can also be explained from the perspective of reducing 
the effects of nonlinear frictions. In our model (1), the energy dissipation due to the contacts between the mechanical components 
and slides is incorporated into linear damping. However, when the velocity switches direction, i.e., (𝑥̇𝑝, 𝑥̇𝑎

)

→ (0, 0), the nonlinear 
effects become dominant [20]. For the absorber, such effects can be omitted since 𝑥̇𝑎 = 0 corresponds to the maximum displacement 
𝑥𝑎 = |

|

𝑥𝑎||, with ||𝑥𝑎|| denoting amplitude, so the absorber is subjected to the maximum restoring force for returning to 𝑥𝑎 = 0. Since 
complete vibration suppression is to neutralize the dynamical forces on the primary structure, the nonlinear frictions can have 
more significant effects on 𝑥𝑝 in the states of near-complete vibration suppression ||

|

𝑥𝑝
|

|

|

≈ 0+ thus resulting in (nonlinear) residual 
vibrations. Beneficially, the feedback force 𝑢𝑝 with 𝑔𝑝 > 0 and 𝜏𝑝 → 0 pushes the primary structure back to 𝑥𝑝 = 0 once 𝑥𝑝 ≠ 0 so the 
absolute value of 𝑥̇𝑝 is increased at 𝑥𝑝 = 0, thus reducing the effects of the nonlinear frictions. We point out that when the frequency 
is sufficiently low as 𝜔 → 0, the nonlinear frictions at 𝑥𝑝 = 0 can significantly affect complete vibration suppression since ||

|

𝑥̇𝑝
|

|

|

 of the 
residual vibrations is now small, making nonlinear frictions dominant around 𝑥𝑝 = 0. However, the ultra-low-frequency vibration 
suppression combined with nonlinear frictions deserves a new study topic, which is beyond the scope of the present paper. One can 
refer to [20] for further information.  ■

7. Verifications

We have theoretically shown that the FP-DR outperforms the F-DR and A-DR for complete suppression of both the single- and 
multiple-frequency vibrations. Numerical simulation and experimental tests are conducted here for verifications. Particularly, the 
SIMULINK-based simulation models used and video recordings of the experiments are available in Appendix  A.

7.1. Experimental condition

The mechanical body of the experimental setup following Fig.  1 is shown in Fig.  13(a, b). Two laser sensors are fixed on the 
frame to monitor the absolute displacements (𝑥̄𝑝, 𝑥̄𝑎

) of the primary structure and the absorber. Two voice coil motors (VCMs) are 
used as actuators to generate the excitation force 𝑓𝑒 and the active force 𝑢̄. The control loop of the VCM is shown in Fig.  13(c), 
where dSPACE MicroLabBox as the controller processes the laser sensor information for (𝑥̄𝑝, 𝑥̄𝑎

) and generates control signals to 
VCM drivers. The drivers then amplify the control signals by inputting current to the associated VCM movers. The electromagnetic 
effects between the VCM mover and stator finally yield the desired forces, see also Remark  1. Note that no force sensors are used 
due to the limited installation space. When designing the feedforward force 𝑢̄𝑓  of the FP-DR and F-DR, we indirectly measure 𝑓𝑒 via 
the current of VCM1. Additional independent experiments to test the relationship between the current input and the force output 
of the VCM can be found in Appendix  B.

Based on measurement and system identification, the structural parameters are obtained as 
𝑚̄𝑎 = 0.51 kg, 𝑐𝑎 = 4.3 Ns∕m, 𝑐𝑔 = 2.0 Ns∕m, 𝑘̄𝑎 = 753 N∕m,

𝑚̄𝑝 = 0.965 kg, 𝑐𝑝 = 5.0 Ns∕m, 𝑘̄𝑝 = 1465 N∕m,
(56)

which correspond to the dimensionless variables in (23). In the tests, single-frequency (𝑃 = 1) and dual-frequency (𝑃 = 2) vibrations 
are separately considered, and accordingly, the excitation 𝑓𝑒 follows the form 

{

𝑃 = 1 ∶ 𝑓𝑒
(

𝑡
)

= 4 sin
(

𝜔̄𝑡
)

N,
𝑃 = 2 ∶ 𝑓𝑒

(

𝑡
)

= 3
[

sin
(

𝜔̄1𝑡 + 𝜙1
)

+ sin
(

𝜔̄2𝑡 + 𝜙2
)]

N.
(57)

Note that the values of 𝜙1 and 𝜙2 do not affect the complete vibration suppression ||
|

𝑥̄𝑝
|

|

|

= 0 since different 𝜔𝑡 solutions of Eq. (13) 
are independent of each other. Hence, we let 𝜙1 = 𝜙2 = 0. Besides, frequency mismatch is not considered so 𝜔̄𝑡 = 𝜔̄. We point out 
that in the following tests, except for (𝑔̄𝑝, 𝜏𝑝

)

, all the other control parameters, including 
(

𝑔̄[𝑖]𝑓 , 𝜏[𝑖]𝑓
)

 and 
(

𝑔̄[𝑖]𝑎 , 𝜏[𝑖]𝑎
)

, which need to be 
tuned to achieve complete vibration suppression, are automatically calculated as per the vibration frequency, see Eqs. (37), (38), 
(50), (53), and (55).

7.2. Single-frequency case 𝑃 = 1: Extended operable frequency band

Let us start with the complete suppression of single-frequency vibrations. From Fig.  6(a), the operable frequency band of the A-DR 
is bounded regardless of the gain polarity 𝜌𝑎. We here test the inoperability of the A-DR in the low-frequency band by considering 
the unstable case 𝜔̄ = 5.3 Hz when 𝜌𝑎 > 0 and 𝑏 = 1. The A-DR following (38) is then tuned by 

(

𝑔[1]𝑎.𝑡 , 𝜏
[1]
𝑎.𝑡

)

=(0.192, 6.367) or 
equivalently, the practical values 

(

𝑔̄[1]𝑎.𝑡 , 𝜏
[1]
𝑎.𝑡

)

=
(

𝑔[1]𝑎.𝑡 𝑘̄𝑝, 𝜏
[1]
𝑎.𝑡 ∕𝜔̄𝑝

)

= (281.33 N∕m, 163.4 ms). The resulting simulation responses of the 
primary structure are shown as the blue curves in Fig.  14(a, b).
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Fig. 13. Experimental setup. (a). Front view. (b). Back view. (c). The control loop of the VCMs (voice coil motors) for (𝑓𝑒, 𝑢̄
)

.

Fig. 14. Tests of the A-DR and F-DR for suppressing low-frequency vibration. Tuned pairs are with 𝜌𝑎, 𝜌𝑓 > 0 and 𝑏 = 1. Active force 𝑢 is activated 
when 𝑡 ⩾ 2 s. (a, b). Simulations. (c, d). Experiments. RMS in (b, d) refers to root mean squares for the dataset 𝐱̄𝑝 sampled within the last 0.4 s
before the current time step 𝑡.

From Fig.  14(a, b), the divergent responses in the A-DR case after introducing the active force at ̄𝑡 = 2s verify the instability, and 
thus the applications of the A-DR can be limited. Alternatively, the F-DR, which is purely feedforward-controlled, does not affect 
system stability. To test the low-frequency performance of the F-DR, we further reduce the excitation frequency to 𝜔̄ = 4.65 Hz, 
which is the lowest value to limit system responses within the operable working space of the experimental setup, leading to 
(

𝑔̄[1]𝑓,𝑡, 𝜏
[1]
𝑓,𝑡

)

=
(

𝑔[1]𝑓,𝑡, 𝜏
[1]
𝑓,𝑡∕𝜔̄𝑝

)

=(0.836, 85.0 ms) when 𝜌𝑓 > 0 and 𝑏 = 1. The resulting responses of the primary structure are superposed 
as the red curves. This time, complete vibration suppression ||

|

𝑥̄𝑝
|

|

|

= 0 is achieved in steady states.
The corresponding experimental results are shown in Fig.  14(c, d). The divergent responses in the A-DR case due to instability 

can be again found. In the stable F-DR case, vibrations on the primary are significantly reduced by 94.4% once the active control 
17 
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Fig. 15. Tests for the transient performances of the A-DR, F-DR, and FP-DR at 𝜔̄ = 6 Hz. Tuned pairs are with 𝜌𝑎, 𝜌𝑓 > 0 and 𝑏 = 1. Active force 
𝑢 is activated when 𝑡 ⩾ 2 s. (a, b). Simulations. (c, d). Experiments. RMS in (b, d) refers to root mean squares for the dataset 𝐱̄𝑝 sampled within 
the last 0.4 s before the current time step 𝑡.

(pure feedback force) is activated. Possible reasons for small residual vibrations in steady states include noises and inaccurate control 
parameters due to inaccurate structural parameters, as to be handled by the FP-DR.

7.3. Single-frequency case 𝑃 = 1: Expedited transient process

Based on the theoretical results in Fig.  6, we next combine feedback and feedforward forces to enhance transient performance. 
To benefit demonstration, the single-frequency excitation at 𝜔̄ = 6 Hz is considered. Selecting 𝜌𝑎, 𝜌𝑓 > 0 and 𝑏 = 1, we have 
(

𝑔̄[1]𝑎.𝑡 , 𝜏
[1]
𝑎.𝑡

)

=(239.17 N∕m, 128.1 ms) for the A-DR and 
(

𝑔̄[1]𝑓.𝑡, 𝜏
[1]
𝑓.𝑡

)

=(0.328, 42.0 ms) for the F-DR and FP-DR. Particularly, applying 
the FP-DR needs to design the feedback force governed by (𝑔𝑝, 𝜏𝑝

)

. We following Fig.  5 adopt (𝑔𝑝, 𝜏𝑝
)

=(0.266, 3.166) or (𝑔̄𝑝, 𝜏𝑝
)

=
(

𝑔𝑝𝑘̄𝑝, 𝜏𝑝∕𝜔̄𝑝
)

= (389.69 N∕m, 81.3 ms) to minimize the settling time 𝑡𝑠 = 𝑡𝑠∕𝜔̄𝑝 in (42) and thus to expedite the transient process. 
Comparisons in such A-DR, F-DR, and FP-DR cases are conducted in Fig.  15.

The desired complete vibration suppression in the three cases can be found in the simulation results shown in Fig.  15(a, b). This 
also verifies that the feedback force of the FP-DR does not affect the tuning mechanism of the feedforward control (i.e., the F-DR). 
Revisiting Figs.  5 and 6, the dominant roots 𝑠𝑑𝑜𝑚 of the system satisfy 𝜎[𝐴𝐷𝑅]

𝑑𝑜𝑚 = −0.029, 𝜎[𝐹𝐷𝑅]
𝑑𝑜𝑚 = −0.074, and 𝜎[min]

𝑑𝑜𝑚 = −0237 in the 
above A-DR, F-DR, and the optimized FP-DR cases, respectively. The corresponding theoretical settling time is then 𝑡[𝐴𝐷𝑅]

𝑠 = 3.54 s, 
𝑡[min]
𝑠 = 1.38 s, and 𝑡[min]

𝑠 = 0.43 s, as marked in Fig.  15(a). In Fig.  15(b), the settling time is forward-shifted by 0.4 s to compensate 
for the time for the data collection of the RMS calculation. Clearly, theoretical results well predict the numerical ones. Note that 
the F-DR expedites the transient process of the A-DR, and the FP-DR can further enhance the transient performance of the F-DR by 
properly designing the additional feedback control, agreeing with Fig.  6.

The experimental results are shown in Fig.  15(c, d), where the theoretical settling time 𝑡𝑠 still exhibits sufficient accuracy. 
Although residual vibrations remain at last, the time to the steady states in the F-DR and the optimized FP-DR cases are much 
shorter than that in the classical A-DR case, and the system reaches steady states fastest in the FP-DR case, as expected. Compared 
with Fig.  14(c, d), vibration suppression efficacy in steady states is reduced from 94.4% to 82.5%. One reason is that the current 
excitation frequency 𝜔̄ = 6 Hz is around the natural frequency 𝜔̄𝑎 = 6.11 Hz of the absorber so the given slightly damped absorber 
can yield sufficient vibration reduction in the passive case 𝑡 < 2 s, see also Fig.  7(a). Reducing the residual vibrations needs to 
improve the steady-state performance, as to be tested next.
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Fig. 16. Tests for the steady-state performances of the A-DR, F-DR, and FP-DR at 𝜔̄ = 6.9 Hz. Tuned pairs are with 𝜌𝑎, 𝜌𝑓 > 0 and 𝑏 = 1. Active 
force 𝑢 is activated when 𝑡 ⩾ 2 s. (a). Excitation with perturbation around resonance frequency 4.58 Hz introduced when 𝑡 ∈ [9 s, 11 s]. (b). 
Variations of (𝑔𝑝, 𝜏𝑝

) for the FP-DR. (c, d). Simulations. (e, f). Experiments. RMS in (d, f) refers to root mean squares for the dataset 𝐱̄𝑝 sampled 
within the last 0.4 s before the current time step 𝑡.

7.4. Single-frequency case 𝑃 = 1: Enhanced performance in steady states

To suppress the residual vibrations in steady states as experimentally observed in Figs.  14(c, d) and 15(c, d), we extend the 
antiresonance valley to reduce the response sensitivity of the primary, given that the excited main noises should be distributed 
around the excitation frequency and that the system should have similar responses when structural parameters slightly vary 
(i.e., when the inaccuracies in control parameters are small). In light of Figs.  7 and 8, the FP-DR can manipulate the frequency 
response curves of the primary without affecting the zero antiresonance. In addition to extending the antiresonance valley, the FP-
DR can control resonance peaks. For verification, we following Fig.  7 consider the case 𝜔̄ = 6.9 Hz and introduce a small perturbation 
at 4.58 Hz, which is around the resonance frequency of the primary, to the excitation 𝑓𝑒. Fig.  16 details the tests.

The A-DR, F-DR, and FP-DR tuned with (𝜌𝑎, 𝜌𝑓 > 0, 𝑏 = 1
) or 

(

𝑔̄[1]𝑎.𝑡 , 𝜏
[1]
𝑎.𝑡

)

= (341.85 N∕m, 93.8 ms) and 
(

𝑔̄[1]𝑓,𝑡, 𝜏
[1]
𝑓,𝑡

)

=(0.355, 19.3 ms)
are considered, and the transient processes 𝑡 ∈ [0, 5 s] as Figs.  14 and 15 are omitted to focus on steady states. Fig.  16(a) depicts the 
perturbated excitation. Fig.  16(b) shows the variations of (𝑔𝑝, 𝜏𝑝

) in the FP-DR case, in which (𝑔𝑝, 𝜏𝑝
)

=(0.266, 3.166) corresponds to 
the minimum settling time 𝑡[min]

𝑠 = 0.43 s, as aforementioned. Note that 𝜏𝑝 = 0 within 𝑡 ∈ [13 s, 17 s] signifies the delay value set in 
the controller. The actual output value must be positive due to the inherent loop delay, which, however, should not significantly 
affect the extended antiresonance valley since the valley width for 𝑔𝑝 > 0 increases as 𝜏𝑝 decreases, i.e., 𝜏𝑝 = 0 is not a critical value 
to achieve the extension, see Fig.  7, as to be tested next.

Simulations are conducted in Fig.  16(c, d), where the F-DR does not raise the resonance peaks in the A-DR case, and the FP-DR 
can reduce peaks, consistent with Fig.  7. Besides, system responses after perturbation reach steady states fastest in the FP-DR case 
also at the time cost 𝑡[min]

𝑠 , a direct result of the fact that the spectral distribution in Fig.  5 for the FP-DR is independent of the 
tuning frequency. When 𝑡 ∈ [13 s, 17 s], we increase 𝑔𝑝 and decrease 𝜏𝑝 to extend the antiresonance valley as per Fig.  7 and Fig.  8, 
which poses no effect on the complete vibration suppression of the FP-DR, again verifying that (𝑔𝑝, 𝜏𝑝

) do not affect the tuning of 
(

𝑔̄[1]𝑓,𝑡, 𝜏
[1]
𝑓,𝑡

)

. The corresponding experimental results are shown in Fig.  16(e, f), where the variations of resonance peaks agree with 
simulations. When 𝑡 < 13 s, the F-DR yields smaller residual vibrations than the A-DR and the FP-DR optimized for 𝑡[min]

𝑠 , agreeing 
with the theoretical width variations of the antiresonance valley in Figs.  7 and 8. When 𝑡 ∈ [13 s, 17 s], the FP-DR gradually reduces 
residual vibrations as 𝑔𝑝 increases and 𝜏𝑝 decreases thanks to the accordingly extended antiresonance valley, see also Remark  2 for 
suppressing nonlinear frictions, finally yielding the best performance. The above verifies that properly designing the feedback force 
𝑢̄𝑝 of the FP-DR can enhance steady-state performance by resisting resonance perturbations and reducing residual vibrations, thus 
resulting in more complete vibration suppression in practice.

7.5. Complete suppression of the dual-frequency vibrations (𝑃 = 2)

At last, let us examine the complete suppression of multiple-frequency vibrations. Following Section 6, we consider the case with 
two frequency components (𝜔̄ , 𝜔̄

)

= 6.5 Hz, 8.5 Hz . From Figs.  10 and 11, the classical A-DRs are inoperable due to instability, 
1 2 ( )
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Fig. 17. Tests of the F-DR and FP-DR for completely suppressing dual-frequency vibrations with (𝜔̄1, 𝜔̄2
)

= (6.5 Hz, 8.5 Hz). Control parameters 
(

𝑔[1]𝑓,𝑡, 𝑔
[2]
𝑓,𝑡, 𝜏

[1]
𝑓,𝑡 , 𝜏

[2]
𝑓,𝑡

)

 are tuned as per (50) with 𝑏 = 1. Active force 𝑢 is activated when 𝑡 ⩾ 2 s. (a). Dual-frequency excitations. (b). Variations of 
(

𝑔𝑝, 𝜏𝑝
) for the FP-DR. (c, d). Simulations. (e, f). Experiments. RMS in (d, f) refers to root mean squares for the dataset 𝐱̄𝑝 sampled within the 

last 0.4 s before the current time step 𝑡.

so we only conduct comparisons between the F-DR and FP-DR. The tuned dimensional control parameters as per (50) for 𝑏 = 1 are 
(

𝑔̄[1]𝑓,𝑡, 𝑔̄
[2]
𝑓,𝑡, 𝜏

[1]
𝑓,𝑡 , 𝜏

[2]
𝑓,𝑡

)

= (0.805, 0.508, 19.5 ms, 91.6 ms). The tests are detailed in Fig.  17.
Fig.  17(a) shows the time history of the dual-frequency excitation. Fig.  17(b) shows variations of (𝑔𝑝, 𝜏𝑝

) when adopting the 
FP-DR, in which (𝑔𝑝, 𝜏𝑝

)

= (0.266, 3.166) when 𝑡 ∈ [2 s, 6 s], again aiming to achieve the minimum settling time 𝑡[min]
𝑠 = 0.43 s. To test 

the extended antiresonance valley by tuning (𝑔𝑝, 𝜏𝑝
) as per Fig.  12, we now directly switch (𝑔𝑝, 𝜏𝑝

) to (𝑔𝑝, 𝜏𝑝
)

= (0.5, 0) at 𝑡 = 6 s for 
efficiency as a further step from the modulation process in Fig.  16(b).

The simulations in Fig.  17(c, d) clearly verify that a single delayed vibration absorber following the control logic of the FP-DR 
can completely suppress multiple-frequency vibrations. Besides, the feedback force governed by 𝑔𝑝 ≠ 0 of the FP-DR also poses no 
effects on the final complete vibration suppression of the F-DR in the multiple-frequency case, and properly designing (𝑔𝑝, 𝜏𝑝

) can 
expedite the transient process, both of which agree with the theoretical analysis.

The experimental results in Fig.  17(e, f) show that vibrations are significantly suppressed once the active control is introduced. 
When 𝑡 ∈ [2 s, 6 s], residual vibrations in the cases of the F-DR and the FP-DR optimized for 𝑡[min]

𝑠  are roughly at the same level. 
When ̄𝑡 > 6, residual vibrations are reduced by the FP-DR thanks to the extended antiresonance valley as per Fig.  12, finally yielding 
up to 94.4% vibration reduction compared with the passive case. Particularly, the instantaneous switching of (𝑔𝑝, 𝜏𝑝

) at 𝑡 = 6 s does 
not cause notable oscillations compared with the slow modulation process as Fig.  16(b) since the feedback force 𝑢̄𝑝 is small when the 
primary structure is nearly completely settled, i.e., |𝑢̄| ≈ |

|

|

𝑢̄𝑓
|

|

|

≫ |

|

|

𝑢̄𝑝
|

|

|

. This provides the basis for rapid switching control parameters 
to expedite suppressing residual vibrations in practice.

8. Conclusions

To simplify parametric design and enhance vibration suppression performance of the DR, we propose a hybrid control law 
consisting of both feedback and feedforward control terms. Particularly, the feedback term is based on the states of the primary and 
the feedforward one on the excitation force, yielding a new DR called FP-DR. To demonstrate the design rules and to justify the 
advantages of the FP-DR or the hybrid control law, comparative studies with the classical absorber-based DR (A-DR), which is purely 
feedback-controlled, and with the F-DR, which is purely feedforward-controlled as the reduced case of the FP-DR, are conducted in 
the context of both single- and multiple-frequency vibration controls. Main conclusions are as follows.

• Control parameters of the FP-DR that need to be tuned are only related to the feedforward force and are decoupled from system 
stability which depends only on the feedback force. Compared with the A-DR, whose control parameters affect stability, the 
determination of the operable control parameters in the FP-DR case becomes very simple.
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• The F-DR alone can achieve complete vibration suppression without giving rise to instability. The necessity of using 
feedforward control to achieve the task is justified by the required much smaller forces than the forces directly applied on the 
primary to neutralize excitation. The FP-DR modifies the F-DR via the additional feedback forces that take effect only when 
the primary is not fully settled, forming the basis to enhance complete vibration suppression.

• To guarantee a stable system, the operable control parameters governing the feedback forces of the FP-DR can be analytically 
obtained independent of the vibration frequency thanks to the decoupling between feedback and feedforward tuning. 
Furthermore, they can be optimized to expedite the transient process of the F-DR. Such operable and optimum parameters 
hold regardless of the single- and multiple-frequency cases.

• When suppressing single-frequency vibrations, the tuned pairs of both FP-DR and A-DR are obtained in closed form. The 
FP-DR and its reduced case, F-DR, extend the operable frequency band of the A-DR, which is bounded by stability issues. In 
the frequency band where A-DR is operable, the FP-DR can significantly reduce the settling time and extend the antiresonance 
valley without raising the resonance peaks by tuning the feedback force.

• When suppressing multiple-frequency vibrations, the tuned pairs are available by numerical methods. Two types of A-DRs 
are considered. One manipulates the pairs of gain and delay. The other doubles the control terms to only manipulate gain 
parameters while fixing the delay. However, both A-DRs are inoperable due to instability even if each frequency component 
is operable in the single-frequency case. Alternatively, the FP-DR and F-DR can handle the problem requiring no additional 
efforts in analyzing system stability and operable control parameters compared with the single-frequency case. Besides, the 
FP-DR can again enhance the performance of F-DR, thus fully exploiting the strength (raised system order) of the delayed 
control in suppressing multiple-frequency vibrations by driving a single-mass absorber.

This work applies the feedforward control to the DR for the first time, illustrates the combining strategy with the feedback 
control, accordingly establishes the basic design and analysis framework, and finally verifies the claimed benefits in suppressing 
both single- and multiple-frequency vibrations. We believe the FP-DR provides a promising solution in engineering applications 
of the DR techniques and even the delayed control thanks to the significantly alleviated stability issues of time-delayed systems. 
Designing prototypes for real uses in automotive will be the next stage of our work.

CRediT authorship contribution statement

Yifan Liu: Writing – review & editing, Writing – original draft, Conceptualization. Bo Yan: Writing – review & editing, Funding 
acquisition. Jianwang Shao: Writing – review & editing, Funding acquisition. Li Cheng: Writing – review & editing, Supervision, 
Resources, Project administration.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared 
to influence the work reported in this paper.

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China (grant nos. 52422504, 52175125, and 
51805372) and in part by the National Key R&D Program of China (grant no. 2023YFB2504302).

Appendix A. Open-source verification materials

The SIMULINK-based simulation models, simulation results, and video recordings of the experiments in Section 7 can be found 
at https://bit.ly/3QXFHDg.

Appendix B. Experimental tests on the force output of VCM

This part is to show the definitive relationship between the driving current and the force output of VCM1 to further justify the 
effectiveness of feedforward control (i.e., the excitation force 𝑓𝑒 is indeed used to tune 𝑢̄𝑓  of the FP-DR and the F-DR as per (24)). 
An independent test platform is constructed as Fig.  18, where a force sensor is rigidly mounted on the VCM mover, and the VCM 
stator is fixed on the frame. To improve measurement accuracy, the VCM mover is also fixed on the frame to avoid the inertial 
effects on the force sensor so the electromagnetic force inside the VCM is statically exerted on the force sensor.

In the test, we introduce a frequency-sweeping current 𝐼 into the VCM mover while fixing the current amplitude |
|

𝐼|
|

. Particularly, 
the sweeping rate is sufficiently low as 0.05 Hz∕s to suppress transient responses. Two tests under different current amplitudes 
|

|

𝐼1|| = 0.3 A and |
|

𝐼2|| = 0.45 A are performed within 𝜔̄ ∈ [4, 10] Hz, as detailed in Fig.  19.
Fig.  19(a) and (b) show the reference of the driving current and the force output, respectively. Fig.  19(c) checks the responses 

of 𝑓𝑒 at a fixed frequency (𝜔̄ = 6 Hz is considered here as an example), where the agreements between the resulting steady-state 
amplitudes (|

|

𝑓𝑒,1|| , ||𝑓𝑒,2||
) and the two in Fig.  19(b) at the corresponding frequency 𝜔̄ = 6 Hz indicate that the sweeping ratio is 

acceptable to settle transient responses. Hence, the envelopes of the results in Fig.  19(b) can be considered as frequency response 
21 
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Fig. 18. Experimental test platform for examining the relationship between the current input and the force output of the VCM. (a). Overview. 
(b). Close-up of the force sensor.

Fig. 19. (a). Frequency-sweeping current references for driving VCM. (b). Time history of the statically measured force output. (c). Static force 
output at a fixed frequency 𝜔̄ = 6 Hz. (d). Force output corresponding to (a) when the force sensor is not fixed.

curves of 𝑓𝑒 under 𝐼 . The frequency responses having fixed amplitudes signify the linear relationship between 𝑓𝑒 and 𝐼 within a 
sufficiently broad frequency band. Moreover, such a linear relationship can be regarded as constant given that the two tests lead to 
the same value of |

|

𝑓𝑒,1|| ∕ ||𝐼1|| ≈ |

|

𝑓𝑒,2|| ∕ ||𝐼2|| ≈ 𝜂̄ = 6.36 N∕A, which is known as the thrust constant of the VCM and agrees with the 
value provided by the VCM manufacturer, i.e., 𝜂̄0 = 6 N∕A with a maximum of 10% tolerance.

Fig.  19(d) shows the measured force when the VCM mover is not fixed, and clearly, the results mismatch the previous static 
case due to the mentioned inertial effects. Correction methods for measuring dynamical forces are another topic that can be referred 
to [62–64]. Note that such measurement mismatches lead to deviations of the gain 𝑔̄[𝑖]𝑓 . However, they should not significantly affect 
the final performance of the proposed FP-DR since the feedforward control does not affect system stability and since the complete 
vibration suppression ||

|

𝑥̄𝑝
|

|

|

= 0 is equivalent to the static case (see Fig.  1(b)). That is, the uncorrected dynamical forces directly 
measured by the force sensor deployed as Fig.  18(b) should not affect the expected complete vibration suppression in steady states. 
Possible consequences are to amplify residual vibrations, which, however, can be beneficially suppressed by the feedback control 
𝑢̄𝑝. The above observations help simplify the practical implementations of the FP-DR.

Remark 4.  Direct measurement of the excitation forces is not necessary when deploying the FP-DR in some applications. Fig.  20 
shows an example where the excitation is a movable base with displacement 𝑥̄𝑏. In this case, one only needs to measure 𝑥̄𝑏 or 
its derivatives ( ̇̄𝑥𝑏, ̈̄𝑥𝑏

) for the feedforward states. This problem of reducing the vibration transmission from 𝑥̄𝑏 to 𝑥̄𝑝 is known as 
vibration isolation [65–67], which, however, can follow the same analysis procedure in this work given that the primary structure 
is essentially still force-excited (by the forces provided by (𝑘̄𝑝, 𝑐𝑝

) arising from the relative motion 𝑥̄𝑝 − 𝑥̄𝑏).  ■

Data availability

Data will be made available on request.
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Fig. 20. A possible application of the FP-DR to handle displacement-excited vibrations.
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