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Abstract Acoustic/elastic metamaterials exhibit a

wealth of unusual properties conducive to wave

manipulation. This review outlines state-of-the-art

developments from FPUT chains, granular crystals to

nonlinear acoustic metamaterials (NAMs). It mainly

discusses key advances made in the domain of NAMs

for wave manipulation, vibration control and sound

attenuation given the blooming interest in exploring

how nonlinearity offers possibilities for discovering

novel wave phenomena, principles and properties that

potentially go well beyond linear metamaterials and

the relevant linear theories. NAMs reveal intriguing

wave phenomena, revolutionizing our understanding

of wave behavior including the breakdown of reciproc-

ity, stationary invariance and space–time invariance,

and have the potential to promote superior engineering

performance like ultra-low and ultra-broadband vibra-

tion reduction. An overview of present research and

further challenges are provided in fields such as

calculation methods, amplitude-dependent bandgaps,

self-adaptive bands, nonreciprocal wave control, har-

monic control, chaotic dynamics, vibration and sound

attenuation, practical design, experimental implemen-

tation, and practical applications.

Keywords Nonlinear acoustic metamaterials �
Nonlinear elastic metastructures � Nonlinear

dynamics � Nonlinear wave control � Review �
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1 Introduction

Since the early investigations into the three-body

problem, a deeper understanding of nonlinear dynam-

ics of low-dimensional systems has been achieved

over the last century. In 1955, the enigmatic Fermi-

Pasta-Ulam-Tsingou (FPUT) paradox emerged, chal-

lenging conventional understanding about wave prop-

agation in nonlinear periodic systems [1, 2]. In the

following seven decades, extensive studies into the

FPUT paradox have catalyzed a significant shift in

nonlinear science and physics [3]. Remarkably,

investigations into nonlinear phononic crystals

(NPCs) [4], especially granular crystals [5], which

serve as prime examples of nonlinear periodic
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systems, have unveiled a wealth of intriguing wave

properties over the last three decades [6–8]. An

overview of the overarching progress of these

advances is depicted in Fig. 1.

Metamaterials, often characterized by their unusual

subwavelength properties and periodic structure, have

been the subject of intense research for over two

decades [9–11]. Studies have unveiled fascinating

wave phenomena and ushered in potential applications

in various domains, including vibration and noise

control, wave energy harnessing, and acoustic/elastic

wave sensing [12–14]. However, most of the existing

research has been focused on linear metamaterials

(LAMs), rooted firmly in the theories of linear

elasticity based on several fundamental assumptions,

such as small deformations, mono-frequency har-

monic responses, the preservation of frequency,

reciprocal propagation, space–time invariance, etc.

This linear perspective has hindered the exploration of

new opportunities stemming from intricate nonlinear

dynamic behaviors. Moreover, sound and vibration

control methods centered on locally resonant band-

gaps in LAMs frequently encounter a narrow band-

width, relying heavily on the attached mass ratio.

Therefore, progressing from linear to nonlinear studies

not only aligns with the scientific evolution from linear

to nonlinear dynamics, but more importantly, unlocks

a new realm of possibilities for discovering novel

wave phenomena, establishing new principles, over-

coming limitations imposed by linear theories, and

addressing a wider array of engineering needs. For

example, studies on nonlinear electromagnetic meta-

materials [15–18] have revolutionized our understand-

ing of the nonlinear world, enriching the body of

knowledge in nonlinear physics and dynamics, and

paving the way towards groundbreaking applications

[19].

Since approximately 2016, nonlinear acoustic

metamaterials (NAMs) [20–24], with embedded non-

linear local resonators, have garnered growing inter-

est. Existing findings have established the foundation

for exploring, designing, and utilizing nonlinear

metamaterials. Studies revealed unique properties

absent in their linear counterparts. These distinctive

characteristics include, among others, amplitude-

dependent bandgaps [25], sub-harmonic bandgaps

[26], self-adaptive band and actions [27], chaotic

bands [22], higher-order harmonics [28], non-re-

ciprocity [29, 30]. Recent investigations demonstrated

that nonlinearities within meta-structures can produce

remarkable vibro-acoustic effects, such as ultra-low

and ultra-broadband vibration suppression [23] asso-

ciated with nonlinear local resonances, and the can

overcome the conventional law mass limitations in

acoustic insulation [31].

Therefore, the integration of nonlinearity into

acoustic metamaterials offers exciting opportunities

for the creation of novel devices and systems with new

wave manipulation capabilities [20–23]. However, the

complexity and unique features of these systems

demand a concerted effort from the scientific com-

munity to develop new theoretical paradigms, simu-

lation techniques, and experimental methods to fully

unlock their potential, although substantial progress is

continuously being made. Currently, there is a surge of

interest in nonlinear metamaterials, in view of their

potential to induce abundant unusual behaviors

including novel wave dynamics, thereby pushing the

boundaries of nonlinear dynamics.

This paper aims to provide a comprehensive and

timely overview of the advances on nonlinear
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acoustic/elastic metamaterials (NAMs). First, we

outline the development trajectory of NAMs starting

from wave manipulation in linear metamaterials,

nonlinear crystals and nonlinear periodic structures

(Sect. 2). Secondly, we elaborate important phenom-

ena and effects of nonlinear wave dynamics enabled

by NAMs, paying more attention to physical mecha-

nisms (Sect. 3). Thirdly, we analyze the vibration and

sound attenuation of NAMs in applications (Sect. 4).

While summarizing the advances in several directions,

we also discuss the challenges and possibilities of

further developments of NAMs. While trying to be

broad and deep in reviewing nonlinear wave dynam-

ics, we strive to keep the review as succinct and

accessible as possible.

2 From linear to nonlinear acoustic metamaterials

The emerging technology of meta-materials/structures

offers an exciting route to achieve unprecedented

wave control capabilities. Over the past two decades, a

rich array of linear acoustic metamaterials (LAMs) has

been investigated within the framework of linear

dynamics.

2.1 Linear acoustic metamaterials

As early as the 1960s, scientists discovered that when

impurities (or defects) exist in an ideal crystal (such as

silver impurities in potassium chloride crystals), local

resonances can be generated near the impurities (or

defects) [32, 33], inducing low-frequency wave

absorption. At the end of twentieth century, bandgaps

in linear phononic crystals were extensively studied

[34, 35]. In 2000, Liu et al. embedded locally resonant

microstructures into an elastic matrix to create a

locally resonant phononic crystal [9, 36], offering

significant wave attenuation at deeply subwavelength

scale. Locally resonant metamaterials induce negative

effective mass density, negative effective modulus

[37] and low-frequency bandgaps for blocking wave

propagation. Their behavior can still be cast into

Hooke’s law (r-e) and Newton’s second law between

force F and acceleration a: r ¼ Eeffe; F ¼ meffa,

where Eeff and meff denote the effective dynamic

modulus and mass of the metamaterial, respectively.

For example, for a linear diatomic meta-cell (see

Fig. 2a), one has

meff ¼
Fh i
ah i ¼ m0 þ

kr

x2
r � x2

ð1Þ

where m0 denotes the primary mass; kr and xr denote

the stiffness and frequency of local resonators,

respectively. It turns out that meff \ 0 for

xr\x\
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
r þ kr=m0

p

. An array of Helmholtz res-

onators can realize effective negative modulus [38].

Locally resonant bandgaps and nearly perfect absorp-

tion can appear near the negative mass or modulus

band.

Acoustic metasurfaces can induce wave phase

gradient along the interface to tactically adjust the

reflection and refraction of sound waves [39, 40].

Many metasurfaces take the form of space-coiling

structures [41, 42] combined with perforated plates

[43] to induce local resonant effects, enabling highly

efficient sound insulation [44, 45] and absorption [46].

Acoustic metamaterials designed based on coordinate

transformation theory [47] can deliver cloaking effect

[48], as shown in Fig. 2e. This theory, firstly proposed

in 2006 [49], provides an equivalent relationship

between spatial transformation and material distribu-

tion [50, 51], which can be realized with pentamode

materials [52, 53]. Recently, metamaterials or pho-

nonic crystals with topological states have attracted

overwhelming attention [54, 55]. Topological states

enable robust one-way sound transport [56–58],

construction of topological insulators [59–61] and

topological semimetal [62, 63], or acoustic valley Hall

effects [64] and Weyl points [65]. All these unusual

properties enabled new devices, meta-structures, or

sensors for controlling vibration, noise, surface wave

and wave vectors [66].

Beyond those linear acoustic metamaterials, non-

linear acoustic metamaterials (NAMs) represent a

novel class of nonlinear periodic structures distin-

guished by their remarkable sup/sub-harmonic char-

acteristics. Before delving into details, we broaden our

perspective on nonlinear periodic structures and

briefly revisit their development over the past seven

decades. Across various disciplines, the FPUT chains

and granular crystals have played pivotal roles in

aiding our exploration and comprehension of nonlin-

ear phenomena within diverse physical systems.
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2.2 FPUT chains and granular crystals

In 1955, Fermi, Pasta, Ulam and Tsingou (FPUT)

numerically studied wave propagation in a chain

involving weak nonlinear interaction between the

oscillators [67]. The chains with quadratic and cubic

forces are called a-FPUT and b-FPUTT models,

respectively. The equation of motion for the nth

particle writes:

€xn ¼ ðxnþ1 þ xn�1 � 2xnÞ
þ a ðxnþ1 � xnÞ2 � ðxn � xn�1Þ2
h i

ð2Þ

€xn ¼ ðxnþ1 þ xn�1 � 2xnÞ
þ b ðxnþ1 � xnÞ3 � ðxn � xn�1Þ3
h i

ð3Þ

Under long-wave assumption, they can be trans-

formed into the following wave equations:

a - model :
o2u

ot2
¼ o2u

ox2
þ a

ou

ox

o2u

ox2

b - model :
o2u

ot2
¼ o2u

ox2
þ b

ou

ox

� �2
o2u

ox2

ð4Þ

The above two wave equations can represent many

nonlinear crystals or matters [68, 69].

Under an initial pulse input, it was a common belief

that any nonlinearity in these models would lead to

ergodicity among multiple modes, which spreads

energy to higher harmonics [3]. However, Fermi,

Pasta, Ulam and Tsingou found that the energy in the

weakly nonlinear chain can completely go back to the

first mode after a sufficiently long time. This recurrent

behavior that seems to prevent the chain from reaching

thermal equilibrium is referred to as the FPUT paradox

[1]. Subsequent studies on the FPUT paradox sparked

formidable developments in nonlinear science. Topics

include integrability of nonlinear differential equa-

tions, stability of solutions, chaos, breathers (a type of

stable localized nonlinear oscillation), solitons, Bose–

Einstein condensation, and even quantum chaos

[70–75]. Recently, Refs. [68] proposed a feasible

method to search the discrete breathers in a 2D triangle

b-FPUT lattice, and reported several 2D breathers

with frequency bifurcation from the upper edge of the

phonon band. In diatomic FPUT chains, Ngamou et al.

[76] showed the super-transmission phenomenon;

Chaunsali et al. [70] observed nonlinearity-induced

edge states bifurcating from the bulk soliton solutions.

In the 1980s, numerous theoretical studies on

FPUT-like models and nonlinear differential wave

equations required the materialization of elastic sys-

tems for experimental validations. A prime example is

the experimental setup built upon granular crystals

[77, 78], which consists of arrays of spherical particles

Fig. 2 Typical acoustic metamaterials. a Locally resonant

meta-cell and its equivalent model. Locally resonant metama-

terial consisting of three-components resonators. Membrane

resonators for constructing metamaterial. b Metamaterial con-

sisting of arrays of Helmholtz resonators [38]. c Metamaterial

with negative refraction [43]. d Acoustic meta-surface. e Acous-

tic cloaking [48]. f Topological metamaterial with negative

property [65]. g Multi-band gap metamaterial with electrospun

spider-web resonators embedded in a 3D printed honeycomb

[66]

F0 F0

2R-δ

δ
un un+1

un-1

δ

Fig. 3 Model of granular crystal
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[5], as depicted in Fig. 3. Nesterenko et al. systemat-

ically investigated granular chains, revealing unique

nonlinear behaviors [79]. Over more than two decades

between 1990 and 2015, solitons [80–82], breathers

[83, 84], bandgaps, nonreciprocity, dispersion prop-

erties [29] in granular crystals, especially in 1D

system, were thoroughly examined. In addition to

granular crystals, other studies on nonlinear periodic

structures and crystals have also shown intriguing

wave phenomena, including slow Bragg solitons [6],

intensity-dependent response [85], switching and

chaotic dynamics [86], modulational instability

[7, 87], second-harmonic generation [88], etc.

2.3 Typical models and designs of nonlinear

acoustic/elastic metamaterials

The focus of nonlinear periodic models has primarily

been on FPUT-like systems, which exhibit Bragg

bandgaps and weak nonlinearity, as clearly illustrated

in Fig. 4c. Nevertheless, the majority of studies

focusing on FPUT models have been confined to the

low-frequency band, where a constant wave speed is

assumed alongside the long-wave approximation.

Consequently, the intricate properties of the bandgap

and the profound impacts of dispersion behavior

remain largely unexplored.

Upgrading from FPUT models, we define nonlinear

acoustic metamaterials (NAMs) as artificial composite

materials or structures featuring unusual low-fre-

quency, subwavelength nonlinear wave properties.

These properties go beyond (or give new dimensions

on) the negative effective mass/modulus, low-fre-

quency bandgaps, wave absorption/ insulation/reflec-

tion, phase modulation, cloaking and topological

propagation found in their linear counterparts.

The simplest NAM model is a 1D diatomic chain

shown in Fig. 4b. Nonlinear interactions can be

tactically imposed in the primary chain, in local

resonators or in both. For convenience, here we

classify the NAM models into three types: R-type

models include nonlinear interaction only in local

resonators while the primary chain is linear; P-type

models include nonlinear interaction only in the

primary chain, with local resonators being linear;

RP-type models include nonlinearity in both. For the

diatomic model, the equations of motion of the nth

metacell are

R�model :
m0 €xn ¼ k0ðxnþ1 þ xn�1 �2xnÞþ krðyn� xnÞþfFNRðyn� xnÞg

mr €yn ¼�krðyn� xnÞ�fFNRðyn� xnÞg

(

P�model :

m0 €xn¼ k0ðxnþ1 þ xn�1 �2xnÞþ krðyn� xnÞ

þfFNPðxnþ1 � xnÞ�FNPðxn� xn�1Þg

mr €yn ¼�krðyn� xnÞ

8

>

>

<

>

>

:

ð5Þ

Here, m0 and mr are the masses of the primary

oscillator and local resonator, respectively; k0 and kr

are their linear stiffness coefficients; FNR(D) or

FNP(D), denotes the nonlinear force as a function of

the displacement difference D. It can be a quadratic,

cubic, piecewise, or described by other nonlinear

functions. In a broader view, nonlinear metamaterials

can have local or global nonlinear stress–strain (r-e)
relationships like r = E1e ? E2e

2 ? E3e
3. If En for

n[ 1 is large or the dynamic deformation is large, the

effective parameters of Eeff or meff may change

greatly, which would drastically change the wave

dynamics. The discrete model can be rewritten in the

form of coupled differential equations, or in the form

of wave equation by using equivalent mass density qeff

and stiffness keff,

qeff

o2u

ot2
þ keff

o2u

ox2

þ N
ou

ox

� �n
o2u

ox2

� �m
o2u

oxot

� �p
ou

ot

� �q

¼ f ðx;tÞ ð6Þ

Here N denotes nonlinear coefficient; and one can

adjust n, m, p, q to characterize different types of

nonlinearities. As shown in Fig. 4d, the linear

diatomic model has a low-frequency, subwavelength,

locally resonant bandgap. The appearance of nonlin-

earity changes the properties of ‘‘bandgap’’ (if exists)

and wave propagation (Fig. 4). The growing interest is

underpinned by the increasing complexity of the

problem and the opportunities it offers.

Up to now, several types of nonlinear acoustic

metamaterials (NAMs) have been proposed, each with

unique characteristics and application promise. Theo-

retically, any metamaterial can exhibit nonlinear

behavior if the input amplitude or intensity is suffi-

ciently high. This principle underlies the first type of

NAM, which involves the introduction of high-inten-

sity sound ([ 140 dB) into acoustic waveguides, such

as arrays of sound cavities or resonators, like the tube in

Fig. 2b. These cavities or resonators produce locally

resonant effects, and nonlinearity is triggered by the
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high-intensity sound. This approach falls into the realm

of nonlinear acoustics problems and has been studied

by researchers like N. Sugimoto in the early 1990s

[93, 94], followed by Bradley [95–97], and more

recently in Refs. [98, 99]. It is worth noting that

acoustic nonlinearity that can be practically achieved is

generally weak, so it is challenging to generate sound

pressures exceeding 150 dB in practice.

Similar with the first type, the second type involves

geometrical nonlinearity of the metacell structures, or

uses the material nonlinearity of metacell materials.

For example, the mechanical metamaterials consisting

of rigid units and elastic hinges can have weak

geometrical nonlinear effects under large amplitude

input [100]. The 2D NAM proposed by Lacarbonara

[66, 101] shown in Fig. 2g is a 3D-printed honeycomb

hosting electrospun spider-web resonators which

exhibits various nonlinear local resonances associated

with the hardening membrane stretching nonlinearity

and the softening material nonlinearity of the CNT/

PVDF electrospun spider webs. Based on geometrical

nonlinearity, one can induce bistable, multi-stable non-

linearity in resonators using buckling elements

[102, 103]. Except for the quasi-static properties such

as shape morphing [104, 105], energy absorption

[106, 107], multi-stable metamaterials also support

interesting nonlinear wave dynamics.

The third type of NAM utilizes magnetic or

electrostatic forces to generate nonlinear stiffness.

This approach was explored by Fang et al. in 2017 [23]

...

Nonlinear Acoustic Metamaterial model (NAM)

a
xn

mmm...
Input

...m0...

yn

xn
m0

mr

FPU model: Nonlinear Phononic Crystal (NPC)

Fr
eq

ue
nc

y

Wave vector κ

Fr
eq

ue
nc

y

Wave vector κ

Bragg bandgap

Locally resonant Bandgap

Bragg bandgap

b

c d

mr mr,n

m0

mrmr

m0m0

n-1      n n+1

n-1      n n+1

Fig. 4 Crystal and metamaterial models. a Fermi-Pasta-Ulam-

Tsingou (FPUT) chain model: Also, a classical nonlinear crystal

model. b Diatomic nonlinear metamaterial model. c Dispersion

curve of the linear mono-atomic chain. d Dispersion curves of

the linear diatomic metamaterial. Dashed curves in (c,

d) illustrate the shifting induced by nonlinearity
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(Fig. 5c). More recently, Cha and Daraio proposed a

nanomechanical NAM array controlled by electro-

static force [92], as shown in Fig. 5e,f. However, both

magnetic and electrostatic interactions tend to exhibit

weak nonlinearity under dynamic input, limiting their

effectiveness in certain applications.

As the field of NAMs continues to evolve,

researchers are exploring new methods to achieve

enhanced nonlinearity and broaden the range of

potential applications. Many previously mentioned

investigations indeed highlight that, without a delib-

erate design to achieve enhanced nonlinearity, meta-

material structures tend to exhibit only weak nonlinear

behavior. Generating sufficient nonlinear effects in

such designs often requires extremely large ampli-

tudes. Introducing strongly nonlinear metamaterials

has demonstrated remarkable ultra-low and ultra-

broad performance characteristics [23]. As shown in

Fig. 5a, b, the core of this NAM design involves a

beam or plate as the primary structure, upon which

nonlinear resonators are periodically installed. Each

metacell comprises a cluster of magnets connected by

rods. The repulsive force between these magnets

introduces a weak level of nonlinear interaction. The

important feature of this design is the clearance left

between the center magnet and the rod. This gap

enables a vibro-impact motion between the magnet

and the rods during flexural vibrations, leading to a

strong nonlinear response. In fact, the weak geometric

nonlinearity inherent in these NAMs is essentially

negligible compared to the strong chaotic effects

induced by the coupled vibro-impact oscillators.

Furthermore, other NAM designs incorporating

coupled vibro-impact resonators have been explored

to reveal novel wave phenomena [27, 108]. For

instance, Sheng et al. [90, 91] developed a metacell

that exhibits dual vibro-impact resonances in both

vertical and transverse directions. This design not only

enhances nonlinearity but also allows for more

complex wave interactions. Additionally, the defor-

mation of microstructures within these metamaterials

has been shown to enable strong nonlinearity [108],

further broadening the range of potential applications.

Therefore, despite the efforts made, the available

practical methods for generating and enhancing non-

linearities in compact NAMs are still limited. This

calls for more innovative and concerted efforts as

further research work.

3 Properties of wave propagation in nonlinear

acoustic metamaterials

Properties of NAMs are reviewed in this section. Non-

linear periodic crystals (NPCs) are also mentioned in a

broader view. The comprehension of the role played

by bandgaps in NAMs and NPCs is the key to

understanding their unique wave propagation proper-

ties. Therefore, nonlinear bandgap is the mostly

studied feature, which, a priori, relies on the calcula-

tion of dispersion curves.

3.1 Calculation methods of nonlinear dispersion

and bandgaps

As most metamaterials are periodic structures, calcu-

lating their bandgaps in linear systems relies on Bloch-

Floquet theorem expressed as

uðr þ RnÞ ¼ eik�RnuðrÞ ð7Þ

Here u(r) is the wave field in the reference unit cell;

r denotes the coordinate vector inside this unit cell; Rn

is the Bravais lattice vector crossing n unit cells from

the reference cell; k denotes the wave vector in

Brillouin zones.

We note that the Bloch-Floquet theorem was

established based on linear transformation, applicable

to linear systems in which both geometrical and

dynamic periodicity exists. It describes the linear

mapping relation between the wave fields of two cells.

Strictly speaking, it cannot be applied to nonlinear

periodic systems, since although geometric periodicity

still exists, the dynamic periodicity is destroyed due to

the amplitude-dependent features of the nonlinear

oscillators. Having said that, there is no such succinct

nonlinear mapping function for nonlinear periodic

systems at present. Therefore, except for the direct

numerical method, Bloch-Floquet theorem can still be

applied to some extent with precaution to provide

reasonable approximate results for nonlinear periodic

systems. Nevertheless, we emphasize that the predic-

tions of this theorem are wrong for ‘‘far’’ fields, which

will be expounded in Sect. 3.3, where a self-adaptive

framework is provided. Here we first focus on

calculation methods.

With the Bloch-Floquet theorem and proper mod-

elling methods (e.g., finite element method), the
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Fig. 5 Typical nonlinear elastic /acoustic metamaterials.

a NAM beam and plate [23, 89]. b NAM metacell model

composed of coupled strongly nonlinear oscillators. c NAM

metacell consists of magnets and rod with clearance contact

between the inner surface of magnets and rod. d NAM metacell

consists of a mass, two springs, a rod, and two sawtooth

structures [90, 91]. Here clearances are left between the rod and

the mass, and between the sawtooth structures and the mass.

e Nanomechanical NAM chain coupled through nonlinear

electrostatic force [92]. f Bandgap modulation of the nanome-

chanical chain in e via changing static electronic voltage [92]
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nonlinear equations of motion of a single nonlinear

unit cell read:

M€u þ Ku þ fNLðuÞ ¼ 0 ð8Þ

where M and K are the linear mass and stiffness

matrices, respectively; u is deformation vector; and

fNL(u) denotes the deformation-dependent nonlinear

function. Several approaches were established to solve

the nonlinear dispersion equations.

The perturbation approach allows for closed-form

determination of the effects exerted by weak nonlin-

earities on dispersion and group velocity [109]. For the

commonly adopted cubic nonlinear system with

fNLðuÞ ¼ N � u3, the perturbation solution of disper-

sion relation writes [20, 109]

x ¼ x0 þ
3A3

0uH
0jðkÞN½u2

0jðkÞu�
0jðkÞ�

8A0x0ju
H
0jðkÞMu0jðkÞ

þ Oðe2Þ ð9Þ

where x0 denotes the frequency solution of linearized

system for specified wave vector k; u0j is the

eigenvector of jth eigenvalue x0j; A0 denotes the wave

amplitude at a point. Specially, for a diatomic model

with an acoustic branch and an optical branch, the

expressions are written in the form [101, 110]:

x�
nl ¼x� þ 3ð/�

2 Þ
4

8x� N3½ða�Þ2 þ 2ðaþ/þ
2

�

/�
2 Þ

2�

xþ
nl ¼xþ þ 3ð/þ

2 Þ
4

8xþ N3½ðaþÞ2 þ 2ða�/�
2

�

/þ
2 Þ

2�

ð10Þ

where x�
nl and x� denote the nonlinear and linear

frequencies of the acoustic (-) and optical ( ?) modes,

respectively; (/�
1 ,/�

2 ) and a� the corresponding

optical/acoustic wave eigenmodes and their ampli-

tudes; N3 is the nonlinearity coefficient. The above

closed-form expressions allow to study the nonlinear

bandgap xþ
nl � x�

nl

� �

and the dependence on the

amplitudes as well as the hardening (N3[ 0) or

softening (N3\ 0) nonlinear local resonances of the

resonators.

The perturbation method is widely used studying

weakly nonlinear phononic crystals and metamateri-

als, including the granular crystals, 1D model

[109, 111] to 2D lattices [112–114]. Early contributors

include Narisetti, Fang, and Manktelow. Fortunati

et al. [115, 116] employed a Hamiltonian perturbation

method together with Lie series for a diatomic NAM

model, and studied the invariant manifolds of 2:1, 1:1

and 3:1 auto-parametric resonances between acoustic

and optical branches.

However, the perturbation solution gives wrong

results for moderately and strongly nonlinear systems

(large nonlinear coefficients or high amplitudes). In

this case, results from the harmonic balance method

and homotopy method provide more reasonable

results without curled dispersion curves. The har-

monic balance method [111, 117] delivers the disper-

sion solutions of the following characteristic

equations:

½K � x2M�UðkÞ þ fNLðUÞ ¼ 0 ð11Þ

By specifying the value of an element in vector

fNL(U), we can obtain the frequency x and other

features.

Furthermore, the homotopy method was proposed

to analyze the bandgaps of NAMs, which is applicable

to both weakly and strongly nonlinear systems

[20, 21]. With the homotopy method, a linear operator

LðfÞ, a nonlinear operator N u;Kð Þ, and a homotopy

H(u; q;H0Þ are defined using the original equations of

motion:

LðfÞ ¼ d2f

ds2
þ /f; N u;Kð Þ ¼ K2M

o2u

os2
þ Ku þ fNLðu;u0Þ

Hðu; q;H0Þ ¼ ð1 � qÞL uðs; qÞ � u0ðsÞð Þ � qH0 � N uðs; qÞ;KðqÞð Þ

ð12Þ

Giving the initial solution u0 and a proper auxiliary

quantity H0, we can obtain the high-order solution by

making parameter q increase from 0 to 1; here KðqÞ is

the variable relevant with frequency x, s = xt. The

initial solution can be identical with the first-order

harmonic balance solution.

Furthermore, an analytical homogenized method

was established in [118] by combining the bifurcation

of nonlinear local resonances. For a metacell contain-

ing a local resonator with cubic nonlinearity, its

effective mass meff writes

meff ¼ m0 þ
kr þ 3knU

2
r

�

4

x2
r � x2 þ 3knU2

r

�

ð4mrÞ
ð13Þ

Here Ur is the vibration displacement of the

nonlinear local resonator calculated from the equa-

tions of motion of a unit cell, which gives the

bifurcation plots; other parameters are identical with

those defined in Eq. (1). This expression is the same as
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that of Eq. (1) if the nonlinear stiffness coefficient

vanishes, i.e., kn = 0. If the metamaterial substrate is a

beam, we can obtain the wave number based on meff,

kðxÞ ¼ m0 þ
kr þ 3knU

2
r

�

4

x2
r � x2 þ 3knU2

r

�

ð4mrÞ

 !

x2

D0Vcell

" #1
4

ð14Þ

As demonstrated in [27], the homogenized method

based on the bifurcation of nonlinear local resonances

is also effective for the metacells containing multiple

nonlinear resonators. Equations (13,14) clearly show

the relationships among nonlinear local resonance,

effective mass density, bandgaps and passbands [118],

thus highlighting the essential features by including

nonlinearity in metamaterials. This method shows that

a nonlinear bandgap starts from the saddle-node

bifurcation of nonlinear local resonance, a finding

that can promote insights into complex band behaviors

[27].

Besides the discussed analytical methods, for the

1D model, numerical spectra-spatial [119] analyses of

dispersion curves using 2D Fourier transform can

provide accurate information about the nonlinear

dispersion curves.

3.2 General properties of nonlinear bandgaps:

amplitude dependence

It is crucial to note that the linear bandgap of some

nonlinear periodic structures can be dynamically

adjusted by altering external fields or forces. For

instance, the bandgap of a nonlinear nanomechanical

lattice, as depicted in Fig. 5e, can be shifted from 14 to

16 MHz by adjusting the static voltage [92]. This

tunable nature is reminiscent of the way of granular

crystals that can enhance their sound speed and

broaden their bandgap by applying precompression

[120]. The pre-compressive force in these systems can

also be imposed using a magnetic field, providing

another means of tuning the bandgap [121, 122].

However, active tunability does not necessarily

involve nonlinear dynamics.

Typical responses and dispersion curves of the

diatomic NAM model are shown in Fig. 6a, b. Similar

to other general nonlinear dynamic effects, the

bandgaps in NAMs and NPCs exhibit a pronounced

amplitude-dependence. As the wave amplitude

increases, the bandgaps in a NAM undergo complex

variations such as shifting, switching, and even

coupling, as evident in Fig. 6c, d. This amplitude-

dependent bandgap behavior is one of the most

extensively studied characteristics of NAMs. Further-

more, the directionality of these changes is closely

linked to the type of nonlinearity involved. For

instance, in the case of softening nonlinearity, the

bandgap shifts downward with increasing amplitude

[110], while for hardening nonlinearity, it shifts

upward [123].

The shifting leads to a broader ‘‘bandgap’’ in theory

[21]. From a different perspective, wider bandwidth

can be regarded as a consequence of the bending of the

backbone curves to the left or right of the linear natural

frequency [101, 110]. The bending of the backbone

curves, driven by nonlinear stiffness variations with

oscillation amplitude, produces a broader resonance

branch. However, excessive nonlinearity might lead to

the disappearance of some bandgaps. Furthermore,

adjusting the width and frequency of locally resonant

and Bragg bandgaps through amplitude modulation

[20, 22], entailing a transition from separation to

adjacent coupling between them [124].

Studies have explored amplitude-dependent band-

gap phenomena in various NAM models. For discrete

NAM models, studies encompass different chains with

various nonlinearities, including the R-type (diatomic,

triatomic and four-atomic) models [125–127], P-type

models [128, 129], chains with bilinear nonlinearity

[124] and quadratic nonlinearity [130, 131], with

inertia amplification metacells [132] or nonlinear

inertance resonators [133], with nearly zero bandgap

frequency [134]. For continuous systems, relations

among nonlinear local resonance, effective mass

density, bandgaps and passbands are clarified based

on the NAM beam [118]; Richoux et al. [135]

investigated how nonlinearity in periodic Helmholtz

resonators affects the cutoff frequency of dispersion

bandgaps in pipelines. Additionally, Ref. [136] ana-

lytically examined nonlinear bandgaps in waveguides

composed of Helmholtz resonators and membranes,

which exhibit concurrent negative modulus and den-

sity. Lan et al. [137] further explored the nonlinear

acoustic impedance and equivalent mass of this

structure, revealing that strong nonlinearity shifts the

bandgap to lower frequencies. In other views, Bilal

et al. [138] generated geometric nonlinearity through

the coupling of oscillators and magnetic forces,
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realizing a phonon switch element similar to a

transistor; Lou et al. [139] used softening or hardening

nonlinear metamaterials to block the propagation of

Rayleigh waves in a linear solid.

These studies covered most NAM types and

clarified general amplitude-dependent properties:

bandgap shifting, coupling and transition. This greatly

impacts the band-edge modes, and shifts the transient

wave frequency [119]. Recently, a combination of

linear and nonlinear metamaterials has demonstrated

amplitude-activated passive direction-bias in wave

propagation [140], originating from bandgap shifting.

Based on the asymptotic solutions in Eq. (10), Shen

and Lacarbonara investigated nonlinear dispersion

properties of a metamaterial beam and a 2D metama-

terial honeycomb embedding spider web-like res-

onators [101, 110], as shown in Fig. 2g. This model

can behave as a hardening or softening nonlinear

NAM, controlled by the modal mass and modal

stiffness, and both induce apparent bandgap shifting

[110], as shown in Fig. 7. This benefits optimization

design. The nonlinear bandgap gain remains greater

than 1 across the entire wave amplitude range

(Fig. 7b), offering a 60% increase of the bandgap for

specified amplitude (Fig. 7c).

Except for the amplitude-dependent properties, the

sub-harmonic or super-harmonic internal resonances

are the most salient and interesting features of

nonlinear systems for triggering energy transfer. In

this regard, Silva et al. [26] studied a NAM model

considering nonlinear hyperelastic interactions

between a rubber-like elastomeric local resonator

and the hosting matrix. This model, due to a 2:1

internal (auto-parametric) resonance, generates a

complementary 1/2 sub-harmonic attenuation zone

alongside the local resonance bandgap. For a diatomic

NAM model, M. Lepidi and A. Bacigalupo [141]

demonstrated that perfect 1:1 internal resonance could

not occur due to the gap between the acoustic and the

optical bands, different from super-harmonic 3:1

internal resonance that could take place within a

frequency range. These preliminary studies about

internal resonance in NAMs show unusual properties

of nonlinear systems, and we think it worth further

exploration.

In bistable or multi-stable metamaterials

[142, 143], the negative stiffness underlies distinct

mechanisms that govern wave propagation and can

serve as a powerful bandgap modulator [144–146].

Low-frequency and broadband wave attenuation can

be realized by shifting the initial frequency of the

bandgap to nearly zero through tuning the wave

amplitude to a critical value [147].

As reviewed above, the general properties of NAM

bandgaps have been examined in many 1D models.

Though one can inspect weakly nonlinear bandgaps in

2D and 3D models directly using perturbation

approach and linear band theory, little effort was

made on studying strongly nonlinear bandgaps in 2D

models and nearly nothing on 3D models. This will

encounter difficulties in finding dispersion solutions of

high-dimensional algebraic equations based on the

harmonic-balance frame, and also in determining

physical meaning of multiple solutions near a
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Fig. 6 Bandgap properties of nonlinear metamaterials. a,

b Frequency responses (a) and dispersion curves (b) of diatomic

NAMs with different nonlinear coefficients [21]. c–e Band

degeneration of a triatomic NAM model with increasing

incident amplitude A0.[25] c Moderate nonlinearity

(A0 = 5 lm), e Strong nonlinearity (A0 = 30 lm). e Overall

view of analytical dispersion curves varying with increasing

amplitude A0
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dispersion curve. Moreover, studying the influences of

amplitude-dependent bandgaps on wave propagation

requires direct time-domain simulations or improved

frequency-domain approaches, which in both cases, is

time-consuming and needing better integration algo-

rithms. For finite metamaterial models, this is possible

even for the large-scale NAM plate containing hun-

dreds of nonlinear resonators by combining fre-

quency-domain methods and continuation approach

[89]. Therefore, solving these problems also calls for

highly efficient calculating methods. Furthermore,

nonlinear bandgaps may enable novel wave phenom-

ena and advanced functionality, especially in quickly

updating metamaterials for reconfigurability, wave

phase control, sound absorption and topological

propagation.

3.3 Band degeneration and self-adaptivity:

Essential process of bandgap transformation

The subharmonic and super-harmonic bandgaps go

beyond the amplitude-dependent bandgap shifting.

However, in above studies, amplitude-dependent

bandgaps in NAMs and NPCs were shown to exhibit

shifts as ‘‘linear’’ bandgaps [148], consistent with

predictions obtained using the Floquet-Bloch theorem.

However, this theorem rests on two key assumptions:

stationary invariance and space–time invariance.

Stationary invariance assumes that the dispersion

curves shift with amplitude, akin to varying stiffness

coefficients, while maintaining the same number of

curves and wave modes in the band graphs. Space–

time invariance assumes that these curves and

bandgaps remain constant across propagation space

and time.

Unfortunately, these assumptions are not univer-

sally valid, particularly for models with moderate to

strong nonlinearity. To inspect the stationary invari-

ance, Gong et al. [25] tracked the evolution of the band

structures of a strongly nonlinear triatomic NAM

model based on harmonic balance method and spectra-

spatial analyses. Results showed that, under moderate

nonlinearity, dispersion curves can merge, bifurcate,

shorten, or disappear, leading to incomplete or entirely

vanished bands. This process of band degeneration

occurs in different and rather complex manners

depending on the arrangement and the coupling of

nonlinear elements. As nonlinearity increases, the

dimension of the unit cell, bandgap range, and

mechanisms (Bragg and local resonance) all vary

with amplitude, indicating a change in wave modes.

Therefore, the stationary invariance of band structure,

as conventionally understood, does not hold for NAMs

and nonlinear phononic crystals with moderate to

strong nonlinearity. This finding is crucial for accu-

rately predicting and controlling wave propagation in

these complex nonlinear systems. Future studies

should carefully consider the impact of nonlinearity

on band structure and wave modes to ensure reliable

predictions and designs.

Moreover, let us delve deeper into the applicability

of ‘‘space–time invariance’’ implied by Bloch theorem

in NAMs. Using a NAM beam model, Fang et al. [118]

first found that the nonlinear local resonant bandgap

corresponds to a distance-amplitude-dependent

behavior that leads to a self-adaptive bandwidth in

the far field. Later on, they [27] reported a rigorous

F
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Fig. 7 Optimal 2D NAM design for wave control [101].

a Resonator design chart depicting regions of optimal (orange)

softening resonator nonlinearity and (blue) hardening nonlin-

earity as a function of their modal mass and modal stiffness;

b Nonlinear bandgap gain vs. acoustic/optical wave amplitudes

for a softening resonator indicated by the red diamond in (a);

c linear (dashed lines) vs. nonlinear bandgaps (blue and green

lines) for given wave amplitudes
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analytical, numerical and experimental demonstration

of the self-adaptive band and self-broadening bandgap

with a triatomic NAM containing enhanced nonlinear

interaction, as shown in Fig. 8. For the NAM without

any external active control, they found that its bandgap

effect can adaptively broaden as the propagation

distance/time increases, i.e., the adaptive-broadening

bandgap, which also dominates the broadband acous-

tical limiting for blocking 97% of energy.

In essence, this self-action underscores the fact that

the band structure of nonlinear periodic structures is

not merely amplitude-dependent but also dis-

tance/time- dependent. In other words, the assumption

of ‘‘space–time invariance’’ inherent in the Bloch

theorem cannot be universally applied to nonlinear

structures. Nevertheless, it can still provide valuable

insights into predicting local attenuation within speci-

fic regions of these nonlinear structures or materials,

but need to be used with extreme caution. This

revelation has profound implications for the design

and application of NAMs.

Mechanisms for this self-adaptivity are clarified

[27]. It is also relevant to the amplitude-dependent

bandgap. Harmonic generation and chaotic responses

play key roles in triggering the adaptive process even

without damping. Then, bandgap effect appears at the

surface or inside some positions of NAM, resulting in

significant wave attenuation (see Fig. 8d). Chaotic

responses and nonlinear bandgap strengthen the

attenuation cyclically. Moreover, in experiments, the

bandgap effect overcomes the limitation of the mass

ratio for conventional locally resonant bandgaps in

linear metamaterials. The self-adaptive bandgap is a

general feature on NAMs even in periodic

bistable structures [147].

Based on our experience, we think bandgaps’ self-

adaptivity, instead of the normal amplitude-dependent

shifting, dominates the wave propagation in strongly

nonlinear systems or the NAM consisting of multi-

degree-of-freedom resonators. However, this is not

well recognized, and its influences on wave propaga-

tion in 2D and 3D NAMs remain unveiled. Studying

this feature should base on a large-scale model and

creating non-reflection boundary conditions, which

may bring difficulties in numerical integration.

Input
Metamaterial Linear Phononic crystal

1 2 240

Superposition

PML

Reflection Transmission

b

c

d

a

Fig. 8 Self-adaptive band and self-broadening bandgap [27].

a Numerical model of triatomic NAM model. b Amplitude-

dependent bandgap of the triatomic NAM. The first and third

insets are dispersion curves of the triatomic and diatomic linear

counterpart. c Wave transmission at different points along the

chain. The left panel shows the transmission at 100th metacell

for input amplitude A0 = 30 lm. d Wave amplitude change

with propagation distance solved with analytical and numerical

methods
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3.4 Nonreciprocal wave control

Nonreciprocal wave propagation, also termed diode

effect [149], offers a one-way route for energy

transport [150]. For electromagnetic waves, reciproc-

ity can be violated through imposing an external

magnetic field, but it is more difficult for acoustic

waves because linear and passive systems lead to

reciprocal propagation. Walker et al. [151] reported an

experimental observation of linear nonreciprocal

transmission of ultrasound in a water-submerged

phononic crystal through breaking the P symmetry.

Topological states offer non-reciprocity in linear

elastic systems by beating time reversibility with

active control or external field [56, 60, 65], while it is

challenging to do so in broadband and low frequen-

cies. Actively shifting the bandgap of a time-variation

metamaterial can break time-reversal symmetry to

induce nonreciprocity [152–155]. This essentially

induces the space–time modulations [156] as was

realized by Chen et al. [157], using a metamaterial

beam with a size of * 5k and insulation difference of

DT&7 dB.

Nonlinearity can entail robust nonreciprocal wave

transmission, a property that is absent in linear

materials without active control [159–161]. In 2004,

Li et al. [162] proposed a thermal diode by using two

coupled nonlinear lattices. The model is robust in a

wide range of system parameters. Recent years have

witnessed the extension of the concept to heat

conduction [163, 164] and elastic wave manipulation.

However, an asymmetric nonlinear system is not

sufficient for a nonreciprocal wave diode [165].

Nonreciprocity depends on proper nonlinear models,

mechanisms, system parameters, and frequency

bands. Several nonlinear mechanisms have been

proposed to realize nonreciprocal elastic wave prop-

agation. Here we review the designs, mechanisms,

effectivity and diode’s size.

In 2005, Nesterenko et al. [82] reported the first

experimental acoustic diode of solitary waves using

two granular chains triggered by a magnetically

induced precompression. The diode effect was mate-

rialized by the large gradient of particle velocity near

the interface between two segments. Liang et al. [30]

proposed an acoustic diode that consists of a segment

of linear phononic crystal and a layer of ultrasound

contrast agent microbubble suspension, as shown in

Fig. 9a. The second harmonic is generated in the

nonlinear medium. The bandgap of the phononic

crystal suppresses the fundamental wave while allow-

ing the second harmonic to pass through, leading to an

asymmetric transfer of the total energy with a

frequency change of the output signal. This mecha-

nism enables a rectifying ratio as high as *104 by

using optimized nonlinear media. The thickness of this

diode is typically * 30k. This mechanism was the-

oretically analyzed in Ref. [166, 167]. Fu et al. [168]

designed a broadband acoustic diode by using an

asymmetric bilinear spring as the nonlinear frequency-

conversion medium, and using the �-order subhar-

monic wave as asymmetrical energy carrier. Blan-

chard et al. [160] used Volterra-series based

asymptotic analysis to study the non-reciprocity in

space for a class of 1D continuous, time-invariant

systems with stiffness nonlinearities.

In 2011, Boechler et al. [29] designed an elastic

diode using a purely nonlinear granular chain, as

shown in Fig. 9b. A defect state is introduced near one

end of the granular chain, which generates a nonlinear

mode in the passband. When emitting a wave (with

frequency in the bandgap) from the defect end, the

nonlinear mode is activated by the 1/2 subharmonic

wave, leading to asymmetric energy rectification. This

rectifier’s length is of the order of 10k. Inserting

asymmetric potential barriers inside the granular

chains can also achieve asymmetrical propagation

[169]. In 2014, Popa and Cummer [170] demonstrated

a non-reciprocal active acoustic diode composed of a

single piezoelectric membrane augmented by a non-

linear electronic circuit, and sandwiched between

Helmholtz cavities tuned to different frequencies. The

design is thinner than a tenth of a wavelength.

As indicated above, nonlinear elastic diodes gen-

erally change the output frequency. Gliozzi et al. [171]

showed a frequency-preserving elastic diode by mix-

ing several orders of harmonics. Actually, directly

using amplitude-dependent nonlinear bandgap can

realize frequency-preserved diode effect. Liu et al.

[172] proposed a theoretical frequency-preserved

diode model formed by coupling a weakly nonlinear

periodic structure with asymmetric linear structures at

two ends. A similar property was demonstrated using

granular crystals [173].

We note that studies should clearly distinguish non-

reciprocity of the total energy and that of the

fundamental wave. To that end, Ref. [158] theoreti-

cally and experimentally demonstrated the frequency-
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preserved, bidirectional, high-quality, low-frequency,

subwavelength elastic diode, as shown in Fig. 9c. This

has been achieved using an elastic metamaterial with

the intentional clearance inside metacells to create

enhanced nonlinearity. The corresponding transmis-

sion differences in the two bands can reach as much as

20 dB and - 40 dB, respectively, while the diode

length is of about 1k. Moreover, they reported three

non-reciprocal mechanisms [158]: (i) frequency-pre-

served nonreciprocity of both the total energy and

fundamental wave can be realized by combining the

amplitude-dependent bandgap and the interface reflec-

tion; (ii) linear bandgap combining with the chaotic

responses performs the monochromic–to–continuous

nonreciprocity of total energy, while the propagation

of the fundamental wave is weakly nonreciprocal

under weak damping; (iii) increasing damping can

break the two types of reciprocity from the second

mechanism.

These studies manifest that the NAM designs

provide new mechanisms and possibilities for realiz-

ing nonreciprocal wave control with subwavelength

acoustic/elastic diodes. At present, physical mecha-

nisms for realizing nonreciprocal wave propagation

have already been clarified and demonstrated in many

systems. Future studies should look into the functions

and applications of ‘‘acoustic diode’’ in structures or

machines. One may obtain improved targeted energy

transfer [174], energy harvester, protected one-way

transmission, etc.

3.5 Harmonic generation and manipulation

The most salient nonlinear effect is the harmonic

generation. In 1994–1995 [95–97], Bradley investi-

gated the Bloch wave in 1D NPC, and demonstrated

that the forward travelling fundamental wave gener-

ates both forward and backward traveling second

harmonic waves, whose amplitudes oscillate with

distance. Scalora et al. [88] described the second

harmonic in 1D NPCs, which is then examined by Yun

et al. [175] using an extended transfer matrix method.

Furthermore, high-order harmonics may lead to jump

responses and modal mixing in wave propagation

modes [176].

Second harmonic wave will appear in the nonlinear

acoustic fields in air when applying high-intense sound

([ 140 dB). Therefore, the acoustic metamaterials
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Fig. 9 Nonreciprocal wave propagation enabled by nonlinear-

ity. a Acoustic diode consists of a segment of linear phononic

crystal and a layer of nonlinear material [30]. b Acoustic diode

consists of a granular crystal with a defect particle that induces a

nonlinear mode [29]. c Bi-directional and frequency-preserving

elastic diode consists of a segment of linear metamaterial and a

segment of nonlinear metamaterial [158]
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consisting of periodically arranged Helmholtz res-

onators can be used to study the harmonic generation

and propagation [28, 177] based on homogenization

method. The acoustic metasurface containing coiling-

up space can present efficient frequency down-

conversions because its Bragg bandgap suppresses

the undesired inter-modulation by preventing the

propagation of the frequency up-converted harmonics,

whereas the coiling-up space amplifies the amplitude

of the down-converted waves by decreasing the

effective speed of sound [178]. Similar properties of

metasurface are also reported in Ref. [179].

Ref. [118] investigated the interaction between

fundamental and third harmonic waves in an infinite

NAM beam based on analytical and numerical meth-

ods. The relative converting efficiency, the amplitude

ratio between fundamental and third harmonic,

reaches highest in the nonlinear locally resonant

bandgap, highlighting the amplification of local res-

onance for harmonics. Moreover, the propagation of

harmonics is essentially different from its fundamental

wave. Similar phenomenon is observed in the granular

crystal with linear local resonators [180].

As reviewed above, harmonic generation is a

salient feature of nonlinear system, but the local

resonance in NAM may enhance the converting

efficiency, and bandgaps can help to control the

propagation and conversion. To improve the signifi-

cance of high/low-order harmonics, one can conceive

special functions and designs for using them. This may

need to combine it with the amplitude-dependent

bandgap, self-adaptivity, nonreciprocity, breathers,

solitons, vibration/wave absorption and insulation, or

sound focusing effect [81, 181].

3.6 Chaotic dynamics and chaotic band

Bifurcation and chaos in finite nonlinear periodic

structures (including NAMs) have a significant impact

on wave propagation, and are much more complex.

Bifurcation occurs in various situations. At saddle-

node bifurcation point, the solution jumps between

quasi-periodic solution branches and chaotic branches

[182]. Experimental tests revealed hysteresis loops at

the jumping points. Bifurcation can trigger efficient

energy transfer to frequencies away from the driving

frequency in the transmitted waves [183].

The chaotic responses appear nearly in all strongly

nonlinear metamaterials, especially the NAMs

consisting of vibro-impact resonators [184, 185]. Fang

et al. conducted systematic investigations on bifurca-

tions and chaos in finite NAM chains by combining the

nonlinear dispersion and bandgaps, nonlinear reso-

nances in passbands, and vibration transmission

[20–22]. Properties of strongly hyper-chaotic dynam-

ics of 1D NAM were analyzed by examining the

stability of periodic solutions, Lyapunov exponents

and Lyapunov dimensions. Based on these investiga-

tions, they revealed a mechanism for realizing low and

broadband vibration suppression—chaotic band [22].

As an example, the chaotic band in a diatomic model is

shown in Fig. 6a. The chaotic band is composed of

densely nonlinear resonances within the passband.

These nonlinear resonances have unstable peaks due

to bifurcations, and bifurcations from different reso-

nances interact with neighbors, ultimately leading to

hyper-chaos. Additionally, damping has a significant

impact on the characteristics of chaotic attractors. For

the hardening nonlinear system, the bifurcations and

chaos eliminate dense linear resonances above the

nonlinear locally resonant (NLR) bandgap. Conse-

quently, the chaos band significantly broadens the

elastic wave suppression bandwidth. Subsequent

studies on a multi-atomic NAM model showed that

the band above the NLR bandgap can become a

chaotic band with lower vibration transmission [20].

Increasing the incident amplitude and nonlinear

strength can entail greater vibration reduction within

the chaotic band. Moreover, the reduction effect is not

sensitive to added mass, conducive to achieving

broadband vibration reduction with small attached

mass [21].

To further control the bandgap and chaotic band, an

interesting remote interaction mechanism, termed as

bridging coupling of NLR bandgaps, has been dis-

covered and demonstrated [108]. Bridging-coupling is

conducive to control of the nonlinear effective mass

density and chaotic bands between NLR bandgaps.

The bandwidth and efficiency of the wave reduction in

chaotic bands can be manipulated effectively by

modulating the frequency distance between the bridg-

ing pair. The linear bridge-coupling effect was firstly

found in Ref. [108] and then systematically studied in

Ref. [186].

These preliminary studies show the properties and

the remarkable effects of chaos in NAMs. However,

due to complexity of the problem and the high

dimensional feature of the system, understanding
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chaos and bifurcation in NAMs remains very chal-

lenging, and important phenomena might be masked

and hidden by chaos. Limited advances in chaotic

dynamics in high-dimensional systems constitutes a

major obstacle for the understanding of chaos in

NAMs, especially for finite-scale NAMs with multiple

resonances. At present, one can analyze chaotic waves

in infinite NAMs that exclude global resonances, and

can also establish basic principles based on intensive

simulations on finite NAMs (see more in Sect. 4.1).

3.7 Solitons and shock waves

Besides harmonics and chaos, nonlinearity may give

rise to solitary waves, which can be induced by a pulse

and shock wave. Solitons in granular crystals have

been extensively studied [80, 187]. For the first type of

NAM consisting of array of Helmholtz resonators, N.

Sugimoto reported that properly designed resonators

can enhance the dissipation of nonlinear shock acous-

tic waves in the near field [93]. He then studied the

solitary wave in the same wave guide by solving the

steady-wave solutions of nonlinear wave equation

[94]. In a weakly nonlinear triatomic NAM model, M.

Bukhari and O. Barry [188] showed the existence of

solitary wave with hardening nonlinearity.

Mechanical metamaterials consisting of rigid units

and elastic hinges can generate geometrical nonlin-

earity from the large rotations of the building blocks,

and thus support the propagation of elastic vector

solitons with three components (two translational and

one rotational) [100]. They also present very rich

behaviors such as compact pulses (akin to sound

bullets) and separation of the pulses into different

solitary modes [189]. These systems’ wave dynamics

in the continuum limit can be described by nonlinear

Klein–Gordon equations, which gives wave solutions

for conical waves [190]. They can also be modeled by

the nonlinearly coupled Schrödinger equation [191].

Modulation instabilities appear under some particular

parameter values [192], leading to rogue waves (a kind

of wave with very large amplitude) [193]. Rogue

waves are strongly influenced by variations in the

nonlinearity, dispersion, and diffraction terms.

At present, solitons in 1D and 2D nonlinear

periodic structures have been extensively examined

from physics perspective, in terms of clear propaga-

tion properties and mechanisms. However, existing

studies rarely relate solitons to the widely desired

shock wave dissipation and protection, which depends

on beating, fundamental resonance, high- and sub-

harmonic resonance [174, 194], etc. As shown by

several studies [147, 195–197], inclusion of self-

adaptive bandgaps, local resonances and large defor-

mation in NAMs can accelerate the dissipation speed

and improve the amount of shock wave energy.

Therefore, future investigations are needed to clarify

the properties, efficiency and mechanisms of shock

wave attenuation in diverse NAMs, providing guid-

ance for engineering designs.

4 Vibration and sound attenuation of nonlinear

elastic metamaterials

Acoustic metamaterials have demonstrated remark-

able performance in low-frequency vibration suppres-

sion, noise insulation, and sound absorption

[11, 198, 199]. These performances in linear acoustic

metamaterials mostly rely on local resonance

[200–204]. However, local resonance is narrow-band.

The effective bandwidth can be evaluated by c = fcut/

fst-1, where fcut and fst are the cutoff and starting

frequencies of the effective band. According to

Eq. (1), c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ mr=m0

p

� 1 for linear local reso-

nance, e.g., c = 0.22 for mr/m0 = 0.5.

As reviewed in Sect. 3, NAMs offer broadband

mechanisms to obtain enhanced capability for vibra-

tion and sound attenuation [205]. For example, the

self-broadening bandgap can expand the total bandgap

region by eight times relative to the linear bandgap

[27]. The chaotic band can realize low-frequency and

broadband effects in theory [22]. There are also new

mechanisms being revealed for broadband sound

attenuation. Representative advances are reviewed

hereafter.

4.1 Low-frequency and broadband vibration

reduction

Based on the theoretical finding of chaotic band,

experiments on the interesting design of strongly

nonlinear NAM beam and plate demonstrated ultra-

low and ultra-broadband vibration mitigation effect

[23]. As shown in Fig. 10, relative to the narrow linear

bandgap near 230 Hz, the vibration of the NAM in

30–1200 Hz is reduced by 20 dB without any artificial
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damping element. The normalized bandwidth (fcutoff/

fstart-1) of vibration reduction band is expanded by two

orders of magnitude, from 0.56 to 32. From the design

perspective, the achieved broadband feature is attrib-

uted to the nonlinear coupling among multiple local

resonances, and the nonlinear collision-friction damp-

ing. The essential mechanisms are the superposition

effect of bandgaps, output saturation of nonlinear

resonances, efficient energy pumping due to high-

order harmonics and chaos, and modulation of non-

linear resonance modal amplitudes and shapes. These

mechanisms and diverse wave behaviors are inter-

related and occur concurrently, collectively attributed

to the ultra-low and broadband features [89].

Via evaluating the influences of different parame-

ters on the vibration reduction enabled by the chaotic

band, Sheng et al. [90] found that the order of impact

from the greatest to the smallest is as follows:

frequency distance between bridging-coupling local

resonance, nonlinear stiffness coefficient or incident

amplitude, stiffness of primary beam, attached mass

ratio. This confirms the imposing effect of bridging

coupling [108] and insensitivity of attached mass ratio

[21]. Thus, one can optimize the design to realize

broadband vibration reduction with small attached

mass [90]. For the high-stiffness honeycomb sandwich

plate, all resonances below 1000 Hz can be reduced by

20 dB with 17% attached mass [91].

A combinational design of linear and nonlinear

metamaterials can offer both bandgaps and chaotic

bands, thus improving the robustness, efficiency and

bandwidth for wave suppression [206]. Moreover,

combining vibro-impact motion with damping can

generate robust hyper-damping effect to improve the

vibration reduction effect of NAMs [185]. Nonlinear

resonances and nonstationary responses of a NAM

beam with cubic resonators were also analyzed by

Casalotti et al. [207].

More NAMs have been designed for vibration

reduction. Zhao et al. [208] proposed a nonlinear

metastructure with periodically distributed bi-linear

oscillators for broadband vibration suppression. Xu

et al. [209, 210] studied the dissipative elastic

metamaterials rotor with geometrical and damping

nonlinearity. They showed that linear damping has a

better capacity in reducing the vibration amplitude

than nonlinear damping due to the energy dissipation

near the resonance region. Wang et al. [211] proposed

a nonlinear metamaterial beam with inverse nonlin-

earity, in which an array of piezoelectric patches was

installed on a beam with shunted digital nonlinear

inductor-capacitor circuits. The setting ensures an

inverse nonlinear relationship between the stress and
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d

m
ag

ne
ts

Vibra�on &
Sound Radia�on

-20

-10

0

10

20

Vi
br

at
io

n
Tr

an
s.

(d
B) Linear plate

Nonlinear plate

100 200 300 400 500 750 1000 1500 2000
Frequency (Hz)

40

50

60

70

80

So
un

d
R

ad
ia

ti o
n

( d
B ) Linear plate

Nonlinear plate

a b

c

Fig. 10 Broadband reduction of vibration and sound radiation

in a NAM plate [23, 89]. a NAM plate and its metacell.

b Experimental vibration transmission of linear and nonlinear

metamaterial plate. c Experimental normalized sound radiation

of linear and nonlinear metamaterial plate. Results demonstrate

a great reduction of vibration and sound radiation

123

23804 X. Fang et al.



strain of the metamaterial. Therefore, its vibration

attenuation under small-amplitude excitations is larger

than that with relatively large amplitude excitations. A

piezoelectric metamaterial beam with nonlinear SSDI

(synchronized switching damping on inductor) dual-

connected electronic networks were reported in Ref.

[212].

Apart from vibration control, Tian et al. [213] and

Sheng et al.[214, 215] extended the study of NAM to

aeroelastic fluid–structure interaction and flow-in-

duced vibration reduction for plates or cantilever

wings in high-speed flow (Fig. 11a). NAM design may

offer efficient post-flutter vibration reduction [213].

However, the critical flutter speed of a NAM plate

could only be delayed by 2–5% (Fig. 11c) [214].

Nevertheless, the NAM methods could greatly reduce

the broadband pre-flutter vibration with\ 10% mass

ratio with prior robustness (Fig. 11d,e). Furthermore,

the properly designed NAM can accommodate to the

varying and high temperature, which greatly reduces

both wing’s stiffness and resonators’ frequency [215].

Besides the damping effect from high-speed flow, the

reduction was also associated with bandgap and

chaotic effects.

Bistable oscillator can lead to robust and highly

efficient targeted energy transfer to dissipate the shock

energy, owing to its unique sub-harmonic resonance

capture and sub-harmonic beating along with 1:1

fundamental resonance capture and beating [194].

Recently, Hu et al. [216] proposed a 2D metamaterial

aircraft wing model consisting of bi-stable nonlinear

resonators, and investigated its transient fluid–struc-

ture interaction shock vibration based on an equivalent

model. As shown in Fig. 11b, the bi-stable metamate-

rial can quickly and efficiently dissipate the transient

vibration energy of the wing, outperforming the linear

and mono-stable nonlinear counterparts. An energy

dissipation rate of over 75% was achievable with an

added mass ratio of 4–8%. The sub-harmonic nonlin-

ear beatings and sub-harmonic resonance capture,

such as 1:2 or 2:3 resonances between multiple modes,

underpin the essential mechanisms for achieved

performance.

The above review indicates that NAM structures

can offer extraordinary and robust low-frequency and

broadband vibration reduction effects, offering a

promising solution for engineering applications. The

mechanisms underpinning existing designs are clari-

fied. Specially, the reported models are often high-

ba
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pre-flu�er vibra�on

Fig. 11 Fluid–structure coupling attenuation of wing models.

a The model of a cantilever beam in flow. b Reduction of

transient fluid shock of a NAM wing with embedded

bistable oscillators [216]. c–e Results of NAM wing with

embedded mono-stable oscillators [214, 215]. c Vibration

amplitude versus flow speed, showing the delay of critical

speed. d Broadband reduction of pre-flutter vibration. e Pre-

flutter vibration amplitude versus flow speed, showing the

efficient of NAM design
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dimensional systems which may contain non-smooth

nonlinearity. Numerical integration, harmonic bal-

ance, continuation, experimental signal processing

form a cluster of tools to study the bifurcations,

harmonics, chaos and energy dissipation in complex

NAM systems. This topic can further be extended in

several directions. It remains unclear if the interaction

between resonances, sub-harmonic bandgaps, nonre-

ciprocity, solitons can help improve the vibration

reduction, shock energy absorption and energy har-

vesting. New designs and experimental demonstra-

tions are expected in the future.

4.2 Sound radiation, absorption and insulation

As shown in Fig. 10, broadband vibration reduction of

a NAM plate results in a sound radiation reduction of

10–15 dB relative to the linear metamaterial plate

[89]. The NAM plate radiates sound with many high-

order harmonics that lead to efficient energy transfer.

Zhang et al. [98] analytically and experimentally

studied the nonlinear wave scattering in a 1D air-filled

waveguide periodically side-loaded by holes by con-

sidering nonlinear acoustic effects. In the low-fre-

quency range, an enhancement was observed in

absorption coefficient with increasing incident sound

level owing to the nonlinear loss, as shown in Fig. 12a.

However, in an acoustic absorber with several reso-

nances, the theoretical and experimental studies

established by Brooke et al. [99] showed that the

sound absorption coefficient at the resonant peaks

decreases when increasing the sound pressure, as

shown in Fig. 12b.

To investigate the nonlinear sound insulation, Fang

et al. [31] recently established a basic 1D model,

consisting of two nonlinear local resonators and elastic

boundaries, to simulate the acoustic/elastic wave

insulation. As shown in Fig. 12c, they found that by

introducing dual-position strongly nonlinear interac-

tions, between the primary mass and the first resonator

attached on it, the bandwidth for superior wave

insulation can be expanded by 2–3 times relative to

the optimal linear model with the same mass. Mean-

while, the insulation valley arising from the coincident

effects can also be eliminated. The mechanisms were

elucidated by combining the bifurcations, stability,

effective mass. The results show the possibility of

breaking the mass law governing the acoustic wave

insulation in linear panel structures through exploring

system nonlinearity, while broadening the frequency

bandwidth for effective sound insulation.

However, contrast to the great achievements made

in linear metamaterials, controlling sound waves with

NAMs is still in an early stage of development. Major

issues are 2D and 3D reflection, refraction, transmis-

sion, absorption of elastic/sound waves inside NAMs

and on the interfaces, as well as bandgap evaluation

methods. Nonlinear theories to tackle these issues

need to be established.

5 Summary and outlook

In this review, we outlined the developments leading

from linear acoustic metamaterials, FPUT chains and

granular crystals to nonlinear acoustic metamaterials

a b c

Fig. 12 Sound absorption and insulation. a Analytical and experimental results in Ref. [98]. b Results in Ref. [99]. c Wave

transmission loss TL of different models [31]
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(NAMs). Salient properties araising from NAMs

alongside underlying mechanisms and application

prospect in terms of wave propagation, vibration and

sound attenuation are reviewed.

NAMs have sparked a new stream of research

enthusiasm, promising to revolutionize our under-

standing of wave behavior, unveil captivating wave

phenomena, and achieve excellent engineering per-

formance. Wave amplitude variations profoundly

influence the band structure of NAMs, resulting in

bandgap shifting, band degeneration and wave mode

transitions that defy the stationary invariance princi-

ples observed in linear systems. Revelations of self-

adaptive bands and self-broadening bandgaps chal-

lenge the traditional space–time invariance laws of

linear dynamics, offering fundamental insights into

wave propagation within highly nonlinear NAMs and

clarifying the applicability of Bloch’s theorem. Non-

linearity in metamaterials introduces a wealth of

mechanisms that disrupt the reciprocity of wave

propagation, including harmonic generation, nonlin-

ear resonance modes, amplitude-dependent bandgaps,

interface effects, and chaotic responses. Extensive

investigations into nonlinear wave phenomena such as

frequency conversion, solitons, and breathers have

provided deep insights. Moreover, chaotic band offers

low-frequency and broadband phenomenon that is

robustly controllable through bridging couplings

between nonlinear resonant bandgaps.

NAMs designs have demonstrated unprecedented

performance in vibration and sound attenuation,

achieving ultra-low and ultra-broadband attenuation

of structural vibrations and sound radiation through a

combination of underlying mechanisms. Additionally,

NAMs exhibit superior shock energy absorption

compared to their linear counterparts. By replacing

mono-stable nonlinear resonators with bi-stable ones,

NAMs can further enhance transient energy dissipa-

tion via sub-harmonic beating and resonance, present-

ing promising avenues for aeroelastic vibration

reduction. Preliminary research also suggests

enhanced sound absorption and insulation capabilities,

offering possibilities to overcome the limitations

inherent in linear wave dynamics.

We discussed potential directions and challenges

that should be addressed in the future, and shared

views about possible avenues for solving these issues.

These include efficient and accurate analysis methods,

exploration of new phenomena and mechanisms, new

designs, realizations, and experimental validations.

Novel wave phenomena and advanced functionality

may be realized by including different types of

nonlinearity in programmable mechanical metamate-

rials [217], phononic crystals, acoustic and topological

metamaterials [218] and active control. For example,

nonlinearity induces another dimension for modulat-

ing behaviors of roton-like quasiparticles [219–221];

fractional damping [222, 223] in nonlinear phononic

cryatals can also lead to a suitable tuning of the

nonlinear bandgaps. Moreover, practical applications

of NAMs are scarce at the present stage. There is a

need for concerted efforts in exploring engineering

applications of NAMs and developing new techniques

for manipulating nonlinear waves, exemplified by the

development of active control methods [224], and

more recent attempts with topological designs of

meta-devices for nonlinear wave manipulation, and

nonlinear guided wave-based structural health moni-

toring of engineering materials/structures [225–229].
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