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Abstract Nonlinear meta-materials/structures can

enable exotic wave phenomena, leading to extraordi-

nary functionalities, but the bandgap properties and

nonreciprocal wave manipulation in high-dimensional

nonlinear metamaterials, such as plates, are not fully

understood. In this study, we examine the band

evolution and nonreciprocal wave propagation in a

two-dimensional (2D) strongly nonlinear meta-plate

based on analytical methods and numerical integration

on the infinite model. The 2D dispersion curves are

obtained through combining harmonic balance and

Shooting-Newton iteration methods. Numerical stud-

ies show that the 2D nonlinear meta-plate exhibits

band degeneration and self-adaptive propagation,

analogous to 1D cases. However, as confirmed

analytically, both band degeneration and self-adaptiv-

ity are regulated by the spatial wave divergence in the

2D meta-plate. Furthermore, combining nonlinear and

linear portions of a meta-plate entails nonreciprocal

wave propagation in 2D space with elucidated phys-

ical properties and mechanisms specific to 2D wave

propagation. In light of the above, this work presents

new computational methods as well as the elucidation

of new wave phenomena and properties which are

conducive to wave manipulation in 2D strongly

nonlinear meta-materials/structures.

Keywords Strongly nonlinear meta-materials/

structures � Self-adaptivity � Band degeneration �
Nonreciprocity

1 Introduction

Acoustic metamaterials (AMs) are artificial structures

characterized by subwavelength properties [1–4],

which are predominantly characterized by their

bandgaps. Owing to effectively elastic wave attenu-

ation, bandgaps provide meaningful ways for vibra-

tion reduction [5–8]. Nonlinear acoustic

metamaterials (NAMs) [9] have gained increasing

attention due to their extraordinary properties, vast

potential applications as well as extreme scientific

interests. For instance, they have been shown to

achieve ultralow-frequency and ultrabroad band wave

attenuation, surpassing the bandwidth limit of linear

counterpart [10, 11], and entail vibration and acoustic

reduction in ultralow and ultrabroad frequency

[12, 13] etc.
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Numerous studies have attempted to comprehend

the nonlinear band structures of NAMs, seeking to

break the barriers set by linear elasticity [14–16]. The

Bragg and local resonant bandgaps in NAMs are

amplitude-dependent [17–21]. A primary challenge

arising from the amplitude-dependent feature con-

cerns the methodology for predicting band structures.

Existing analysis methods include the perturbation

method [16, 17, 22–25], the harmonic balance method

[12, 15, 18, 19, 21, 26], the homotopy analysis method

[11, 27, 28] and the equivalent method

[14, 18, 20, 29, 30]. These methods have succeeded

in 1D models, and predict their typical amplitude-

dependent properties. However, the increase in

dimensionality from 1 to 2D NAM models introduces

a significant number of nonlinear eigenvalue equa-

tions, leading to challenges in finding solutions of

nonlinear eigenfrequencies and eigenvectors for

describing the 2D nonlinear band structure.

While most analyses are confined to 1D models,

there is a notable lack of research on 2D or higher

dimensional models. Although the studies have

uncovered several mechanisms governing wave sup-

pression in finite NAM plates [9, 12], detailed analysis

and explanations of the amplitude-dependent bandgap

properties were not provided. Furthermore, as demon-

strated in our recent studies on 1D NAM models

[18, 19], nonlinear bands do not merely exhibit a shift

as frequency changes. Instead, NAM bandgaps are

adaptive to propagation distance and time, thus

displaying band degeneration with bifurcation, evi-

denced by dispersion curve shortening, merging or

even disappearance [27, 31, 32]. Band degeneration

depends on the configuration of the coupled nonlinear

metacells [19]. Different from 1D models, spatial

divergence occurs in 2D structures that needs to be

incorporated into 2D models. The associated effects

on self-adaptivity and band degeneration remain

unclear. It goes with saying that the self-adaptivity,

band degeneration, along with the general amplitude

dependency will all shape the wave propagation

process. Moreover, although the vibration reduction

of finite 2D NAM normal or sandwich plates has been

extensively studied, and nonreciprocal wave manipu-

lation has been realized in 1D elastic or acoustic

diodes [33–37], the nonreciprocal phenomena in 2D

space have rarely been studied.

Based on the above analysis, we introduce and

model an infinite meta-plate model embedded with

strongly nonlinear resonators in this paper, propose

analytical methods to predict the band structure and

wave attenuation, and validate these results numeri-

cally. We further scrutinize the phenomenon of ‘‘band

degeneration’’ and its underlying physical mecha-

nisms in a 2D plate. In particular, we elucidate the

influence of the spatial divergence on the self-adap-

tivity and band degeneration. Based on the band

properties, the linear and nonlinear meta-plates for

breaking the reciprocal wave propagation are

explored.

2 Nonlinear metamaterial plate and analysis

methods

2.1 Finite element model of the NAM plate

As shown in Fig. 1, we examine an infinite meta-plate

consisting of a substrate plate and periodical nonlinear

resonators attached on the plate. The substrate plate is

made of aluminum alloy. Its thickness h, density q,
elastic modulus E, and Poisson’s ratio m are 0.004 m,

2700 kg/m3, 67 GPa and 0.3, respectively. A metacell

is square, with a lattice constant a = 0.04 m. The

concentratedmassm0 embedded in the plate couples to

the 2DoF nonlinear resonators with m1, m2 and linear

stiffness k1, k2, as shown in Fig. 1b. Damping is not

considered. The displacements ofm0,m1 andm2 arew0,

w1 and w2, respectively. Geometrical nonlinearity in

the plate is not considered; therefore, nonlinearity

arises solely from the resonators, with k2N denoting the

nonlinear stiffness coefficients. Parameters are:

m0 = 0.06 kg, m1 = 0.05 kg, m2 = 0.05 kg;

k1 = 2.842 9 104 N/m, k2 = 1.263 9 104 N/m,

k3 = 7.165 9 104 N/m. We take k2N = 1 9 1013 N/

m3 to show the nonlinear phenomena. Thus, the

equations of motion for the ith resonator writes:

m0 €w0i ¼ k1ðw1i � w0iÞ þ k3ðw2i � w0iÞ
m1 €w1i ¼ �k1ðw1i � w0iÞ þ k2ðw2i � w1iÞ þ k2Nðw2i � w1iÞn
m2 €w2i ¼ �k2ðw2i � w1iÞ � k2Nðw2i � w1iÞn � k3ðw2i � w0iÞ

8
<

:
ðn ¼ 3; 5; 7:::Þ

ð1Þ

The mathematical expressions are general and

inclusive, covering a nonlinear factor n that may be

achieved through oscillating unit design. For example,

the system becomes a Duffing system when n = 3;

whilst a large n can approximate a vibro-impact

oscillator [38]. Here, we adopt the cubic stiffness
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nonlinearity (n = 3), as used in many studies [18, 19],

to show the salient phenomena in the system. This

means, the nonlinear force between m1 and m2 is

FN(t)i = k2wri ? k2Nwri
3.

Denoting the relative displacement wri = w2i-

- w1i, Eq. (1) can be simplified as:

Mc €wci þ Kcwci þ KNcw
3
ci ¼ 0 ð2Þ

where Mc ¼
m0 0 0

0 m1 0

0 m2 m2

2

4

3

5, Kc ¼
k1 þ k3 �k1 � k3 �k3
�k1 k1 �k2
�k3 k3 k2 þ k3

2

4

3

5,

KNc ¼
0 0 0

0 0 �k2N
0 0 k2N

2

4

3

5 and wci ¼
w0

w1

wr

2

4

3

5

i

.

Then, we establish the meta-plate model with the

finite element method under the Kirchhoff–Love plate

theory [12] (see Appendix A.1). The equations of

motion for the ith metacell writes:

M €wi þ Kwi þ KNw3
i ¼ 0 ð3Þ

To solve Eq. (3), we adopt the first-order harmonic

balance method by assuming the solution as:

wi ¼ qi sinðXtÞ ð4Þ

where qi stands for the amplitudes of wi, and X = 2pf.
Substituting Eq. (4) into (3) and balancing the coef-

ficients of sin(Xt) gives:

ðK � X2MÞqi þ
3

4
KNq3

i ¼ 0 ð5Þ

According to the Ref. [19], Bloch-Floquet theorem

can be used to deal with nonlinear systems despite

some limitations. Here, we will also use it to solve the

above system to obtain the dispersion curves and then

illustrate its limitations. According to Bloch-Floquet

theorem (see Appendix A.2), Eq. (5) can be rewritten

as:

ð ~K � X2 ~MÞ~qi þ
3

4
~KN ~q

3
i ¼ 0 ð6Þ

Note that Bloch-Floquet theorem is rigorously

established for linear periodic structures [39]. For

nonlinear ones, the use of this theorem should be

regarded as an approximate method to substitute the

periodic boundary conditions [40].

2.2 Shooting-Newton iteration method

for calculating the band structure

To solve the dispersion curves of the 2D model, we

must find the eigenfrequency X and the eigenvector ~qi

of Eq. (6) by specifying the input displacement A0 on

mass m0 and assigning wave numbers jx and jy 2 [0,

p]. The Newton iteration is obtained to find the roots of
the eigenfrequency X and the corresponding eigen-

vector ~qi by specifying proper initial guesses of the

solutions. As the initial guess determines the conver-

gency and the results, sweeping the initial guesses in

proper parameter space by Shooting method [41–43]

can find all dispersion curves and relevant wave

modes.

The initial vector ~q0i is set to 0 for a given initial

frequency X0 2 [0, 3000] Hz. When all frequencies

X0 2 [0, 3000] Hz are shot in sequence through

Newton’s iterations, all solutions of ~qi and eigenfre-

quencies X are captured, as it is called the ‘‘Shooting

method’’. The normalized eigenvector ~qi/A0 repre-

sents the corresponding wave mode.

Fig. 1 Metamaterial model. a Schematic of an infinite plate

with periodically arranged nonlinear oscillators. b Equivalent

model of the nonlinear oscillators. c Dispersion curves of the

linear metamaterial plate by analytical methods (k2N = 0). The

green areas are local resonant and Bragg bandgaps
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To verify the method, we calculate the dispersion

curves for the corresponding linear metamaterial

model (with k2N = 0) in the range of [0, 3000] Hz.

In the linear model, the eigenfrequency X and the

eigenvector ~qi are obtained directly, allowing us to

compare these results with those obtained via the

Shooting method. As shown in Fig. 1c, the results

correlate well with each other. For nonlinear models,

solutions from the Shooting-Newton iteration method

all are convergent (see Appendix A.3).

2.3 Methods for predicting wave attenuation

The above method is employed to ascertain the

eigenfrequency associated with a specific wave num-

ber jx and jy. Conversely, the real part jR and the

imaginary part jI of the wave numbers (j = jR ? ijI)
can be predicted for a given frequency. Under the

input from a point, the wave in a generic 2Dmeta-plate

evolves as a function of time, t, and propagation

distance, r:

uðr; tÞ ¼ AðrÞeiðjRr�XtÞ;

AðrÞ ¼ A0gspaceðrÞgbandgapðrÞ
ð7Þ

where A0 is the source amplitude. The attenuation

coefficient induced by bandgap gbandgap can be calcu-

lated as:

gbandgapðrÞ ¼ e�jIr ð8Þ

In theory, the amplitude of a point source would

generate a cylindrical wave that would also fluctuate

(far field) as an exponential law [44]:

gcylindricalðrÞ ¼
ffiffiffiffiffiffiffi
2

pcr

s

eiðcr�
1
4
pÞ ð9Þ

where c denotes the wave number of the plate c ¼
ffiffiffiffi
X

p
ðqhD Þ

1=4
and D ¼ Eh3

12ð1�m2Þ represents the flexural

stiffness. This means the amplitude of a point source

would decay as r-0.5.

This model allows for distinguishing the attenua-

tion induced by the bandgap and that by the spatial

divergence of the wave. jI, as an important parameter,

cannot be directly determined by using the method for

calculating the band structure, as it will yield a

multitude of solutions whose physical meanings can

hardly be established. Instead, we use the equivalent

linearized approach based on the bifurcation to solve

the equivalent stiffness between m1 and m2 for

nonlinear models (see Appendix A.4), which has been

experimentally demonstrated in Ref. [18].

3 Properties of 2D nonlinear band structure

and wave propagation

3.1 Typical 2D band structure of the nonlinear

meta-plate

Before discussing the evolution process, we present

the result of a typical case with A0 = 10 lm to

illustrate the salient properties of this nonlinear

system. The bands are calculated using the Shooting-

Newton iteration method, which requires a substantial

amount of time to find a convergent solution for a

given set of parameters.

The specified model parameters, the linear coun-

terpart of the meta-plate generates a Bragg bandgap

(from 2718 Hz on) and two locally resonant bandgaps:

denoted as LR1 (143.2, 170.2) Hz and LR2 (595.6,

777.9) Hz bandgaps.

For specified wave vectors jx and jy in Eq. (6), the
frequency solution is f = X/2p = fR ? ifI, where fR
and fI denote the real and imaginary parts, respec-

tively, as shown in Fig. 2a, b. Solutions with a non-

zero imaginary part (red curve) imply wave attenua-

tion [19] and are therefore excluded from the band

structure. The final processed band structure is

presented in Fig. 2c. Unlike 1D structures, 2D struc-

tures feature additional Bloch vectors, X and R, in the

band structure. The first frequencies at points X and R

shift upwards to 329.0 and 353.5 Hz, respectively;

while the second frequencies at points X and R shift

upward to 743.0 and 1152.5 Hz, respectively, with the

third curve remaining intact. The shift leads to the

disappearance of the LR1 and LR2 bandgaps.

Moreover, the nonlinearity significantly affects the

dispersion properties of the 2D meta-plate, which can

be observed in the group velocity, cg = dX/dk, shown
in Fig. 2d. It is observed that certain group velocity

curves exhibit asymmetry, which is attributed to the

asymmetry in the slope of the dispersion curve shown

in Fig. 2c. The group velocity shows variations in the

number of rings: the first curve changes from a single

ring (orange) to a double ring (blue), the second curve
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changes from a single ring (red) to a triple ring (green),

while the third curve remains unchanged with a double

ring (grey and black). Owing to these variations, the

group velocities become non-zero within the previ-

ously existing LR1 and LR2 bandgaps, spanning from

(0, 143.2) Hz to (0, 353.5) Hz and from (170.2, 595.6)

Hz to (188.5, 1152.5) Hz, respectively. This is

evidenced by the disappearance of the LR1 and LR2

bandgaps with respect to the group velocity.

3.2 Evolution of 2D band structure

Besides the changes in bandgap range and group

velocity, the strong nonlinearity also alters the wave

modes along the band structure, evident through a

degeneration process [19]. To show the evolution

process of the 2D band structure, the nonlinear band

structures and wave modes with increasing A0 are

studied in the following analyses. We take five typical

cases to illustrate its variation process, as shown in

Fig. 3.

When the nonlinearity is very weak (A0 = 1 lm),

there are three dispersion curves, as in the linear

model. As A0 increases, the first curve arches upwards

from the center, spanning from (0, 143.6) to (0, 418.9)

Hz; the second curve also arches upwards from the

center and simultaneously shifts upwards overall.

Eventually, it merges with the third curve, covering

from (170.2, 595.6) Hz to (788.9, 2718) Hz; the third

curve remains nearly unchanged initially but starts to

Fig. 2 Dispersion curves of nonlinear meta-plate with A0 = 10

lm. a and b Real part fR (black line) and imaginary part fI (red
line) of the curves, respectively. c Curves only with real

numbers (i.e., fI = 0), compared to that of the linear model.

d Variation of group velocities between linear and nonlinear

models. The colors correspond to those of (c)
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degenerate and shorten as the nonlinearity increases,

as shown in Fig. 3d. Ultimately, the third curve

merges with the second curve, as shown in Fig. 3e.

Overall, the three dispersion curves degenerate into

two, and the two resonant bandgaps merge into one

with a higher and broader range.

Importantly, for the 2D band, the variation in the

bandgaps can be manifested by examining the solution

at point R of the reciprocal lattice. We can further

investigate the wave modes at point R for a deeper

understanding of the phenomena.

Fig. 3 Evolutions of dispersion curves and wave modes with

increasing incident amplitude A0. a–e five typical cases showing
their dispersion curves and wave modes: a Case-1: very weak

nonlinearity (A0 = 1 lm). b Case-2: weak nonlinearity (A0 = 10

lm). c Case-3: moderate nonlinearity (A0 = 50 lm). d Case-4:

strong nonlinearity (A0 = 100 lm). e Case-5: stronger nonlin-

earity (A0 = 500 lm). Modes 1 2 and 3 show the wave modes of

the resonator at Bloch wave vector R in dispersion curves,

respectively. The length and the direction of arrows denote the

generalized length Av/A0 and the corresponding phase (positive

or negative), respectively. Numbers (value = Av/A0, v = 0, 1, 2)

are labelled near arrows. The arrow length of m0 is set to 1, and

other arrows are presented relative to 1. Some arrows are dashed

lines as the value Av/A0 is so large, which are truncated in length

and presented by dashed arrows

123

24004 C. Gong et al.



The shift of the first and second curves leads to the

modulation of the LR1 bandgap: it resembles that of

the linear model when the input level is weak,

A0\ \ 1 lm, but becomes blind at A0 & 1 lm,

and then reopens when A0[ 70 lm. Wave mode 1

sheds light on the mechanism. By increasing A0 from 1

to 500 lm, A1/A2 decreases from 6.4 to 1.07,

suggesting a transition from the ‘‘local resonance of

m1’’ mode to ‘‘synchronous local resonance of m1 and

m2’’ mode, i.e. the LR1 bandgap transforms into a new

nonlinear locally resonant (NLR) bandgap.

The degeneration of the LR2 bandgap is primarily

due to the merging of the second and third curves: it

becomes blind at A0 & 7 lm and eventually disap-

pears. The variation of wave modes 2 and 3 also

confirms this. As shown in mode 2 of Fig. 3a–e, when

A0 increases from zero to 500 lm, the phases ofm1 and

m2 remain opposite, |A1/ A0| increases until the LR2

bandgap becomes blind, |A1/ A0| decreases to 0.97, and

|A2/ A0| decreases from 24.66 to 0.96. Throughout this

process, mode 3 remains invariant. When the nonlin-

earity becomes sufficiently strong, |A1/ A0| and |A2/ A0|

both approach zero, and the positive or negative sign

has negligible influence on the wave dynamics. Modes

2 and 3 merge, both exhibiting Bragg scattering.

Hence, the LR2 bandgap shifts from the ‘‘local

resonance of m2’’ to ‘‘scattering between m0’’, i.e.

the LR2 bandgap merges into a Bragg bandgap.

Overall, the merging of modes 2 and 3 causes the

three bandgaps (LR1, LR2 bandgaps and a Bragg

bandgap) to retreat and degenerate into two bandgaps

(NLR bandgap and a Bragg bandgap) with enhanced

nonlinearity. This transformation of the nonlinear

meta-plate turns a 3DoF unit into a 2DoF unit under

strong nonlinearity.

The dimensionality reduction and enhanced non-

linearity observed are similar to those reported in Ref.

[19], suggesting that the band degeneration and

evolution also apply to high-dimensional nonlinear

metamaterials. Thus, we will not consider the other

situations where nonlinearity appears between m1-m2,

m0-m2, or m0-m0.

3.3 Wave attenuation in the nonlinear meta-plate

To demonstrate these degeneration processes, we

numerically examine the wave propagation in an

infinite meta-plate with numerical integration method.

As shown in Fig. 4a, the model consists of a meta-

plate in the center surrounded by a plate frame with

large damping to minimize wave reflection. The

central meta-plate consists of 30 9 30 units. The

surrounding large damping plates can almost com-

pletely attenuate the incident wave, thus creating a

non-reflecting boundary for time-domain simulations.

An excitation is applied at the center point of the

model.We define the transmission rate T from the time

domain as:

T ¼ 20log10ðA0 output=A0Þ dBð Þ ð10Þ

where A0_output is the peak value of the output wave

amplitude. A standard 10-cycle sinusoidal signal with

2-cycle smooth tails is used as the inputwave, launched

at the center point shown in Fig. 4c. The output wave

packet exhibits minimal reflections in Fig. 4d, con-

firming the effectiveness of the non-reflective bound-

ary design. Figure 4b shows that the transmissions in

the X-direction of the plate are found to be consistent

when calculated numerically and theoretically. This

confirms the accuracy of the theoretical prediction of

the spatial divergence by Eq. (9).

As shown in Fig. 5a–c, with increasing A0, the

colored ‘‘bandgap’’ area transitions from the LR2

bandgap (595.6–777.9 Hz) to the NLR bandgap

(418.9–592.4 Hz). Consequently, we numerically

calculate the transmission T in the range of (400,

800) Hz with increasing A0 to validate the existence of

LR2 and NLR bandgaps as shown in Fig. 5d–i. In

Fig. 4b, it is observed that the cylindrical wave,

subjected to the spatial divergence, undergoes a trans-

mission loss of approximately - 12 dB at the 8th unit.

Thus, any transmission significantly lower than - 12

dB indicates attenuation by the bandgap. The linear

bandgap in the range of (595.6, 777.9) Hz results in a

reduction of more than 26 dB, as shown in Fig. 5d, g.

When the nonlinearity becomes strong (A0 = 100lm)

as shown inFig. 5e, h, the 8th transmission in the range of

(409, 453) Hz is only - 15 dB, indicating a weak

‘‘bandgap’’ effect. Although both the spatial divergence

and the bandgap effect serve to attenuate wave, the

former maybe stronger than the latter for waves in the

bandgap range, which is demonstrated in Sect. 3.4.

When nonlinearity further intensifies (A0 = 500

lm) as shown in Fig. 5f, i, the 8th transmissions in the

range of (418.9, 592.4) Hz are all below - 17 dB

(significantly smaller than - 12 dB) in both 0 and 45

degrees from X-direction, indicating a strong
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‘‘bandgap’’ effect. In such case, the bandgap effect

becomes stronger than the spatial divergence and

plays a dominant role in the total attenuation, which is

also demonstrated in detail in Sect. 3.4.

3.4 Contributions of wave attenuation

from bandgap effect and spatial divergence

We examine some typical wave propagation under

different initial amplitudes to clarify the contributions

of the attenuation induced by the bandgap effect and that

by the spatial divergence, as shown in Fig. 6. 440 Hz is

chosen from theFig. 5e, f, forA0 = 100lmandA0 = 500

lm, in the predicted bandgap (green and red areas).

When the response amplitude of the nth metacell An

(n = 0, 1, … 13) from the source n = 0 is given, the

imaginary part jI, denoting the attenuation from the

bandgap, can be obtained using the equivalent lin-

earized approach (see Appendix A.4). From nth to

(n ? 1)th metacell, the wave propagation distance is

the lattice constant a, and the attenuation induced by

bandgap ggap is given by Eq. (8):

ggap ¼ gbandgapðaÞ ¼ e�jIa: ð11Þ

The attenuation induced by spatial divergence

gspace is given by Eq. (9):

gspace¼gcylindricalðaÞ¼
ffiffiffiffiffiffiffiffi
2

pca

r

eiðca�
1
4
pÞ ðn¼0Þ

gspace¼gcylindricalððnþ1ÞaÞ=gcylindricalðnaÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n

ðnþ1Þ

r

eica

ðn¼1;2; :::;14Þ

8
>>>><

>>>>:

ð12Þ

Thus, the total response amplitude Anþ1 ¼
Angspaceggap can be obtained by Eq. (7). Since the

input amplitude undergoes a change from An to An?1,

the nonlinear band degenerates self-adaptively due to

the amplitude-dependent properties. Therefore, An?1

is taken as the input amplitude to calculate An?2.

Repeating the above steps, the specific attenuations for

each unit can be calculated as shown in Fig. 6 (solid

line). Numerically, all gspace and An?1 (n = 0, 1,… 13)

can be obtained in the numerical calculations as shown

in Figs. 4b and 5e–f, respectively. Since

Anþ1 ¼ Angspaceggap, the numerical ggap can be sepa-

rated, as shown in Fig. 6 (dash line).

When A0 = 100 lm (Fig. 6a), the wave amplitude

at the first metacell is A1 & 54.9 lm, i.e., the total

Fig. 4 Setup of simulation

for modelling the meta-

plate. a Damping setup for

modelling an infinite plate.

The wave from the point

excitation can be absorbed

by the plate with damping

(blue area) to create a non-

reflecting boundary for the

plate within red square.

b Transmission in the X-
direction started from the

point excitation. c The

layout of resonator. One

blue point represents a

resonator. d Normalized

time domains of input and

output samples in c at 400

Hz
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Fig. 5 Numerical validation of Linear and nonlinear band

structure. a–c Dispersion curves by the Shooting-Newton

iteration method. d–f Transmissions in the X-direction of the

meta-plate. g–i Transmissions at 45 degrees from the X-
direction of the meta-plate. a, d, g Case-1: Linear band

structure. b, e, h Case-2: strong nonlinearity (A0 = 100 lm). c,
f, i Case-3: stronger nonlinearity (A0 = 500 lm). Different

colored areas show the bandgap calculated by the Shooting-

Newton iteration method

Fig. 6 Specific attenuation induced by the spatial divergence (black), the bandgap effect (red) and the total (blue). a A0 = 100 lm;

b A0 = 500 lm
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attenuation is - 6.5 dB. The attenuation induced by

the bandgap effect and the spatial divergence are

calculated as - 5.21 and - 1.29 dB, respectively.

However, for n C 2, the bandgap is shift downward,

and the wave frequency 440 Hz is outside the bandgap.

In this case, the spatial divergence dominates the

subsequent attenuation, thus featuring a amplitude

attenuation trend similar to that of the spatial

divergence.

When A0 = 500 lm (Fig. 6b), A1& 100 lm and A2

& 39.8 lm. As predicted analytically, the significant

attenuation in the two metacells, - 17.68 dB, is

induced by the nonlinear bandgap, although its

frequency range changes during wave propagation.

Here, the spatial divergence induces attenuation

by - 4.3 dB, much lower than that by the bandgap

effect. However, for n C 3, as the amplitude is so low

that the wave at 440 Hz jumps out of the bandgap

again. As a result, the spatial divergence dominates the

wave attenuation.

Overall, it can be concluded that the nonlinear

bandgap exerts ‘‘local’’ attenuation effect. For fre-

quencies in the bandgap for specific amplitude A0, like

440 Hz for A0 = 100 or 500 lm, the bandgap only

shows its effects near the excitation point. The

bandgap is preserved in a longer propagation distance

for higher incident amplitude. Although its effect is

local, the induced attenuation is significant. When the

wave frequency jumps out of a self-adaptive bandgap,

or disappears in the bandgap, the attenuation is

dominated by the spatial divergence. This also

suggests that the nonlinear bandgap varies self-adap-

tively as the propagation distance/time increases as

reported in Ref. [19], but the introduction of the spatial

divergence accelerates this process in a 2D NAM.

4 2D nonreciprocity properties enabled

by nonlinear meta-plate

As well known, leveraging proper nonlinear interac-

tions can enable nonreciprocal wave transmission. As

demonstrated, nonreciprocal propagation can be

induced by high- or sub-harmonics [45–48], bifurca-

tions and chaos [46, 48], and amplitude-dependent

bandgaps [49, 50]. More specifically, a sub-wave-

length, bidirectional elastic diode with frequency-

preserved nonreciprocity was experimentally demon-

strated by coupling nonlinear and linear chains [33]. In

linear systems, the directional nature of wave propa-

gation in a 2D monatomic lattice is taken advantage to

break reciprocity [51]. However, studies on nonlinear

nonreciprocity are currently limited to 1D systems.

Extension to 2D systems presents challenges due to

the aforementioned challenges in numerical calcula-

tions and analyses and structural complexities. Our

NAM plate offers the opportunity to examine this

important issue. Nonreciprocal wave propagation can

be realized by integrating the linear and nonlinear

meta-plate together.

Furthermore, the investigation into the evolution of

the band structure with increasing nonlinearity sug-

gests that the nonlinear bandgap can be manipulated

through regulating the wave amplitude. Conversely,

the linear bandgap remains unaltered in response to a

change in wave amplitude. Therefore, nonreciprocal

wave propagation can be realized by integrating the

linear and nonlinear meta-plates together.

4.1 Model and methods

As shown in Fig. 7a, we introduce 5 9 90 linear

resonators (represented by green points) and 5 9 90

nonlinear oscillating units (represented by orange

points) in the middle part of the plate. Figure 7b shows

an enlarged view of the asymmetrical region of the

combined plate.

Points A and B serve as the wave origin points for

the left and right plates, respectively. The propagation

from Am to Bn is labelled as ‘‘Am2Bn’’ or ‘‘Lin2Non’’

subsequently. In linear systems (with k2N = 0), A2B =

B2A in both the time and frequency domains,

indicating reciprocity. For nonlinear systems, A2B =

B2A in both domains, signifying nonreciprocity as

illustrated in Fig. 7e, f. The mechanisms underlying

this phenomenon will be elucidated subsequently. To

quantify wave propagation, we take a typical case of

A2B to define the transmissions in the time and

frequency domains as:

Ttime A2B ¼ 20 log10½A
ðTimeÞ
0 A2B=A0� ðdBÞ; ð13Þ

TFreq A2B ¼ 20 log10½A
ðFreqÞ
0 A2B=A0� ðdBÞ; ð14Þ

where A
ðTimeÞ
0 A2B denotes the average time-domain output

amplitude when the input is A0; A
ðFreqÞ
0 A2B is picked from

the frequency spectra at the incident frequency, as
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shown in Fig. 7d, f. As there are multiple harmonics,

TTime_A2B represents the transmission containing all

frequency components; TFreq_A2B represents the trans-

mission of the fundamental wave only.

To differentiate the degrees of such point-to-point

reciprocity, we define:

DTTime A2B ¼ TTime A2B�TTime B2A (dB) ð15Þ

DTFreq A2B ¼ TFreq A2B�TFreq B2A (dB) ð16Þ

In addition to the point-to-point nonreciprocity, we

also quantify the reciprocity for the entire 2D plate

using:

DTTime Lin2Non

¼

P6

m¼�5

P15

n¼�15

TTime A2Bðm; nÞ �
P6

m¼�5

P15

n¼�15

TTime B2Aðm; nÞ

12� 31
(dB)

ð17Þ

Fig. 7 Elastic diode in the meta-plate. a Schematic diagram of

our bidirectional diode plate consisting the linear meta-plate

(green area) and nonlinear meta-plate (orange area). Except for

the nonlinear and linear meta-plate, the other setup is same as

that in Fig. 4a. b Enlargement of undamped region within the

red square in (a). Each green point represents one linear

oscillating unit, each orange point represents one nonlinear

oscillating unit, and each black point represents the plate.

c Normalized time domain of an input sample at 440 Hz.

d Frequency spectra of (c). e Normalized time domains of

outputs ‘‘A2B’’. ‘‘A2B’’ refers to the output of B when it is

excited by the input of A in (b). f Frequency spectra of (e)
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DTFreq Lin2Non¼

P6

m¼�5

P15

n¼�15

TFreq A2Bðm;nÞ�
P6

m¼�5

P15

n¼�15

TFreq B2Aðm;nÞ

12�31
(dB)

ð18Þ

Locations A and B mean the location (m, n) units

from the wave emitting origins A and B, respectively,

where m [ [-5, 7] and n [ [-15, 15], as labelled in

Fig. 7b.

4.2 Typical features of nonreciprocity

Figure 8a–d show TTime_A2B, TFreq_A2B, TTime_B2A
and TFreq_B2A within the range of (400, 800) Hz as A0

increases, for A2B and B2A, respectively. Under weak

nonlinearity at A0 = 10 lm, TTime_A2B, TFreq_A2B
TTime_B2A, TFreq_B2A are all low within the frequency

range of (600, 760) Hz and high within (400, 560) Hz

due to the LR2 bandgap in the range of (595.6, 777.9)

Hz. As A0 increases, for A2B depicted in Fig. 8a, b,

only TTime_A2B and TFreq_A2B at (400, 480) Hz exhibit

a slight decline, while remaining nearly constant at

other frequencies. Conversely, for B2A shown in

Fig. 8c, d, TTime_A2B and TFreq_A2B shift downwards

noticeably at (400, 560) Hz and upward at (600, 760)

Hz. Capitalizing on the different transmission patterns

under weak and strong nonlinearity, nonreciprocal

wave propagation between A and B can be achieved.

As shown in Fig. 8e–l, we examine the specific

situations of reciprocal wave propagation under four

amplitudes, A0 = 10, 100, 300, 500 lm.

For A0\ 300 lm, the wave propagation between A

and B is reciprocal, as the nonlinear resonant bandgap

effects remain weak despite the presence of the

nonlinearity. This occurs because the incident wave

from points A or B diminishes due to the spatial wave

divergence.

The wave amplitude becomes low when reaching

the boundary of the meta-plate, thus inducing only

weak nonlinearity. For A0[ 300 lm, the wave

propagation between A and B becomes nonreciprocal

within the frequency ranges of (400, 440) and (600,

760) Hz. With A0 further increasing to 500 lm, the

Fig. 8 TTime_A2B, TTime_B2A, TFreq_A2B and TFreq_B2A with

increasing incident amplitude A0. a TTime_A2B, b TFreq_A2B
c TTime_B2A, d TFreq_B2A e, f Case-1: weak nonlinearity (A0 = 10

lm). g, h Case-2: strong nonlinearity (A0 = 100 lm). i, j Case-3:
stronger nonlinearity (w0 = 300 lm). k, l Case-4: stronger

nonlinearity (A0 = 500 lm)
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nonreciprocity expends to a wider frequency range of

(400, 520) and (600, 760) Hz. This broadening is

attributed to the stabilization of the nonlinear bandgap

caused by a sufficiently strong nonlinearity. In the

range of (600, 760) Hz, TTime_A2B is at least 8 dB

higher than TTime_B2A, while in the range of (440, 520)

Hz, TTime_B2A is at most 5 dB higher than TTime_A2B.

This disparity results from two nonreciprocity mech-

anisms along with additional factors. We examine two

typical cases at 520 and 680 Hz, as illustrated in

Fig. 8k, l, to delineate the nonreciprocity processes

and their physical mechanisms.

4.3 Chaotic effect induced 2D nonreciprocity

At 680Hz and withA0 = 500 um fromA to B, the wave

first enters the linear meta-plate, where it undergoes

attenuation due to the LR2 bandgap. This attenuation

reduces the incident amplitude upon reaching the

nonlinear meta-plate, which prompts the manifesta-

tion of the LR2 bandgap. Subsequently, the wave

undergoes further attenuation by the LR2 bandgap of

the nonlinear meta-plate. Conversely, for B2A, the

same wave first interacts with the nonlinear meta-

plate, instigating chaotic wave dynamics characterized

by a continuous spectrum attributable to the strong

nonlinearity [11, 33]. As a result, wave energy is

spread over to other frequencies before entering the

linear meta-plate. As the wave travels through the

linear meta-plate, only the frequency components

within the LR2 bandgap are attenuated, with the

remainder conserved. Consequently, DTTime_A2B-

= - 12.83 dB and DTFreq_A2B = - 19.74 dB. The

total energy for B2A surpasses that of A2B as depicted

in Fig. 9a, attributable to the conserved frequency

components from the chaotic effect. Moreover, the

component at 680 Hz for B2A is more than that for

A2B as depicted in Fig. 9e.

This is because B2A experiences attenuation by the

LR2 bandgap once, while A2B experiences the process

twice. Thus, the first mechanism for nonreciprocity is

the chaotic effect of the nonlinear meta-plate.

In addition to the nonreciprocity between points A

and B, we further explore the nonreciprocity for the

entire 2D plate. As illustrated in Fig. 9b, c, the two

distributions of TTime at 680 Hz in the time domain

differ significantly, indicating nonreciprocal wave

propagation for the entire 2D plate. A closer exami-

nation in Fig. 9d reveals that DTTime exhibits a

symmetric yet uneven distribution along the central

horizontal axis. The symmetry is easily understood

since the excitation point is located on the axis.

However, the uneven distribution of DTTime can be

explained by the following two key factors:

Fig. 9 Nonreciprocal wave propagation at input frequency 680

Hz in a plate with the integration of linear and nonlinear meta-

plate. a, e Normalized time and frequency domains for B2A and

A2B. b, c Distribution of TTime_A2B(m, n) and TTime_B2A(m, n) in

the entire plate, respectively. f, g Distribution of TFreq_A2B(m, n)
and from TFreq_B2A(m, n) in the entire plate, respectively. The red
point indicates the point of excitation. d, h Distribution of

DTTime and DTFreq for each point in the entire plate, respectively
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1. Point excitation induces omni-directional waves:

These waves experience different levels of the

spatial divergence in amplitude as they encounter

and travel into the nonlinearmeta-plate, resulting in

varying chaotic responses. For example, in Non2-

Lin, a higher incident amplitude in the X-direction

leads to stronger chaotic responses, resulting in

higher transmission compared to other angles.

Conversely, in Lin2Non, the linear bandgap almost

entirely diminishes the wave energy, irrespective of

the incidence angle of the wave. This causesDTTime

along the central horizontal line exceeding that of

other orientations, as shown in Fig. 9d.

2. Reflections and refractions at multiple interfaces.

Particularly at the interface containing the non-

linear meta-plate, the reflection and refraction

rates are influenced by varying chaotic responses.

This increases the uncertain and uneven distribu-

tion of the DTTime.

Despite these differences, all DTTime values are

below - 10 dB threshold, with a specific

DTTime_Lin2Non of - 15.08 dB, signifying significant

nonreciprocity in this case.

Figure 9f–h illustrate that the uneven distribution

of DTFreq, similar to that of DTTime, is also influenced

by the above two factors. However, DTTime is indica-

tive of the reciprocity associated with the total energy,

which contains all frequency components, whereas

DTFreq specifically shows the frequency component at

680 Hz. Thus, the degree and distribution ofDTFreq are
different from those of DTTime. Although

DTFreq_Lin2Non = - 9.04 dB, DTFreq can exhibit pos-

itive, negative, or zero values at different spatial

locations, as shown in Fig. 9h.

Concerning thismechanismon the entire 2D plate, the

wave propagation exhibits nonreciprocity in the time

domain, while whether wave propagation is nonrecipro-

cal in the frequency domain depends on the specific

location. Factors like reflections and refractions at

multiple interfaces, effect ofwave divergence in different

directions alongside the chaotic effects all influence the

distribution of wave nonreciprocity within the 2D plate.

4.4 Amplitude-dependent bandgap induced 2D

nonreciprocity

For a deeper understanding, we examine the wave at

520 Hz with A0 = 500 um. This frequency lies in the

passband of the linear part of the meta-plate but in the

nonlinear resonant bandgap. Before reaching the

nonlinear meta-plate, the same wave diverges more

for A2B than for B2A. Consequently, for the former,

the wave undergoes less reduction due to the ampli-

tude-dependent band gap. As a result, DTTime_A2B-

= 3.4 dB and DTFreq_A2B = 6.01 dB, as shown in

Fig. 10a, e. In contrast to the nonreciprocity observed

at 680 Hz, DT is positive at 520 Hz, indicating a

reversal in the direction of nonreciprocity. Further-

more, DTTime and DTFreq at 520 Hz are lower than

those at 680 Hz, suggesting a lower degree of

nonreciprocity based on the mechanism of ampli-

tude-dependent bandgap. Comparing this with a 1D

structure [33], we find that the wave divergence in a

2D plate accelerates the transition from NLR bandgap

to LR2 bandgap, thereby weakening the degree of

nonreciprocity.

Similar to the analyses conducted for 680 Hz, we

analyze the 2D distribution of DT at 520 Hz. The

nonreciprocal wave propagation for the entire 2D

plate, DTTime_Lin2Non = 4.98 dB and DTFreq_Lin2Non-
= 1.93 dB, which are significantly lower than those at

680 Hz. This can be attributed again to the spatial

divergence of the wave in a 2D plate which accelerates

the transition from NLR bandgap to LR2 bandgap,

weakening the degree of nonreciprocity.

Figure 10d, h also show an uneven distribution of

DTTime and DTFreq, similar to those at 680Hz. How-

ever, the underlying cause of their significant fluctu-

ations differs. These fluctuations stem from the

amplitude-dependent bandgap, rather than the chaotic

effect. Waves from the excitation point undergo

varying levels of the spatial divergence as they

propagate towards the nonlinear meta-plate, leading

to different levels of attenuation by the amplitude-

dependent bandgap. Additionally, reflections and

refractions at multiple interfaces contribute to the

uneven distributions of DTTime and DTFreq. The

severities of reflection and refraction are particularly

sensitive to the incident wave amplitude due to the

amplitude-dependent nature of the bandgap, as

demonstrated by the evolution of the nonlinear

structures in Fig. 3.

As to the impact of this across the entire 2D plate,

the efficacy of nonreciprocity in both the time and

frequency domains are location dependent. The influ-

ence of the complex reflections and refractions at

multiple interfaces, coupled with the orientation-
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dependent wave and associated with the amplitude-

dependent bandgap, all together leads to the uneven

distribution of nonreciprocity wave transmission

within the 2D meta-plate.

5 Conclusions

NAMs have attracted considerable attention, while

most theoretical studies have focused on 1D models.

The properties of wave propagation in 2D NAMs

(represented by plates), including the nonlinear

bandgaps and nonreciprocity, are still not understood.

Difficulties are from multiple aspects such as simu-

lating the large-scale NAM models, finding all the

eigenvalues and eigenvectors, displaying the evolu-

tion process and elucidating the underlying

mechanisms.

This paper examines the band evolution and

nonreciprocal wave propagation in a strongly nonlin-

ear meta-plate. An accurate Shooting-Newton itera-

tion method for solving the band structure is

developed based on the nonlinear FEM model. As

the amplitude is increased, the dispersion curves shift

upwards, and the corresponding group velocity-

frequency curves transition from single rings to

multiple rings. The band evolution can be elucidated

by examining the wave solution at point R. As

predicted analytically and then confirmed numeri-

cally, the meta-plate exhibits merged local resonant

modes or the engagement of a resonant mode with the

Bragg mode, leading to the band degeneration.

Furthermore, an equivalent method is employed to

distinguish between the wave attenuation induced by

bandgaps and that by spatial divergence. A nonlinear

bandgap is self-adaptive to the propagation distance

due to the amplitude-dependent effect. However, the

bandgap-induced attenuation only prevails in a limited

and localized region close to the wave generation

within the 2D meta-plate. This is owing to the fact that

the bandgap has a significant attenuating effect on the

wave amplitudes at short distances, while the spatial

divergence process accelerates the self-adaptive pro-

cess. At other positions, the spatial divergence dom-

inates the attenuation process.

Furthermore, we have integrated linear and nonlin-

ear parts into a meta-plate to achieve nonreciprocal

wave propagation. It is demonstrated that the nonre-

ciprocal wave propagation is governed by the chaotic

effect or the amplitude-dependent bandgap. The

Fig. 10 Nonreciprocal wave propagation at input frequency

520 Hz in a plate with the integration of linear and nonlinear

meta-plate. a, e Normalized time and frequency domains for

B2A and A2B. b, c Distribution of TTime_A2B(m, n) and

TTime_B2A(m, n) in the entire plate, respectively. f, g Distribution

of TFreq_A2B(m, n) and from TFreq_B2A(m, n) in the entire plate,

respectively. The red point indicates the point of excitation. d,
h Distribution of DTTime and DTFreq for each point in the entire

plate, respectively
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distribution of the nonreciprocity on the 2D plate is

uneven, due to the orientation-dependent wave prop-

agation under a point input and the reflection or

diffraction from multiple interfaces. Moreover, the

spatial divergence in the 2D plate accelerates the

transition from a local nonlinear resonant bandgap to a

corresponding linear bandgap, thereby impairing the

level of nonreciprocity.

In summary, we provide a novel method for the

calculation of nonlinear bandgaps and introduce new

phenomena and properties conducive to the control of

wave propagation in strongly nonlinear 2D meta-

plates. The study provides a basis for further inves-

tigations on high-dimensional NAMs, which prove to

offer abundant design space to cope with various

engineering applications.
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Appendix A

A.1 Finite element method and Kirchhoff–Love

plate theory

Based on the finite element method and the Kirchhoff–

Love plate theory [52, 53], we model the metacell of

the 2D meta-plate as shown in Fig. 11, which consists

of rectangular units and one resonator (red point). A

convergence analysis was conducted on the number of

finite elements, the results of which are presented in

Fig. 11. As shown in Fig. 11a, b, the units are

discretized into four rectangular plates and sixteen

rectangular plates, respectively. Figure 11c, d show

that the two band structures exhibit minimal discrep-

ancy between the two discretizations, with the max-

imum error remaining below 0.75%. Accordingly, the

former discretization with the fewer number of nodes

was selected, as this reduces the computational time

and barely compromise the accuracy of the results.

For modelling the meta-plate, we first establish the

equation motions of the resonator and four rectangular

units separately, and then assemble them to make sure

the mass matrix M and stiffness matrixK of a unit cell,

and finally solve the system to obtain the dispersion

curves.

For the ith rectangular unit, the mass matrix Me and

stiffness matrix Ke can be calculated according to the

finite element method. If we do not consider the

resonator in Fig. 11, there are 9 points including 27

parameters in total: wpi = [w10, h1x, h1y, …, w90, h9x,
h9y]i

T. Thus, the assembly matrix A1, A2, A3 and A4

can be created to assemble the four rectangular units 1,

2, 3 and 4:

wp1i ¼ A1wpi; wp2i ¼ A2wpi; wp4i ¼ A3wpi; wp4i

¼ A4wpi

ð19Þ

where wp1i = [w10, h1x, h1y, w20, h2x, h2y, w40, h4x, h4y,
w0, w1, wr, h5x, h5y]i

T, wp2i = [w20, h2x, h2y, w30, h3x,
h3y, w60, h6x, h6y, w0, w1, wr, h5x, h5y]i

T, wp3i = [w40,

h4x, h4y, w70, h7x, h7y, w80, h8x, h8y, w0, w1, wr, h5x,
h5y]i

T and wp4i = [w60, h6x, h6y, w80, h8x, h8y, w90, h9x,
h9y, w0, w1, wr, h5x, h5y]i

T. After that, the mass matrix

Mp and stiffness matrix Kp of the four rectangular

units can be written:
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Mp ¼ AT
1MeA1 þ AT

2MeA2 þ AT
3MeA3 þ AT

4MeA4

ð20Þ

Kp ¼ AT
1KeA1 þ AT

2KeA2 þ AT
3KeA3 þ AT

4KeA4

ð21Þ

Thus, the equation of motion for the four rectan-

gular units writes:

Mp €wpi þ Kp €wpi ¼ 0 ð22Þ

Next, we assemble four rectangular units and the

oscillating unit. As shown in Fig. 11, the resonator

locates in point 5, thus wpi adds two vectors as

wi = [w10, h1x, h1y, …, w40, h4x, h4y, w0, w1, wr, h5x,
h5y, w60, h6x, h6y, …, w90, h9x, h9y]i

T. Mp and Kp

expend extra 2 9 2 zero vectors and insert Mc and Kc

as M and K:

M¼

Mp1;1 ... Mp1;13 0 0 Mp1;14 ... Mp13;27

..

. . .
.

::: ..
. ..
. ..
. . .

. ..
.

Mp13;1 ... Mp13;13 0 0 Mp13;14 ... Mp13;27

0 ... 0 0 0 0 ... 0

0 ... 0 0 0 0 ... 0

Mp14;1 ... Mp14;14 0 0 Mp14;14 ... Mp14;27

..

. . .
. ..

. ..
. ..
. ..
. . .

. ..
.

Mp27;1 ... Mp27;14 0 0 Mp27;14 ... Mp27;27

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

þ
012�12 0 0

0 Mc 0
0 0 014�14

2

4

3

5

ð23Þ

Fig. 11 A unit cell of 2D

meta-plate, consisting of

rectangular units and one

oscillating unit (red point)

a four rectangular units (�,

`, ´ and ˆ); b sixteen

rectangular units; c Band

structures of (a) and (b);
d Error of (a)
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K¼

Kp1;1 ... Kp1;13 0 0 Kp1;14 ... Kp13;27

..

. . .
.

... ..
. ..
. ..
. . .

. ..
.

Kp13;1 ... Kp13;13 0 0 Kp13;14 ... Kp13;27

0 ... 0 0 0 0 ... 0

0 ... 0 0 0 0 ... 0

Kp14;1 ... Kp14;14 0 0 Kp14;14 ... Kp14;27

..

. . .
. ..

. ..
. ..
. ..
. . .

. ..
.

Kp27;1 ... Kp27;14 0 0 Kp27;14 ... Kp27;27

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

þ
012�12 0 0

0 Kc 0
0 0 014�14

2

4

3

5

ð24Þ

Due to the nonlinear stiffness coefficients k2N only

in the oscillating unit, the nonlinear stiffness matrix of

the unit cell writes:

KN ¼¼
012�12 0 0

0 kNc 0
0 0 014�14

2

4

3

5 ð25Þ

Thus, the equation of motion for the ith metacell

units writes:

M €wi þ Kwi þ KNw3
i ¼ 0 ð26Þ

A.2 Bloch-Floquet theorem in 2D plate

ðK � X2MÞq þ 3

4
KNq3 ¼ 0 ð27Þ

where qi stands for the amplitudes of w. According to

the points in Fig. 11, qi can also be divided as

qi¼ ½q4; q8; q7; q5; q6; q2; q9; q1; q3�Ti , where qji-

= [Awj0, Ahjx, Ahjy]i
T (j = 1, 2, …, 9, j = 5),

q5i = [A0, A1, Ar, Ah5x, Ah5y]i
T (j = 5), and X = 2pf.

Bloch-Floquet theorem can cautiously be used to deal

with nonlinear systems despite some limitations [19].

Here, we will also use it to solve the above system to

obtain the dispersion curves and then illustrate its

limitations. According to Bloch-Floquet theorem, we

can obtain the relationships of qi:

q6i¼e�ik�aq4i

q2i ¼ e�ik�aq8i

q9i ¼ e�ik�aq7i

q1i ¼ e�ik�aq7i

q3i ¼ e�ik�2aq7i

8
>>>><

>>>>:

ð28Þ

Thus, we can get the equation:

qi ¼ Z~qi ð29Þ

where Z ¼

I3�3 0 0 0
0 I3�3 0 0
0 0 I3�3 0
0 0 0 I5�5

e�ik�aI3�3 0 0 0
0 e�ik�aI3�3 0 0
0 0 e�ik�aI3�3 0
0 0 e�ik�aI3�3 0
0 0 e�ik�2aI3�3 0

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

and

~qi ¼

q4

q8

q7

q5

2

6
6
4

3

7
7
5

i

. I393 and I595 represent 3 9 3 and

5 9 5 Identity matrixes, respectively.

Substituting Eq. (29) into (28) and pre-multiply the

matrix ZH (ZH is the conjugate transpose matrix of Z)

on both sides give:

ð ~K � X2 ~MÞ~qi þ
3

4
~KN ~q

3
i ¼ 0 ð30Þ

A.3 Errors of the Shooting-Newton iteration

method

This study addresses the high-dimensional nonlinear

Eqs. (30) with N = 14. Thus, there are 14 error

indicators for a given frequency after the Newton

iteration. Herein, the maximum error is taken to

represent the error for each frequency. Figure 12

illustrates the errors resulting from shooting all

frequencies from 0 to 2000 Hz in the cases of Fig. 3.

All maximum errors are below 5 9 10–10, indicating

that these solutions are convergent and persuasive.
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A.4 Equivalent linearized approach

We use an equivalent linearized approach based on the

bifurcation to solve the equivalent stiffness k2eL
between m1 and m2 for nonlinear models [18]. By

specifying w0i = AsinXt, w1i = YsinXt, w2ri = PsinXt

in Eq. (1), and neglecting the damping effect, as well

as adopting the first-order harmonic balance approach,

one can solve the locally resonant responses by means

of algebraic equations:

Fig. 12 The maximum error of the Shooting-Newton iteration method. a–e correspond to the cases 1–5 of Fig. 3a–e. The errors

marked in Black, blue and red correspond to the maximum errors in the three boundaries (CX, XR and RC) of the first Brillouin zone

Fig. 13 a Transmission of local resonances. The value of wr/A0

is solved with Eq. (31), where curves of nonlinear model (i.e.,

the blue curve) are calculated with k2N = 1 9 1013 N/m3,

A0 = 100 lm. The big red circle is the bifurcation point. The red

curve is the equivalent linear result. b The real and imaginary

part of the band structure when A0 = 100 lm
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m1YX
2 ¼ k1ðY � AÞ � k2P� 3

4
k2NP

3

m2ðPþ YÞX2 ¼ k2Pþ 3

4
k2NP

3 þ k3ðPþ Y � AÞ

ð31Þ

By specifying A in Eq. (31), the curve, P/A,

generates a saddle-node bifurcation in the vicinity of

each resonance, as illustrated with the blue curve in

Fig. 13a. XJ2 represents the first bifurcation frequency

(the big red circle). At the bifurcation point, P = PJ2.

The point (XJ2, PJ2) is on the response curve of the

equivalent linear model (the red curve), where the

stiffness k2 becomes equivalent stiffness k2eL.

Therefore,

k2eL ¼ k2 þ
3

4
k2NP

3
J2 ð32Þ

By substituting Eq. (32) into Eq. (6) and employing

the method outlined in Sect. 2.3, we can obtain the real

and imaginary part of the wave number jI as shown in
Fig. 13b. All errors of these solutions are below

5 9 10–10, indicating that these solutions are conver-

gent and persuasive.
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A., Daraio, C., et al.: Nonreciprocity in acoustic and elastic

materials. Nat. Rev. Mater. 5(9), 667–685 (2020)

36. Rasmussen, C., Quan, L., Alù, A.: Acoustic nonreciprocity.
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