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A B S T R A C T

The acoustics black hole (ABH) effect shows promising potential for wave manipulation and vi
bration control. An ABH structure features a gradual reduction of the phase velocity of flexural 
waves alongside wave compression and energy accumulation when entering the tapered ABH 
portion where the thickness is tailored according to a power-law (with power index m no less than 
2). The corresponding non-uniform wavelength distribution over the ABH structure poses great 
challenges to conventional modelling methods. To alleviate the problem, this paper proposes an 
exact dynamic stiffness method for modelling ABH beams with arbitrary exponent equal to or 
greater than 2 under the framework of Euler-Bernoulli beam theory. For ABH with m > 2, a 
change of variable and the Mellin integral transformation are conducted to derive the integral 
representations of the exact solution using Meijer G-functions. The solution for the case with m =
2 is also derived for completeness. Then the dynamic stiffness matrix is formulated through 
symbolic operation. The Wittrick-Williams (WW) algorithm is revamped to cope with the ABH- 
specific requirement. Numerical examples are given to validate the solution in integral form, 
the dynamic stiffness matrix, and the efficacy of the improved WW algorithm. The clear advan
tage of the accurate integral representations over series representations is justified in the higher 
frequency range. Covering all ABH-relevant scenarios (with m ≥ 2), the exact modelling frame
work established in this work offers a powerful tool for the modelling and investigation of more 
complex structures which are built upon ABH beam elements.

1. Introduction

Recent research on acoustic black holes points at enormous potential for the manipulation of flexural waves in structures, thus 
leading to exciting applications such as vibration control, sound radiation mitigation, energy harvesting, etc. As initially proposed by 
Mironov [1], an ABH structure, such as ABH beams/plates, features a decreasing thickness profile, which is tailored according to a 
power-law function h = εxm (m ≥ 2). Theoretically, when incident flexural waves enter and propagate through the ABH portion, their 
phase velocity gradually reduces alongside shortened wavelength and drastically increased amplitude towards the ABH tip. At the 
ideal zero-thickness termination, where the wave speed theoretically becomes zero, no wave reflection would occur so that a perfect 
wave trap is achieved. Alongside this process is the compression of the wavelength and accentuation of high-density energy. In a more 
practical scenario where zero thickness is impossible to achieve, damping material [2] or energy harvesters [3,4] can be deployed to 
impair wave reflection and promote the ABH effects through absorbing or harvesting the concentrated energy. Numerous studies have 
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demonstrated that ABH effects can be capitalized for energy absorption and vibration reduction, as reported in a book [5].
Various modelling methods have been adopted for ABH studies and guiding structural designs based on ABH principles. The 

geometric acoustic method [1,2] treats the ABH as semi-infinite structures. This method concentrates on flexural wave propagation by 
analyzing the variations of local wave number and reflection coefficient, provided that the smoothness condition under the framework 
of geometric acoustics is satisfied. Other approaches were also utilized to investigate the ABH phenomena in more complex and 
realistic configurations, including the impedance matrix method [6,7], transfer matrix method [8–10], wavelet-based Rayleigh-Ritz 
method [11], finite difference method [12,13], finite element method (FEM) [14–16], partition of unity finite element method [17], 
and plane wave expansion method [18], etc.

Most numerical or semi-analytical methods, however, require a refined discretization scheme to accurately capture the strongly 
oscillatory behavior of the ABH. One of the salient features of an ABH structure is its unique and non-uniform wavelength distribution 
over the structure, especially within the ABH portion which is accentuated near the tip/indentation. Therefore, the local wavelength 
can drastically shorten in the high-frequency region, which would require a significant number of dense grids for those modelling 
methods based on discretization, leading to an exorbitant increase in computational costs. This problem becomes more apparent when 
dealing with more advanced ABH problems, such as the structural modelling with embedded ABH elements [19,20], passive vibration 
control with ABH absorbers [21,22], and optimal design of ABH profiles [23–25], etc. It is important to note that, even for relatively 
simple ABH elements such as a beam, most of the discretization-based methods can only deliver approximate solutions. For more 
complex ABH designs and assemblies, as more commonly seen in the realm of ABH-based meta-materials/structures, the aforemen
tioned obstacles seem to be insurmountable under the existing modelling framework. Therefore, accurate and more effective simu
lation methods/tools need to be developed for ABH studies.

Unlike other approximation methods, the dynamic stiffness method (DSM) [26] is an exact method which can generate mesh-free 
results. This is owing to the exploitation of exact shape functions so that approximations can be avoided. As a result, no approximate 
expansion of the solution nor physical discretization of the structure is required, thus yielding the minimum number of degrees of 
freedom and high computational efficiency. This empowers the DSM with significant advantages in handling complex problems 
requiring repetitive computation. The use of the DSM in a series of beam elements has been attempted by Banerjee and other re
searchers [27–33]. However, few works on ABH structures exist in the context of DSM using the exact solution. An exception is the 
transverse wave of an ABH beam with m = 2 [34]. The cases with m > 2, however, were not considered in that work. Meanwhile, Jeon 
and Lee [35] derived the exact solution in series representation, namely, the generalized hypergeometric functions (HGF), instead of 
the dynamic stiffness matrix. Additionally, part of the alternative solutions of [35] contains series that are not integrated into 
mathematical software, which hinders the provision of the exact solution and compromises the computational efficiency. Moreover, 
series representations of solutions suffer from a clear disadvantage over integral representations when dealing with large values of the 
parameters [36] (which can be understood as higher frequency range in the context of structural dynamics). Finally, when handling 
derivative terms, series representations need a considerable amount of computation in both symbolic and numerical calculations, 
leading to unavoidable numerical error.

In this work, a general and efficient framework for the modelling of a Euler-Bernoulli ABH beams with arbitrary exponent m ≥ 2 is 
developed based on the exact DSM. For cases with m > 2, Mellin integral transformation is applied to yield exact solutions expressed by 
the Meijer G-function, which is a line integral in the complex plane, to avoid series approximation. Then the dynamic stiffness (DS) 
matrix is derived through symbolic operation. For numerical implementation, the Wittrick-Williams algorithm is revamped for ABH 
beams. The proposed exact solutions cover all ABH-relevant cases with m ≥ 2, thus offering a complete set of modelling tool for future 
ABH studies.

The paper is arranged as follows. In Section 2.1, the governing differential equation for an ABH beam with m ≥ 2 is cast into an 
ordinary differential equation (ODE) containing function coefficients. A fundamental set of solutions represented by the Meijer G- 
functions are derived through Mellin integral transformation for cases with m > 2. In Sections 2.2, the continuous power index m is 
sorted into six cases for which alternative solutions are developed when the fundamental set of solutions are linearly dependent. To 
ensure the completeness of the solution set, the solution for ABH with m = 2 is also given. In Section 2.3, the DS matrix is formulated, 
which is subsequently used in Section 3 to perform dynamics analyses. Calculating procedures including steady-state response analysis 

Fig. 1. A symmetrical ABH beam withm ≥ 2.
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and the improved Wittrick-Williams algorithm for computing the natural frequencies of non-uniform beams, are detailed. Dynamic 
analyses are then performed to validate the accuracy of the proposed method through comparisons with FEM results. Natural fre
quencies and mode shapes obtained from two models, DSM by Meijer G-functions (DSM-MG) and the one by hypergeometric functions 
(DSM-HG), are compared. Finally, Section 4 concludes the paper.

2. Exact dynamic stiffness method for ABH beam

2.1. Governing differential equations and fundamental solutions for an ABH beam with arbitrary exponent m

Flexural vibrations of an ABH beam whose thickness is described by h(x) = εxm(m ≥ 2) as shown in Fig. 1 are governed by [27] 

d2

dx2

[

D(x)
∂2W
∂x2

]

− ω2ρA(x)W = 0, (1) 

where x is the spatial coordinate; W the transverse displacement; ρ the mass density; E the Young’s modulus. D(x) = Ebh3(x)/12 is the 
local flexural rigidity of the beam; A(x) = bh(x) is the cross-sectional area; and b the constant width of the beam. x starts from x1 
because of the inevitable truncation at the ABH tip end.

Substituting h(x) = εxminto Eq. (1) yields the following ordinary differential equation (ODE) with variable/function coefficients 
(since the coefficients in front of different derivative terms depend on variable x) 

x2md4W
dx4 + 6mx2m− 1d3W

dx3 + 3m(3m − 1)x2m− 2d2W
dx2 − ξW(x) = 0, (2) 

where 

ξ = 12ρω2/Eε2. (3) 

Performing the variable substitution 

z =
ξ

(4 − 2m)
4x4− 2m, (4) 

Eq. (2) can be rewritten in terms of z as 

z4d4W
dz4 + 6

3 − m
4 − 2m

z3d3W
dz3 +

m2 − 25m + 51
(4 − 2m)

2 z2d2W
dz2 +

(3 − 2m)(1 + m)(2 + m)

(4 − 2m)
3 z

dW
dz

− zW(z) = 0, (5) 

which can be further condensed into the following form 
[(

z
d
dz

− β0

)(

z
d
dz

− β1

)(

z
d
dz

− β2

)(

z
d
dz

− β3

)

− z
]

W(z) = 0, (6) 

where 

β0 = 0, β1 =
1

4 − 2m
, β2 =

2 − 3m
4 − 2m

, β3 =
3 − 3m
4 − 2m

. (7) 

We apply Mellin transform [37], defined by F(ϕ) = M {W(z),ϕ} =
∫∞

0 zϕ− 1W(z)dz, to W(z) to simplify Eq. (6), which yields the 
recursion equation (a detailed proof is given in Appendix A) 

(β0 +ϕ)(β1 +ϕ)(β2 +ϕ)(β3 +ϕ)F(ϕ) = F(ϕ+ 1), (8) 

where F(ϕ) is the Mellin transform of W(z). Once Eq. (8) is solved, W(z) can be obtained through inverse Mellin transform to F(ϕ). Since 
the gamma function Γ(ϕ) bears the property 

ϕΓ(ϕ) = Γ(ϕ + 1), (9) 

we express the solution in terms of the gamma function, thus yielding eight possible solution forms for F(ϕ): 
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F1(ϕ) =
1

Γ(1 − β0 − ϕ)Γ(1 − β1 − ϕ)Γ(1 − β2 − ϕ)Γ(1 − β3 − ϕ)
,

F2(ϕ) = Γ(β0 + ϕ)Γ(β1 + ϕ)Γ(β2 + ϕ)Γ(β3 + ϕ),

F3(ϕ) =
Γ(β0 + ϕ)Γ(β1 + ϕ)

Γ(1 − β2 − ϕ)Γ(1 − β3 − ϕ)
, F4(ϕ) =

Γ(β0 + ϕ)Γ(β2 + ϕ)
Γ(1 − β1 − ϕ)Γ(1 − β3 − ϕ)

,

F5(ϕ) =
Γ(β0 + ϕ)Γ(β3 + ϕ)

Γ(1 − β1 − ϕ)Γ(1 − β2 − ϕ)
, F6(ϕ) =

Γ(β1 + ϕ)Γ(β2 + ϕ)
Γ(1 − β0 − ϕ)Γ(1 − β3 − ϕ)

,

F7(ϕ) =
Γ(β1 + ϕ)Γ(β3 + ϕ)

Γ(1 − β0 − ϕ)Γ(1 − β2 − ϕ)
, F8(ϕ) =

Γ(β2 + ϕ)Γ(β3 + ϕ)
Γ(1 − β0 − ϕ)Γ(1 − β1 − ϕ)

.

(10) 

Applying the inverse Mellin transform [37], defined by M − 1
{F(ϕ), z} = 1

2πi

∫ c+i∞
c− i∞ F(ϕ)z− ϕdϕ, to Eq. (10) yields a set of functions 

which can be represented by Meijer G-functions as 

G1(z) =
1

2πi

∫

L
F1(ϕ)z− ϕdϕ=

defG0,0
0,4

(

β0, β1, β2, β3

|z

)

,G2(z) =
1

2πi

∫

L
F2(ϕ)z− ϕdϕ=

defG4,0
0,4

(

β0, β1, β2, β3

|z

)

,

G3(z) =
1

2πi

∫

L
F3(ϕ)z− ϕdϕ=

defG2,0
0,4

(

β0, β1, β2, β3

|z

)

,G4(z) =
1

2πi

∫

L
F4(ϕ)z− ϕdϕ=

defG2,0
0,4

(

β0, β2, β1, β3

|z

)

,

G5(z) =
1

2πi

∫

L
F5(ϕ)z− ϕdϕ=

defG2,0
0,4

(

β0, β3, β1, β2

|z

)

,G6(z) =
1

2πi

∫

L
F6(ϕ)z− ϕdϕ=

defG2,0
0,4

(

β1, β2, β0, β3

|z

)

,

G7(z) =
1

2πi

∫

L
F7(ϕ)z− ϕdϕ=

defG2,0
0,4

(

β1, β3, β0, β2

|z

)

,G8(z) =
1

2πi

∫

L
F8(ϕ)z− ϕdϕ=

defG2,0
0,4

(

β2, β3, β0, β1

|z

)

,

(11) 

where i is the imaginary unit, and the Meijer G-functions are defined via a line integral in the complex plane as [36–39]: 

Gl,n
p,q

(
a1,⋯, ap

b1,⋯, bq
|z

)

=
def 1

2πi

∫

L

∏l
j=1Γ

(
bj + s

)∏n
j=1Γ

(
1 − aj − s

)

∏p
j=n+1Γ

(
aj + s

)∏q
j=l+1Γ

(
1 − bj − s

)z− sds, (12) 

where a1...an, an + 1...ap, b1...bl, and bl + 1...bqare parameter groups. Clearly, a fourth-order differential equation will have four linearly 
independent solutions. The linear dependence of the functions G 1− 8(z) are investigated as follows. If no pair among βi, i = 0, 1, 2, 3 
differ by an integer, then the four linearly independent solutions are referred to as the fundamental solutions [38]. Exceptional cases in 
which any pair among βi differs by an integer are studied in Section 2.2 and the related solutions are called alternative solutions.

Among the solutions of G1 − 8(z), G1(z) = 0 by Cauchy’s theorem because F1(ϕ) has no poles. G2 − 8(z) can be represented by a linear 
combination of another set of Meijer-G functions: 

G2(z) = a1W0(z) + a2W1(z) + a3W2(z) + a4W3(z),
G3(z) = a5W0(z) + a6W1(z),G4(z) = a7W0(z) + a8W2(z),
G5(z) = a9W0(z) + a10W3(z),G6(z) = a11W1(z) + a12W2(z),
G7(z) = a13W1(z) + a14W3(z),G8(z) = a15W2(z) + a16W3(z),

(13) 

where a1 − 16 are constants (with detailed derivation shown in Appendix B) and 

W0(z) = G1,0
0,4

(

β0, β1, β2, β3
|− z
)

,W1(z) = G1,0
0,4

(

β1, β0, β2, β3
|− z
)

,

W2(z) = G1,0
0,4

(

β2, β0, β1, β3
|− z
)

,W3(z) = G1,0
0,4

(

β3, β0, β1, β2
|− z
)

.

(14) 

Thus, the set of fundamental solutions are given by 

W(z) = c0W0(z) + c1W1(z) + c2W2(z) + c3W3(z), (15) 

where c0 − 3 are unknown constants to be determined by boundary and load conditions. As mentioned above, the set of fundamental 
solutions is valid only if no pairs among βi differ by an integer, otherwise pairs among Wi(z) will be linearly related. Details are given in 
the next section.

2.2. Property of linear dependence and alternative solutions among W0 − 3 under different integer difference conditions

To study the linear dependence property among the fundamental solutions, we apply the property of the gamma function of Eq. (9). 
It is easy to prove that 
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Γ(βi + ϕ)
Γ
(
1 − βj − ϕ

) = ( − 1)Z Γ
(
βj + ϕ

)

Γ(1 − βi − ϕ)
, ifβi − βj = Z ∈ Z, i ∕= j, (16) 

where Z is the set of integers. As a result, we have a pair of linearly dependent solutions 

Wi(x) = (− 1)ZWj(x), (17) 

with the integer difference condition (IDC) of parameters βi (i = 0, 1, 2, 3) of W0 − 3 in Eq. (14)

Δβij = βi − βj = Z ∈ Z, i < j. (18) 

This means that every two solutions out of the four are linearly dependent if Δβij is an integer, thus requiring one alternative 
solution [36]. i < j is assumed without loss of generality. Since βi is determined by the exponent m, we derive the corresponding 
requirements on m from Eq. (18). Obviously, two pairs of Δβij are equivalent, namely 

Δβ01 = Δβ23,Δβ02 = Δβ13, (19) 

there are therefore four Δβij cases that should be studied, i.e. Δβ01, Δβ02, Δβ03, and Δβ12. To illustrate the procedure, we here take the 
case of Δβ12 as an example.

Clearly, satisfying IDC of Δβ12 and m > 2 requires 
⎧
⎨

⎩

Δβ12 =
3m − 1
4 − 2m

= Z ∈ Z

m > 2
, (20) 

which yields the IDC of Δβ12 in terms of m as 

m =
4Z2 + 3
2Z2 − 1

, Z2 = 1, 2,3, ..., (21) 

which means that W1(z) and W2(z) are linearly dependent and therefore alternative solutions are necessary. Recalling Eq. (11), G6(z) 
cannot be represented by the linear combination of W1(z) and W2(z) because of Δβ12 being integer [38]. Thus G6(z) becomes linearly 
independent of the fundamental solutions, suitable to be used as an alternative solution: 

Ŵ1(z) = G6(z), (22) 

where ‘Ŵi(z)’ or ‘W̃i(z)’ indicate that the solution Wi(z) is replaced by an alternative Ŵi(z) or W̃i(z). This concludes the case. Alter
native solutions in other cases can be obtained based on the same principle.

After investigating all possible Δβij cases, we classify all six cases, including the five cases where alternative solutions are required 
and one case where fundamental solutions, Eq. (15), are available, show the processing routes in Fig. 2, and tabulate the final set of 
solutions in Table 1.

Obviously, the variable substitution of Eq. (4) is not valid for Case 1 with m = 2, which therefore should be treated separately. For 

Fig. 2. Classification diagram of alternative solutions of Cases 1-6.
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completeness, a brief derivation is given below.
When m = 2, we perform a variable substitution as 

z = lnx. (23) 

This transforms the ODE with variable coefficient into an ODE with constant coefficient which can be easily solved. Appendix C
exhibits the process. The solution writes 

W(x) = x−
3
2[c0cos(k1lnx)+ c1sin(k1lnx) + c2cosh(k2lnx)+ c3sinh(k2lnx)], (24) 

where 

k1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
17
4

+
̅̅̅̅̅̅̅̅̅̅̅
ξ + 4

√
√

, k2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
17
4

+
̅̅̅̅̅̅̅̅̅̅̅
ξ + 4

√
√

. (25) 

In summary, for any given m ≥ 2, exact solutions of the flexural wave equation for ABH beam are now all derived. These exact 
solutions will be applied to derive the dynamic stiffness (DS) matrix, as discussed in Section 2.3 hereafter.

2.3. Derivation of dynamic stiffness matrix using exact solutions

For a given m, the exact fundamental solutions and alternative solutions determined above can be used to construct the DS matrix of 
an ABH element as follows.

The sign convention for an ABH beam element is defined in Fig. 3. The amplitudes of the angle of rotation Θ, the shear force V, and 
the bending moment M take the following form 

Θ(x) =
dW
dx

, (26) 

M(x) = EI(x)
d2W
dx2 , (27) 

V(x) = −
d
dx

(

EI(x)
d2W
dx2

)

. (28) 

Referring to Fig. 3, the end conditions for deflections and forces of the beam element can be applied as follows: 

W1 = W(x = x1),Θ1 = Θ(x = x1),M1 = − M(x = x1),V1 = − V(x = x1),

W2 = W(x = x2),Θ2 = Θ(x = x2),M2 = M(x = x2),V2 = V(x = x2).
(29) 

Table 1 
Alternative solutions and integer difference condition (IDC) for m in all cases.

IDC for m Alternative solutions

Case 1 Complementary set of Cases 2-5 Fundamental solutions, Eq. (15)
Case 2 m =

4Z2 + 3
2Z2 − 1

,m ∕=
4Z2 + 1
2Z2 − 1

,Z2 = 1,2,3, ... Ŵ1(z) = G6(z)

Case 3 m =
4Z3 + 1
2Z3 − 1

,m ∕=
4Z3 + 3
2Z3 − 1

,Z3 = 1,2,3, ... Ŵ0(z) = G5(z)

Case 4 m =
4Z4 + 5
2Z4 + 1

,Z4 = 1,4,7, ... Ŵ0(z) = G5(z)
Ŵ1(z) = G6(z)

Case 5 m =
4Z5 + 2
2Z5 − 1

,Z5 = 1,2,3, ... Ŵ2(z) = G4(z)
Ŵ3(z) = G7(z)

Case 6 m =
4Z6 + 1

2Z6
,Z6 = 1,2,3, ... W̃1(z) = G3(z)

W̃3(z) = G8(z)

Fig. 3. Sign convention for an ABH beam element.
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Substituting Eqs. (12, 28–30) into Eqs. (29) gives 

d = Dc, f = Fc, (30) 

with 

d =

⎡

⎢
⎢
⎣

W1
Θ1
W2
Θ2

⎤

⎥
⎥
⎦, f =

⎡

⎢
⎢
⎣

V1
M1
V2
M2

⎤

⎥
⎥
⎦, c =

⎡

⎢
⎢
⎣

c0
c1
c2
c3

⎤

⎥
⎥
⎦. (31) 

Eliminating the unknown constant vector c from Eqs. (30) yields the relationship between the force vector and the deflection vector 

f = FD− 1d = Kd, (32) 

and the 4 × 4 DS matrix K of the ABH beam can be obtained as 

K = FD− 1. (33) 

Since there are six different forms of the exact solutions including the alternative solution and it is difficult to simplify the operation 
of Meijer G-functions, the expressions of K for all cases are not detailed here. One may obtain them through symbolic operation in a 
rather straightforward way.

Note that the selection of the coordinate system used in this paper is part of the tactic in order to get the mathematical solution since 
h(x) expression significantly affects the form of the differential equation when deriving exact solutions. Having said that, the DS matrix 
established above for ABH beams can be combined with other DS models to analyze compound structures using the same coordinate 
transformation and assembly procedures as those used in FEM. Characterizations of the dynamics of ABH beams and their assemblies 
in other coordinate systems are therefore possible using the proposed method. The detailed process of coordinate transformation and 
element assembly is provided in [30].

3. Numerical procedures, results, and discussions

For steady-state response analysis under a harmonic excitation, the deflection amplitude of the beam ends can be obtained directly 
via Eq. (32). After obtaining the constant vector, the entire displacement field of the beam can be determined.

A reliable and accurate method, referred to as the Wittrick-Williams (WW) algorithm, was developed [40] for calculating the 
natural frequencies of structures modeled by DSM. The algorithm, after a trial frequency ω* is input, directly calculates the number J 
(ω*) of natural frequencies lower than ω*. A frequency sweep of ω* will yields the interval where J(ω*) undergoes sudden changes, and 
then the bisection method or other root-finding methods can be applied to compute the natural frequency of any desired order with a 
preset precision. J(ω*) of a structure modelled by DS elements under given boundary conditions can be mathematically expressed as 
[40] 

J(ω∗) = J0(ω∗) + s
(

KΔ
g (ω∗)

)
, (34) 

and 

J0(ω∗) =
∑

j0(ω∗), (35) 

where KΔ
g (ω∗) is the upper triangular matrix applying the Gauss elimination to the global DSM Kg(ω*) after applying boundary 

condition; function s(⋅) is the number of negative elements on the leading diagonal of KΔ
g ; and J0(ω*) the number of natural frequencies 

of fully clamped structures lower than ω*, which is the summation of each j0(ω*), the number of resonant frequencies of every fully 
clamped component DS elements lower than ω*.

3.1. Improved WW algorithm for ABH beams

In practice, although s
(

KΔ
g (ω∗)

)
can be easilly obtained, expressions for j0(ω*) can be a problem. In mathematics, it represents the 

number of zeros of the common denominator δ of the DS matrix below ω*. Therefore, in an ideal situation where the zeros of δ can be 
easily solved, j0can be analytically expressed, examplified by the case of uniform rods and beams [40,41]. However, j0 cannot be 
directly solved for ABH beams where the common denominator of the DS matrix is expressed by special functions, which accordingly is 
called the j0 problem/count [27,41]. To address the j0 problem for non-uniform beams, a j0 table approach [31] was developed inspired 
by the work in [27]. However, the j0 table approach suffers from the non-convergence problem in the context of ABH beams due to the 
significant difference between the minimum and the maximum cross-sectional parameters. We therefore need to revamp the approach 
as detailed below.

To overcome the deficiency of the j0 table approach for non-uniform beams in previous work which fails in ABH structures because 
of the significant differences between the minimum and the maximum cross-section parameters, we introduce a reference beam as the 
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initial guess. The concerned ABH beams are divided into enough segments of stepped beams, each with slightly lower bending stiffness 
and linear density compared to the original ABH beams. Therefore, the clamped-clamped natural frequencies of the stepped beam and 
the concerned ABH beam should satisfy 

ωtn < ωn < ωt(n+1), n = 1, 2, 3..., (36) 

where ωn is the unknown and n-th resonant frequencies of the clamped-clamped interested beam; ωtn is the n-th resonant frequencies of 
the clamped-clamped reference beam. ωtnis calculated using WW algorithm for uniform beam assemblies [26,40] without difficulty 
and a frequency sequence of the reference beam, ωt1, ωt2, …ωtn… serves as stored data. For a given trial frequency ω*, the position i in 
the frequency sequence can be determined, satisfying the inequality 

ωti < ω∗ < ωt(i+1). (37) 

Then the newly developed j0(ω*) count is solved and expressed as 

j0(ω∗) = i −
1
2
[sign(δt(ω∗)δt(ωti))+1], (38) 

where sign( ⋅ ) is the sign function and δt(ω) is the common denominator of the DS matrix of ABH beam, i.e. the determinant of D in Eq. 
(30).

Note that the step beam is not an approximate treatment of ABH beams. The frequency sequence of the stepped beam is not to 
replace the natural frequencies of ABH beams. Instead, the sequence only serves as stored data to obtain the j0 count so that WW 
algorithm can be deployed. Above algorithm still ensures the accuracy and efficiency because the DS matrix K in Eq. (35) of ABH beams 
and its common denominator δt in Eq. (38) are derived from the exact shape function. The revamped WW algorithm is applicable to 
ABH elements, beam assemblies composed of ABH elements, non-uniform DS elements, or any other DS elements where the exact 
shape functions are represented by special functions. In numerical examples to be discussed in subsequent sections, we apply this 
revamped algorithm to determine the natural frequencies of ABH beams, demonstrate and verify its extreme accuracy and efficiency.

3.2. Validation of the dynamic stiffness model

In the following-up numerical analyses, steel is used in all examples with elastic modulus E = 200Gpa and mass density ρ =
7850kg/m3. The geometrical parameters and boundary conditions are given in tables and figures in due course. FEM simulations are 
performed using COMSOL Multiphysics, where the Bernoulli-Euler beam theory and the cubic Lagrange elements are employed. The 
element type of FEM is specified so that readers can reproduce the results. The Meijer G-functions can be evaluated by the built-in 
functions in mathematical software. Numerical calculations of each entry of the DS matrix are performed with any prescribed pre
cision to ensure the calculation accuracy. The frequency range covered by analysis is chosen to satisfy the inequality k(x)h(x) ≪ 1 so 
that shear effects can be neglected, where k(x) is the local flexural wavenumber [35]. For the revamped WW algorithm, stepped 
uniform beams with 100 segments are used as the reference beam. To challenge proposed method and verify its accuracy, we 
deliberately selected extreme numerical parameters (a beam with extremely thin residual thickness at the end), thus leading to 
pronounced variations in wavelengths and wave amplitudes. Relevant to practical realizations, previous studies [42] have shown that 
a digital controlled virtual ABH can be designed as long as the mechanical impedance of the ABH portion can be predicted using a 
numerical model and reproduced by a digitally control electro-mechanical element (such as piezoelectric patches). This would allow 
for avoiding the direct use of the physical ABH as well as avoiding the potential mechanical problems. In that sense, the present model 
calculation method will be extremely useful. Additionally, normal numerical parameters are considered for application in mechanical 
engineering.

We first validate the DSM model for Case 1 using m = 4, serving as an illustrative example which does not require alternative 
solutions. An ABH beam is clamped at x2 and free at x1, as shown in Fig. 1. Geometrical parameters of the beam are listed in Table 2. 
The first fifty natural frequencies are determined using the present method and compared with the FEM results using different numbers 
of elements (NOE). For conciseness, we choose eight representative values among the first fifty calculated frequencies and presented 
them in Table 3. All results bear the first five significant figures, and their relative errors (RE) are calculated based on the convergent 
results of the FEM. The efficiency of the present method can be quantified by showing the NOE used in FEM when calculating natural 
frequencies of given orders to meet the RE requirements. For instance, at least 43 elements are required for the FEM to give the first 
12th natural frequencies to meet 0.1 % RE compared with DSM; 90 and 214 elements are needed for the first 24th natural frequencies 
to reach a RE below 0.1 % and 0, respectively; etc. Table 3 shows that FEM with insufficient NOE always overestimates the accurate 
resonant frequencies given by the DSM, which is reasonable. Note that the DSM requires only one element to obtain convergent and 
accurate results, which otherwise would require significantly large NOE in FEM. The line chart in Fig. 4 is drawn to show the accuracy 
of the DSM more clearly. The horizontal axis contains five modal orders, while the vertical axis represents the NOE. The blue line 

Table 2 
Geometrical parameters used in Table 3.

Thickness h(x)=0.024x4, 0.1≤ x ≤0.2

Width 3.84 × 10-5 m
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represents the NOE required to calculate fifty resonant frequencies and meet 0.1 % RE requirement. The red line represents the NOE to 
calculate fifty resonant frequencies and meet 0 RE requirement. To accurately handle higher order modes, the NOE required in the 
finite element method undergoes a sharp increase (red line).

To further test the accuracy of the proposed method, two additional ABH beam configurations are analyzed by choosing more 
realistic beam dimensions (to accommodate practical fabrication requirement). Configuration 1 follows a thickness profile of h(x) =
0.016x4 with 0.5 ≤ x ≤ 0.9 and Configuration 2 has h(x) = 0.0256x4 with 0.75 ≤ x ≤ 0.95. Note both configurations share identical tip 
thicknesses h1 = 1mm and widths b = 2cm. Both ABH beams are clamped at x2 and free at x1, as illustrated in Fig. 1. The first 50 natural 
frequencies of flexure modes are computed using the present method and FEM with different number of elements. The results show 
good agreement between the two approaches, with a few representative and arbitrarily selected data tabulated in Table 4 for illus
tration purposes.

Then a uniform beam whose thickness is the same as ABH at x2 is attached to the ABH, as shown in Fig. 5. A harmonic force f(t) with 
an amplitude of F0 = 1N is applied at xf. Geometrical parameters are listed in Table 5. The end node x3 is clamped and other nodes are 
free. The frequency response functions (FRF) are calculated using FEM and DSM, respectively. Two configurations of NOE (300, 500) 
used in FEM are considered. Only three elements, i.e. one ABH beam element and two uniform beam elements are used in the DSM. 

Table 3 
Natural frequencies (Hz) and relative error (values in ()) between the two methods.

Mode FEM (NOE) DSM (NOE)

43 110 90 214 195 981 1

1 3.1463(0) 3.1463(0) 3.1463(0) 3.1463(0) 3.1463(0) 3.1463 3.1463(0)
6 70.586(0.01 %) 70.581(0) 70.582(0) 70.581(0) 70.581(0) 70.581 70.581(0)
12 295.19(0.11 %) 294.89(0) 294.90(0.1 %) 294.88(0) 294.88(0) 294.88 294.88(0)
… ​ ​ ​ ​ ​ ​ ​
23 1130.1(1.20 %) 1117.2(0.04 %) 1117.7(0.09 %) 1116.8(0 %) 1116.8(0 %) 1116.8 1116.7(0.01 %)
24 1237.5(1.62 %) 1218.4(0.05 %) 1219.0(0.10 %) 1217.8(0) 1217.9(0.01 %) 1217.8 1217.8(0)
… ​ ​ ​ ​ ​ ​ ​
48 5800.7(16.9 %) 4993.6(0.64 %) 5027.0(1.31 %) 4964.7(0.05 %) 4965.9(0.08 %) 4962.0 4962.0(0)
49 6053.8(17.0 %) 5208.2(0.68 %) 5251.9(1.53 %) 5176.0(0.06 %) 5177.3(0.09 %) 5172.9 5172.9(0)
50 6393.8(18.7 %) 5427.4(0.73 %) 5485.6(1.81 %) 5391.7(0.06 %) 5393.2(0.09 %) 5388.2 5388.2(0)

Fig. 4. NOE used in FEM to calculate fifty natural frequencies to meet the RE requirement.

Table 4 
Natural frequencies (Hz) of two configurations in mechanical background.

Mode number

Method (NOE) 1 2 3 8 12 20 40 50

Configuration 1 FEM (100) 56.088 162.17 352.99 2677.1 6201.0 17700 72652 1.1455•105

​ FEM (200) 56.088 162.17 352.99 2677.1 6200.8 17696 72407 1.1371•105

​ FEM (500) 56.088 162.17 352.99 2677.1 6200.8 17696 72388 1.1364•105

​ DSM (1) 56.088 162.17 352.99 2677.1 6200.8 17696 72388 1.1364•105

Configuration 2 FEM (100) 457.56 1982.8 4980.1 42178 98696 2.8315•105 1.1628•106 1.8304•106

​ FEM (200) 457.56 1982.8 4980.1 42178 98696 2.8312•105 1.1607•106 1.8230•106

​ FEM (500) 457.56 1982.8 4980.1 42178 98696 2.8312•105 1.1606•106 1.8225•106

​ DSM (1) 457.56 1982.8 4980.2 42178 98696 2.8312•105 1.1606•106 1.8224•106
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Results in the low frequency range (0-500 Hz) and higher frequency range (4000-5000 Hz) are shown in Fig. 6(a) and Fig. 6(b), 
respectively, which both show good agreement between the DSM and FEM using sufficient (500) NOE. As the NOE used in FEM in
creases, the FEM results converge towards those from the DSM.

The DSM models for Cases 2-6 are also validated in terms of FRF analysis through comparison with FEM using 500 NOE. Since Case 
4 is a combination of Cases 2 and 3, only Cases 4, 5, and 6 are presented here by choosing m as 3, 2.8, and 2.5, respectively. The case 
with m = 2 is also included in the comparison for the completeness of the validation. Geometrical parameters used in the calculations 
are given in Table 6. Note other parameters remain the same among different cases. Fig. 7(a–d) show the FRF curves of the four 
structures in 0-1000 Hz, all showing good agreement between the two sets of results.

To examine the ability of DSM in characterizing typical ABH phenomena, Fig. 8(a–d) show the displacement amplitudes of the 
structure described by Fig. 5 and Table 6 and subjected to the same harmonic point force excitation at an arbitrarily selected frequency 
f = 240Hz. Again, only one ABH element is used in the DSM to obtain the whole displacement field of the ABH beam. From the plotted 
deformation shapes, one can see the typical ABH phenomena: progressively shortened local wavelengths, increased oscillating am
plitudes along the decreased structural thickness, and increasing energy concentration near the ABH tip. One can also observe that at 
the same frequency, more pronounced ABH phenomena occur in the structures with a largerm, when all other ABH parameters remain 
unchanged.

In summary, the proposed DSM models for ABH elements with m ≥ 2 are systematically validated. Using just one element, DSM can 
accurately describe the entire displacement field of the ABH and capture the ABH behavior. It can be surmised that more complex 
structures composed of ABH beams can also be efficiently modeled in the DSM framework due to the versatility of the DSM.

Fig. 5. An ABH beam attached to a uniform beam is excited by a harmonic point forcef(t).

Table 5 
Geometrical parameters used in Fig. 6.

Thickness of ABH h(x)=0.024x4, 0.1 ≤ x ≤ 0.2

Thickness of the uniform beam 3.84 × 10-5 m
Coordinate range of the uniform beam 0.2 ≤ x ≤ 1/3
Point of application of f(t) xf = 0.3 m
Response point x1 in Fig. 5 (tip)
Width 3.84 × 10-5 m

Fig. 6. FRF curves |w|/F0 of ABH with m = 4 of Case 1 calculated by DSM and FEM.
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3.3. Comparison of exact solution using Meijer G-function and hypergeometric function [35]

It should be noted that the exact solutions expressed by the hypergeometric function (HGF) [35] may, in principle, also be 
employed to derive the DS matrix. This option, however, was abandoned due to two reasons. One is that series solutions will inevitably 
introduce series approximation when using finite terms. Although the HGF has become built-in functions in most mathematical 
software, the alternative solutions contain other infinite series which cannot avoid approximation, resulting in inaccuracy approxi
mation. Another reason is that alternative solutions and their derivatives with complicated series forms may require considerable 
computational effort.

To substantiate the above arguments, we present a quantified comparison of two DSM models using respectively the Meijer G- 
function (DSM-MG) and HGF (DSM-HG) with finite terms N. An ABH beam shown in Fig. 1 and clamped at x2 is used again for this 
purpose. Geometrical parameters used are listed in Table 7. The first thirteen natural frequencies have been determined. We examine 
four representative natural frequencies, namely the 7th, 9th, 11th, and 13th, with results tabulated in Table 8. Three models, including 
DSM-HG, DSM-MG, and FEM with 500 NOE, are included for comparison. The number of terms of the HGF series taken in DSM-HG is 

Table 6 
Geometrical parameters used in Figs. 7 and 8.

m 2, 2.5, 2.8, 3

Thickness of ABH h(x)=0.001xm, 0.2 ≤ x ≤ 0.4
Thickness of the uniform beam h(0.4)
Coordinate range of the uniform beam 0.4 ≤ x ≤ 0.5
Point of application of f(t) xf = 0.48 m
Response point x1 in Fig. 5 (tip)
Width 0.04 m

Fig. 7. FRF curves |w|/F0 calculated by DSM and FEM of ABH with: (a) m = 2, (b) m = 2.5 of Case 6, (c) m = 2.8 of Case 5, (d) m = 3 of Case 4.
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80, 100, 120, and 150, respectively.
Table 8 shows that a good agreement is reached between DSM-MG and FEM. The convergent 7th and 9th resonant frequencies 

require 80 and 100 terms, respectively, for DSM-HG. The 11th and 13th resonant frequencies would require 120 and 150 terms, 
respectively, for DSM-HG to achieve reasonably accurate result. The determinant of the DS matrix of DSM-MG and DSM-HG with 

Fig. 8. Displacement amplitude at 240 Hz calculated by DSM and FEM of ABH with: (a) m = 2, (b) m = 2.5 of Case 6, (c) m = 2.8 of Case 5, (d) m =
3 of Case 4.

Table 7 
Geometrical parameters used in Table 8.

Thickness h(x)=0.001x2.8, 0.2 ≤ x ≤ 0.4

Width 0.04 m

Table 8 
Natural frequencies (Hz) determined by three models. ‘-’ represents that the result does not converge.

Mode DSM FEM

DSM-HG (number of terms of series taken) DSM-MG

80 100 120 150

7 74.789 74.789 74.789 74.789 74.789 74.789
9 - 126.51 126.51 126.51 126.51 126.51
11 - - 192.02 192.02 192.02 192.02
13 - - - 271.31 271.31 271.31
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different terms of series taken is plotted in Fig. 9. Each zero point of the determinant represents a natural frequency. It is clear that 
DSM-HG using finite terms cannot be applied to forecast the determinant accurately. As more terms are used, curves of DSM-HG 
converge towards those from DSM-MG, which explains the reason behind the inaccurate prediction of the natural frequency using 
DSM-HG in Table 8. Undoubtedly, higher resonant modes would require more terms to be included in the DSM-HG to reach the desired 
convergence, at the expenses of increasing computational cost.

We also perform the response analysis by constructing linear equations regarding undetermined coefficients through boundary 
conditions and continuity conditions (the same procedure as [35]) to clarify the concerns that the application of DSM will not require 
higher terms of series taken than classical method in [35]. The structure in Table 6 for the Case m = 2.8 is considered and other 
configurations are the same. The displacement response amplitude of the ABH plotted in Fig. 10 is calculated by applying exact so
lutions expressed by HGF and Meijer G-functions for comparison. Fig. 10(a–d) clearly show that more terms of HGF are needed in 
higher frequencies to capture the ABH phenomena, to be on pair with Meijer G-functions.

4. Conclusions

In this paper, the exact shape functions for ABH of arbitrary power m ≥ 2 are mathematically derived based on the Euler-Bernoulli 
theory and used to further derive the exact dynamic stiffness matrix through symbolic computation. For m > 2, the integral repre
sentations of the exact solutions are derived by the application of the Mellin integral transformation and are expressed by the Meijer G- 
functions. Solution for the special case with m = 2 is also derived for providing a complete set of solutions to all ABH-relevant con
figurations. Considering the requirements for linearly independent solutions, we classify m into six cases depending on the integer 
difference condition. To accommodate the ABH-specific needs, the Wittrick-Williams algorithm is re-visited and revamped. Numerical 
examples show that the proposed DSM models, which cover all ABH cases with m ≥ 2, alongside the improved algorithm, offer high 
accuracy and efficiency in performing dynamic analysis of ABH beams featuring highly compressed and non-uniformly distributed 
wavelength. Only one element is needed to capture the typical ABH behavior of an ABH beam. Comparisons between the integral and 

Fig. 9. Determinant of the dynamic stiffness matrix of DSM-MG and DSM-HG with: (a) 80 terms (b) 100 terms (c) 120 terms (d) 150 terms of 
series taken.
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series representations of the exact shape functions show the clear advantages of the former in terms of accuracy and efficiency, 
especially for high frequency calculations.

The present studies offer a full set of accurate solutions to ABH beam modelling, covering all ABH-relevant cases with exponent 
equal to and larger than 2 (as specified by the smoothness condition imposed by ABH theory). Therefore, the model can be exploited 
and used to conceive and analyze more complex ABH assemblies which use ABH beams as constituent building elements. For such 
complex structures, the overwhelming advantages of the proposed method over purely numerical ones such as FEM can be anticipated.
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Appendix A. Mathematical derivation of the recursion Eq. (8)

Introducing the differential operator Θ = z d
dz and taking β0 = 0 (Eq. (7)), Eq. (6) is rewritten as 

[Θ(Θ − β1)(Θ − β2)(Θ − β3) − ψ ]W(ψ) = 0, (A.1) 

which can be further expanded to 

Θ4W − Θ3W(β1 + β2 + β3) + Θ2W(β1β2 + β1β3 + β2β3) − ΘWβ1β2β3 − zW = 0. (A.2) 

Here we note 

Θ2W = z
d
dz

(

z
dW
dz

)

= z
dW
dz

+ z2d2W
dz2 ∕= z2d2W

dz2 , (A.3) 

to avoid oversights. The property of Mellin transform of differential operators and the shifting property [37] writes 

M{ΘnW(z),ϕ} = ( − 1)nϕnF(ϕ),M{zW(z),ϕ} = F(ϕ+1). (A.4) 

Applying these properties to Eq. (A.2) yields 

ϕ4F(ϕ) + ϕ3F(ϕ)(β1 + β2 + β3) + ϕ2F(ϕ)(β1β2 + β1β3 + β2β3) + ϕF(ϕ)β1β2β3 − F(ϕ+ 1) = 0, (A.5) 

which can be simplified as Eq. (8), i.e. 

(β0 +ϕ)(β1 +ϕ)(β2 +ϕ)(β3 +ϕ)F(ϕ) = F(ϕ+ 1). (A.6) 

Appendix B. Proof of the linear relation between W0 ¡ 3(z) and G1 ¡ 8(z) expressed by Eq. (13)

The proof of linear relation between W0 − 3(z) and G1 − 8(z) can be done by representing W0 − 3(z) and G1 − 8(z) in terms of the 
generalized hypergeometric functions, using [38]: 

Gl,n
p,q

(
ap

bq

|z

)

=
∑l

h=1

∏l
j=1
(
bj − bh

)∗∏n
j=1
(
1 + bh − aj

)
zbh

∏q
j=l+1Γ

(
1 + bh − bj

)∏p
j=n+1Γ

(
aj − bh

) pFq− 1

( 1 + bh − ap
(
1 + bh − bq

)∗

⃒
⃒( − 1)p− l− nz

)

, (B.1) 

where ap = {a1...ap}, bq = {b1...bp}, ()* indicates that the terms corresponding to j=h and q=h are omitted, and the generalized hy
pergeometric functions are defined by a power series: 

pFq

(
ap
bq

⃒
⃒
⃒
⃒z
)

=
∑∞

k=0

(a1)k...
(
ap
)

k

(b1)k...
(
bq
)

k

zk

k!
, (B.2) 

where ()k is the Pochhammer symbol. An example for obatining a1 − 4 is given below. G2(z) can be expressed by 

G2(z) = G4,0
0,4
(

b0 |z
)
=
∑4

h=1

{
∏4

j=1

[
Γ
(
βj− 1 − βh− 1

)∗]zβh − 1
0F3
(
(1 + βh− 1 − b0)

∗
⃒
⃒( − 1)− 4z

)
}

= Γ(β1 − β0)Γ(β2 − β0)Γ(β3 − β0)zβ0 0F3(b1|z) + Γ(β0 − β1)Γ(β2 − β1)Γ(β3 − β1)zβ1 0F3(b2|z)

+Γ(β0 − β2)Γ(β1 − β2)Γ(β3 − β2)zβ2 0F3(b3|z) + Γ(β0 − β3)Γ(β1 − β3)Γ(β2 − β3)zβ3 0F3(b4|z)

, (B.3) 

where 

b0 = {β0, β1, β2, β3},

b1 = {1 + β0 − β1,1 + β0 − β2,1 + β0 − β3},b2 = {1 + β1 − β0,1 + β1 − β2, 1 + β1 − β3},

b3 = {1 + β2 − β0,1 + β2 − β1,1 + β2 − β3},b4 = {1 + β3 − β0,1 + β3 − β1, 1 + β3 − β2}.

(B.4) 

W0 − 3(z) can be expressed by 
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W0(z) =
1

Γ(1 + β0 − β1)Γ(1 + β0 − β2)Γ(1 + β0 − β3)
( − 1)β0 zβ0 0F3

(

b1

⃒
⃒
⃒
⃒
⃒
( − 1)− 3

( − z)

)

,

W1(z) =
1

Γ(1 + β1 − β0)Γ(1 + β1 − β2)Γ(1 + β1 − β3)
( − 1)β1 zβ1 0F3

(

b2

⃒
⃒
⃒
⃒
⃒
z

)

,

W2(z) =
1

Γ(1 + β2 − β0)Γ(1 + β2 − β1)Γ(1 + β2 − β3)
( − 1)β2 zβ2 0F3

(

b3

⃒
⃒
⃒
⃒
⃒
z

)

,

W3(z) =
1

Γ(1 + β3 − β0)Γ(1 + β3 − β1)Γ(1 + β3 − β2)
( − 1)β3 zβ3 0F3

(

b4

⃒
⃒
⃒
⃒
⃒
z

)

.

(B.5) 

It is shown that 

G2(z) = a1W0(z) + a2W1(z) + a3W2(z) + a4W3(z), (B.6) 

where a1 − 4 are constants given by 

a1 = Γ(1 + β0 − β1)Γ(1 + β0 − β2)Γ(1 + β0 − β3)( − 1)− β0 Γ(β1 − β0)Γ(β2 − β0)Γ(β3 − β0)

= ( − 1)− β0
π3

sinπ(β1 − β0)sinπ(β2 − β0)sinπ(β3 − β0)
,

a2 = ( − 1)− β1
π3

sinπ(β0 − β1)sinπ(β2 − β1)sinπ(β3 − β1)
,

a3 = ( − 1)− β2
π3

sinπ(β0 − β2)sinπ(β1 − β2)sinπ(β3 − β2)
,

a4 = ( − 1)− β3
π3

sinπ(β0 − β3)sinπ(β1 − β3)sinπ(β2 − β3)
,

(B.7) 

which concludes the case. a5 − 16 can be calculated similarly as 

a5 =
( − 1)− β0 π

sinπ(β1 − β0)
, a6 =

( − 1)− β1 π
sinπ(β0 − β1)

, a7 =
( − 1)− β0 π

sinπ(β2 − β0)
, a8 =

( − 1)− β2 π
sinπ(β0 − β2)

,

a9 =
( − 1)− β0 π

sinπ(β3 − β0)
, a10 =

( − 1)− β3 π
sinπ(β0 − β3)

, a11 =
( − 1)− β1 π

sinπ(β2 − β1)
, a12 =

( − 1)− β2 π
sinπ(β1 − β2)

,

a13 =
( − 1)− β1 π

sinπ(β3 − β1)
, a14 =

( − 1)− β3 π
sinπ(β1 − β3)

, a15 =
( − 1)− β2 π

sinπ(β3 − β2)
, a16 =

( − 1)− β3 π
sinπ(β2 − β3)

.

(B.8) 

The above derivation is valid if no pairs among βi differ by an integer. Thus, the linear dependence between W0 − 3(z) is discussed in 
Section 2.2.

Appendix C. Exact solutions for m¼2

Let m=2. Eq. (2) is rewritten as 

x4d4W
dx4 + 12x3d3W

dx3 + 30x2d2W
dx2 − ξW(x) = 0, (C.1) 

where 

ξ = 12ρω2/Eε2. (C.2) 

Application of a variable substitution as 

z = lnx, (C.3) 

can transform Eq. (C.1) into 

d4W
dz4 + 6

d3W
dz3 + 5

d2W
dz2 − 12

dW
dz

− ξW(z) = 0, (C.4) 

which is a differential equation with constant coefficient. Then we may assume a trial solution in the form W = eλz to obtain the 
characteristic equation as 
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λ4 + 6λ3 + 5λ2 − 12λ − ξ = 0, (C.5) 

whose roots write 

λ1,2 = −
3
2
± ik1, λ3,4 = −

3
2
± k2, (C.6) 

where 

k1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
17
4

+
̅̅̅̅̅̅̅̅̅̅̅
ξ + 4

√
,

√

k2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
17
4

+
̅̅̅̅̅̅̅̅̅̅̅
ξ + 4

√
√

. (C.7) 

Clearly, k2 is always a real number and k1 can be either a positive real or an imaginary number, depending on the frequency value. 
Here we use the trigonometric functions defined in the complex plane, allowing for eliminating the discussion about k1, and then the 
solution can be expressed as 

W(x) = x−
3
2[c0cos(k1lnx)+ c1sin(k1lnx) + c2cosh(k2lnx)+ c3sinh(k2lnx)], (C.8) 

where c0 − 3 are unknown constants to be determined by boundary conditions.

Data availability

Data will be made available on request.
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