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Abstract Hysteresis phenomenon widely exists in

various metamaterials and smart actuators. Governing

equations can describe and predict the static/dynamic

behavior of the systems with hysteresis property.

However, the hysteresis force cannot be measured nor

explicitly expressed by state variables, which brings

great challenge for the model reconstruction of the

hysteresis systems, especially when the nonlinear

restoring and damping forces also exist. In this paper, a

data-driven method is proposed to reconstruct the

model of the systems with both hysteresis and

nonlinearity properties from dynamic information.

From the proposed method, the linear, nonlinear, and

hysteresis forces, can be separately reconstructed

based on the data generation with incremental gener-

ation of dynamics signals under supervision. Facing to

the challenge for the functional representation of

hysteresis, based on an agent model, the function

library is successfully constructed. Next, for the

sparsity and accuracy of the reconstruction model,

the sparse regression method is generalized to identify

all the nonlinear terms and coefficients. Once linear,

nonlinear and hysteresis terms are figured out, the

discovery of differential governing equations of

hysteresis dynamic systems is completed. Three

numerical examples are carried out to demonstrate

the effectiveness and capability of the proposed data-

driven method in the dynamic systems with different

nonlinearities, dimensions and hysteresis; and the

model reconstruction for Tachi-Miura polyhedron

(TMP) origami structure, which possesses both hys-

teresis nonlinearity and geometric nonlinearity, is

shown in experiments. The proposed model recon-

struction method realizes the reconstruction of con-

stitutive relation and governing equations of nonlinear

hysteresis systems based on compressive sensing from

dynamics, which demonstrates that great benefit of

dynamic data. The model reconstruction method also

provides an accurate estimation method for constitu-

tive equation for metamaterials, robotic joint, isolation

system, flexibility deployable structures, etc.
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1 Introduction

Hysteresis is a typical nonlinear phenomenon describ-

ing the memory-based relationship between the input

and the output of the systems, where the output not

only depends on the current input but also on its past

history [1]. The hysteresis phenomenon is originated

from magnetic, ferromagnetic and ferroelectric mate-

rials [2], and widely exists in various metamaterials

[3–8] and smart actuators [9–16]. Recently, novel

design of metamaterials receives a lot of attention

from scholars. In particular, origami structures not

only have hysteresis property [17] induced by the

plastic deformation at the creases [18], but also

geometric nonlinearity, which leads to various defor-

mation mechanisms and extraordinary properties,

such as negative Poisson’s ratio [19, 20], multistabil-

ity[21, 22], etc. In order to improve the performance of

metamaterials and smart actuators, the method to

obtain the accurate model for nonlinear hysteresis

system is of great significance. In general, quasi-static

tests could be used to reveal the hysteresis phenomena

of different metamaterials and smart actuators

[23–25], which could also be used to analyze the

influence of different structure parameters on the

hysteresis property [26, 27]. In the process of

hysteresis system modeling, the memory characteris-

tic and rate-dependent property caused by hysteresis

need to be considered and accurately described.

Different expressions for the hysteresis can reflect

the memory characteristic, depending on the previous

input and current state, and thus, the hysteresis force

cannot be expanded as elementary functions of state

variables; Rate-dependent property indicates the

shape and size of hysteresis loop change with ampli-

tude and frequency of external excitations, which

causes the failure of quasi-static tests. Due to the

memory characteristic and rate-dependent property of

the input–output relationship of hysteresis systems, it

is of great challenge to establish an appropriate model

for hysteresis systems.

In order to give the explicit or implicit expression of

nonlinear hysteresis systems, various hysteresis math-

ematical models have been proposed, which can be

approximately divided into two categories: operator-

based models [28–31] and differential-based models

[32, 33]. Operator-based models use hysteresis oper-

ators to describe the hysteresis behaviors of the

nonlinear systems, such as Preisach model [31],

Krasnosel’skii-Pokrovskii model [28], Prandtl-Ishlin-

skii model [30] and Maxwell-Slip model [29]. How-

ever, the operator-based model contains the piecewise

function integral term, which is not conducive to the

analysis of the system. Different from operator-based

models, differential-based models use differential

governing equation to characterize the hysteresis

nonlinearity, such as Bouc-Wen model [33] and

Duhem model [32]. The differential-based models

have simple expression, which is beneficial for the

identification and analysis. Among these hysteresis

mathematical expressions, the Bouc-Wen model has

been widely used because of its capability and

versatility to describe various common hysteresis

cycles [34]. Furthermore, various identification meth-

ods were developed for nonlinear hysteresis systems,

which can be generally classified into two categories:

non-parametric identification method and parametric

identification method [35]. In non-parametric identi-

fication methods, feedforward neural network [36] and

recurrent neural network [37, 38] are the most

representative. Serpico et al. [39] proposed an artificial

neural network scheme to realize magnetic hysteresis

modeling, which was composed of a Preisach memory

block and a feedforward neural network block. Based

on the characteristic that recurrent neural networks can

conduct time series prediction, Zakerzadeh et al. [40]

used LSTM, a modified recurrent neural network, to

model shape memory alloys with hysteresis and

nonlinear dynamics. In parametric identification

methods, the explicit forms of dynamic model are

given, and the corresponding model parameters of

nonlinear hysteresis systems are identified based on

minimization of objective functions. Different kinds

of objective functions were constructed to measure the

difference between model prediction results and

experimental results under different model parame-

ters, such as the root-mean-square of displacement

[34], acceleration [41], hysteretic displacement [42]

etc. The optimal model parameters were obtained by

minimizing the objective function using different

optimization algorithm, such as Genetic algorithm

[43], Particle swarm optimization algorithm [44],

differential evolution algorithm [45] etc. Furthermore,

multiple objective functions were used in the param-

eter identification process in order to improve the

precision of parameter identification. Carboni et al.

[46] identified the parameters of a multi-purpose

rheological device by minimizing the mean square
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error of the restoring force through Differential

Evolutionary algorithm, and then the identified results

are verified by the mean square error of the predicted

displacement and the real displacement. Ortiz et al.

[47] proposed a multi-objective optimization algo-

rithm based on NSGA-II, where multiple objective

functions were considered to minimize the difference

in both displacement and hysteresis cycles. Recently, a

novel alternating state-parameter identification

method was proposed by Lin et al. [48], where two

different objective functions were used in the itera-

tively alternating procedure to separately update the

linear parameters and the nonlinear hysteresis param-

eters in the Bouc-Wen model, and the harmonic

balance method was adopted to estimate the unmea-

surable hysteresis force of the system. An additional

objective function was considered in the iteratively

alternating procedure to estimate the unmeasurable

hysteresis force of the system [49]. Besides, nonlinear

filtering could also be used to improve the accurate

model parameters, such as extended Kalman filter

[50, 51], unscented Kalman filter [52, 53], bootstrap

filter [54] etc. However, in these previous studies, it

assumes that there is no other nonlinear force except

the hysteresis force during the process of identifying

the hysteresis model parameters. In practical applica-

tions, not only nonlinear hysteresis forces but also

other nonlinear constitutive forces such as geometric

nonlinearities, exist in the engineering structures,

which is always ignored in the previous parameter

identification method. A model reconstruction method

considering both hysteresis forces and other explicitly

expressed nonlinear constitutive forces is required.

Based on the assumption that there are only a few

important terms governing the dynamics of the

system, Brunton et al. proposed a model reconstruc-

tion method called Sparse Identification of Nonlinear

Dynamics (SINDy), which combines machine learn-

ing and sparsity regression techniques to determine the

fewest terms in the dynamic governing equations

required to accurately represent the data [55]. By

constructing a candidate function library which con-

tains all the possible terms, the SINDy algorithm

converts the model reconstruction problem into a

sparse regression problem, and the sparse regression

problem is solved by sequential thresholded least-

squares algorithm. Furthermore, the SINDy algorithm

is extended to reconstruct dynamic models described

by partial differential equations [56], which can be

used to describe the flow field and its dynamics

[57–59]. Then, Messenger et al. [60, 61] proposed a

weak SINDy algorithm based on the weak formulation

of the differential equation to avoid approximation of

pointwise derivatives and improve the robustness to

noise. The weak SINDy was utilized to reconstruct the

mean-field equations of interacting particle systems

[62]. In order to reconstruct the dynamic model of a

multistable dynamic system, we had proposed a

generalized data-driven reconstruction method based

on data assembly principle and sparsification param-

eter determination to construct ergodic dataset and

resolve the difficulty on the determination of sparsi-

fication parameter [63]. Furthermore, the generalized

data-driven reconstruction method was extended to

non-autonomous nonlinear systems with multiple

attractors, where the accurate description is obtained

under the least volume of test data set [64]. The main

idea to deal with external inputs is that the external

inputs of the system as treated as measurable variable

in the function library matrix. In summary, when

applying the SINDy algorithm, it is required that the

state variables can be measured directly or obtained by

taking derivative or integral of other state variables,

and all the terms in the governing equations can be

expressed by the elementary functions of state vari-

ables. However, for nonlinear hysteresis systems, the

hysteresis force can neither be directly measured nor

be obtained by taking derivative or integral of state

variables. Besides, hysteresis forces cannot be

expressed by the elementary functions of state vari-

ables, which poses a great challenge to building an

appropriate library. Therefore, for the identification

and description of the nonlinear systems with hystere-

sis property, the following challenges are faced in the

model reconstruction: (a) How to extract information

about hysteresis force during data generation; (b) How

to build an appropriate library function matrix for

system containing both nonlinearity and hysteresis.

In this paper, faced to the challenges above on the

reconstruction of the constitutive relation and govern-

ing equations of hysteresis systems, a data-driven

model reconstruction method is proposed. In the

supervised data generation, the training data is gener-

ated with supervision, and the linearity and nonlin-

earity of the system are decoupled in order to

reconstruct the nonlinear forces and hysteresis force.

Then, the agent model of the original hysteresis

system is established, and the nonlinear function
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library is constructed based on the agent model. By

three numerical examples and one experiment, the

effectiveness and capability of the proposed data-

driven method is demonstrated. In the experiment, an

origami structure is given as the verification case of the

proposed method. In the origami structure, the non-

linearity comes from two aspects: the geometric

nonlinearity brought by the nonlinear geometric

arrangement with creases and the constitutive nonlin-

earity and hysteretic nonlinearity caused by non-rigid

facets. Thus, the novelties of this paper are as follow.

Firstly, the form of geometric nonlinearity, hysteresis

nonlinearity and constitutive nonlinearity are sepa-

rated and explicated in the reconstruction model.

Secondly, it gives the exact expression and prediction

of the hysteresis nonlinear constitutive of different

structures and materials for different loading ampli-

tude utilizing dynamic information. The rest of the

paper is organized as follows: Sect. 2 introduces the

procedure of the data-driven reconstruction method,

including multistep excitation step, nonlinear function

library construction step and nonlinear parameter

solving step. To demonstrate the effectiveness and

capability of the proposed data-driven reconstruction

method, three numerical examples are carried out in

Sect. 3. After that, the data-driven model reconstruc-

tion method is used to obtain the governing equations

of a TMP origami structure in Sect. 4. Finally, the

conclusions are presented in Sect. 5.

2 Model reconstruction method

For hysteresis systems, it is of importance to obtain

accurate representation of the constitutive relations to

serve for the analysis and prediction of statics and

dynamic behaviors. Figure 1 shows different experi-

mental approaches to obtain the constitutive relations.

Usually, quasi-static tension and compression tests, as

shown in Fig. 1a, are utilized to obtain the constitutive

relation of the materials or structures by a test

specimen. In the quasi-static tests, since the hysteresis

property depends on different loading velocity, the

constitutive relations of hysteresis cannot be recon-

structed from the quasi-static tests, due to the lack of

dynamic response signals. On the contrary, for

Fig. 1 Different approaches to obtain constitutive relation of

metamaterials with hysteresis and nonlinear properties. a Quasi-

static test by single tension and the constitutive relation

reconstruction process from the test data; b Dynamic test for

homogeneous metamaterial with hysteresis in one direction;

c Dynamic test for inhomogeneous metamaterial with hysteresis
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dynamic data, the constitutive relation between hys-

teresis force and deformation can be perceived, since

the dynamic information of velocity and acceleration

are included in the data. As the dynamic experiment

shown in Fig. 1b, assuming the homogeneity in the

main direction, a dynamical input F(t) is given, and the

responses signals xðtÞ; _xðtÞ; €xðtÞ can be estimated.

Furthermore, when the material properties are not

uniform, as the experiment shown in Fig. 1c, for

dynamic input F(t), the differential governing equa-

tions of the system constitute M-DOF nonlinear

hysteresis systems. For the responses xðtÞ; _xðtÞ; €xðtÞ
estimated for the reconstruction, the governing equa-

tion of nonlinear hysteresis systems is described as

M€x ¼ fðx; _xÞ þ zðx; _xÞ þ u ð1Þ

where x ¼ x1 x2 � � � xn½ �T denotes the displace-

ments of measurement points in the system, vector u

represents external excitation; fðx; _xÞ contains restor-
ing and damping forces, both can be expressed by

elementary functions of state variables; while zðx; _xÞ
represents the hysteresis force which cannot be

expressed by elementary functions of state variables.

The main difficulty of model reconstruction of non-

linear hysteresis systems is that hysteresis force can

neither be measured directly nor expressed by ele-

mentary functions of other state variables. Therefore,

in this study, we establish a data-driven method to

reconstruct the governing equations of nonlinear

systems with hysteresis and nonlinearity from

dynamic information. Firstly, in order to separately

reconstruct the linear, nonlinear, and hysteresis forces,

data are generated based on the incremental generation

of dynamics under supervision. Then, by substituting

hysteresis force with nonlinear force, an agent model

for the original hysteresis system is established, and

the nonlinear constitutive function library matrix is

constructed based on the agent model. At last, all the

terms including linear, nonlinear and hysteresis are

figured out by the generalized sparse regression

technique. In summary, the proposed model recon-

struction process contains three steps: Step 1, Super-

vised data generation; Step 2, Nonlinear constitutive

function library construction; Step 3, Nonlinear

parameters regression.

2.1 Step 1: supervised data generation

The effect of nonlinearity and hysteresis depends on

the magnitude of response amplitude, which is the

Fig. 2 Computational framework of supervised data generation for model reconstruction. a Parameter identification for linearization

constitutive relation; b Nonlinear constitutive relation reconstruction by increment ofs dynamic behaviors
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typical characteristics for nonlinear systems. Initially,

when the amplitude of responses is very small, the

linearization part of a dynamic system plays the

dominant role. With the incrementation of the

response amplitudes, larger amplitude of responses

demonstrates more obvious effectiveness of nonlin-

earity and hysteresis properties on dynamic behaviors.

Thus, through the perception of the magnitudes of

response amplitude, data is generated under supervi-

sion for reconstruction of linearity and nonlinearity.

Therefore, the computational framework of super-

vised data generation in the model reconstruction

method is shown in Fig. 2.

First, the linearization constitutive relation of the

system can be reconstructed under small amplitude

responses. As shown in Fig. 2a, since amplitudes of

the responses are small, nonlinearity and hysteresis

have little effect. The linearization equation of Eq. (1)

is written as

€xi þ
Xi�1

j¼1

mj

mi
€xj þ

ci
mi

_yi þ
ki þ ai
mi

yi ¼
1

mi

Xi

j¼1

ujðtÞ; i

¼ 1; :::; n;

ð2Þ

where

y ¼ y1 y2 � � � yn�1 yn½ �T
¼ x1 � x2 x2 � x3 � � � xn�1 � xn xn½ �T : ð3Þ

Then, as Fig. 2a, after assembly of dynamic

response data for small amplitudes, the following

regression problem for linearization system can be

easily constructed as

€xi ¼ Hiðx; _x; €x; uÞhi; ð4Þ

where hi is the linearization parameters of the

nonlinear hysteresis system, Hiðx; _x; €x; uÞ is the cor-

responding function library matrix (see details in

Appendix 1). Here, it is assumed that the external

excitations u could be directly measured or indirectly

approximated, and the external inputs of the system

are considered as library functions in the function

library matrix. Thus, in this way, we can consider the

case where the system is non-autonomous. By solving

the least squares solution of the contradictory equa-

tions Eq. (4), the linear parameters of the nonlinear

hysteresis system can be obtained as

hi ¼ Hy
i ðx; _x; €x; uÞ€xi; ð5Þ

where Hy
i ðx; _x; €x; uÞ represents the Moore–Penrose

inverse of the linear function library matrix

Hiðx; _x; €x; uÞ. Whereas as shown in Fig. 2b, when

the amplitudes of response increase, the effect of

nonlinearity and hysteresis increases. The governing

equations of the system Eq. (1)can be rewritten as

€xi þ
Xi�1

j¼1

mj

mi
€xj þ

ci
mi

_yi þ
ki þ ai
mi

yi þ
1

mi
fni þ

1

mi
zni

¼ 1

mi

Xi

j¼1

ujðtÞ; i ¼ 1; :::; n;

ð6Þ

where fni represents the nonlinear part of restoring and

damping forces, expressed by the elementary func-

tions of state variables; zni represents the nonlinear

part of hysteresis force. Based on Eq. (6), the nonlin-

ear force is given as

Fniðx; _xÞ ¼
1

mi
ðfniðx; _xÞ þ zniðx; _xÞÞ

¼ 1

mi

Xi

j¼1

ujðtÞ � €xi �
Xi�1

j¼1

mj

mi
€xj �

ci
mi

_yi

� ki þ ai
mi

yi; i

¼ 1; :::; n: ð7Þ

So far, both linearity and nonlinearity are recon-

structed. In Eq. (7), the nonlinear force Fniðx; _xÞ
contains both the nonlinear restoring force and damp-

ing forces fniðx; _xÞ, which can be expressed by the

elementary functions of other state variables; while the

nonlinear part of the hysteresis force zniðx; _xÞ cannot
be expressed by the elementary functions of other state

variables. This results in the inability to build appro-

priate function library during the reconstruction of

nonlinear forces, and thus, it requires the technique for

function library determination for the hysteresis

system, called Step 2 in the following illustration.

2.2 Step 2: Nonlinear constitutive function library

construction

In order to solve the construction of appropriate

function library for hysteresis system, the nonlinear

force Fniðx; _xÞ, instead of hysteresis force zðx; _xÞ, is
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selected to establish the agent model. To start with, the

Bouc-Wen model is adopted to describe the hysteresis

force zðx; _xÞ as

_ziðx; _xÞ ¼ ai _yi � ci _yij jzi � di _yi zij j;i ¼ 1; 2; :::; n: ð8Þ

The parameters ai; ci; di are the hysteresis coeffi-

cients, determining the size and shape of hysteresis

loops. In Eq. (8), the term ai _yi has the same effect as

linear restoring force, which is included in the

reconstruction of linearity instead of nonlinearity.

Thus, the nonlinear part of hysteresis force zniðx; _xÞ
can be expressed as

zni ¼ zi � aiyi; i ¼ 1; 2; :::; n: ð9Þ

Substitute hysteresis force zðx; _xÞ by the nonlinear

force Fniðx; _xÞ, the agent model can be given as

_Fniðx; _xÞ ¼
1

mi
ð _f niðx; _xÞ þ _zniðx; _xÞÞ

¼ 1

mi

_f ni �
ci
mi

_yij jðzni þ aiyiÞ

� di
mi

_yi zni þ aiyij j; i
¼ 1; :::; n: ð10Þ

In Eq. (10), zni þ aiyij j is the absolute value of

hysteresis force ziðx; _xÞ, which indicates that the

absolute value sign can be eliminated by identifying

the sign of hysteresis force. Equation (10) is used as

the agent model for constructing nonlinear constitu-

tive function library. Thus, the supervision process of

data based on the sign of the hysteresis force is

proposed as Fig. 3, which helps the determination of

constitutive function library.

In Fig. 3a, in the hysteresis loop, points A and C

denote the zero displacement while points B and D

denote the maximum displacement. For the interval

AB in the hysteresis loop, the sign of the hysteresis

force is positive, while for the interval CD, the sign of

the hysteresis force is negative. Therefore, when the

system is in the interval AB or interval CD, the agent

model of Eq. (10) can be rewritten as

_Fniðx; _xÞ ¼
1

mi

_f ni � ki _yiðFni �
1

mi
fni þ

ai
mi

yiÞ; i
¼ 1; :::; n;

ð11Þ

where ki ¼ ci þ di. The time history data in hysteresis

loop in Fig. 3b are utilized to find out the conditions

that the dynamic signals of the agent system are in the

interval AB or CD. From Fig. 3b, the system is in the

interval AB if and only if yi � 0; _yi � 0, and in the

interval CD if and only if yi � 0; _yi � 0. Based on the

data information and the analysis above, the data

clustering and nonlinear constitutive function library

construction process are shown in Fig. 3c, with the

following two techniques. First, the collected data

matrix X is converted to data matrix Y by a linear

transformation to converts absolute coordinates to

relative coordinates. Then, supervised data clustering

is performed on data matrix Y through a clustering

element. The clustering element puts the input data

into the kernel function hðyi; _yiÞ, and clustering the

data through the output value of the kernel function.

The kernel function hðyi; _yiÞ is defined as

hðyi; _yiÞ ¼ sgnðsgnðyiÞ þ sgnð _yiÞÞ; ð12Þ

where sgnð�Þ stands for sign function. When the output

of kernel function hðyi; _yiÞ is 1, the dynamic signals are

in the interval AB; When the output of kernel function

hðyi; _yiÞ is -1, the dynamic signals are in the interval

CD; When the output of kernel function hðyi; _yiÞ is 0,
the dynamic signals are in the interval BC or DA.

According to Eq. (11), we assume that the nonlinear

force fniðx; _xÞ can be expressed by high-order poly-

nomial functions of x; _x as

fniðx; _xÞ ¼ miðai1y2i þ ai2yi _yi þ ai3 _y
2
i þ ai4y

3
i þ � � �Þ:

ð13Þ

Then, the derivation function _f niðx; _xÞ is expressed
as

_f niðx; _xÞ ¼ miðai1ð2yi _yiÞ þ ai2ð _y2i þ yi €yiÞ þ ai3ð2 _yi €yiÞ
þ ai4ð3y2i _yiÞ þ � � �Þ:

ð14Þ

Therefore, the nonlinear constitutive function

library matrix is constructed as

Hniðyi; _yi; €yi;FniÞ ¼
j j j j j j j j

_Y
2

i � Y2
i � � � _Y

q

i � Yq
i

_Y
2

i � � � _Y
q

i yi � _yi �yi � Fni

j j j j j j j j

2
64

3
75;

ð15Þ

where q is the highest order of polynomial function

fniðx; _xÞ, matrices _Y
m

i ;Ym
i ;

_Y
m

i are
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_Y
m

i ¼ _yi � � � _yi|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
mþ1columns

2

64

3

75; ð16Þ Ym
i ¼

j j j j j
ymi ym�1

i _yi ym�2
i _y2i � � � _ymi

j j j j j

2

4

3

5; ð17Þ

Fig. 3 The supervision and categorization process of data. a Different phases in the hysteresis loop; b Time history corresponding to

the different phases in hysteresis loop; c Schematic diagram of the proposed data collection and assembly process with supervision
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_Y
m

i ¼
j j j j

dðym�1
i _yiÞ
dt

dðym�2
i _y2i Þ
dt

� � � dð _ymi Þ
dt

j j j j

2

64

3

75:

ð18Þ

After the data clustering process, the nonlinear

constitutive function libraryHni can be constructed by

dynamic signals in the interval AB or CD. Thus, the

expression of function library for the hysteresis and

nonlinear systems is solved by agent model.

2.3 Step3: Parameters regression process

After the definition of function library as Eq. (15)

based on the agent model, efficient regression algo-

rithm provides successful interpretability reconstruc-

tion of the constitutive relation with nonlinearity and

hysteresis. Substituting Eq. (13) and Eq. (14) into

Eq. (11), the regression problem can be constructed as

_Fniðx; _xÞ ¼ Hniðyi; _yi; €yi;FniÞhni; ð19Þ

where hni represents the nonlinear coefficients for the

library functions. Specifically, the form of hni is

written as

hni ¼ ni2 � � � niq wi2 � � � wiq 2ai1 �
kiai
mi

ki

� �T
;

ð20Þ

where

wij ¼ aiðpjþ1Þ aiðpjþ2Þ � � � aiðpjþ1�1Þ
� �

; ð22Þ

pj ¼
jðjþ 1Þ � 4

2
; j ¼ 2; 3:::; q: ð23Þ

In order to figure out all nonlinear terms, the sparse

regression process is adopted. Figure 4 shows the

proposed parameter regression process, after the

supervised data generation (Step 1) and nonlinear

constitutive function library construction (Step 2). The

regression utilizes sparse regression technique, which

takes both accuracy and sparsity of the model into

consideration. Next, the proposed regression process

is introduced.

As shown in Fig. 4, from the beginning of this step,

all the nonlinear coefficients hni are solved using

sequential thresholded least-squares method and spar-

sification parameter determination technique(Qian,

et al., 2023). All the parameters are divided into three

categories: D ¼ aiðp1þ1Þ � � � aiðpq�1Þ
� �

corresponds

to the nonlinear damping terms; R ¼
ai aip1 � � � aipq

� �
corresponds to the nonlinear

restoring terms; H ¼ ci di½ � corresponds to the

hysteresis terms. First, nonlinear damping terms D

are directly taken from wij as Eq. (22). Next, the value

of ki is determined by solving the following optimiza-

tion problem as

ki ¼ argmin
ki

Xq

j¼2

nij � kiwij

�� ��2
� 	

: ð24Þ

After that, the nonlinear restoring terms R can be

solved by using the first element in wij as Eq. (21).

Finally, it can be seen from Eqs. (11) and (12) that the

hysteresis terms H cannot be separated when time

history data in the interval AB or CD is used. The

remaining time history data need to be utilized to solve

for the hysteresis terms H. According to Eq. (10), the

hysteresis terms H can be obtained as

di ¼ lyr;

ci ¼ ki � di;
ð25Þ

where

nij ¼
kiaipj þ ðjþ 1Þaipjþ1

kiaiðpjþ1Þ � � � kiaiðpiþ1�1Þ
� �

¼ kiaipj þ ðjþ 1Þaipjþ1
nij

� �
; j ¼ 2; . . .; q� 1;

kiaipj kiaiðpjþ1Þ � � � kiaiðpiþ1�1Þ
� �

¼ kiaipj nij
� �

; j ¼ q;

(

ð21Þ
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l ¼ _Fni �
1

mi

_fni þ
ki
mi

_yij j � ðFni �
1

mi
fni þ aiyiÞ;

r ¼ � 1

mi
ð _yi � zni þ aiyij j � _yij j � ðzni þ aiyiÞÞ:

ð26Þ

Once ai1; ai2; :::; aipq ; ai; ci; di are determined, the

discovery of differential governing equations of the

nonlinear and hysteresis systems is completed.

3 Numerical examples

In this section, three numerical examples are utilized

to verify the effectiveness and applicability of the

proposed data-driven model reconstruction method.

The first example is a single-degree-of-freedom

(S-DOF) hysteresis system with nonlinear damping

force. In this example, the process of the data-driven

model reconstruction method is explained in detail,

and the effectiveness of the method is verified. The

second example is a nonlinear vibration isolation

system with magneto-rheological damper to show that

different hysteresis expressions can be reconstructed

by the agent model. Different from the first example,

the expression of hysteresis force is not consistent with

that in Eq. (8), and the nonlinear restoring force of the

system is taken into account. The third example is a

multiple-degrees-of-freedom (M-DOF) nonlinear hys-

teresis system. Through this example, the applicability

of the proposed method to nonlinear hysteresis

systems with multiple degrees of freedom is

demonstrated.

Fig. 4 The parameters regression process
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3.1 S-DOF degradation model with hysteresis

and nonlinear damping force

For the model reconstruction of a hysteresis system

with nonlinear damping force, the proposed method is

illustrated as Fig. 5. As is shown in Fig. 5a, a S-DOF

hysteresis system with nonlinear damping force is

considered as the degradation model. In Step 1

Supervised data generation: a sweep force excitation

Fig. 5 Model Reconstruction and results of a S-DOF hysteresis

system. a Whole processes of the data-driven method for S-DOF

hysteresis system with nonlinear damping force; b Model

reconstruction results for S-DOF degradation model with

hysteresis and nonlinear damping force
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away from resonance is first applied to hysteresis

system to generate small amplitude response. The

frequency range of the sweep signal is 10–20 Hz, and

the sweep speed is 0.5 Hz/s. The small amplitude

response data are used to identify the linear parameters

hl of the hysteresis system by least squares solution

(Eq. (5)). A sweep force excitation with another

frequency range is then applied to hysteresis system

to generate large amplitude response, whose fre-

quency range is 50–90 Hz, and sweep speed is 2 Hz/s.

The large-amplitude responses containing nonlinear-

ity and hysteresis effectiveness are captured. In Step 2

Nonlinear constitutive function library construction:

the large amplitude response data are clustered by the

output of the kernel function. In Fig. 5a, the data in the

interval AB of the hysteresis loop are represented by

red points while other data are represented by blue

points. After the data clustering process, the nonlinear

constitutive function library is constructed using the

data in the interval AB according to Eqs. (15–18).

Here, the candidate functions for the nonlinear restor-

ing forces and damping forces are chosen as polyno-

mial functions up to fifth order, the corresponding

library functions in the nonlinear constitutive function

library matrix Hni can be obtained by Eqs. (15–18).

The details of the nonlinear constitutive function

library matrix Hni and the corresponding nonlinear

coefficients can be seen in Appendix 2. In Step 3

Parameters regression process: the nonlinear coeffi-

cients (see details in Appendix 2) are first solved using

sequential thresholded least-squares method. Then,

the model parameters are solved step by step as shown

in Fig. 5a. After all the model parameters are obtained,

the differential governing equations of hysteresis

dynamic system is discovered.

The results are shown in Fig. 5b, where the time

history responses and hysteresis loop are compared. It

can be observed from Fig. 5 that the proposed data-

driven method successfully predicts the time history

responses of the hysteresis system, and the hysteresis

force can be accurately reconstructed, which verifies

the effectiveness of the proposed data-driven method.

This indicates that our data-driven method has the

capability to simultaneously reconstruct explicitly

expressed nonlinear forces and hysteresis forces.

3.2 The model reconstruction of nonlinear

hysteresis system by different expression

In the previous example, the Bouc-Wen model (Eq. 8)

is used to describe the hysteresis force in the S-DOF

degradation model. However, different hysteresis

models may be encountered in application. In this

example, a nonlinear vibration isolator with magne-

torheological damper(Dutta and Chakraborty, 2014) is

considered. The schematic diagram of the vibration

isolator and the governing equations are shown in

Fig. 6. It should be pointed out that the hysteresis

model is different from that described by Eq. (8). In

Fig. 6 Model reconstruction results for nonlinear hysteresis system by different expression
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this example, the ability to reconstruct hysteresis loops

described by different models is tested.

According to the proposed data-driven method, the

model reconstruction of the nonlinear vibration isola-

tor with magnetorheological damper is carried out.

The discrete time history data of excitation and state

variables is collected with a prescribed sampling

frequency of 1000 Hz. Gaussian white noise with an

80 dB signal-to-noise ratio is added to the collected

data to simulate the measurement error. The candidate

functions for the nonlinear restoring forces and

damping forces are chosen as polynomial functions

up to fifth order, the corresponding library functions in

the nonlinear constitutive function library matrix Hni

can be obtained by Eqs. (15–18). The reconstruction

result is shown in Fig. 6, where time history response

and hysteresis loop under sinusoidal excitations with

different frequency and amplitude are compared. The

results show a good agreement in not only time history

response but also hysteresis loop. This indicates that

our data-driven method is able to reconstruct hystere-

sis loop governed by different kinds of equations,

which could contribute to the reconstruction of

nonlinear constitutive relations and hysteresis loops

of real systems.

3.3 Multi-layers nonlinear hysteresis system

3.3.1 Two-layers nonlinear hysteresis system

To demonstrate the capability of the proposed data-

driven method to reconstruct the dynamic model of M-

DOF hysteresis systems, a two-layer nonlinear hys-

teresis system is studied here. The two-layer nonlinear

hysteresis system consists of two masses connected by

linear springs and viscious dashpots, as shown in

Fig. 7. The sampling is with a frequency 1000 Hz and

a duration of 20 s. The simulated signal is corrupted

with white Gaussian noise with a signal-to-noise ratio

of 80 dB. The candidate functions for the nonlinear

restoring forces and damping forces are chosen as

polynomial functions up to fifth order, the correspond-

ing library functions in the nonlinear constitutive

function library matrix Hni can be obtained by

Eqs. (15–18). With the proposed data-driven method,

the model reconstruction results are shown in the third

row of Fig. 7.

The data-driven method successfully discovers the

governing equations of the two-layer nonlinear hys-

teresis system, and the model parameters have good

precision, which results in a good agreement in the

time history response and hysteresis loop. Different

from the above two examples in which only one

variable in the governing equations is unmeasurable, a

two degrees of freedom problem shows the feasibility

Fig. 7 Model reconstruction results for two-layer nonlinear hysteresis system
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of the proposed data-driven method in the discovery of

multiple degrees of freedom hysteresis systems.

3.3.2 Multi-layers nonlinear hysteresis system

To demonstrate the capability of the proposed data-

driven method to reconstruct the dynamic model of

high-dimensional complex nonlinear hysteresis sys-

tems, a multi-layers nonlinear hysteresis system is

studied here. The scheme diagram is shown in Fig. 8,

and the corresponding governing equations are shown

in Appendix 3. The candidate functions for the

nonlinear restoring forces and damping forces are

chosen as polynomial functions up to fifth order, the

corresponding library functions in the nonlinear

constitutive function library matrix Hni can be

obtained by Eqs. (15–18). With the proposed data-

driven method, the model reconstruction results are

shown Fig. 8.

It can be seen from Fig. 8 that the proposed method

successfully reconstructs the governing equations of

the high-dimensional nonlinear hysteresis system. As

a result, a good agreement in the time history response

and hysteresis loop for excitation of different frequen-

cies, which verifies that the proposed method is

suitable for high-dimensional complex nonlinear

systems.

4 Experiments

The above case studies come from numerical simula-

tion with artificial noise. In this section, the experi-

ment reconstruction of an origami structure called

Tachi-Miura polyhedron (TMP) is conducted to verify

the method and show its noise immunity. Since

origami structures possess both geometric nonlinearity

and hysteresis nonlinearity, the accurate dynamic

model is difficult to be established by theoretical

methods, such as Newton or Lagrange methods. Thus,

the model reconstruction method proposed in this
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study is applied to obtain an accurate model of TMP

structure.

The crease pattern and the experimental prototype

of TMP structure are shown in Fig. 9a. We use

polyethylene terephthalate film (0.08 mm thickness)

for the main origami body and acrylic plate (2 mm

thickness) for the connection components, which are

both cut by a laser cutting machine. The 2D origami

patterns are folded and assembled by hand to form the

TMP experimental prototype. Firstly, the quasi-static

tests of the TMP structure are performed, the static

experiment setup and the obtained constitutive rela-

tion are shown in Fig. 9b. It can be observed from

Fig. 9b that the TMP structure shows obvious hys-

teresis phenomenon. However, although the constitu-

tive relation curves of TMP structure under specific

load can be obtained from the quasi-static tests, an

appropriate model to describe the hysteresis constitu-

tive relation of TMP structures under different loads

cannot be obtained.

Thus, it is of great significance to reconstruct the

constitutive relation and governing equations of TMP

structure with both hysteresis and nonlinearity by

dynamic information. The dynamic experimental

setup is schematically illustrated in Fig. 10a. The

experimental prototypes of the origami structures are

connected to the shaker, which provide base excitation

during the experiment. The excitation signal is

generated by a signal generator and transmitted to

the shaker through a power amplifier. Two laser

vibrometers are used to measure the displacement of

the base and the free end of the origami structures

separately. It should be noted that no lumped mass is

attached to the free end of the TMP structure to

concentrate on influence of the constitutive and inertia

of the TMP structure itself on its static/dynamic

behavior. The experimental reconstruction process of

TMP experimental prototype is shown in Fig. 10b.

First, incremental data generation of dynamics under

supervision is applied to the TMP structure. In the

experiment, a harmonic base excitation is first applied,

which generates small amplitude response for the

reconstruction of linear forces. By adjusting the

frequency of the harmonic excitation to make it closer

to the natural frequency of the structure, and increas-

ing the amplitude of the basic excitation, the large

amplitude response is generated for the reconstruction

of nonlinear and hysteresis forces. Then, the kernel

function is used to cluster the data, and the nonlinear

constitutive function library matrix is constructed.

Here, the candidate functions for the nonlinear restor-

ing forces and damping forces are chosen as polyno-

mial functions up to fourth order, the corresponding

library functions in the nonlinear constitutive function

library matrix Hni can be obtained by Eqs. (15–18).

Finally, all the nonlinear parameters are solved in the

Fig. 9 a The crease pattern of TMP and TMP experimental prototype; b Static experiment setup and constitutive relation obtained by

quasi-static tests
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parameter regression process by the generalized sparse

regression method. By applying the proposed data-

driven method, the governing equations of the TMP

origami structure can be obtained. The reconstruction

results are shown in Fig. 11.

To verify the correctness of the reconstruction

results, the time history prediction is conducted by

comparing the experimental measured responses and

the reconstruction model output under harmonic

excitations with different amplitude and frequency.

The output of the reconstruction model is obtained by

solving the reconstructed governing equations numer-

ically. The initial conditions in the numerical simula-

tions are adopted as zero initial conditions. The

amplitude and frequency of the base excitation are

obtained using experimental data. The time history

prediction results under two different harmonic exci-

tations are shown in F. It can be seen that the time

history prediction of the reconstruction model has a

good agreement with the experimental measured

response, which verify the correctness of the

reconstruction model, and thus demonstrate the

effectiveness of the proposed data-driven model

reconstruction method. Based on the reconstruction

model of TMP structure, the hysteresis loops under

different harmonic excitations are also shown in

Fig. 11. It can be seen that hysteresis loops change

with the frequency and amplitude of external excita-

tions, which is consistent with the rate-dependent

characteristics of hysteresis phenomenon. A large

response results in an increase in the area enclosed by

the hysteresis loop.

5 Conclusions

A data-driven model reconstruction method for the

nonlinear hysteresis systems with different degrees of

freedom is proposed based on perception of dynamics,

which takes both hysteresis forces and other explicitly

expressed nonlinear forces into account. The proposed

data-driven method is verified by numerical
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simulations and experiment. The main contributions

of this paper are summarized as follows.

1. The proposed data-driven model reconstruction

method can reconstruct the constitutive relation-

ships and governing equations of the hysteresis

systems by dynamic information. Without making

the assumption that only hysteresis nonlinearity

exists in the hysteresis system, both hysteresis

forces and other explicitly expressed nonlinear

forces can be reconstructed.

2. In the proposed method, the linear and nonlinear

forces are separately reconstructed by incremental

data generation of dynamics under supervision.

Then, based on the agent model, the nonlinear

constitutive function library matrix is constructed

to form the regression problem for the reconstruc-

tion of nonlinear forces. The regression problem is

then solved by the generalized sparse regression

method for the sparsity and accuracy of recon-

struction model.

3. According to the results of the three numerical

examples, the effectiveness of the proposed data-

driven model reconstruction method is verified

and its capability of handling hysteresis systems

with multiple degrees of freedom and different

hysteresis model is demonstrated.

4. The experiment results show that demonstrate the

proposed data-driven model reconstruction

method could be applied to the experimental

model reconstruction of hysteresis structures,

which further demonstrates the effectiveness and

capability of the proposed method.

The proposed method makes fully use of dynamic

information of the nonlinear hysteresis nonlinear

systems, which enables the method have good gener-

alization ability, and can accurately describe the

dynamics of the system under different excitation

amplitudes and frequencies. Besides, the form of

geometric, hysteresis and constitutive nonlinearity are

separately and explicitly obtained, which makes the

reconstruction model rather interpretable. This is

helpful for dynamic analysis and control of hysteresis

nonlinear systems. However, the main disadvantage of

the proposed method is that it is only suitable differ-

ential-based hysteresis models not operator-based

hysteresis models. It is worth investigating how to

extend the method to operator-based hysteresis mod-

els. In conclusion, the proposed data-driven method
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can deal with the model reconstruction problem of

nonlinear hysteresis system with both hysteresis force

and explicitly expressed nonlinear forces. Therefore,

the proposed data-driven method has significant

potential applications in the fields of robotics, vibra-

tion isolation, deployable structures, etc.
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Appendix 1 Expression of linear function library

matrix and corresponding linear parameters

The expression of linear function library matrix is

H1ðx; _x; €x; uÞ ¼
j j j

_x2 � _x1 x2 � x1 u1
j j j

2
4

3
5; ðA:1Þ

Hiðx; _x; €x;uÞ

¼
j j j j j j

�€x1 � � � �€xi�1 � _yi �yi u1 þ � � � þ ui

j j j j j j

2
64

3
75;

i ¼ 2; � � � ; n:
ðA:2Þ

where the corresponding linear parameters are

h1 ¼
c1
m1

k1 þ a1
m1

1

m1

� �T
; ðA:3Þ

hi ¼
m1

mi
� � � mi�1

mi

ci
mi

ki þ ai
mi

1

mi

� �T
: ðA:4Þ

Appendix 2 Nonlinear constitutive function library

construction in hysteresis system with nonlinear

damping force

The nonlinear constitutive function library matrix can

be expressed as

Hniðyi; _yi; €yi;FniÞ ¼
j j j j j j j j j j

_Y
2

i � Y2
i

_Y
3

i � Y3
i

_Y
4

i � Y4
i

_Y
5

i � Y5
i

_Y
2

i
_Y
3

i
_Y
4

i
_Y
5

i yi � _yi �yi � Fni

j j j j j j j j j j

2

64

3

75;

ðB:1Þ

where

_Y
2

i � Y2
i ¼

j j j
_yiðy2i Þ _yiðyi _yiÞ _yið _y2i Þ
j j j

2
4

3
5; ðB:2Þ

_Y
3

i � Y3
i ¼

j j j j
_yiðy3i Þ _yiðy2i _yiÞ _yiðyi _y2i Þ _yið _y3i Þ
j j j j

2
4

3
5;

ðB:3Þ

_Y
4

i � Y4
i ¼

j j j j j
_yiðy4i Þ _yiðy3i _yiÞ _yiðy2i _y2i Þ _yiðyi _y3i Þ _yið _y4i Þ
j j j j j

2
64

3
75;

ðB:4Þ

_Y
5

i � Y5
i ¼

j j j j j j
_yiðy5i Þ _yiðy4i _yiÞ _yiðy3i _y2i Þ _yiðy2i _y3i Þ _yiðyi _y4i Þ _yið _y5i Þ
j j j j j j

2

64

3

75;

ðB:5Þ

_Y
2

i ¼
j j

dðyi _yiÞ
dt

dð _y2i Þ
dt

j j

2

64

3

75; ðB:6Þ
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_Y
3

i ¼
j j j

dðy2i _yiÞ
dt

dðyi _y2i Þ
dt

dð _y3i Þ
dt

j j j

2

64

3

75; ðB:7Þ

_Y
4

i ¼
j j j j

dðy3i _yiÞ
dt

dðy2i _y2i Þ
dt

dðyi _y3i Þ
dt

dð _y4i Þ
dt

j j j j

2

64

3

75; ðB:8Þ

_Y
5

i ¼
j j j j j

dðy4i _yiÞ
dt

dðy3i _y2i Þ
dt

dðy2i _y3i Þ
dt

dðyi _y4i Þ
dt

dð _y5i Þ
dt

j j j j j

2
64

3
75:

ðB:9Þ

The expression of nonlinear coefficients hni is

hni ¼ ni2 ni3 ni4 ni5 wi2 wi3 wi4 wi5 2ai1 �
kiai
mi

ki

� �T
;

ðB:10Þ

ni2 ¼ kiai1 þ 3ai4 kiai2 kiai3½ �; ðB:11Þ

ni3 ¼ kiai4 þ 4ai8 kiai5 kiai6 kiai7½ �; ðB:12Þ

ni4 ¼ kiai8 þ 5ai13 kiai9 kiai10 kiai11 kiai12½ �;
ðB:13Þ

ni5 ¼ kiai13 kiai14 kiai15 kiai16 kiai17 kiai18½ �;
ðB:14Þ

wi2 ¼ ai2 ai3½ �; ðB:15Þ

wi3 ¼ ai5 ai6 ai7½ �; ðB:16Þ

wi4 ¼ ai9 ai10 ai11 ai12½ �; ðB:17Þ

wi5 ¼ ai14 ai15 ai16 ai17 ai18½ �: ðB:18Þ

Appendix 3 Governing equations of multi-layers

nonlinear hysteresis system

The governing equations of the multi-layers nonlinear

hysteresis system are

M€x þ C _xþ Kxþ gnðx; _xÞþzðx; _xÞ¼ FðtÞ; ðC:1Þ

where

M ¼

m1 0 0 0 0

0 m2 0 0 0

0 0 m3 0 0

0 0 0 m4 0

0 0 0 0 m5

2
66664

3
77775
; ðC:2Þ

C ¼

c1 �c1 0 0 0

�c1 c1 þ c2 �c2 0 0

0 �c2 c2 þ c3 �c3 0

0 0 �c3 c3 þ c4 �c4
0 0 0 �c4 c4 þ c5

2
66664

3
77775
;

ðC:3Þ

K ¼

k1 �k1 0 0 0

�k1 k1 þ k2 �k2 0 0

0 �k2 k2 þ k3 �k3 0

0 0 �k3 k3 þ k4 �k4
0 0 0 �k4 k4 þ k5

2
66664

3
77775
;

ðC:4Þ

gnðx; _xÞ ¼

0

c23ðx2 � x3Þ2ð _x2 � _x3Þ
�c23ðx2 � x3Þ2ð _x2 � _x3Þ þ k33ðx3 � x4Þ3

�k33ðx3 � x4Þ3 þ c43ðx4 � x5Þ2ð _x4 � _x5Þ
�c43ðx4 � x5Þ2ð _x4 � _x5Þ

2
6666664

3
7777775
;

ðC:5Þ

zðx; _xÞ ¼

z1
�z3
z3
�z5
z5

2
66664

3
77775
: ðC:6Þ

_z1 ¼ a1ð _x1 � _x2Þ � c1 _x1 � _x2j jz1 � d1ð _x1 � _x2Þ z1j j;
_z3 ¼ a3ð _x3 � _x4Þ � c3 _x3 � _x4j jz3 � d3ð _x3 � _x4Þ z3j j;

_z5 ¼ a5 _x5 � c5 _x5j jz5 � d5 _x5 z5j j:
ðC:7Þ
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