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A B S T R A C T

Delayed resonator (DR) is an active vibration absorber and is known for its complete vibration suppression
capability by manipulating the feedback loop delay. This work aims to extend the DR concept from the widely
considered linear applications to suppress vibrations on primary structures with nonlinear stiffness, based on
the motivation that absolute linearity does not exist and nonlinearity is inherent in many structures to be
protected. The nonlinearity stems from the commonly seen nonlinear symmetrical restoring forces. Threefold
objectives are pursued: (1). To generalize the tuning mechanism of the DR and the dynamical analysis of the
system to the nonlinear case. (2). To evaluate the effect of such nonlinearity on system dynamics and vibration
suppression. (3). To enhance control performance by properly constructing nonlinearity and, accordingly,
to establish the design criteria. Without loss of generality, a widely considered three-spring-two-link model
is borrowed as an example for constructing the stiffness nonlinearity. Then, an exclusive resultant-based
calculation procedure is introduced to efficiently handle the delay-coupled nonlinear dynamics. Besides, the
feedback tuning for complete vibration suppression and the related stability issues are tackled, showing that
the nonlinearity can significantly extend the operable frequency band while posing no extra demands on the
control law. Based on the parameters of an actual experimental setup, numerous comparisons between linear
and nonlinear cases are performed to demonstrate how the DR settles a nonlinear primary structure and,
furthermore, how such nonlinearity can affect control performance and how it can be utilized to enhance
vibration suppression.
1. Introduction

The delayed resonator (DR) was invented by Olgac and Holm-
Hansen [1] in 1994 for vibration absorption, a typical example that
time delay can counter-intuitively play a positive role in engineering
applications. The exclusive feature of the DR is that it actively con-
figures the inherent loop delay so that we can simultaneously tune
the equivalent stiffness and damping of the system by monitoring a
single absorber state for feedback actuation, thus enhancing the control
robustness. Compared to the prototype of the dynamical vibration
absorber (DVA) by Frahm [2], which was undamped and only operated
near its natural frequency, the DR can track variable vibration fre-
quency by tuning the feedback gain and delay in real-time. Moreover,
the properly tuned DR yields complete vibration suppression compared
with the classic DVA by Den Hartog and Ormondroyd [3], who ad-
ditionally injected a damper into the DVA for a broader suppression
region but compromised the efficacy of vibration suppression.

The control logic of the DR can be implemented by cooperat-
ing with various feedback states, e.g., position [1], acceleration [4],
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and angular [5]. Note that the delayed control logic endowed single-
mass absorbers with the capacity to completely suppress multiple-
frequency vibrations [6], an exclusive strength of this logic over the
classic PD control that similarly altered system’s equivalent stiffness
and damping, see also [7] for comparisons between such two control
logics. Researchers are now demanding more from the DR than just
vibration suppression. For instance, Nia and Sipahi [8] designed a
delay-independent stable controller to cope with delay perturbations.
Alsaleem and Younis [9] used delayed control to settle a MEMS res-
onator undergoing strong fractal dynamics. Eris et al. [10] proposed
a control logic consisting of both delayed and nondelayed terms to
expedite response speed. To suppress measurement noises, Pilbauer
et al. [11], Kučera et al. [12], and Liu et al. [13] adopted a distributed-
delayed logic so that the feedback actuation depended on the sum of
all the absorber states within a designated past time interval. Later,
Vyhlídal et al. [14] compared the DR behaviors when the feedback
actuation cooperated with different absorber states and evaluated the
effect of sensory deficiencies in detecting the vibration frequency,
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see also [15,16] for handling such issues. Cai et al. [17,18] further
established the connection between the tuning mechanism associated
with different absorber states using the fractional-order operator and
enhanced the DR performance by designing the fractional order, see
also [19] for an enhanced DR design using a mechanical lever com-
ponent. The DR concept is also generalized to have multiple degrees
of freedoms (MDOF) to achieve the so-called non-collected vibration
absorption [20–23], i.e., the DR position can differ from the vibration
suppression point. One can also refer to [24–26] for the DR suppressing
multiple-dimensional vibrations in robotic applications.

We notice that most DR studies to date so far have focused on the
vibration control of primary structures with linear stiffness. However,
absolute linearity does not exist in practice, and strong nonlinearity
is in fact inherent in many structures to be protected. One well-
investigated and commonly seen structural nonlinearity is the high-
static-low-dynamic-stiffness (HSLDS) or its special case called quasi-
zero-stiffness (QZS). The associated primary structures are usually of
deformation or stress and exhibit a high natural frequency when settled
and a low one if excited, exemplified by the loaded cantilever beam
in [27], or see more examples from the textbooks [28,29], where such
nonlinearity are mathematically depicted by the Duffing equation. Fur-
thermore, such nonlinearity has been widely found to benefit vibration
isolation [30–39], and the additional introduction of delayed feedback
actuation further enhances the isolation performance. For instance,
Sun et al. [40–45], Cheng et al. [46,47], Yan et al. [48], Huang
et al. [49], Liu et al. [50], and Cai et al. [51] reported various delayed
nonlinear vibration isolators. However, vibration isolators are usually
SDOF structures, and dynamics become more complex when consid-
ering an absorption system due to the increased degree of freedom
stemming from an additional mechanical absorber. Indeed, Zhao and
Xu [52] enhanced a nonlinear absorption system using delayed control.
Mao and Ding [53] optimized delayed control for broadband vibration
suppression. Nonetheless, these studies focus more on analyzing para-
metric effects on vibration suppression, whereas how to specifically
tune the control parameters as in linear DR cases to suppress vibrations
at a designated frequency has not been enough discussion. For this,
Wang et al. [54] designed an absorption system with a nonlinear
primary structure to achieve such vibration suppression following the
DR logic and experimentally verified the effectiveness. However, the
feedback actuator in [54] is installed between the absorber and the
fixed base rather than the absorber and the primary structure, which
yields a simplified design problem but would pose restrictions in engi-
neering practice since it may be hard to find a fixed plane for actuator
installation.

Based on a 2DOF vibration absorption model in which the DR
actuator is coupled with a nonlinear primary structure, we aim to
establish more general theories to extend the DR concept to completely
suppress harmonic vibrations on nonlinear primary structures. One
difficulty is that the analysis in the Laplace domain widely used in
existing DR studies is no longer available due to nonlinearity, and
it is further complicated by the coupling between the DR actuation
and the nonlinear primary structure and the transcendentality intro-
duced by the delay. This issue is tackled by combining our recently
proposed resultant-based procedure [55] with the harmonic balance
method [56,57]. In addition, the nonlinearity of the primary structure
here is not only taken as an inherent constant of natural structures
but also an artificial parameter signifying structural modification of
linear or weakly nonlinear structures to enhance vibration control. To
this end, the considered nonlinear primary structure follows a classic
three-spring-two-link model [40,58] to show how one can practically
construct beneficial nonlinearity, with Duffing equation [28,29] de-
ployed for stiffness truncation, leading to our threefold contributions:
(i). We introduce calculation tools to study the complex delay-coupled
nonlinear dynamics. (ii). We establish design rules for enhanced com-
plete vibration suppression from perspectives of feedback actuation
2

tuning, equilibrium stability, and control performance. (iii). We show
how the nonlinearity of the primary structure affects system behaviors
and how, if possible, engineers can design such nonlinearity to achieve
enhanced performance.

This paper is structured as follows. Section 2 establishes the math-
ematical model and the problems to be handled. Section 3 calculates
frequency responses based on the resultant concept. The design rules
of the DR are addressed in Section 4. Section 5 copes with equilibrium
stability. Section 6 evaluates the parametric effect on vibration suppres-
sion. Illustrative numerical cases are studied in Section 7. Section 8
draws conclusions. Italic symbols without a bar superscript ‘□’ are
imensionless quantities.

. Problem formation

The classic DR configuration is depicted in Fig. 1(a), where a linear
rimary structure with stiffness �̄�𝑝 is excited by a harmonic force 𝑓𝑒,
nd a delayed feedback actuation �̄� is injected into a vibration absorber
o achieve complete vibration suppression |

|

|

�̄�𝑝
|

|

|

→ 0. A general form of
he primary structures with nonlinear stiffness and with the resulting
estoring forces symmetric about the equilibrium �̄�𝑝 = 0 is shown in
ig. 1(b), in which the nonlinear restoring forces follow an odd function

̄𝑁
(

�̄�𝑝
)

= �̄�𝑝�̄�𝑝 + �̄�𝑛�̄�3𝑝 + �̄�𝑛,5�̄�
5
𝑝 + �̄�𝑛,7�̄�

7
𝑝 +⋯ , (1)

where �̄�𝑛, �̄�𝑛,5, and �̄�𝑛,7 are stiffness related to nonlinear motions. Since
the aim is complete vibration suppression to achieve |

|

|

�̄�𝑝
|

|

|

→ 0 by
properly tuning �̄�, we only keep the first two terms so that 𝐹𝑁

(

�̄�𝑝
)

reduces to

𝐹𝑁
(

�̄�𝑝
)

= �̄�𝑝�̄�𝑝 + �̄�𝑛�̄�3𝑝, (2)

which is the well-known Duffing-type restoring forces [29] and governs
the nonlinear stiffness characteristics of a large range of structures [28,
29], such as the deflected beam, the beam with plane stress, and the
pendulum. Particularly, we need to suppress rotary vibrations if the
primary structure is a pendulum, and the associated DR structure can
be referred to [5].

Values of �̄�𝑝 and �̄�𝑛 are usually related to each other in a prac-
tical structure, so we consider a typical three-spring-two-link model
following [40,58] to practically construct the nonlinearity in the form
of (2), leading to Fig. 1(c). Compared to the linear primary structure in
Fig. 1(a), the nonlinear one is additionally connected to two horizontal
springs �̄�ℎ via two links of length 𝑙. The vertical spring �̄�𝑝 suspends
the primary structure, and the horizontal two �̄�ℎ are pre-compressed
by ℎ̄. Note that we step further from [54], where the actuator �̄� is
coupled between the absorber and the base. Meanwhile, the shown
nonlinear construction is an implementable structural modification
of linear primary structures to enhance vibration suppression using
nonlinearity, another focus of this work, see [59] for an alternative
using magnetic springs. Besides, it signifies a potential application of
the DR to enhance the nonlinear vibration isolation from the primary
structure to the base or vice versa.

2.1. Governing equations

Dynamics of the 2-DOF coupled system in Fig. 1(c), consisting of a
primary structure and an absorber, are governed by
{

�̄�𝑎 ̈̄𝑥𝑎 + 𝑐𝑎
( ̇̄𝑥𝑎 − ̇̄𝑥𝑝

)

+ �̄�𝑎
(

�̄�𝑎 − �̄�𝑝
)

= �̄�,
�̄�𝑝 ̈̄𝑥𝑝 + 𝑐𝑝 ̇̄𝑥𝑝 + 𝐹

(

�̄�𝑝
)

+ 𝑐𝑎
( ̇̄𝑥𝑝 − ̇̄𝑥𝑎

)

+ �̄�𝑎
(

�̄�𝑝 − �̄�𝑎
)

= 𝑓𝑒 − �̄�,
(3)

where �̄�(⋅), �̄�(⋅), 𝑐(⋅), and �̄�(⋅) is the absolute displacement, mass, damp-
ing, and stiffness, respectively; the subscripts (⋅)𝑎 and (⋅)𝑝 denote the
absorber and the primary structure, respectively; the dot notation
means calculating derivatives with respect to the physical time, 𝑡;
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Fig. 1. (a). A classic DR configuration with a linear primary structure. (b). DR mounted on a primary structure with nonlinear symmetry stiffness. (c). A practical construction
for the nonlinear primary structure in subplot (b).
𝐹
(

�̄�𝑝
)

is the total nonlinear restoring force by three linear springs of
the primary structure [58],

𝐹
(

�̄�𝑝
)

= �̄�𝑝�̄�𝑝 − 2�̄�ℎ

[

ℎ̄ −
(

𝑙 −
√

𝑙2 − �̄�2𝑝

)] �̄�𝑝
√

𝑙2 − �̄�2𝑝
, (4)

which is an odd function of �̄�𝑝. Introducing the following scaled sym-
bols

�̄�𝑝 =
√

�̄�𝑝∕�̄�𝑝, �̄�𝑎 =
√

�̄�𝑎∕�̄�𝑎, 𝜁𝑝 =
𝑐𝑝

2�̄�𝑝�̄�𝑝
, 𝜁𝑎 =

𝑐𝑎
2�̄�𝑎�̄�𝑎

,

𝜇 =
�̄�𝑎
�̄�𝑝
, 𝑣 =

�̄�𝑎
�̄�𝑝
, 𝑘 = �̄�ℎ∕�̄�𝑝,

ℎ = ℎ̄∕𝑙, 𝑡 = 𝑡∕�̄�𝑝, 𝑥𝑎 = �̄�𝑎∕𝑙, 𝑥𝑝 = �̄�𝑝∕𝑙, 𝐹 = 𝐹∕
(

�̄�𝑝𝑙
)

,

𝑓𝑒 = 𝑓𝑒∕
(

�̄�𝑝𝑙
)

, 𝑢 = �̄�∕
(

�̄�𝑝𝑙
)

,

(5)

into (3) leads to the dimensionless governing equations
{

𝜇
[

�̈�𝑎 + 2𝜁𝑎𝑣
(

�̇�𝑎 − �̇�𝑝
)

+ 𝑣2
(

𝑥𝑎 − 𝑥𝑝
)]

= 𝑢,
�̈�𝑝 + 2𝜁𝑝�̇�𝑝 + 𝐹

(

𝑥𝑝
)

+ 2𝜇𝜁𝑎𝑣
(

�̇�𝑝 − �̇�𝑎
)

+ 𝜇𝑣2
(

𝑥𝑝 − 𝑥𝑎
)

= 𝑓𝑒 − 𝑢,
(6)

in which the dimensionless restoring force 𝐹 takes the form of

𝐹
(

𝑥𝑝
)

= 𝑥𝑝 − 2𝑘
(

ℎ − 1 +
√

1 − 𝑥2𝑝
) 𝑥𝑝
√

1 − 𝑥2𝑝
. (7)

To support the primary structure at 𝑥𝑝 = 0, negative stiffness should be
avoided at this point, leading to

𝐾
(

𝑥𝑝 = 0
)

= 𝜕𝐹
(

𝑥𝑝
)

∕𝜕𝑥𝑝 ∣𝑥𝑝=0= 1 − 2𝑘ℎ ⩾ 0. (8)

Otherwise, the primary structure cannot be settled at 𝑥𝑝 = 0 even if it
is slightly perturbed [55]. Furthermore, it is claimed following [40,58]
to be quasi-zero-stiffness (QZS) around 𝑥𝑝 = 0 when 𝐾

(

𝑥𝑝 = 0
)

= 0,
and the coupled system retreats to the classic linear setup in Fig. 1(a)
when 𝑘 = 0.

2.2. Duffing-type dynamics coupled with delayed feedback actuation

The feedback actuation follows the classic position-based control
logic of the DR prototype [1] for comparisons,

̄ = �̄��̄�𝑎
(

𝑡 − 𝜏
)

, (9)

where �̄� is the gain and 𝜏 is the actively introduced delay, two control
parameters. Substituting (9) into (6) arrives at

⎧

⎪

⎨

⎪

⎩

𝜇
[

�̈�𝑎 + 2𝜁𝑎𝑣
(

�̇�𝑎 − �̇�𝑝
)

+ 𝑣2
(

𝑥𝑎 − 𝑥𝑝
)]

= 𝑔𝑥𝑎 (𝑡 − 𝜏) ,
�̈�𝑝 + 2𝜁𝑝�̇�𝑝 + 𝐹

(

𝑥𝑝
)

+ 2𝜇𝜁𝑎𝑣
(

�̇�𝑝 − �̇�𝑎
)

+ 𝜇𝑣2
(

𝑥𝑝 − 𝑥𝑎
)

= 𝑓𝑒 − 𝑔𝑥𝑎 (𝑡 − 𝜏) ,
(10)

where the two dimensionless control parameters (𝑔, 𝜏) satisfy

𝑔 = �̄�∕�̄�𝑝, 𝜏 = 𝜏�̄�𝑝. (11)

Since the DR is tuned to completely settle the primary structure at
𝑥 = 0, around which 𝐹

(

𝑥
)

can be rationalized by the third-order
3

𝑝 𝑝
Maclaurin series (i.e., the Taylor series expanded at 𝑥𝑝 = 0) with a high
enough accuracy [40,51,55,58],

𝐹
(

𝑥𝑝
)

≈ 𝐹𝑎
(

𝑥𝑝
)

=
3
∑

𝑖=0

𝑓 (𝑖)

𝑖!
𝑥𝑖𝑝 = 𝑛0 + 𝑛1𝑥𝑝 + 𝑛2𝑥2𝑝 + 𝑛3𝑥

3
𝑝, (12)

where 𝑛1 = 1 − 2ℎ𝑘 = 𝐾
(

𝑥𝑝 = 0
)

, 𝑛3 = 𝑘 (1 − ℎ), and 𝑛0 = 𝑛2 = 0
since 𝐹

(

𝑥𝑝
)

is an odd function. Note that the form of the rational force
(12) agrees with the Duffing force in (2). Plugging (12) into (10), the
governing equations are reshaped as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�̇�𝑎 = 𝑥𝑎,𝑑 ,
�̈�𝑎 =

𝑔
𝜇 𝑥𝑎 (𝑡 − 𝜏) − 2𝜁𝑎𝑣

(

𝑥𝑎,𝑑 − 𝑥𝑝,𝑑
)

− 𝑣2
(

𝑥𝑎 − 𝑥𝑝
)

,

�̇�𝑝 = 𝑥𝑝,𝑑 ,
�̈�𝑝 = 𝑓𝑒 − 𝑔𝑥𝑎 (𝑡 − 𝜏) − 2𝜁𝑝𝑥𝑝,𝑑 − 𝜇𝑣2

(

𝑥𝑝 − 𝑥𝑎
)

−2𝜇𝜁𝑎𝑣
(

𝑥𝑝,𝑑 − 𝑥𝑎,𝑑
)

− 𝐹𝑎
(

𝑥𝑝
)

,

(13)

where 𝑥𝑎,𝑑 and 𝑥𝑝,𝑑 are the absolute velocity of the absorber and the
primary structure, respectively. Letting �̇�𝑎 = �̇�𝑝 = 0 and �̈�𝑎 = �̈�𝑝 = 0,
one can find from (13) that

(

𝑥𝑎, 𝑥𝑝
)

= (0, 0) is a pair of equilibria.
We stress that maintaining the equilibria should be taken as a hard
requirement for the design and tuning of the control logic to facilitate
device installation in practice. The accuracy of dynamical prediction
using the approximate Eq. (13) for the original system (10) is verified
in Section 3.3.

Now, three parameters (𝑘, 𝑔, 𝜏) compared with a linear passive 2-
DOF vibration absorption system are newly introduced. The problems
of interest are threefold: (i). How does the nonlinearity reflected in
𝑘 > 0 of the primary structure affect system dynamics? (ii). If possible,
how to properly tune the control parameter pair (𝑔, 𝜏) when 𝑘 > 0
to achieve complete vibration suppression as in linear cases? (iii). If
possible, how can we design the nonlinearity 𝑘 to enhance vibration
suppression?

3. Harmonic dynamics analysis

We focus on the system dynamics when the primary structure is
excited by a harmonic force in the dimensionless form of

𝑓𝑒 (𝜔, 𝑡) = 𝐴𝑒 sin (𝜔𝑡) =
�̄�𝑒
�̄�𝑝𝑙

sin
(

�̄�
�̄�𝑝
𝑡�̄�𝑝

)

, (14)

where �̄�𝑒 > 0 and �̄� > 0 is the practical amplitude and frequency of
the force excitation 𝑓𝑒, respectively, and 𝐴𝑒 and 𝜔 are the associated
dimensionless parameters as per (5). Note that the dynamical analysis
is complicated by the coupling of the delayed feedback actuation �̄�
between the primary structure and the absorber. Besides, the widely
used Laplace transform-based analysis in existing DR studies for linear
applications is no longer operable once the nonlinearity 𝑘 > 0 is
introduced. To this end, the resultant-based procedure of our recent
work [55] is generalized to benefit calculation.
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3.1. Resultant-based frequency response analysis

Different from linear cases where the input and output frequencies
are identical, the dynamics of the considered nonlinear model excited
by (14) satisfy a Fourier series expression according to the harmonic
balance method [56,57],

𝑥𝜓 (𝑡) =
∞
∑

𝑖=0

(

𝐴𝜓,𝑖 cos (𝑖𝜔𝑡) + 𝐵𝜓,𝑖 sin (𝑖𝜔𝑡)
)

, 𝜓 = [𝑎, 𝑝] , (15)

where 𝜓 = 𝑎 and 𝜓 = 𝑝 denote the absorber and primary structure,
respectively. Since most steady-state energy is concentrated on the first
harmonic, i.e., 𝑖 = 1 in Eq. (15), which is even more so when we aim
to keep the steady-state motion amplitude of the nonlinear primary
structure within a low enough level given that the nonlinear forces are
small around 𝑥𝑝 = 0, the dominant responses are also harmonic at the
fundamental frequency 𝜔 but with a different amplitude and phase so
that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥𝑎 (𝜔, 𝑡) = 𝑅𝑎 (𝑡) sin
(

𝜔𝑡 + 𝜙𝑎
)

= 𝐴𝑎 (𝑡) sin (𝜔𝑡) + 𝐵𝑎 (𝑡) cos (𝜔𝑡) ,

𝑥𝑝 (𝜔, 𝑡) = 𝑅𝑝 (𝑡) sin
(

𝜔𝑡 + 𝜙𝑝
)

= 𝐴𝑝 (𝑡) sin (𝜔𝑡) + 𝐵𝑝 (𝑡) cos (𝜔𝑡) ,

(16)

where 𝜙𝑎 and 𝜙𝑝 are phase differences, 𝐴𝑎, 𝐵𝑎, 𝐴𝑝, and 𝐵𝑝 are slow-
arying real coefficients, and 𝑅𝑎 =

√

𝐴2
𝑎 + 𝐵2

𝑎 and 𝑅𝑝 =
√

𝐴2
𝑝 + 𝐵2

𝑝 are
the associated motion amplitudes. Substituting Eqs. (14) and (16) into
(10), the coefficients of the sin (𝜔𝑡) and cos (𝜔𝑡) terms should vanish,
resulting in four equations that can be represented in a matrix form of

𝐏 (𝜔) �̇� = 𝐆4×1
(

𝜔,𝜣T) , (17)

where 𝜣 =
[

𝐴𝑎, 𝐵𝑎, 𝐴𝑝, 𝐵𝑝
]T, 𝐆 is matrix in

(

𝜔,𝜣T), and

(𝜔) = 2

⎡

⎢

⎢

⎢

⎢

⎣

−𝜇𝑣𝜁𝑎 𝜇𝜔 𝜇𝑣𝜁𝑎 0
−𝜇𝜔 −𝜇𝑣𝜁𝑎 0 𝜇𝑣𝜁𝑎
𝜇𝑣𝜁𝑎 0 −𝜇𝑣𝜁𝑎 − 𝜁𝑝 𝜔
0 −𝜇𝑣𝜁𝑎 −𝜔 −𝜇𝑣𝜁𝑎 − 𝜁𝑝

⎤

⎥

⎥

⎥

⎥

⎦

. (18)

ince �̇� ≡ 𝟎 holds in the steady state 𝑡→ ∞, we consider 𝐆
(

𝜔,𝜣T) = 𝟎,
ielding

𝐺1
(

𝜔,𝜣T) = 𝜇
((

𝐴𝑎 − 𝐴𝑝
)

𝑣2 − 2𝜔𝜁𝑎
(

𝐵𝑎 − 𝐵𝑝
)

𝑣 − 𝐴𝑎𝜔2)

−𝑔
(

𝐴𝑎𝐶 + 𝐵𝑎𝑆
)

= 0,
𝐺2

(

𝜔,𝜣T) = 𝜇
((

𝐵𝑎 − 𝐵𝑝
)

𝑣2 + 2𝜔𝜁𝑎
(

𝐴𝑎 − 𝐴𝑝
)

𝑣 − 𝐵𝑎𝜔2)

−𝑔
(

𝐵𝑎𝐶 − 𝐴𝑎𝑆
)

= 0,

𝐺3
(

𝜔,𝜣T) = 3𝑛3𝐴3
𝑝 +

(

3𝑛3𝐵2
𝑝 + 𝜗

)

𝐴𝑝
−8

(

𝜁𝑎𝑣
(

𝐵𝑝 − 𝐵𝑎
)

𝜇 + 𝜁𝑝𝐵𝑝
)

𝜔 − 4
(

𝐴𝑎
(

𝜇𝑣2 − 𝑔𝐶
)

− 𝑔𝐵𝑎𝑆 + 𝐴𝑒
)

= 0,

𝐺4
(

𝜔,𝜣T) = 3𝑛3𝐵3
𝑝 +

(

3𝑛3𝐴2
𝑝 + 𝜗

)

𝐵𝑝
−8

(

𝜁𝑎𝑣
(

𝐴𝑎 − 𝐴𝑝
)

𝜇 − 𝜁𝑝𝐴𝑝
)

𝜔 − 4
(

𝑔
(

𝑆𝐴𝑎 − 𝐶𝐵𝑎
)

+ 𝜇𝑣2𝐵𝑎
)

= 0,

(19)

where 𝑆 = sin (𝜔𝜏) , 𝐶 = cos (𝜔𝜏), and 𝜗 = 4
(

𝜇𝑣2 − 𝜔2 + 𝑛1
)

. The
common solution composition

(

𝜔,𝜣T) then dictates the frequency
responses. However, directly solving the coupled nonlinear Eq. (19)
without initial guesses is cumbersome. Given a frequency 𝜔, we take
𝐺1

(

𝜔,𝜣T) = 0 and 𝐺2
(

𝜔,𝜣T) = 0 as two linear equations in
(

𝐴𝑝, 𝐵𝑝
)

,
which can be solved as

⎧

⎪

⎨

⎪

⎩

𝐴𝑝
(

𝜔,𝐴𝑎, 𝐵𝑎
)

= 𝐴𝑎𝜇𝑣3+(𝜇𝐴𝑎(4𝜁2𝑎−1)𝜔2−𝑔(𝐴𝑎𝐶+𝐵𝑎𝑆))𝑣−2(𝜇𝐵𝑎𝜔2+𝑔(𝐶𝐵𝑎−𝑆𝐴𝑎))𝜁𝑎𝜔
𝜇𝑣(4𝜔2𝜁2𝑎+𝑣2)

,

𝐵𝑝
(

𝜔,𝐴𝑎, 𝐵𝑎
)

= 𝐵𝑎𝜇𝑣3+(𝜇𝐵𝑎(4𝜁2𝑎−1)𝜔2−𝑔(𝐶𝐵𝑎−𝑆𝐴𝑎))𝑣−2(𝜇𝐴𝑎𝜔2+𝑔(𝐶𝐴𝑎+𝑆𝐵𝑎))𝜁𝑎𝜔
𝜇𝑣(4𝜔2𝜁2𝑎+𝑣2)

.

(20)
4

𝑚

Substituting the solution pair
(

𝐴𝑝, 𝐵𝑝
)

given in (20) into 𝐺3
(

𝜔,𝜣T) = 0
nd 𝐺4

(

𝜔,𝜣T) = 0 leads to

𝐺3
(

𝜔,𝐴𝑎, 𝐵𝑎
)

= 𝐶𝑓 (𝜔)
∑3
𝑖=0 𝛼𝑖

(

𝜔,𝐵𝑎
)

𝐴𝑖𝑎 = 0,
𝐺4

(

𝜔,𝐴𝑎, 𝐵𝑎
)

= 𝐶𝑓 (𝜔)
∑3
𝑖=0 𝛽𝑖

(

𝜔,𝐵𝑎
)

𝐴𝑖𝑎 = 0,
(21)

where 𝐶𝑓 (𝜔) = 𝜔2𝜁2𝑎+𝑣
2∕4 is a common factor, 𝛼𝑖 and 𝛽𝑖 are coefficients

in
(

𝜔,𝐵𝑎
)

. We use the notation deg [𝑝, 𝑥] to denote the highest degree of
the variable 𝑥 in a polynomial 𝑝, yielding deg

[

𝛼𝑖, 𝐵𝑎
]

= deg
[

𝛽𝑖, 𝐵𝑎
]

= 3
and deg

[

𝛼𝑖, 𝜔
]

=deg
[

𝛽𝑖, 𝜔
]

= 7. The problem now reduces to seeking the
olution pair

(

𝐴𝑎, 𝐵𝑎
)

of Eq. (21) for a given 𝜔. However, closed-form
solutions are still inaccessible due to the coupling between 𝐴𝑎 and 𝐵𝑎.
Alternatively, we adopt the Sylvester resultant concept [60] to avoid
numerical solutions. Since 𝐶𝑓 (𝜔) ≠ 0, the Sylvester matrix between the
two equations in (21) is

𝐒
(

𝜔,𝐵𝑎
)

= 𝑟𝑒𝑠𝐴𝑎

(

𝐺3
𝐶𝑓

,
𝐺4
𝐶𝑓

)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛼3 𝛼2 𝛼1 𝛼0 0 0
0 𝛼3 𝛼2 𝛼1 𝛼0 0
0 0 𝛼3 𝛼2 𝛼1 𝛼0
𝛽3 𝛽2 𝛽1 𝛽0 0 0
0 𝛽3 𝛽2 𝛽1 𝛽0 0
0 0 𝛽3 𝛽2 𝛽1 𝛽0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(22)

eading to the Sylvester resultant equation

(

𝜔,𝐵𝑎
)

= |

|

|

𝐒
(

𝜔,𝐵𝑎
)

|

|

|

=
3
∑

𝑖=0
𝛾𝑖 (𝜔)𝐵𝑖𝑎 = 0, (23)

hich is a polynomial equation in
(

𝜔,𝐵𝑎
)

, and we have deg
[

𝛾𝑖, 𝜔
]

=
0. The Sylvester resultant provides a necessary condition for two
olynomial equations to have common solutions [61]. That is, all the
olution pairs

(

𝜔,𝐵𝑎
)

of Eq. (21) for any 𝐴𝑎 value constitute a subset
f those of Eq. (23). Accordingly, such a resultant-based procedure for
he solution composition

(

𝜔,𝐴𝑎, 𝐵𝑎, 𝐴𝑝, 𝐵𝑝
)

of Eq. (19) by sweeping the
requency 𝜔 is summarized in Fig. 2, where the two steps ① and ②

andle univariate polynomial equations that can be easily solved with-
ut needing initial guesses [62], and the checking step corresponds to
he necessary condition, see more details in [55] where a non-delayed
DOF system is considered.

.2. Stability of frequency response solutions

Nonlinearity can lead to multiple solutions
(

𝐴𝑎, 𝐵𝑎, 𝐴𝑝, 𝐵𝑝
)

for a
iven frequency 𝜔, while a practical system can only settle at the stable
nes. The stability test following [63] is briefly reviewed for coherence.
e rewrite Eq. (17) as
̇ = 𝐇4×1

(

𝜔,𝜣T) , (24)

here 𝐇
(

𝜔,𝜣T) = 𝐏−1 (𝜔)𝐆
(

𝜔,𝜣T). The stable solutions labeled as
s for any 𝜔 means 𝜣T → 𝜣s as 𝑡 → ∞, and thus all the eigenvalues of

he Jacobian matrix

4×4
(

𝜔,𝜣T) =
𝜕𝐇

(

𝜔,𝜣T)

𝜕𝜣
, (25)

must have negative real parts at
(

𝜔,𝜣s
)

. Hence, the stable solution
compositions

(

𝜔,𝜣s
)

of Eq. (19) are defined as

(

𝜔,𝜣s
)

=

{

(

𝜔,𝜣T)
|

{

𝐆
(

𝜔,𝜣T) = 𝟎,
Re

(

∀eig
(

𝐉
(

𝜔,𝜣T))) < 0.

}

, (26)

where Re (⋅) and eig (⋅) represent the operations of getting the real part
nd calculating eigenvalues, respectively.

.3. Verification

The basic parameters of the considered coupled system shown in
ig. 1(c) are borrowed from a linear experimental vibration absorption
ystem constructed in [11,12] to benefit comparisons, with

̄ 𝑎 = 0.223 kg, 𝑐𝑎 = 1.273 kg∕s, �̄�𝑎 = 350 N∕m,
(27)
̄ 𝑝 = 1.520 kg, 𝑐𝑝 = 10.11 kg∕s, �̄�𝑝 = 1960 N∕m.
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Fig. 2. Resultant-based univariate solving procedures for the common solution composition
(

𝜔,𝐴𝑎 , 𝐵𝑎 , 𝐴𝑝 , 𝐵𝑝
)

.

Fig. 3. Comparisons between the theoretical and numerical frequency responses of the coupled system (28) for 𝐴𝑒 = 0.1. (a-b). Passive case with (𝑔, 𝜏) = (0, 0). (c-d). Active case
with (𝑔, 𝜏) = (0.04, 5).
Besides, the length of the two additional links and the precompression
of the two additional horizontal springs �̄�ℎ are arbitrarily fixed as
𝑙 = 0.1 m and ℎ̄ = 0.04 m, respectively, leading to

𝜇 = 0.147, �̄�𝑝 = 35.91, �̄�𝑎 = 39.62, 𝑣 = 1.1,

𝜁𝑝 = 0.093, 𝜁𝑎 = 0.072, ℎ = 0.4.
(28)

Hence, the three tunable parameters (𝑘, 𝑔, 𝜏) correspond to
(

�̄�ℎ, �̄�, 𝜏
)

.
Selecting the excitation amplitude as 𝐴𝑒 = 0.1, the frequency re-
sponses

(

𝜔,𝐴𝑎, 𝐵𝑎, 𝐴𝑝, 𝐵𝑝
)

or equivalently
(

𝜔,𝑅𝑎, 𝑅𝑝
)

for four (𝑘, 𝑔, 𝜏)
compositions are verified in Fig. 3.

The theoretical solutions in Fig. 3 are obtained by the resultant-
based solving procedure specified in Fig. 2, and the stability is checked
by Eq. (26). The numerical solutions are constituted by the steady states
of the frequency responses calculated by MATLAB SIMULINK, with the
exact restoring force 𝐹

(

𝑥𝑝
)

in (7) deployed for verification. Clearly,
theoretical solutions well predict the numerical ones, and a smaller mo-
tion amplitude 𝑅𝑝 yields higher prediction accuracy, which favorably
matches the desired goal of complete vibration suppression 𝑅𝑝 = 0
in steady states. Although the accuracy slightly decreases in the low-
frequency band where the primary structure exhibits large amplitudes
due to the limited truncations of the rationalization series (12) and the
harmonic balance method (15), the trends of system dynamics there
are still well-predicted. Furthermore, the linear frequency responses
denoted by magenta dashed curves in Fig. 3 are obtained by setting
𝑘 = 0, and they concur with the results based on Laplace transform.
Comparing the results in linear (𝑘 = 0) and nonlinear (𝑘 > 0) cases, one
can conclude that the nonlinearity can raise low-frequency vibrations
5

while suppressing high-frequency ones. On the other hand, comparisons
between Fig. 3(a) and (c) indicate that the delayed control can deepen
the anti-resonance for potential complete vibration suppression of a
nonlinear primary structure. More specific design rules of (𝑘, 𝑔, 𝜏) for
this are considered next.

4. Parameter tuning for complete vibration suppression

In this part, we first tune the control parameter pair (𝑔, 𝜏), aiming to
completely suppress the dominant vibrations, i.e., the vibrations at the
fundamental frequency 𝜔, and such completeness is explained. Since
dominance is numerically demonstrated in Section 7, we omit the term
‘dominant’ for simplicity. Besides, the mechanism of such vibration
suppression is investigated.

4.1. Tuned control parameter pair

The aim is to properly tune (𝑔, 𝜏) so that 𝑥𝑝 = 0 or equivalently
𝑅𝑝 = 0 as per (16). From Eq. (20), we have

𝑅2
𝑝
(

𝜔,𝐴𝑎, 𝐵𝑎
)

= 𝐴2
𝑝 + 𝐵

2
𝑝

=

(

𝐴2
𝑎 + 𝐵

2
𝑎
)

((

(

𝑣2 − 𝜔2)2 + 4𝜁2𝑎𝜔
2𝑣2

)

𝜇2 + 𝑔2 + 2𝑔𝜇
(

2𝑆𝜔𝑣𝜁𝑎 + 𝐶
(

𝜔2 − 𝑣2
))

)

(

4𝜔2𝜁2𝑎 + 𝑣2
)

𝜇2𝑣2
.

(29)

Since 𝑅2
𝑎 = 𝐴2

𝑎 + 𝐵2
𝑎 ≠ 0 when achieving 𝑥𝑝 = 0 for the absorber to

neutralize the excitation force 𝑓 , the condition 𝑅 = 0 evolves from
𝑒 𝑝
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Eq. (29) to

 (𝜔, 𝑔, 𝜏) = 𝑔2 + 2𝜇𝜅1 (𝜔, 𝜏) 𝑔 + 𝜇2𝜅2 (𝜔) = 0, (30)

here 𝜅1 (𝜔, 𝜏) = 2𝜔𝑣𝜁𝑎 sin (𝜔𝜏) +
(

𝜔2 − 𝑣2
)

cos (𝜔𝜏) and 𝜅2 (𝜔) =
(

𝑣2 − 𝜔2)2 + 4𝜁2𝑎𝜔
2𝑣2. Since 𝑔2 + 𝜇2𝜅2 (𝜔) > 0, the sign of 𝜅1 (𝜔, 𝜏) must

be opposite to that of the gain 𝑔. Note that  (𝑔) = 0 is a parabolic
equation in 𝑔, and the discriminant denoted by 𝛥 of  (𝑔) satisfies

𝛥 = 4𝜇2
(

𝜅21 (𝜔, 𝜏) − 𝜅2 (𝜔)
)

⩽ 0 (31)

given the forms of 𝜅1 (𝜔, 𝜏) and 𝜅2 (𝜔). Consequently, Eq. (30) has a
double root for 𝑔 at most, so we construct

𝜅1 (𝜔, 𝜏) =

{

−
√

𝜅2 (𝜔), 𝑔 > 0,
√

𝜅2 (𝜔), 𝑔 < 0,
(32)

eading to the solution pair of Eq. (30) as

𝑔𝑡 (𝜔) = ±𝜇
√

(

𝑣2 − 𝜔2
)2 + 4𝜁2𝑎𝜔2𝑣2,

𝜏𝑡,𝑟 (𝜔) =
1
𝜔

(

a tan
(

−2𝜁𝑎𝜔𝑣
𝑣2−𝜔2

)

+ 2 (𝑟 − 1)𝜋 +
|

|

|

𝑠𝑔
|

|

|

−𝑠𝑔
2 𝜋

)

,
(33)

here the subscript (⋅)𝑡 means ‘tuned’, 𝑠𝑔 = sign
(

𝑔𝑡 (𝜔)
)

= ±1, and
= 1, 2,… resulting from the periodicity of the two trigonometric

erms, i.e., sin (𝜔𝜏) = sin (𝜔𝜏 ± 2𝑟𝜋) and cos (𝜔𝜏) = cos (𝜔𝜏 ± 2𝑟𝜋), is
called branch number [14]. From the forms of

(

𝑔𝑡, 𝜏𝑡,𝑘
)

, the nonlinearity
> 0 poses no effect on the tuning mechanism, agreeing with the

pproximation (15) that the nonlinear primary structure vibrates at the
undamental frequency 𝜔 and the linear property of the DR. Consider-
ng also that the harmonic balance method (15), regardless of orders,
eeks steady-state solutions and since the nonlinear forces reduce as
𝑥𝑝
|

|

|

→ 0, the vibration suppression by a operably tuned DR can be
omplete, as will be demonstrated in Section 7.

.2. Tuned DR behaviors for complete vibration suppression

Assuming that complete vibration suppression 𝑥𝑝 = 0 is achieved,
he four governing equations in (19) reduce to

𝐺′
1
(

𝜔,𝐴𝑎, 𝐵𝑎
)

=
((

𝑣2 − 𝜔2)𝜇 − 𝑔 cos (𝜔𝜏)
)

𝐴𝑎 −
(

2𝜁𝑎𝜇𝑣𝜔 + 𝑔 sin (𝜔𝜏)
)

𝐵𝑎 = 0,
𝐺′
2
(

𝜔,𝐴𝑎, 𝐵𝑎
)

=
(

2𝜁𝑎𝜇𝑣𝜔 + 𝑔 sin (𝜔𝜏)
)

𝐴𝑎 +
((

𝑣2 − 𝜔2)𝜇 − 𝑔 cos (𝜔𝜏)
)

𝐵𝑎 = 0,
𝐺′
3
(

𝜔,𝐴𝑎, 𝐵𝑎
)

=
(

𝑔 cos (𝜔𝜏) − 𝜇𝑣2
)

𝐴𝑎 +
(

2𝜁𝑎𝜇𝑣𝜔 + 𝑔 sin (𝜔𝜏)
)

𝐵𝑎 − 𝐴𝑒 = 0,
𝐺′
4
(

𝜔,𝐴𝑎, 𝐵𝑎
)

=
(

2𝜁𝑎𝜇𝑣𝜔 + 𝑔 sin (𝜔𝜏)
)

𝐴𝑎 −
(

𝑔 cos (𝜔𝜏) − 𝜇𝑣2
)

𝐵𝑎 = 0,

(34)

where the superscript (⋅) ′ denotes the reduced case 𝑥𝑝 = 0 to discrimi-
nate (34) from (19). Note that the common solution

(

𝐴𝑎, 𝐵𝑎
)

= (0, 0) of
the three equations

{

𝐺′
1 = 0, 𝐺′

2 = 0, 𝐺′
4 = 0

}

holds only if 𝐴𝑒 = 0 acting
like the DR is mounted on a virtual ground. When 𝐴𝑒 ≠ 0, we construct

{

𝐺′
1,3

(

𝜔,𝐴𝑎
)

= 𝐺′
1 − 𝐺

′
3 = −𝜇𝐴𝑎𝜔2 − 𝐴𝑒 = 0,

𝐺′
2,4

(

𝜔,𝐵𝑎
)

= 𝐺′
2 + 𝐺

′
4 = −𝜇𝐵𝑎𝜔2 = 0,

(35)

which reflects two obvious conditions for the complete vibration sup-
pression at 𝜔
{

sign
(

𝐴𝑎
)

= − sign
(

𝐴𝑒
)

,
𝐵𝑎 = 0,

(36)

indicating that the phase of the DR motion 𝑥𝑎 differs from that of the
excitation 𝑓𝑒 by 𝜋 in light of the form of (16). That is, the damping

′

6

force by 𝑐𝑎 is neutralized by the delayed feedback actuation �̄� so that
the phase difference is half a cycle. Furthermore, the motion amplitude
of the DR in this case according to (35) is explicitly governed by

𝑅′
𝑎 (𝜔) = |

|

𝐴𝑎 (𝜔)|| =
𝐴𝑒
𝜇𝜔2

=
�̄�𝑝�̄�𝑒𝜔2

𝑝

�̄�𝑎�̄�𝑝𝑙�̄�2
=

�̄�𝑒
𝑙�̄�𝑎�̄�2

, (37)

which is independent of the primary structure agreeing with the linear
case [4]. With Eqs. (16), (36), and (37), the force exerted on the
primary structure from the resonant absorber via the damper 𝑐𝑎 and
spring �̄�𝑎 is

𝑓 ′
𝑎→𝑝

(

�̄�, 𝑡
)

= �̄�𝑎�̄�
′
𝑎 + 𝑐𝑎 ̇̄𝑥

′
𝑎

= �̄�𝑎𝑅
′
𝑎𝑙 sin

(

�̄�𝑡
)

+ 𝑐𝑎𝑅′
𝑎𝑙�̄� cos

(

�̄�𝑡
)

.
(38)

To neutralize the force excitation 𝑓𝑒 on the primary structure for com-
plete vibration suppression by additionally applying the tuned feedback
actuation �̄�′, we must have

𝑓 ′
𝑎→𝑝 − �̄�′ − 𝑓𝑒 = 0. (39)

Substituting Eqs. (14) and (38) into (39) gives
(

�̄�𝑎�̄�𝑒
�̄�𝑎�̄�2

sin
(

�̄�𝑡
)

− �̄�′1

)

+
(

𝑐𝑎�̄�𝑒
�̄�𝑎�̄�

cos
(

�̄�𝑡
)

− �̄�′2

)

= �̄�𝑒 sin
(

�̄�𝑡
)

. (40)

he feedback actuation �̄�′ is divided into two parts �̄�′1 and �̄�′2 in (40), in
hich �̄�′2 neutralizes the damping force as per (36) and �̄�′1 complements

he difference between the excitation 𝑓𝑒 and the force exerted on the
rimary structure through the spring �̄�𝑎 by the absorber. Besides, we
ave �̄�′1 = 0 when the natural frequency of the absorber equals the
xcitation frequency, i.e., �̄�𝑎 = �̄�, and thus, in this case, the feedback
ctuation �̄�′ is equivalent to an additional negative damper valued by
𝑐𝑎. Note also that such equivalence only holds at the tuning frequency.
he relationship (40) reveals an important core of the DR, i.e., the DR
an simultaneously alter system’s damping and stiffness via a single
eedback state, e.g., the displacement 𝑥𝑎 considered in (9), thus saving
n observer and yielding stronger control robustness compared with the
D control [7].

. Equilibrium stability and operable ranges of stiffness 𝒌 and
xcitation frequency 𝝎

The DR tuned with any control parameters (𝑔, 𝜏) should ensure a
table equilibrium 𝑥𝑝 = 0. Such stability is called equilibrium stability
o discriminate it from the stability of the frequency response solutions
ddressed in Section 3.2, where the pair (𝑔, 𝜏) is fixed. The equilibrium
tability is analyzed using linearization theory performed at 𝑥𝑝 = 0,
round which the nonlinear primary structure vibrates. To achieve
omplete vibration suppression |

|

|

𝑥𝑝
|

|

|

→ 0+ by a tuned DR, the operable
ange of the stiffness 𝑘 denoting the nonlinearity and the operable range
f the excitation frequency 𝜔 are both investigated.

.1. Characteristic equation and operable stiffness range

To evaluate equilibrium stability, we consider the characteristic
acobian matrix of (13),

𝐶𝑆
(

𝑥𝑝, 𝜆, 𝑔, 𝜏, 𝑘
)

=

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
𝑔
𝜇 𝑒

−𝜆𝜏 − 𝑣2 −2𝜁𝑎𝑣 𝑣2 2𝜁𝑎𝑣
0 0 0 1

−𝑔𝑒−𝜆𝜏 + 𝜇𝑣2 2𝜇𝜁𝑎𝑣 −𝜇𝑣2 − 𝑛1 (𝑘) − 3𝑛3 (𝑘) 𝑥2𝑝 −2𝜇𝜁𝑎𝑣 − 2𝜁𝑝

⎤

⎥

⎥

⎥

⎥

⎦

,

(41)

where 𝜆 is the characteristic variable. The characteristic equation of the
coupled system at the equilibrium 𝑥𝑝 = 0 is then

𝐶𝐸 (𝜆, 𝑔, 𝜏, 𝑘) = |

|

|

𝜆𝐈4×4 − 𝐉
(

𝑥𝑝 = 0
)

|

|

|

=
(

𝜇
(

𝜆2 + 2𝜁𝑎𝑣𝜆 + 𝑣2
)

− 𝑔𝑒−𝜏𝜆
) (

𝜆2 + 2𝜁𝑝𝜆 + 𝑛1 (𝑘)
)

2 2 ( )

(42)
+ 𝜇 𝜆 𝑣 2𝜁𝑎𝜆 + 𝑣 = 0.
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Note that 𝑘 appears in the linear stiffness term 𝑛1 (𝑘) = 1 − 2ℎ𝑘 defined
in (12) to affect equilibrium stability. Furthermore, Eq. (42) has a
stationary root 𝜆 = 0 when the primary structure is QZS (i.e., 𝑛1 = 0).
n linear cases, if 𝜆 = 0 is the rightmost root, then the coupled system
as infinitely many equilibria. In the passive nonlinear case, the cubic
tiffness term 𝑛3 and the higher-order ones omitted in (12) produce
onlinear restoring forces since the excited primary structure yields
𝑥𝑝
|

|

|

≫ 0, so an excited QZS primary structure still vibrates around
𝑝 = 0. However, most excitation force 𝑓𝑒 (external disturbance) is
eutralized if an operable DR tuned by (33) is deployed, as mentioned
n (39). Thus, a QZS primary structure requires a long time to converge
rom |

|

|

𝑥𝑝
|

|

|

→ 0+ to 𝑥𝑝 = 0 since linear restoring forces signified by 𝑛1𝑥𝑝
re small and nonlinear ones related to higher-order terms of 𝑥𝑝 are
ven smaller being close to zero. Consequently, we according to (8)
refer

∈
[

0, 1
2ℎ

)

(43)

o prevent the primary structure from being QZS for the complete vibra-
ion suppression at 𝑥𝑝 = 0, which signifies an operable stiffness range if
e are allowed to design the nonlinearity 𝑘. Numerical demonstrations

or this are prepared in Section 7.2.

.2. Stability map

To address stability issues, excluding the stationary root 𝜆 = 0 and
eparating variables, we can write Eq. (42) into

𝑒−𝜏𝜆 = 𝜇
(

𝜆2 + 2𝜁𝑎𝑣𝜆 + 𝑣2
)

+
𝜇2𝜆2𝑣

(

2𝜁𝑎𝜆 + 𝑣
)

(

𝜆2 + 2𝜁𝑝𝜆 + 𝑛1 (𝑘)
) . (44)

The spectrum of Eq. (42) or Eq. (44) for any parameter composition
(𝑘, 𝑔, 𝜏) must lie on the left half of the complex plane for stability.
According to the D-subdivision method [64], stability loses and regains
at the critical moment when the characteristic Eq. (42) or (44) exhibits
a pair of imaginary roots, say 𝜆 = ±𝑗𝜔𝑐 , where 𝜔𝑐 ∈ R+ is the frequency
of the resulting Hopf bifurcation. Hence, all control parameter pairs
(𝑔, 𝜏) satisfying 𝐶𝐸

(

𝜆 = 𝑗𝜔𝑐 , 𝑔, 𝜏, 𝑘
)

= 0 constitute stability boundaries.
Substituting 𝜆 = 𝑗𝜔𝑐 into (44) and separating the real and imaginary
parts lead to

𝑔𝑒−𝑗𝜏𝜔𝑐 = 𝜎
(

𝜔𝑐 , 𝑘
)

+ 𝑗𝜛
(

𝜔𝑐 , 𝑘
)

, (45)

where 𝜎
(

𝜔𝑐 , 𝑘
)

and 𝜛
(

𝜔𝑐 , 𝑘
)

are real functions and are self-evident
from (44). Consequently, the stability boundaries satisfy

⎧

⎪

⎨

⎪

⎩

𝑔𝑐
(

𝜔𝑐 , 𝑘
)

= ±
√

𝜎2
(

𝜔𝑐 , 𝑘
)

+𝜛2
(

𝜔𝑐 , 𝑘
)

,

𝜏𝑐,𝑞
(

𝜔𝑐 , 𝑘
)

= 1
𝜔𝑐

(

a tan
(

−𝜛(𝜔𝑐 ,𝑘)
𝜎(𝜔𝑐 ,𝑘)

)

+ 2 (𝑞 − 1)𝜋 +
|

|

|

𝑠𝑔𝑐
|

|

|

−𝑠𝑔𝑐
2 𝜋

)

,
(46)

here 𝑠𝑔𝑐 = sign
(

𝑔𝑐
)

, and 𝑞 = 1, 2,… stmes from the periodicity of
he complex exponent 𝑒−𝑗𝜏𝜔𝑐 similar to the branch number 𝑟 in (33).
iven the forms of

(

𝑔𝑡, 𝜏𝑡,𝑟
)

and
(

𝑔𝑐 , 𝜏𝑐,𝑞
)

, one can conclude that the
onlinearity 𝑘 > 0 affects equilibrium stability although it does not
ffect the tuning law of the DR. For the coupled system (28), the tuned
airs

(

𝑔𝑡, 𝜏𝑡,𝑟
)

and the stability boundaries
(

𝑔𝑐 , 𝜏𝑐,𝑞
)

in the linear (𝑘 = 0)
nd the nonlinear (𝑘 = 1) cases with sweeping

(

𝜔,𝜔𝑐
)

∈ R2+ are
uperposed in Fig. 4 .

Let us first focus on the stability boundaries
(

𝑔𝑐 , 𝜏𝑐,𝑞
)

denoted by
the solid curves. Considering that a passive system with 𝑔 = 0 is stable
as per (8) and the infinitely small feedback actuation |𝑔| → 0+ is
nable to alter system dynamics, the shown colored regions must be
table since stability alternation or Hopf bifurcation can only occur
t the stability boundaries. Once we cross stability boundaries, the
orresponding imaginary root 𝜆 = ±𝑗𝜔𝑐 can either shift to the right
alf of the complex plane leading to instability or limited cycles, or
eturn to the left [64]. The shifting directions can be checked by the
oot tendency [65],

=
(

Re
( 𝜕𝜆 ∣

))

, (47)
7

𝑇 𝜕𝑠 𝜆=𝑗𝜔𝑐 p
here 𝑠 ∈ [𝑔, 𝜏] represents the crossing variable, and 𝑅𝑇 = +1 and
𝑇 = −1 signify that the imaginary root pair ±𝑗𝜔𝑐 shifts rightward
nd leftward, respectively. To this end, the exhaustive stable regions,
s colored in Fig. 4, can be determined by counting the number of
nstable characteristic roots in each parametric region divided by
tability boundaries. Clearly, any operable control parameter pair (𝑔, 𝜏)

must lie within the stable regions.

Remark 1. When the harmonic external excitation 𝑓𝑒 is introduced, the
table regions in the nonlinear case 𝑘 > 0 obtained as per Fig. 4 should
e taken as the necessary conditions for determining the operable pairs
f (𝑔, 𝜏) since analysis is based on equilibrium stability. To focus on the
ffect of 𝑘 on vibration suppression, we assume that orbits of the excited
rimary structure can be captured by the basin of attraction of a stable
quilibrium, indicating that the complex counterexamples (not shown
n our extensive numerical examinations based on the manipulatable
IMULINK models provided in the Appendix) are excluded in this
ork, i.e., 𝑓𝑒 is taken as a small periodic disturbance. This agrees with

he truncations at the third-order series performed in (2) and (12).
urthermore, in this sense, if the DR is tuned for complete vibration
uppression, the stable location of the tuned pair

(

𝑔𝑡, 𝜏𝑡,𝑟
)

in Fig. 4
rovides high enough accuracy for its operability since 𝑥𝑝 = 0 is the
nique equilibrium and the condition |

|

|

𝑥𝑝
|

|

|

→ 0 leads to very small
onlinear forces in steady states. ■

.3. Stability map

With Remark 1, we next investigate the operability of a tuned DR,
nd the associated tuned pairs

(

𝑔𝑡, 𝜏𝑡,𝑟
)

are superposed as the dashed
urves in Fig. 4. Operable tuned pairs must render a stable equilibrium,
xemplified by the three segments 𝑃0𝑃1, 𝑃2𝑃3, and 𝑃4𝑃5 for 𝑘 = 0 and
he three 𝑃 ′

0𝑃
′
1 , 𝑃 ′

2𝑃
′
3 , and 𝑃 ′

4𝑃
′
5 for 𝑘 = 1. Particularly, the two points 𝑃0

nd 𝑃 ′
0 are not shown due to coordinate limitations. Note from Eq. (33)

hat the tuned pair
(

𝑔𝑡, 𝜏𝑡,𝑟
)

is a function of the excitation frequency
once given a 𝑘, and thus equilibrium stability limits the operable

requency ranges for the desired complete vibration suppression. More-
ver, the operable frequencies for each operable segment are governed
y the frequencies corresponding to the two ends of this segment since
he tuned pair

(

𝑔𝑡, 𝜏𝑡,𝑟
)

is continuous to 𝜔.
We take the intersection point 𝑃1 as an example. It corresponds to

n identical pair of control parameters (𝑔, 𝜏) but two different values of
and 𝜔𝑐 . Consequently, the intersection condition yields

𝑔𝑡 (𝜔, 𝑘) − 𝑔𝑐 (𝜔, 𝑘) = 0,
𝜏𝑡,𝑟

(

𝜔𝑐 , 𝑘, 𝑟
)

− 𝜏𝑐,𝑞
(

𝜔𝑐 , 𝑘, 𝑞
)

= 0,
(48)

wo equations in
(

𝜔,𝜔𝑐
)

∈ R2+ once given a 𝑘 and a pair of branch
umbers (𝑟, 𝑞) and thus can be numerically solved. Since an unduly
arge delay is unfavorable to robustness [14] and since the width of
he operable segments reduces as branch number 𝑟 increases, we only
onsider the smallest 𝑟 that yields positive tuned delays, i.e., 𝑟 = 1 for
< 0 and 𝑟 = 2 for 𝑔 > 0. By sweeping 𝑘 ∈ [0, 1.25], the operable

requency ranges for the coupled system (28) are depicted in Fig. 5(a).
The six intersection points 𝑃1, 𝑃2, 𝑃3, 𝑃 ′

1 , 𝑃
′
2 , and 𝑃 ′

3 in Fig. 4 are
arked in Fig. 5(a) to show the connection between such two stability
aps. From Fig. 5(a), smaller tuned delays yield broader operable

requency ranges, although the branch number 𝑟 does not affect the
uned gain amplitude |

|

𝑔𝑡||. In both cases 𝑔 < 0 and 𝑔 > 0, increasing
from the linear case 𝑘 = 0 extends operable low-frequency ranges.
s 𝑘 further increases, the low-frequency bound 𝜔𝑙𝑜𝑤, as marked in

he figure, nearly stops varying once it exceeds a threshold value
i.e., 𝑘 = 0.44 for 𝑔 > 0 and 𝑘 = 0.79 for 𝑔 < 0). This property agrees
ith the forms of the stability boundaries

(

𝑔𝑐 , 𝜏𝑐,𝑞
)

and the tuned pairs
𝑔𝑡, 𝜏𝑡,𝑟

)

, given that 𝑛1 reduces as 𝑘 increases, thus posing fewer effects
n
(

𝑔𝑐 , 𝜏𝑐,𝑞
)

as 𝜔𝑐 decreases, see (44) and (46). Moreover, the tuned
( )
air 𝑔𝑡, 𝜏𝑡,𝑟 is independent of 𝑘, and therefore the intersection between
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Fig. 4. Equilibrium stability of the coupled system (28). (a). Linear case with 𝑘 = 0. (b) Nonlinear case with 𝑘 = 1. Colored regions are stable. Solid and dashed curves represent
the stability boundaries

(

𝑔𝑐 , 𝜏𝑐,𝑞
)

and the tuned pairs
(

𝑔𝑡 , 𝜏𝑡,𝑟
)

, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 5. (a). Operable frequency bands versus 𝑘 for (𝑔 < 0, 𝑟 = 1) and (𝑔 > 0, 𝑟 = 2). (b). Operable frequency bandwidth associated with (a). The cases 𝑘 = 0 and 𝑘 = 1.25 correspond
to the linear and QZS primary structures, respectively.
(

𝑔𝑐 , 𝜏𝑐,𝑞
)

and
(

𝑔𝑡, 𝜏𝑡,𝑟
)

tends to be fixed as 𝑘 increases. On the other hand,
the fact that the broadest operable frequency range appears at a limited
value of 𝑘 is beneficial since a larger 𝑘 means harder horizontal stiffness
�̄�ℎ, which can be difficult to practically implement if the stiffness �̄�𝑝 of
the primary structure is already large, let alone that we need to avoid
the QZS case as per (43), i.e., the shown case 𝑘 = 1∕ (2ℎ) = 1.25.

More specifically, the operable low-frequency bound for
(𝑔 < 0, 𝑟 = 1) is extended by (0.966 − 0.66) ∕0.966 ≈ 31% by having
𝑘 = 0.79. The width of the operable frequency range for (𝑔 > 0, 𝑟 = 2)
is shown in Fig. 5(b), indicating that it can be extended by 21% when
𝑘 = 0.44. The significant effect of 𝑘 on the operable bandwidth indicates
that simply ignoring the inherent nonlinearity of a primary structure
can lead to conservative results. However, for stability concerns, it is
safe to tune a DR to handle low-frequency vibrations by assuming a
linear primary structure since 𝜔𝑙𝑜𝑤 decreases as 𝑘 increases around
𝑘 = 0. More attention should be paid when 𝜔 raises since the operable
upper bound 𝜔𝑢𝑝 also decreases as 𝑘 increases. More specifically,
the operable low-frequency bound for (𝑔 < 0, 𝑟 = 1) is extended by
(0.966 − 0.66) ∕0.966 ≈ 31% by having 𝑘 = 0.79. The width of the oper-
able frequency range for (𝑔 > 0, 𝑟 = 2) is shown in Fig. 5(b), indicating
that it can be extended by 21% when 𝑘 = 0.44. The significant effect of 𝑘
on the operable bandwidth indicates that simply ignoring the inherent
nonlinearity of a primary structure can lead to conservative results.
8

However, for stability concerns, it is safe to tune a DR to handle low-
frequency vibrations by assuming a linear primary structure since 𝜔𝑙𝑜𝑤
decreases as 𝑘 increases around 𝑘 = 0. More attention should be paid
when 𝜔 raises since the operable upper bound 𝜔𝑢𝑝 also decreases as 𝑘
increases.

Remark 2. A crucial and well-known difference between linear and
nonlinear dynamics is that frequency responses in nonlinear cases
can exhibit a multiple-state frequency band [29], see Fig. 3. Clearly,
operable frequencies should lie outside such bands for robust com-
plete vibration suppression. However, most vibrations of the nonlinear
primary structure are suppressed by an operable tuned DR, and there-
fore the two horizontal springs �̄�ℎ produce negligible nonlinear forces
in the vertical direction in steady states. From this perspective, the
multiple-state frequency band does not affect the operable frequencies
in Fig. 5(a). ■

6. Parametric effects

Having established the tuning mechanism and obtained the oper-
able frequency interval, we next consider how an operable tuned DR
suppresses vibrations and how the nonlinearity of the primary structure

affects system performance. The topics are twofold: (i). The frequency
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Fig. 6. Comparisons related to different 𝑘 values when the DR is tuned at 𝜔 = 1 with (𝑔 < 0, 𝑟 = 1). (a). The 𝐴𝑀𝐹 versus 𝑘. (b). The zoomed plot of (a). (c). Frequency responses
of the absorber versus 𝑘. (d). The indices of (b), where SROAR refers to suppression region of anti-resonance.
responses of the coupled system, and (ii). The settling time of the
transient process.

6.1. Effect of nonlinearity 𝑘 > 0 on frequency responses

Following the linear case [66], we convert the dimensional fre-
quency response amplitude |

|

|

�̄�𝑝 (𝜔)
|

|

|

of the primary structure to the
dimensionless amplitude amplification factor (AMF) for generality,

𝐴𝑀𝐹 (𝜔) =
|

|

|

�̄�𝑝 (𝜔)
|

|

|

�̄�𝑒∕�̄�𝑝
=
𝑅𝑝 (𝜔) 𝑙

𝐴𝑒𝑙
=
𝑅𝑝 (𝜔)
𝐴𝑒

, (49)

which depicts the vibration suppression performance of the absorber
compared with the associated SDOF primary structure that is only
supported by a linear spring �̄�𝑝. Clearly, smaller values of 𝐴𝑀𝐹 (𝜔) yield
better suppression performance, effective vibration suppression ensues
with 𝐴𝑀𝐹 (𝜔) < 1, and the complete suppression by a tuned DR leads
to 𝐴𝑀𝐹 (𝜔) = 0.

For the coupled system (28), we select 𝐴𝑒 = 0.02, thus yielding
�̄�𝑒 = 𝐴𝑒�̄�𝑝𝑙= 3.92 N to streamline with [11,12]. The AMF and the
frequency responses 𝑅𝑎 of the absorber when the DR is tuned at 𝜔 = 1
are shown in Fig. 6, where the branch (𝑔 < 0, 𝑟 = 1) corresponding to
the smallest positive tuned delay is considered. The operability of the
tuned pairs for different 𝑘 values can be referred to the stability map
in Fig. 5(a).

From Fig. 6(a), compared with the passive case 𝑔 = 0, the tuned DR
shifts the anti-resonance interval to the designated frequency 𝜔 = 1 and
suppresses the anti-resonance to zero, regardless of the nonlinearity 𝑘.
Note that the resulting zero anti-resonance leads to higher resonance
peaks shifting to lower frequencies as 𝑘 increases, thus achieving the
effect of a low-pass filter with an amplification mechanism. Conse-
quently, when 𝜔 increases from the low-frequency band over the first
resonance frequency, the 𝐴𝑀𝐹 value of a nonlinear primary structure
is much smaller than that in the linear case 𝑘 = 0, as featured in the
magnitude condition 𝑃6 > 𝑃7 > 𝑃8 > 𝑃9 of Fig. 6(a), see also the zoomed
plot in Fig. 6(b). This property helps suppress high-frequency noises
commonly caused by mechanical equipment. Meanwhile, the low-pass
effect means low-frequency excitations deserve much attention if the
nonlinearity of the primary structure is non-negligible. Also, comparing
the linear case 𝑘 = 0 and the nonlinear one 𝑘 = 0.5 concludes that,
if possible, we can utilize the nonlinearity by properly designing 𝑘
to suppress the resonance peak while keeping the raised 𝐴𝑀𝐹 in the
low-frequency band within a limited value.
9

The frequency responses of the absorber are compared in Fig. 6(c),
where all the response curves in the active cases (i.e., the tuned DR
is activated) intersect at a fixed point 𝑃10 with 𝑅𝑎 (𝜔 = 1)= 0.1333,
concurring with (37) that is independent of 𝑘. Moreover, comparisons
between Fig. 6(c) and Fig. 6(a) show that a higher motion amplitude
of the primary structure does not necessarily correspond to a higher
absorber amplitude, signifying the phase difference between such two
components. The 𝐴𝑀𝐹 around 𝜔 = 1 is zoomed in Fig. 6(b), from which
one can find that the nonlinearity introduced by 𝑘 > 0 favorably ex-
tends the suppression region where 𝐴𝑀𝐹 < 1 of both the anti-resonance
interval and the high-frequency interval quantified by the suppression
frequency defined in Fig. 6(b), see also the more detailed comparisons
in Fig. 6(d). We stress that the extended suppression region of anti-
resonance (SROAR) enhances control robustness, especially considering
that the excitation 𝑓𝑒 in practice can drift or be noisy, which leads
to frequency mismatches. More specific comparisons are performed in
Section 7.3.

6.2. Effect of nonlinearity 𝑘 > 0 on transient behaviors

In this part, we aim to expedite the transient process to settle the
excited primary structure as fast as possible, a topic widely considered
in both linear [10,17] and nonlinear [40,42,43] cases. Provided that
the periodic solutions can be captured by a stable equilibrium as per
Remark 1 or vibrations are caused by impact, the key is to place the
dominant (i.e., the rightmost) root labeled as 𝜆𝑑𝑜𝑚 of the characteristic
Eq. (42) leftmost since the settling time can be approximated by

𝑡𝑠 = 𝑡𝑠�̄�𝑝 [s] , (50)

where 𝑡𝑠 is the dimensionless form of 𝑡𝑠 and satisfies

𝑡𝑠 = − 4
Re

(

𝜆𝑑𝑜𝑚
) ,Re

(

𝜆𝑑𝑜𝑚
)

< 0. (51)

We are then interested in the effect of the nonlinearity 𝑘 > 0 on 𝑡𝑠.
However, no analytical solutions to the characteristic Eq. (42) exist due
to transcendentality. Alternatively, we adopt the QPmR algorithm [67],
which approximates the complex spectrum of a quasi-polynomial equa-
tion within a given region at a designated accuracy.

Following Fig. 5, we consider the coupled system (28) with a DR
tuned with 𝜔 = 1. The variations of Re

(

𝜆𝑑𝑜𝑚
)

and the settling time 𝑡𝑠
for (𝑔 < 0, 𝑟 = 1) and (𝑔 > 0, 𝑟 = 2) with respect to 𝑘 ∈ [0, 1.25] are shown
in Fig. 7(a) and (b).
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Fig. 7. Spectral analysis of Eq. (42) for the transient behaviors of the coupled system (28). (a). The real part of the dominant root 𝜆𝑑𝑜𝑚 versus 𝑘 for 𝜔 = 1. (b). The theoretical
settling time 𝑡𝑠 versus 𝑘 for 𝜔 = 1. (c). The generalized results of (a) by sweeping 𝜔 ∈ [0.6, 1.5]. (d). The optimal values of 𝑘 corresponding to the minima min

{

Re
(

𝜆𝑑𝑜𝑚
)}

in (c).
From Fig. 7(a), all the dominant roots 𝜆𝑑𝑜𝑚 have negative real parts,
agreeing with Fig. 5(a), where 𝜔 = 1 always lies within the stable region
regardless of 𝑘 ∈ [0, 1.25]. Besides, we have Re

(

𝜆𝑑𝑜𝑚
)

→ 0 as 𝑘 → 1.25,
a direct result of the stationary root 𝜆 = 0 associated with the QZS
characteristics, as mentioned in Section 5.1. Furthermore, in both cases
𝑔 < 0 and 𝑔 > 0, properly tuning the nonlinearity 𝑘 > 0 can minimize
Re

(

𝜆𝑑𝑜𝑚
)

. The resulting benefits are intuitively reflected in the settling
time 𝑡𝑠 shown in Fig. 7(b), where 𝑡𝑠 = 11.76 s in the linear case 𝑘 = 0
when 𝑔 < 0 is significantly reduced by 84.52% to 𝑡𝑠 = 1.82 s by having
𝑘 = 0.752. Similar results also hold when 𝑔 > 0 so that 𝑡𝑠 = 10.24 s
reduces to 𝑡𝑠 = 1.58 s as 𝑘 = 0 increases to 𝑘 = 0.654. Comparing
Fig. 7(a) and Fig. 5(a), one can conclude that a broader operable
frequency range due to a smaller tuned delay does not necessarily
lead to a shorter settling time, a trade-off needed to be considered in
practical DR applications. Note also that increasing the delay to reduce
the settling time is a counter-intuitive observation, see also [68,69],
and an unduly large delay is unfavorable to robustness [14].

Next, we generalize the results in Fig. 7(a) and (b) by sweeping
𝜔, thus arriving at Fig. 7(c) and (d). The two points 𝑃11 and 𝑃12
marked in Fig. 7(c) concur with the namesake two in Fig. 7(a). Besides,
the optimal 𝑘 values corresponding to the minima min

{

Re
(

𝜆𝑑𝑜𝑚
)}

are shown in Fig. 7(d). Remarkably, the operable frequency ranges
signified by the condition min

{

Re
(

𝜆𝑑𝑜𝑚
)}

< 0 in Fig. 7(c) and the
associated 𝑘 values in Fig. 7(d) agree with the equilibrium stability map
in Fig. 5(a).

As for the transient behaviors, Fig. 7(c) and (d) show that different
frequencies 𝜔 correspond to different optima of 𝑘, and the benefits of
the nonlinearity 𝑘 on achieving a shorter settling time 𝑡𝑠 are reduced
in the high-frequency band. This is guaranteed given that the motion
amplitude of a force-excited primary structure reduces as 𝜔 increases,
thus resulting in smaller nonlinear restoring forces. Beneficially, from
Fig. 7(d), the optimal 𝑘 values for a shorter 𝑡𝑠 increase as 𝜔 decreases,
which agrees with the variation trend of the width of the operable
low-frequency ranges previously shown in Fig. 5(a). Hence, properly
designing the nonlinearity 𝑘 > 0 can simultaneously achieve broadband
complete low-frequency vibration suppression and expedite response
speed. This provides useful guidance for the selection of 𝑘.

Remark 3 (Design Criteria of the Nonlinearity 𝑘). We have shown four
design criteria for the nonlinearity 𝑘, or equivalently, the horizontal
stiffness �̄�ℎ. (i). To avoid the QZS characteristics as per Eq. (43). (ii).
To match the operable frequency ranges given in Fig. 5(a) with the
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excitation frequency 𝜔. (iii). To consider the low-pass effect, the sup-
pression frequencies for broadband (incomplete) vibration reduction,
and the control robustness (i.e., SROAR) for the complete vibration
suppression following Fig. 6. (iv). To seek possibilities for expedited
response speed as per Fig. 7. For the considered coupled system (28),
a preferable range can be 𝑘 ∈ [0.4, 0.7], given that the vibration
suppression performance can be enhanced without stimulating the low-
pass effect too much. Besides, the revealed benefits of 𝑘 > 0 show that
mechanical advantages can significantly enhance DR performance, a
topic of increasing research interest, see also [19-23]. ■

7. Numerical case study

Several numerical case studies for the coupled system (28) are
performed to more intuitively demonstrate the established theories and
the revealed effects of the nonlinearity of the primary structure on
vibration suppression. The exact restoring force (4) is used to test the
effectiveness of the given theories that are based on the series truncated
in (12) and the harmonic balance method truncated in (15). In addition,
the excitation amplitude is fixed as 𝐴𝑒 = 0.02 (i.e., �̄�𝑒 = 3.92 N)
following [11,12]. The adopted manipulable simulation model based
on MATLAB SIMULINK can be found in Appendix.

7.1. Extended operable frequency band of complete vibration suppression

Let us start with verifying the complete vibration suppression and
the extended operable frequency band when 𝑘 > 0 featured in Fig. 5.
For the excitation at 𝜔 = 0.95 or �̄� = 𝜔�̄�𝑝 = 5.43 Hz, we tuned
the DR with (𝑔 > 0, 𝑟 = 2) without loss generality, yielding

(

𝑔𝑡, 𝜏𝑡,2
)

=
(0.0512, 6.143) or equivalently,

(

�̄�𝑡, 𝜏𝑡,2
)

= (100.36 N∕m, 171.1 ms). Spec-
tra of the characteristic Eq. (42) calculated by the QPmR algorithm [67]
and dynamics of the coupled system in the linear case 𝑘 = 0 and the
nonlinear case 𝑘 = 1 (i.e., �̄�ℎ = 1980 N∕m) are compared in Fig. 8.

From Fig. 8(a), a part of characteristic roots in the linear case
𝑘 = 0 lies on the right half of the complex plane, leading to insta-
bility and agreeing with the stability map in Fig. 5(a). The resulting
unstable dynamics are reflected in the divergence of the blue curves in
Fig. 8(c) and (d). Besides, the frequency spectrum of the responses �̄�𝑝
of the primary structure by fast flourier transform (FFT) is depicted in
Fig. 8(b), where the frequency component at �̄� = 5.43 Hz is suppressed
as expected, although the coupled system is unstable. Interestingly, a

new component appears at �̄� = 4.82 Hz, which agrees with Fig. 8(d),
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Fig. 8. Comparisons between the linear (𝑘 = 0) and nonlinear (𝑘 = 1) cases. (a). Spectra of the characteristic Eq. (42). (b). Frequency spectra of the primary structure using fast
flourier transform. (c). Displacement responses of the primary structure. (d). Displacement responses of the absorber. The feedback actuation in (c) and (d) is activated at 𝑡 = 2 s.
where the absorber undergoes beat vibrations, an interference pattern
between vibrations of slightly different frequencies.

As for the nonlinear case 𝑘 = 1, the characteristic spectrum is
stable as per Fig. 8(a), and the desired complete vibration suppression
can be observed in Fig. 8(c). However, some small residual vibra-
tions exist, as also detected by the FFT-based frequency spectrum in
Fig. 8(b). Note that such residual vibrations are mainly caused by
the limited simulation accuracy rather than the nonlinearity since the
dominant frequency component concurs with the excitation frequency
�̄� = 5.43 Hz, see Eq. (15). This inference agrees with the fact that
the nonlinear restoring forces by the two springs �̄�ℎ are nearly zero
as |

|

|

�̄�𝑝
|

|

|

→ 0. It is also the reason why the vibration suppression of
a nonlinear primary structure by a tuned DR can be claimed to be
complete. Consequently, the nonlinearity 𝑘 > 0 affects system dynamics
and operable frequencies by altering transient behaviors instead of
steady states, implying that one should not simply apply the results
in linear DR studies based on the assumption |

|

|

𝑥𝑝
|

|

|

≈ 0. Besides, the
motion amplitude �̄�𝑎 = 0.0151 m of the absorber marked in Fig. 8(d)
in the steady states concurs with (37). One should also notice that the
amplitudes of the primary structure and the absorber in the linear case
when no feedback actuation is introduced (i.e., 𝑡 < 2 s) are larger than
those in the nonlinear case. Hence, the nonlinearity of the primary
structure can benefit vibration suppression in both passive and active
cases.

7.2. Deviated settling position of a QZS primary structure

Next, we consider the case where the nonlinear primary structure is
QZS. Revisiting Section 5.1, the QZS properties render the characteristic
Eq. (42) a stationary root 𝜆 = 0, and thus the settled primary structure
can deviate from the equilibrium �̄�𝑝 = 0. We still consider the DR
tuned with (𝑔 > 0, 𝑟 = 2) for 𝜔 = 0.95, and spectra of Eq. (42) and
performance of the coupled system when 𝑘 = [1.24, 1.25] or �̄�ℎ =
[

2430.4 N∕m, 2450 N∕m
]

are compared in Fig. 9.
The stationary root 𝜆 = 0 in the QZS case 𝑘 = 1.25 can be found

in Fig. 9(a), and the associated vibration suppression performance is
shown as the blue curves in Fig. 9(b), where the vibrating primary
structure is settled once the feedback actuation is activated while the
settling position deviates from �̄�𝑝 = 0. The deviation mechanism can
be interpreted as follows. Since the three springs

(

�̄�𝑝, �̄�ℎ, �̄�ℎ
)

and the
damper 𝑐𝑝 of the primary structure provide null forces in the ideally
settled case �̄� ≡ 0, the DR tuned as per (29) by letting �̄� = 0 yields
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𝑝 𝑝
total forces via
(

�̄�𝑎, 𝑐𝑎, �̄�
)

, labeled as 𝑓𝑎,𝑡𝑜𝑡𝑎𝑙, that nearly neutralizes
the excitation 𝑓𝑒 as |

|

|

�̄�𝑝
|

|

|

→ 0, see also Eq. (39). Considering that the
damping force by 𝑐𝑝 is small when �̄�𝑝 does not vary much, the forces
for the primary structure to finally converge to �̄�𝑝 = 0 mainly depend on
the spring composition

(

�̄�𝑝, �̄�ℎ, �̄�ℎ
)

, and thus a QZS primary structure
can be hard to settle from the vicinity of �̄�𝑝 = 0 to this point once a
tuned DR is activated (note that QZS by definition means that stiffness
around �̄�𝑝 = 0 is nearly zero, see (8)). Such interpretation is verified in
Fig. 9(c-e), where the convergence of the QZS primary structure after
𝑡 ≈ 5 s only depends on restoring forces of springs, the small values of
which lead to the deviated settling position in Fig. 9(b).

However, a QZS primary structure still converges to �̄�𝑝 = 0 after a
long time in the end since the stiffness 𝐾

(

𝑥𝑝
)

defined in (8) is always
positive (although small) when �̄�𝑝 ≠ 0, and the stationary root 𝜆 = 0
only relates to the equilibrium �̄�𝑝 = 0, see the derivation of Eq. (42). To
this end, we select 𝑘 = 1.24 to avoid a QZS primary structure, leading to
no stationary root as in Fig. 9(a), and accordingly, the desired complete
vibration suppression at �̄�𝑝 = 0 is shown as the red curves in Fig. 9(b).

7.3. Suppression of the residual vibrations due to frequency mismatches

We now test the benefits of the extended suppression region of anti-
resonance (SROAR) in Fig. 6 in suppressing the residual vibrations due
to the mismatches between the detected excitation frequency and the
actual one. Here, the DR is equipped with a frequency sensor whose
resolution is larger than 0.1 Hz so that the DR cannot detect small
variations in excitation frequency. Inspired by [15], we assume that
the excitation frequency is theoretically known as 𝜔 = 1 (i.e., �̄� =
5.715 Hz), while the actual one slightly varies from 𝜔 = 0.99 to 𝜔 = 1.1
following Fig. 10(a). We now tune the DR with (𝑔 < 0, 𝑟 = 1) consider-
ing that a smaller delay benefits control robustness against frequency
mismatches [14], thus leading to

(

�̄�𝑡, 𝜏𝑡,1
)

=(−77.39 N∕m, 69.89 ms).
Responses �̄�𝑝 of the primary structure for 𝑘 = [0, 0.5, 1] are compared
in Fig. 10(b) and (c).

As shown in the time interval 𝑡 ∈ [2 s, 5 s], complete vibration
suppression is again achieved once an exactly tuned DR is activated.
However, when 𝑡 ∈ [5 s, 20 s], the frequency mismatch, even if it is
less than 1%, can significantly deteriorate the control performance,
resulting in obvious residual vibrations. Moreover, the results that the
deterioration is more apparent within 𝑡 ∈ [10 s, 15 s] when the actual
frequency is decreasing agree with Fig. 6(b). On the other hand, a

nonlinear primary structure can beneficially exhibit smaller motion
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Fig. 9. Comparisons between the non-QZS (𝑘 = 1.24) and QZS (𝑘 = 1.25) cases. (a). Spectra of the characteristic Eq. (42). (b). Responses of the primary structure. (c). Time history
of the force 𝑓𝑒 − 𝑓𝑎,𝑡𝑜𝑡𝑎𝑙 . (d). Time history of the restoring force by the three springs

(

�̄�𝑝 , �̄�ℎ , �̄�ℎ
)

. (e). Time history of the damping force by 𝑐𝑝. The feedback actuation is activated
at 𝑡 = 2 s.
Fig. 10. Comparisons between the linear (𝑘 = 0) and nonlinear (𝑘 = [0.5, 1]) cases. (a). Time history of the excitation frequency. (b-c). Displacement responses of the primary
structure. (d). Time history of the excitation force with noises. (e-f). Displacement responses of the primary structure under noisy excitations. The feedback actuation in (b,c,e,f)
is activated at 𝑡 = 2 s.
amplitudes in both the passive case 𝑡 < 2 s and the active case
𝑡 ∈ [5 s, 20 s] with frequency mismatches. Comparing Fig. 10(b) and
(c), one can find that increasing the nonlinearity 𝑘 can help suppress
residual vibrations. However, the simultaneously raised response am-
plitude in the low-frequency band, as previously revealed in Fig. 6(a),
deserves attention. The corresponding numerical tests are performed in
Fig. 10(d-f), with noises additionally injected into the excitation when
𝑡 ∈ [5s, 20s], leading to the time history of in Fig. 10(d). The low-
pass effect mentioned in Section 6.1 can be observed by comparing
Fig. 10(e) and (f). In addition, comparisons between Fig. 10(c) and
(f) show that small noises can unfavorably neutralize the benefits of
the nonlinearity in handling frequency mismatches. Further comparing
12
Fig. 10(e) and (f), the vibration suppression in the nonlinear case
with a smaller (i.e.,) is still effective, and the nonlinearity improves
control performance over the linear case. Thus, increasing to chase after
benefits at extremities should be avoided, see also Remark 3.

7.4. Suppression of the residual vibrations due to frequency mismatches

Focusing on the time interval 𝑡 ∈ [2 s, 5 s] of Fig. 10(b,c,e,f), one
can find that the transient process for complete vibration suppression
in the nonlinear case 𝑘 > 0 is shorter than that in the linear case 𝑘 = 0,
which is the theoretical basis of Section 6.2. To test the effectiveness
of Fig. 7, we still consider the excitation at the frequency 𝜔 = 1. The
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Fig. 11. Comparisons of transient process among different 𝑘 values. (a-f). Numerical results when the DR is tuned with either (𝑔 < 0, 𝑟 = 1) or (𝑔 > 0, 𝑟 = 2). The feedback actuation
is activated at 𝑡 = 2 s. (g-h). Spectra of the characteristic Eq. (42).
corresponding comparisons in both cases (𝑔 < 0, 𝑟 = 1) and (𝑔 > 0, 𝑟 = 2)
are performed in Fig. 11.

The time histories of the responses �̄�𝑝 of the primary structure
concerning different 𝑘 values are compared in Fig. 11(a-f), where
the marked settling time 𝑡𝑠 is calculated by Eq. (50) and successfully
predicts the duration of the transient process. This also indicates that
system dynamics are within the basin of attraction of the stable equi-
librium, i.e., Remark 1 is satisfied. Besides, the two optimal values
𝑘𝑜𝑝𝑡 = [0.6545, 0.752] marked in Fig. 11(c) and (d), which correspond
to the shortest 𝑡𝑠, agree with Fig. 7(b). Spectra of the characteristic
Eq. (42) in different cases are shown in Fig. 11(g) and (h), where the
dominant root 𝜆𝑑𝑜𝑚 first shifts leftward and then leftward as 𝑘 increases,
concurring with Fig. 7(a). Consequently, the nonlinearity 𝑘 > 0 can
enhance not only the steady-state performance for complete vibration
suppression but also the transient process.

8. Conclusions

We aim to extend the DR concept from linear applications to com-
pletely suppress single-frequency vibrations on primary structures with
nonlinear stiffness and to investigate the effect of such nonlinearity
and how it can be used to enhance vibration control. Without loss
of generality, a classic three-spring-two-link primary is considered to
construct the nonlinear stiffness, with the delayed feedback actuation
coupled between the absorber and the primary structure. The main
results obtained for the delayed-coupled nonlinear dynamics, stability,
and parametric effects are summarized as follows:

• Dynamical analysis is addressed using the harmonic balance
method. However, no closed-form solutions exist due to the
coupling between the delayed feedback actuation and system
dynamics. To this end, an exclusive resultant-based procedure
originating from our recent work [55] is generalized to facilitate
calculation.

• Parameter tuning and equilibrium stability are both analytically
tackled and numerically verified. The nonlinearity affects stability
while posing no effect on parameter tuning. Besides, properly
tuning such nonlinearity favorably extends the operable low-
frequency band of the considered system (28) by up to 31%, see
13

Fig. 5(b).
• The vibration suppression by a tuned DR can be complete since
the nonlinear primary structure tends to be settled so that the
vibrations at the fundamental frequency dominate dynamics,
i.e., the first harmonic 𝑖 = 1 in (15). However, it does not mean
that the results in linear cases, where input and output frequen-
cies are identical, can be directly used since the nonlinearity
mainly alters the transient process rather than steady states, see
Fig. 8.

• The nonlinearity of the primary structure can benefit vibration
control by suppressing resonance peaks, extending the suppres-
sion region of anti-resonance (SROAR), achieving broadband vi-
bration reduction, and expediting response speed. However, a
QZS primary structure should be avoided to exclude the station-
ary root 𝜆 = 0, which leads to a deviated settling position, as
shown in Fig. 9(b). In particular, the reduction of settling time
by properly designing nonlinearity can be up to 84% as shown
in Fig. 7 and Fig. 11. Hence, the nonlinearity of the primary
structure can be treated as a novel mechanical or structural
modification to enhance vibration absorption.

• Trade-off needs to be considered when increasing the nonlinearity
to achieve extreme advantages in a specific aspect. Beneficially,
keeping the nonlinearity within a reasonable value enhances the
control performance in all aspects.

On the one hand, this work reveals the potential of the DR on
nonlinear applications and provides the associated calculation tools
and design and analysis rules to benefit further investigation. On the
other hand, it shows how nonlinearity can benefit complete vibration
absorption, a less-reported topic. With the established theories, our
future work is interested in how to design a nonlinear DR for enhanced
(complete) vibration suppression and how to address the associated
nonlinear dynamics, a more complex task due to the more involved
coupling between nonlinearity and delay.
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Appendix

All Simulink models used in Section 7 can be found on the following
website,

https://drive.google.com/drive/folders/1IBpiHdsNzF5bNtpiyVR-9x
SM1lSt7QFR?usp=sharing.
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