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A B S T R A C T   

Quasi-zero-stiffness (QZS) isolators have shown great promise for low-frequency vibration 
isolation, thus outperforming conventional linear isolators. However, the hardening behavior 
typically exhibited in QZS isolators can deteriorate the isolation performance at high excitation 
amplitudes. To tackle this problem, utilizations of inherent material damping in soft resin offer a 
feasible way to counteract the hardening effect. This paper proposes a continuous QZS isolator, 
which can be readily fabricated by three-dimensional (3D) printing using soft resin. QZS prop-
erties are achieved by combining the snap-through behavior of inclined beams and the support of 
folded beams, acting as negative-stiffness (NS) and positive-stiffness (PS) elements, respectively. 
Analytical methods are developed for predicting the stiffness of the NS and PS elements of the 
design, whose efficacy is demonstrated numerically and experimentally through examining the 
static behavior. To evaluate the vibration isolation performance of the QZS isolator, a nonlinear 
single-degree-of-freedom (SDOF) model is proposed. The model incorporates cubic nonlinear 
damping in addition to classical viscous damping. The harmonic balance method (HBM) and the 
Runge-Kutta algorithm are employed to solve the equation of motion and to predict the velocity 
transmissibility. Parametric analyses are conducted to assess the effect of the excitation amplitude 
on isolation performance. The results show that an increased excitation level entails a down- 
shifting of the peak frequency in the transmissibility curve and that of the starting frequency 
of the effective isolation zone, resulting in enhanced isolation performance at large amplitudes. 
Numerical findings are further supported by dynamic experiments with varying excitation levels, 
demonstrating the validity of the proposed numerical model.   

1. Introduction 

1.1. Background and motivation 

Quasi-zero-stiffness (QZS) vibration isolators, with their unique high-static and low-dynamic stiffness features, show great promise 
for the design of vibration isolation devices to deliver effective vibration isolation in a much lower frequency range than their linear 
counterparts. Linear isolators are effective typically starting from frequencies exceeding 

̅̅̅
2

√
times the natural frequency of the isolator 

[1,2]. Thus, reducing stiffness would allow low-frequency isolation with a wider isolation range, at the expenses of generating larger 
static deformation and compromised system instability [2,3]. To overcome these challenges, QZS mechanisms can be exploited to 
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achieve high static stiffness (to support large static loads) and low dynamic stiffness (to widen the frequency range of isolation). This 
unique combination makes the QZS isolator a viable and attractive solution for low-frequency isolations. 

QZS mechanisms are typically achieved by combining positive stiffness (PS) and negative stiffness (NS) elements in parallel to 
create competing stiffness effects to eventually achieve an overall QZS effect. Conventional way to design NS elements relies on 
horizontally and obliquely orientated springs [3–10]. For example, Carrella et al. [2] analyzed the static characteristics of a QZS system 
comprising a vertical spring in parallel with two oblique springs, demonstrating that the force-displacement relationship could be 
approximated by a cubic equation, which has since then been widely adopted in subsequent studies. Carrella et al. [11,12] further 
investigated the dynamics of the same QZS system and derived approximate expressions for the maximum transmissibility and 
jump-down frequency in the case of light damping. A variety of prototypes have been developed and experimentally tested, providing 
supporting evidence for the superior performance of QZS isolators compared to traditional linear ones [13–15]. To provide tunable 
nonlinear stiffness, Gatti [16] proposed an adjustable device comprising two pairs of linear oblique springs, whose geometric 
arrangement can be adjusted to achieve specific nonlinear force-displacement characteristics. Apart from oblique springs, NS mech-
anisms can also be achieved through other designs, such as magnets [17–20], inclined and curved beams [21–24], bistable plates and 
shells [25–27], cam rollers [28–30], scissor-like structures [31,32], metamaterial and origami-based structures [33–37], etc. 

Given the difficulties in miniaturizing and implementing spring mechanisms of a tiny size while maintaining the dynamic property, 
continuous QZS structures based on compliant mechanisms would be more appropriate for protecting small-scale machines from 
external disturbance. Moreover, with the rapid development of additive manufacturing technology, customized continuous structures 
with integrated components can be conveniently manufactured via 3D printing. Several continuous QZS structures have been realized 
based on two generic design strategies. The first strategy combines the snap-through behavior of inclined beams and the support of 
curved beams, acting as NS and PS elements, respectively [38,39]. The second strategy employs a monolithic curved beam with 
tactically tuned geometric configurations [40–43]. Comparing these two strategies, the second approach yields more compact and 
integrated structures by avoiding the assembly of separate PS and NS elements. However, a significant drawback is that a careful 
tuning of the geometric parameters is required, as monolithic curved beams exhibit the NS property over a much wider parameter 
range than the QZS property [44]. Extensive geometric tuning to obtain the desired QZS property is usually conducted by charac-
terizing the shape of monolithic curved beams using B-splines and polynomials [40–43]. The first strategy, which combines NS and PS 
elements together, offers the advantage of higher static stiffness and loading capacity along with a larger design space than the 
monolithic curved beam. As to the first strategy, Fan et al. [45] proposed a structure exhibiting QZS behavior and numerically 
investigated its vibration isolation performance in linear regime by arranging a sinusoidal beam and a couple of semicircular arches 
inside a stiffer frame. Based on Duffing’s equation and the harmonic balance method (HBM), Dalela et al. [46] investigated the 
nonlinear behavior of a similar structure. 

A limitation of conventional QZS systems is their hardening behavior, which can narrow the isolation region at high vibration 
amplitudes. To mitigate this, QZS systems can be optimized to extend the QZS range [6,47]. Apart from structural optimization, 
nonlinear inertia can reconcile the hardening behavior of a QZS isolator, which further reduces the starting isolation frequency [48]. In 
[49], external dampers were intentionally introduced to a QZS isolator consisting of springs, and the results indicated that, due to the 
additional dampers, the starting isolation frequency was shifted to lower frequencies as the excitation amplitudes increased. It can then 
be surmised that the significant damping effect, inherent in the soft materials, could provide a direct and simple solution to alleviate 
the adverse effects of the hardening behavior. This, however, has not been fully exploited in existing literature on continuous QZS 
structures. 

Indeed, while there exist several studies on continuous QZS structures for vibration isolation [40,41,45,46,50], comprehensive 
analyses considering the nonlinear behavior and damping effects are scarce. Linear assumptions were adopted in [45], and the 
research was limited to the small-amplitude regime. Some research analytically investigated the influence of nonlinear stiffness on 
vibration isolation performance but relied on a linear viscous damping model [40,46]. However, when it comes to continuous QZS 
structures constructed with soft materials, a linear viscous damping model is insufficient to capture the complicated and substantial 
damping effects from internal friction. The work in [50] analytically explored the isolation performances of a QZS isolator fabricated 
with thermoplastic polyurethanes (TPU) using various damping models, but experimental investigation was not provided. 

1.2. Objective and main contributions 

This paper presents the design of a novel vibration isolator with embedded QZS properties that can be conveniently 3D printed with 
soft resins. The primary objective is to effectively counteract the adverse effects of the hardening behavior of conventional QZS iso-
lators by leveraging the significant damping effects arising from the soft resin. As such, the starting isolation frequency of the proposed 
isolator is expected to shift to a lower frequency as the excitation amplitude increases, alongside a broadening of the isolation region. 
The main contributions of this paper to the existing literature on compliant QZS isolators can be summarized as follows:  

(1) A novel QZS isolator that can be easily fabricated by 3D printing using soft resins is proposed. The desired low-frequency 
isolation performance and robustness against excitation levels are showcased and experimentally validated.  

(2) Nonlinear damping, in addition to the classical viscous one, is introduced in the mechanical model to characterize the damping 
effect of soft resins, and the model is also validated by experiments. 

The paper is organized as follows. Section 2 describes the proposed design of the QZS isolator. Experimental measurements and 
numerical analysis of the static force-displacement behavior of the designed isolator are presented in Section 3. In Section 4, a 

L. Xiao et al.                                                                                                                                                                                                            



Journal of Sound and Vibration 577 (2024) 118308

3

hardening single-degree-of-freedom (SDOF) model with nonlinear damping is developed. In Section 5, dynamic experiments are 
conducted to assess the isolation performance of the proposed QZS isolator and to validate the model. Conclusions are presented in 
Section 6. 

2. The design and the static analysis of the QZS system 

The proposed QZS isolator consists of two pairs of inclined beams acting as NS elements and two pairs of folded beams as PS el-
ements, as schematically shown in Fig. 1. The inclined beams are designed to feature snap-through buckling behavior when subjected 
to compressive load, which provides negative stiffness and counteracts the positive stiffness of the folded beams. A platform is inte-
grated at the top of the QZS mount to hold external payloads. The key parameters of the inclined beams, including the revolve angle θr, 
inclination angle θn, and thickness tn, are depicted in Fig. 1(a). Since the beam width of the inclined beam is not constant along the 
beam length, its width wn is estimated as the width at the middle height. Each folded beam is composed of two segments of beams with 
the same thickness tp, width wp, and inclination angle θp. 

2.1. Analytical solutions for positive-stiffness and negative-stiffness elements 

The positive stiffness of the folded beams at small deformation can be estimated by the Castigliano’s theorem based on strain energy 
[38]. More precisely, the strain energy of these two folded beams can be written as 

U = 2

⎛

⎜
⎝

∫lp

0

(
Mc − Fclpcos

(
θp
))2

2EI
ds +

∫θp

0

(
Mc − Fclpcos

(
θp
)
− rcos

(
π
4 − θ

)2

2EI
rdθ

⎞

⎟
⎠, (1)  

where Mc and Fc are the bending moment and axial force, respectively, as shown in Fig. 1(b). According to the Castigliano’s theorem, 
the vertical displacement Δh, as depicted in Fig. 2, can be calculated by differentiating the strain energy U with respect to the force Fc, 
yielding 

Fig. 1. Schematic illustration of (a) the proposed QZS isolator accompanied with its negative-stiffness (NS) and positive-stiffness (PS) elements, (b) 
free-body diagram and bending-moment diagram of the PS element, and (c) free-body diagram of the NS element [51]. 

Fig. 2. Force-displacement curves obtained by the analytical method and finite element method (FEM) for folded and inclined beams with different 
thickness-to-length ratios: (a) PS elements and (b) NS elements. The corresponding negative-stiffness (NS) zones are indicated in Fig. 2b. 
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By introducing the boundary condition that the slope of the folded beam at the starting end is zero, an additional equation is 
established, i.e., 

θc =
∂U
∂Mc

=
1

2EI

(
Mc
(
πr+ 4lp

)
− 2

̅̅̅
2

√
Fcr2 − Fclp

(
πr+ 2lp

)
cos
(
θp
))

= 0. (3) 

Solving Eqs. (2) and (3) gives the relationship between Fc and Δh, which, when θp = π/4, becomes: 

Fc = kpΔh, (4)  

where 

kp =
12
(
πr + 4lp

)
EI

3π2r4 + 4πl3
pr + 12πlpr3 + 6πr4 + 4l4

p + 48l2
pr2 + 24lpr3 − 48r4 (5)  

is the stiffness of one PS element. 
The NS element is a inclined fixed-guided beam, which is fixed at one end and the other end goes through a deflection such that the 

angular deflection at the end remains constant [51]. The deflection of the beam is antisymmetric about the center, as shown in Fig. 1 
(c), and its negative stiffness can be determined from the load-displacement curves using the elliptic integral method under large 
deformation. Details can be found in [51,52]. 

2.2. Finite element modelling 

To verify the analytical solution, three-dimensional (3D) finite element models (FEMs) of the PS and NS elements are established, 
respectively, as shown in Fig. 2. The dimensions of the FEMs are listed in Table 1. The geometrical mesh of the NS elements is con-
structed with the ten-node quadratic tetrahedron elements (C3D10), and that of the PS elements with the eight-node linear hexahedron 
elements (C3D8R). The mechanical properties of the linear elastic material model used are tabulated in Table 2. Geometrical 
nonlinearity is considered for the buckling behavior of the inclined beams. Moreover, self-contact interactions are defined to model 
contact interactions between different surfaces during compression. 

2.3. Parametric studies on beam thickness 

Fig. 2(a) presents the force-displacement curves for the folded beams with various thickness-to-length ratios, obtained by the FEM 
and the analytical method described in Section 2.1. The analytical results generally agree well with the FE results for the PS elements, 
although the analytical curves are linear while the FE curves are nonlinear. Therefore, the analytical model provides a reasonable 
estimate of the overall stiffness and can be used as a useful tool to provide design guidelines. The stiffness of the PS elements increases 
with thickness, through inspecting the trends in both the analytical and FE results. 

As for the NS elements, as shown in Fig. 2(b), the analytical predictions exhibit good agreement with the FE results, although the 
convergence issues result in truncated force-displacement curves in the FE analysis. The snap-through phenomenon is clearly captured, 
with the restoring forces initially reaching a peak value before abruptly diving into a valley. Within the displacement range between 
the peak and valley, the NS property is achieved. Both the absolute value of the negative stiffness and the load-bearing capacity in-
crease with the beam thickness. The displacement range of negative stiffness becomes narrower as a trade-off. 

Table 1 
Geometric parameters.  

Geometric parameters Value Geometric parameters Value Geometric parameters Value 

θr (◦) 25.0 θp (◦) 45.0 rm (mm) 15.0 
θn (◦) 45.0 tp (mm) 0.5 hm (mm) 6.0 
tn (mm) 0.5 wp (mm) 4.0 wn (mm) 4.2 
ln (mm) 9.5 lp (mm) 6.0 h (mm) 10.0  

Table 2 
Mechanical properties of the resin (the 3D-printing material).  

Material E (MPa) ρ (kg /m3) v 

Flexible resin 8.15 1150 0.42  
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3. Static characteristics of the QZS isolator 

In this section, the static characteristics of the QZS isolator are investigated through quasi-static compression experiments and finite 
element simulations, and the measured force-displacement curves are used to reveal the desired QZS properties. 

Fig. 3. A QZS sample printed using Flexible 80A Resin on the universal testing machine used for the quasi-static compression experiments.  

Fig. 4. Finite element models of a QZS isolator, its corresponding negative-stiffness (NS) and positives-stiffness (PS) elements.  

Fig. 5. Force-displacement curves of the QZS isolator produced through experiments (Exp.) and FEM, together with representative deformations at 
various stages. The restoring force-displacement curves of the corresponding PS and NS elements are also included. 
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3.1. Quasi-static compression experiments 

Samples of the proposed QZS isolator were fabricated by stereolithography (SLA) using a 3D printer, Formlabs Form 3+. Flexible 
80A Resin was used, which can balance the softness with strength. An example of the printed sample is shown in Fig. 3, with the 
corresponding geometric parameters listed in Table 1. The fillet radii at the ends of the inclined beams and the corners of the folded 
beams were set to one millimeter. 

To investigate the mechanical behavior of the QZS isolator, quasi-static compression tests were performed using a universal testing 
machine, as shown in Fig. 3. The compression test was performed under displacement control, with a loading rate of 0.1 mm per 
second. 

3.2. Finite element simulation 

To gain further insights into the mechanical behavior of the isolator, FE analyses are conducted in addition to the experimental 
investigation. As shown in Fig. 4, the QZS isolator is modeled by the ten-node quadratic tetrahedron element (C3D10). Similarly, a 
linear material model, with the material mechanical properties listed in Table 2, is applied. The bottom and top surfaces of the QZS are 
coupled to a reference point, respectively. The bottom reference point (RP2) is constrained in all six degrees of freedom, and a 
vertically prescribed displacement is applied at the top reference point (RP1) to simulate the compression process. For illustration of 
the contribution of the PS and NS elements, corresponding FEMs are also established, as shown in Fig. 4. 

3.3. Static force-displacement curves 

The measured restoring forces with respect to the displacement from both experimental results and FE analysis are displayed in 
Fig. 5, alongside representative deformations at different stages. Obviously, a platform region appears on the restoring force curve in 
the displacement range from 0.8 mm to 3.1 mm, typical of QZS behavior. Subsequently, the restoring force increases rapidly due to 
self-contact. The restoring force-displacement curves of the folded beams (PS elements) and the inclined beams (NS elements) are also 
shown in Fig. 5. The restoring force of the PS element increases monotonically with displacement, while that of the NS element rises 
steeply at first and then decreases suddenly due to the snap-through buckling of the inclined beams. As the QZS isolator embraces both 
the PS and NS elements, its behavior is a combination of these two types of elements. 

4. System modelling and parameter identification 

To understand the dynamic characteristics of the QZS system, an SDOF model incorporating nonlinear restoring force is established 
in this section. Two methods, including the harmonic balance method (HBM) and the 4th Runge-Kutta method, are used to solve the 
equation of motion (EOM) to derive the velocity transmissibility. A genetic algorithm is proposed for identifying model parameters 
from dynamic experiments. 

4.1. Single-degree-of-freedom models 

The proposed continuous QZS mount can be modelled using an SDOF nonlinear model, as shown in Fig. 6. Geometric nonlinearities 
are included in a modified Duffing equation in which a quadratic stiffness term is added to account for the asymmetry due to friction, 
curvature, or imperfection [53]. Thus, the elastic restoring force of the spring is modeled by a three-order polynomial Fe = k1x + k2x2 

+ k3x3, where x is the displacement of the mass and k1, k2 and k3 are the linear, quadratic, and cubic stiffness coefficients, 
respectively. 

For continuous structures, studies revealed a nonlinear evolution of damping, usually an increase with large amplitudes of oscil-
lation [53]. Therefore, the linear damping model employed in the literature on continuous QZS structures [40,46] should be replaced 
by a nonlinear damping model. The choice of functional form for nonlinear damping is a tricky task [54,55]. Various expressions in the 
form of polynomials in terms of velocity ẋ˙, from the quadratic up to the cubic, have been proposed [53]. Based on preliminary studies, 
the nonlinear damping of the type c1ẋ˙+ c3x2ẋ˙, where c1 and c3 are the linear and cubic damping coefficients, respectively, is chosen in 
this study. 

Fig. 6. Schematic models of the QZS isolator at initial and equilibrium states and the corresponding equivalent nonlinear (NL) SDOF dy-
namic model. 
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For a harmonic base displacement excitation, xg = Xgcos(ωt), the equation of motion (EOM) of the system is written as: 

mẍ + c1ẋ + c3x2ẋ + k1x + k2x2 + k3x3 = mω2Xgcos(ωt), (6)  

where m is the mass, ω and Xg are the circular frequency and amplitude of the excitation, respectively. With all nonlinear internal force 
terms regrouped into fint(x, ẋ˙) and the external force denoted by fext(ω, t) = Fcos(ωt), the EOM is cast into the following general form, 

mẍ + c1ẋ + k1x + fint(x, ẋ) = fext(ω, t). (7)  

4.2. Numerical methods for solving system equation 

Equation (7) can be numerically solved using the HBM. The relative displacement x and the resultant force f = fext(ω, t) − fint(x, ẋ˙)
are then approximated by Fourier series truncated to the Nth- harmonic as, 

x(t) = qx
0 +

∑N

k=1

(
qx

ks
sin(kωt) + qx

kc
cos(kωt)

)
, (8)  

and 

f (t) = qf
0 +

∑N

k=1

(
qf

ks
sin(kωt)+ qf

kc
cos(kωt)

)
, (9)  

where qks and qkc denote the kth- harmonic Fourier coefficients related to the sine and cosine terms, respectively. The Fourier co-
efficients of f(t) depend on the Fourier coefficients of the displacement x(t), which represent the new unknowns of the problem. These 
coefficients are gathered into 2N + 1 × 1 vectors, 

z =
[
qx

0, qx
1s
, qx

1c
, …, qx

Ns
, qx

Nc

]T
, (10)  

b =
[
qf

0, qf
1s
, qf

1c
, …, qf

Ns
, qf

Nc

]T
. (11) 

Substituting Eqs. (8-11) into Eq. (7) and following the standard Fourier-Galerkin balance procedure, the EOM expressed in the 
frequency domain is eventually obtained in a compact form [56,57], 

h(z, ω) = A(ω)z − b(z) = 0, (12)  

where A = ∇2 ⊗ M +∇⊗ C + I2N+1 ⊗ K is the matrix for linear system; ⊗ stands for the Kronecker tensor product; ∇ and ∇2 are 
gradient and Laplace operator matrices defined in [56]. Equation (12) is nonlinear and should be solved iteratively. The 
Newton-Raphson method and the Moore-Penrose continuation method are utilized to reach the final solution. 

Equation (7) can also be numerically integrated by the Runge-Kutta method. The results obtained by the HBM and the Runge-Kutta 
method are compared in Appendix to validate numerical methods, in which the harmonic truncation order N is investigated. 

Fig. 7. The evolution of velocity transmissibility with various excitation amplitudes. Model parameters in Table 4 are employed in the simulation 
for illustration. 
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The influence of excitation amplitudes on the performance of the QZS isolator is discussed numerically by using the validated HB 
method and the Runge-Kutta method. The evolution of the velocity transmissibility with various excitation amplitudes is presented in 
Fig. 7. As the excitation amplitude rises, the peak frequency and the starting isolation frequency gradually move to the lower frequency 
region, alongside a decrease of the peak value. As a result, the isolation performance is improved at higher excitation levels compared 
to smaller ones. 

4.3. Parameter identification using genetic algorithm 

This section deals with the parameter identification of the SDOF model in Fig. 6 by matching available experimental data. The 
procedure to estimate model parameters is split into two successive processes. First, as a prerequisite for nonlinear identification, the 
linear stiffness coefficient is estimated using the frequency responses in a small-amplitude regime. Then, SDOF system is solved using 
the Runge-Kutta method and the remaining parameters of the system are estimated by minimizing the differences between the nu-
merical and experimental data using a genetic algorithm. The difference between experimental and numerical responses is measured 
using the root mean squared error (RMSE) as shown in Eq. (13), 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Nf

i=1(ŷi − yi)
2

Nf

√

, (13)  

where yi = vi/vbi and ŷi = v̂i/vbi represent the experimental and numerical transmissibility (yi and ŷi) obtained by normalizing the 
experimentally and numerically obtained steady velocity amplitude (vi and v̂i) by the base velocity amplitude vbi at a discrete fre-
quency fi, respectively. Nf denotes the number of discrete frequencies employed for system parameter estimation. 

Then, to estimate the system parameter, the optimization problem towards minimization of RMSE is conducted by means of the 
global search genetic algorithm implemented in MATLAB routine ga, detailed as follows: 

Find 

d = [η2, η3, γ1, γ3], (14)  

to minimize RMSE, when subjected to 

dL
i ≤ di ≤ dU

i (i= 1, …, 4), (15)  

where d is a vector consisting of four system parameters; η2 = − 1
105

k2
k1 

and η3 = 1
106

k3
k1 

denote the quadratic and cubic dimensionless 
stiffness coefficients, respectively; γ1 = c1

20 and γ3 = 1
102

c3
c1 

are the linear and cubic dimensionless damping coefficients, respectively. 
Additionally, dL

i and dU
i represent the lower and upper bound of each normalized system parameter, which are zero and one in the 

normalized space, respectively. 
Apart from RMSE in Eq. (13), the coefficient of determination (R2) defined in Eq. (16), is also introduced to assess the discrepancy 

between the experimental and numerical results with the estimated system parameters. 

R2 = 1 −
∑Nf

i=1
(ŷi − yi)

2

/
∑Nf

i=1
(yi − y)2 (16)  

Fig. 8. Experimental set-up for transmissibility of the QZS isolator. The laser beam of the vibrometer was redirected by a mirror to measure the 
vertical velocity responses of the mass block and the base plate fixed at the top of the shaker. 
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5. Dynamic Experiments 

Dynamic experiments were conducted with the twofold aim of investigating the isolation behavior of the proposed QZS isolator and 
validating the numerical model employed. The experimental set-up and procedures are to be addressed in this section. 

5.1. Experimental set-up 

The experimental set-up of the vibration measurement is illustrated in Fig. 8. An electrodynamical shaker, model B&K 4810, was 
used to provide excitation. A base plate was fixed on the shaker, on the top of which was the fixed printed sample. Due to the un-
avoidable initial geometric imperfection from the 3D printing, which leads to eccentric loading, a tube with an inner diameter one 
millimeter larger than the outer diameter of the platform was installed outside of the platform to provide lateral support for the QZS 
isolator, as shown in Fig. 8. Lubricant was applied to both the inner surface of the tube and the outer surface of the QZS isolator to 
reduce the friction between the two parts. The outer tube was printed with polylactic acid (PLA) using a fused deposition modelling 
(FDM) 3D printer. 

The velocity responses were measured using a laser Doppler vibrometer (Polytec PSV 500). The laser beam was redirected by a 
mirror to measure the vertical velocity response, as shown in Fig. 8. To extract the velocity transmissibility, the velocity of the mass 
block and that of the base plate were measured using the laser vibrometer. 

5.2. Experimental procedure 

From the static experimental results shown in Fig. 5, the 3D printed sample of QZS isolator reaches the QZS zone with a payload of 
around 65 grams. Thus, a mass block weighing 65 grams was fixed at the top of the isolator to investigate its QZS property. For 
comparison, a mass block weighing 25 grams was chosen to exhibit the property of the isolator before it reaches the QZS zone. 

Usually, for the convenience of presenting experimental results, closed-loop control is used in swept-sine tests to keep the 
amplitude of the harmonic force constant while varying the excitation frequency [58]. However, in this paper, the excitation amplitude 
was directly controlled and measured using voltage. First, small-amplitude swept-sine tests were performed for both m = 25 g and m =
65 g. The excitation frequency was increased from 1 Hz to 300 Hz in 102.4 seconds to find the fundamental frequency for each case. 
Then, for the m = 65 g case, experiments were performed by increasing the excitation frequency from 5 Hz to 95 Hz in 102.4 seconds, 
which covers the neighborhood of the fundamental natural frequency. Five different voltage levels were deployed to investigate the 
isolation performance under different excitation levels. It is worth noting that the sweep rate is determined by comparing the envelop 
of swept-sine responses to the single-frequency response at multiple frequencies to ensure that the sweep rate is slow enough to obtain 

Fig. 9. Comparison between experimental and analytical results of transmissibility at the small-amplitude excitation of 1 V. The upper and lower 
subplot are the results for m = 25 g case and m = 65 g case, respectively. 
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steady-state responses. 

6. Results and Discussion 

In this section, the performance of the proposed QZS isolator is first evaluated through comparisons with the linear isolator based 
on experimental results at small amplitudes. Then, the influence of excitation amplitude on the isolation performance is discussed. The 
proposed SDOF model and the parameter identification procedure are validated by comparing the experimental and numerical results. 

6.1. Vibration isolation performance at small amplitudes 

The velocity transmissibility is first extracted from the small-amplitude experimental results. For the case of m = 25 g, the linear 
stiffness of the isolator before reaching the QZS range is estimated by fitting the experimental results with linear analytical trans-
missibility, which is shown in Eq. (17) [40], 

T =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +

(

2ξ ω
ωn

)2

(

1 −

(
ω
ωn

)2
)2

+

(

2ξ ω
ωn

)2

√
√
√
√
√
√
√
√
√

, (17)  

where ωn =
̅̅̅̅̅̅̅̅̅̅̅
k1/m

√
and ξ = c1/2mωn. The comparison between the experimental and analytical results is presented in the upper 

subplot in Fig. 9. With an estimated linear stiffness k1 of 1.51 × 104 N/m and a linear damping ratio ξ of 0.24, the analytical results 
match the experimental results. The peak frequency and the starting isolation frequency are 118.1 Hz and 165.6 Hz, respectively. 

When the mass is increased to 65 g, the peak frequency shifts from 118.1 Hz to 36.2 Hz, and effective isolation starts to be achieved 
at 54.1 Hz, as shown in the lower subplot in Fig. 9. If the stiffness of the isolator remains unchanged while the mass increases from 25 g 
to 65 g, the theoretical transmissibility is shown as the dash-dotted line with a peak frequency of 72.2 Hz, which is much higher than 
that of the experimental results. Moreover, by fitting the experimental results with the linear analytical results, the stiffness in this case 
is estimated at 3.60 × 103 N/m, which is only 23.8% of the stiffness in the case of m = 25 g. By far, the experimental results indicate 
that the designed isolator materializes the desired QZS property and thus reaches a lower isolation frequency compared with the 

Fig. 10. Velocity responses of the mass block (upper subplot) and the base plate (lower subplot) at five different excitation levels.  
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corresponding linear isolator. 

6.2. Vibration isolation performance at different amplitudes 

The measured velocity responses of the mass block and the base plate at five different excitation levels, namely 1 V, 2 V, 3 V, 5 V, 
and 7 V, are displayed in the upper and lower subplots of Fig. 10, respectively. Fig. 11 presents the corresponding velocity trans-
missibility. As the excitation level increases from 2 V to 7 V, both the peak frequency and the starting isolation frequency are 
downshifted, alongside a gradual decrease in the resonant amplitudes. Thus, the isolation performance is better at higher excitation 
levels than lower excitation levels. These experimental results also confirm the HBM-predicted observation in Fig. 7. In summary, the 
design objective of utilizing the large damping effect of the soft resin to neutralize the detrimental effects of the hardening behavior of 

Fig. 11. Velocity transmissibility at five different excitation levels.  

Fig. 12. Experimental and numerical acceleration transmissibility of the QZS isolator for three excitation amplitudes.  

Table 3 
Optimized results of the normalized parameters.  

Parameter η2 η3 γ1 γ3 

Value 0.012 0.543 0.409 0.385  
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the QZS isolator to obtain better isolation performance at large amplitudes has been achieved. 

6.3. Comparison of numerical and experimental results 

The experimentally obtained transmissibility of multiple frequencies at three excitation levels is estimated from the envelopes of 
the swept-sine responses shown in Fig. 10. The experimental results are shown as circles in Fig. 12. Using these results and following 
the procedures in Section 4.3, the normalized parameters in Table 3 are obtained. The corresponding stiffness and damping parameters 
are displayed in Table 4. As shown in Fig. 12, the transmissibility curves from the numerical results are consistent with those from the 
experimental results. The two indices in Eqs. (13) and (16), accompanied by two additional indices, i.e., the peak frequency ratio and 
the peak amplitude ratio, are summarized in Table 5 to evaluate the difference between the numerical and experimental results. The 
results prove that the numerical model with the parameters shown in Table 4 is of high accuracy in modelling the system, as evidenced 
by the R2 values exceeding 0.91 for all three excitation levels, and the maximum deviations within 5% for the peak frequency and peak 
amplitude. Thus, both the employed restoring force model and the parameter estimation procedure are validated. 

7. Conclusion 

In this paper, a continuous QZS isolator is proposed and implemented using 3D printing. The required QZS properties are achieved 
by combining the snap-through behavior of inclined beams and the support of folded beams, acting as negative-stiffness (NS) and 
positive-stiffness (PS) elements, respectively. The static properties of the QZS isolator are thoroughly investigated through numerical 
simulations and experimental tests. The results show that the combination of NS and PS elements can lead to the desired QZS features. 

To fully understand the dynamic performance of the QZS isolator, a nonlinear SDOF model is established, which incorporates a 
cubic damping model. Experimental tests are conducted to assess the isolation performance of the proposed device and verify the 
numerical findings, as evidenced by the observed agreement between them. Moreover, the velocity transmissibility obtained by the 
experimental and numerical results both indicate that the resonant peaks and the starting isolation frequency decrease with increasing 
excitation amplitudes, thus entailing better isolation performance at higher excitation levels, which is distinct from existing QZS 
isolators. This improvement is achieved by neutralizing the hardening effect of the QZS isolator with the significant damping effect of 
the soft resin. 

In conclusion, the integrated isolator proposed in this paper effectively combines the QZS properties and the significant damping 
effects of the soft resin, to achieve superior isolation performance in the low-frequency range and robustness against the changes in the 
excitation levels. Future research is needed to explore structural optimization and inverse design methods to further improve the 
performance of the proposed QZS isolator. 
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Table 4 
Parameters for the optimized numerical model.  

Parameter k1 k2 k3 c1 c3 

(N /m) (N /m2) (N /m3) (N /(m/s)) (N /(m3/s)) 

Value 3.60× 103 − 4.32× 106 1.95× 109 8.18 314.48  

Table 5 
Performance of the optimized model for response predictions.  

Excitation level RMSE R2 Peak frequency ratio Peak amplitude ratio   
(Numerical/test) (Numerical/test) 

3V 0.111 0.953 1.000 0.983 
5V 0.122 0.940 0.969 0.980 
7V 0.140 0.917 0.967 0.980  
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Appendix 

Generally, the harmonic truncation order N should be selected as large as necessary to achieve the required accuracy and as small as 
possible to avoid spurious effort. Equation (7) is integrated by means of the 4th Runge-Kutta scheme using the Matlab solver ode45 as a 
reference to select the appropriate truncation order. The results of the convergence study are illustrated in Fig. A.1. Obviously, good 
agreement between the HB predictions when N = 5 and the numerical simulations can be observed. 

Fig. A.1. Convergence study on the harmonic truncation order N when F=1.0 N. Model parameters in Table 4 are employed in the simulation for 
illustration. 
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