
International Journal of Mechanical Sciences 263 (2024) 108789

Available online 1 October 2023
0020-7403/© 2023 Elsevier Ltd. All rights reserved.

Vibro-acoustic and buckling analysis of a thermal plate-cavity 
coupled system 

Qing Luo a, Yanfeng Wang b, Yukang Yang a, Qi Xu a,*, Yinghui Li a, Li Cheng c 

a School of Mechanics and Aerospace Engineering, Southwest Jiaotong University 610031, Chengdu, China 
b Sichuan Gas Turbine Establishment, Aero Engine Corporation of China, Chengdu 610500, China 
c Department of Mechanical Engineering, the Hong Kong Polytechnic University, Hong Kong, China   

A R T I C L E  I N F O   

Keywords: 
Plate-acoustic system 
Thermal effect 
Rayleigh–Ritz method 
Vibro-acoustic characteristics 
Buckling behavior 

A B S T R A C T   

In this paper, the vibro-acoustic and buckling characteristics of a rectangular plate-acoustic cavity system under 
thermal loads are studied. Both the structure material and the internal acoustic field are assumed to be 
temperature-dependent, with the acoustic cavity consisting of impedance walls. Considering the interaction 
between the structure and the acoustic cavity, the governing equations of the coupled system are derived and 
solved via the improved Fourier series and the Rayleigh–Ritz method. Vibro-acoustic modes in such a coupled 
system are strongly affected by the coupling among subsystems. With thermal loads being considered, we 
observe that this strong coupling effect can be triggered more easily, even for thick plates or relatively large 
cavities. To address this, a simplified formulation for the coupled fundamental mode is also given following the 
fully coupled modeling procedures. Also, it is found that coupling the plate with a cavity can delay the onset of 
structural buckling. Therefore, for strongly coupled systems, the buckling temperature of the substructure may be 
much higher than for uncoupled or only weakly coupled substructures, which may enhance the safety of the 
system in a thermal environment.   

1. Introduction 

Systems consisting of elastic sub-structures and internal cavities are 
commonly seen in engineering. The vibro-acoustic interactions between 
the structural vibration and sound field inside the cavity may cause 
noise problems or even damage the system structure, especially for 
systems working in extreme thermal or magnetic environments [1–3]. 
Also, as the environment changes, sub-structures comprising elastic 
structures like plates or shells may become unstable and buckled [4–6]. 
Though buckling is usually considered as a static problem, it actually 
involves the instability of related vibration modes of the system. In this 
paper, we study the vibro-acoustics of a typical structural-acoustic sys
tem in a thermal environment, with buckling also being considered. 

In the theoretical, to model and study the vibro-acoustic character
istics, a structural-acoustic system is generally divided into two coupled 
subsystems: the structure part and the cavity part [7]. The two sub
systems are dynamically coupled with each other through interactions at 
the mutual interface. In this regard, the modal coupling method first 
studies the subsystem modes and then assembles these sub-modes by 
means of calculating the acoustic-vibration modal coupling coefficient 

[8,9]. Also, improved modal coupling methods, like the dual-modal 
coupling method [10,11] and the modal reduction method [12,13] 
have been proposed and widely used. Similarly, the energy-based 
methods calculate the energies of the subsystems, and derive the gov
erning equations via applying the variational principle to the assembled 
total energy. Typical energy-based methods include but are not limited 
to the variational-based method (VBM) [14,15], the static energy anal
ysis (SEA) [16–20], the improved Fourier series method (IFSM) [21–25], 
the Chebyshev polynomial method (CPM) [26–28] and so on. Compared 
with the modal coupling methods, the energy-based methods are often 
more accurate, especially for cases involving strong structural-cavity 
interactions. Numerical methods like the finite element method (FEM) 
[29,30], boundary element method (BEM) [31–33], spectral element 
method (SEM) [34,35], wave finite element method (WEM) [36,37], 
and so on, are also popular to tackle the structural-cavity systems, where 
the structural-cavity interactions can be directly considered in the finite 
element formulation. With good suitability for systems of geometry ir
regularity, numerical methods may have low computational efficiency 
or convergence difficulty in certain frequency ranges. For example, an 
enormous element meshing is needed for FEM and BEM for 
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high-frequency simulations, resulting in a high computational cost and 
memory resources [38,39]. 

Structural-cavity systems may exhibit weak or strong coupling ef
fects, depending on how much the interactions between subsystems 
affect the system modes. For a weakly coupled system, the interactions 
between subsystems have little influence on the system modes, and can 
even be ignored for simplicity. In such a case, the system modes are 
generally close to the modes of the subsystems [40,41]. However, for a 
strongly coupled system, like a thin and flexible structure coupled with a 
shallow cavity or a cavity filled with a high-density medium, the modal 
behaviors of the coupled system are quite different from those of the 
subsystems, and cannot be directly predicted by the subsystem. Based on 
the structural modes and the rigid acoustic cavity modes, the coupling 
coefficient between different structure modes and the acoustic cavity 
modes can be approximately obtained to evaluate the degree of spatial 
coupling [42–45]. To solve strongly coupled systems, the classical modal 
coupling method may not converge well, especially for coupled sub
systems involving both high- and low-frequency modes [46]. In this 
regard, the pseudo-static correction method [47] is proposed for modal 
coupling analysis of strongly coupled systems. Also, other analytical and 
semi-analytical methods like the patch transfer functions method [48], 
decoupled modal projection method [49], coupled reduced-order 
modeling technique [50], and so on, have been adopted. 

On the other hand, with a demanding requirement for structural 
vibro-acoustic performance, many advanced structural-cavity systems 
work in tough thermal environments. For example, the surface of high- 
speed aircraft endures a temperature of 350 ◦C caused by friction at a 3 
Mach speed [51], and underwater vehicles are exposed to great tem
perature drops when diving [52]. The heat transfer processes, either in 
transient or steady state, can be categorized as thermal radiation, 
convective heat transfer, and heat conduction. These processes involve 
key principles and properties that are important for understanding the 
heat transfer dynamics, for example, the heat transfer rate like heat flux 
and heat flux density [53,54], the blackbody radiation principles [55], 
Newton’s cooling law [56,57] and Prandtl number [58] in convection, 
Fourier thermal conductive law [59], and so on. Heat transfer processes 
also induce various structural and acoustic vibrations. For instance, the 
spacecraft’s solar panel endures cyclic solar thermal radiation due to the 
day-night transitions, leading to periodic thermal excitations that cause 
structural vibrations [60,61]. The convective heat transfer and thermal 
radiation in combustion chambers may couple with the acoustic modes 
of the system, and hence generates thermoacoustic oscillations that can 
affect the combustion efficiency or even cause structural damage [62, 
63]. The heat transfer processes also affect the properties of both the 
structural material and cavity medium, and consequently the mechan
ical properties of the system. For example, the temperature rise/drop of 
the structural-cavity systems can greatly affect the vibro-acoustic modes 
and responses of structural-cavity systems. As the temperature goes up, 
the sound is easier to spread in the low-frequency region, as the peaks of 
the sound transmission loss will drop and float to lower frequencies 
[64–66]. The mode shift phenomenon may also occur under thermal 
loads. With continued heating, the inherent vibro-acoustic modes of a 
system may shift between each other, and may lead to unwanted vi
bration mode shapes in the system [67,68]. System instability may also 
be triggered due to the thermal load, leading to the so-called thermal 
buckling [5,69] or thermal flutter [70], depending on whether the fre
quency of the unstable modes is zero or not [71]. 

In this paper, the vibro-acoustic and buckling characteristics of a 
rectangular plate-cavity system under steady-state thermal loads are 
studied, focusing on the elucidation of weak/strong coupling effects and 
how they affect vibro-acoustics and thermal buckling. The thermal effect 
is encompassed in the description of the acoustic medium properties, 
and the plate displacement field by using the classical plate theory (CPT) 
[72–74]. The improved Fourier series method (IFSM) and the Ray
leigh–Ritz method are then adopted to model and solve the coupled 
thermal system, considering a class of general boundary conditions and 

impedance walls. Owing to its energy-based feature, this combination of 
methods shows good convergence and accuracy, and enables detailed 
parametric study of thermal weak/strong coupling. We show that the 
weak/strong coupling effect affects the dynamical and buckling 
behavior of the system quite differently. Through case studies and the 
derivation of a simplified formula for the coupled fundamental mode, 
we explain how the strong coupling effect, via changing the structural 
geometry or the cavity-medium property, delays the onset of the struc
tural buckling. 

The rest of the paper is arranged as follows. In Section 2, the gov
erning equation of the coupled system is developed and solved. Section 3 
validates the proposed method via solutions existing in the literature, 
and carries out a parametric study of the buckling and vibro-acoustic 
modes, in terms of weak/strong coupling characteristics and thermal 
effect. Finally, in Section 4, conclusions are drawn. 

2. Theoretical modeling 

In this work, an isotropic and rectangular plate coupled with a reg
ular cavity is investigated, as shown in Fig. 1. The length and width of 
the plate and the cavity are the same, and denoted by a, b. The thickness 
of the plate is hp, and the depth of the cavity is hc. The boundary condition 
of the plate is simply supported, while those of the acoustic cavity is of 
arbitrary impedance. An orthogonal coordinate system Oxyz is used, with 
the middle plane of the plate being the Oxy plane, and z-direction 
alongside the cavity depth hc. As the plate is thin, it is assumed to be of 
uniform temperature, which takes the form of T = T0 +ΔTp, where T0 
denotes the initial (free stress) temperature of the plate and ΔTp is the 
temperature rise. The temperature of the acoustic cavity is represented 
by Tc=T0 + ΔTc, which may be the same as the plate temperature or not. 

The displacement components of the plate at an arbitrary point in the 
x, y, and z directions are denoted U(x,y,z,t), V(x,y,z,t), and W(x,y,z,t), 
respectively. The sound pressure inside the coupled system is denoted as 
p(x,y,z,t). In the following discussions, U(x,y,z,t), V(x,y,z,t), W(x,y,z,t), 
and p(x,y,t) are abbreviated as U, V, W, and p for simplification. The 
vibration characteristics of the plate-cavity system are then studied, by 
considering the mutual interactions between the vibrating plate and the 
acoustic waves inside the cavity. 

2.1. Basic equations 

According to the classical thin plate theory (without considering 
shear deformation along the z-direction), the displacement field of an 
arbitrary point of the plate and the strain components can be expressed 
as [75] 
⎧
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(1)  

in which u0, v0, and w0 are the middle surface displacements of the 
rectangular plate. 

Considering the thermal effect of the plate, the stress of an arbitrary 
point of the plate is given by [76] 
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(2) 

in which Qij (i, j = 1,2,6) is the material stiffness coefficients relating 
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to Young’s modulus (E) and Poisson’s ratio (v) of the plate, the specific 
expression of Qij is given in Appendix B. It should be noticed that E, v, 
and other parameters including the thermal expansion coefficient α and 
the mass density ρp used in the following sections are all functions of 
temperature T, which can be approximated as a series of T as [77] 

Γ(T) = Γ0
(
Γ− 1T − 1 + 1 + Γ1T + Γ2T2 + Γ3T3), (3)  

where Γ denotes the temperature-dependent parameter, and constants 
Γ− 1, Γ0, Γ1, Γ2, Γ3 are the coefficients relating to each specific parameter 
as Γ0 denotes the free stress state coefficient of the plate. 

2.2. Energy functional of the coupled system 

Considering the coupling effect of the acoustic cavity, the Lagrange 
equation of the rectangular plate and the acoustic cavity can be written 
as [78] 

LP = UP − TP + WC− P − UT ,

LC = UC − TC − WP− C − Wwall,
(4)  

where UP, TP, UC, and TC are the potential and kinetic energies of the 
plate and the acoustic cavity, respectively; UT is the strain energy due to 
temperature rise; WC-P is the work done by the sound pressure of the 
acoustic cavity, and Wwall is the energy dissipated at the impedance walls 
except the plate surface. The basic energy expressions of the coupled 
system are given in Appendix A. 

Specifically, the potential energy UT due to temperature rise can be 
expressed as [79] 

UT =
1
2

∫ a

0

∫ b

0

∫ hp/2

− hp/2

(
σT

xxdxx + 2σT
xydxy + σT

yydyy

)
dxdydz, (5)  

where dij is the strain component due to temperature rise, and can be 

seen in literature [80] 
The work WC-P is the surface integral of the displacement of an area 

element of the plate surface times its acoustic pressure, which takes the 
form of 

WC− P =

∫

s
p
[

u0 + v0 +w0 − ze

(
∂w0

∂x
+

∂w0

∂y

)]

ds, (6)  

where ze denotes the coordinate of the coupling surface in the z- 
direction. 

Due to the thermal loads on the acoustic cavity, the medium prop
erties, i.e., the mass density ρc, and the sound speed c0, are temperature 
dependent, which take the form of 

ρc =
P0

0.2869
(
Tc + T0

c

)
(
kg
/

m3), (7)  

c0
(
T ∘

cC
)
= 331.4 + 0.607Tc(m/s), (8)  

where P0 is the atmospheric pressure, T0
c = 273.15 ◦C is the absolute 

temperature zero. In the context of a coupled system within a non- 
enclosed cavity, material exchange occurs between the cavity’s inter
nal medium and the external environment, resulting in temperature- 
dependent in density and sound velocity. 

2.3. Admissible displacement field and sound pressure by Fourier series 

Consider simply supported boundary conditions for the plate. The 
displacement field of the plate should satisfy the boundary condition 
and can be simulated by using the Fourier series, which writes 

Fig. 1. A rectangular plate-cavity system in a thermal environment. The length, width, and thickness of the plate are a, b, hp, and the depth of the cavity is hc. The 
plate and the cavity are subjected to thermal loads, denoted as Tp and Tc, respectively. The vibro-acoustic coupling between the plate vibrations and sound waves, as 
well as the simply supported plate boundary condition, are also shown in this figure. 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩
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[
∑∞

m=0

∑∞

n=0
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]

e− jωt,
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[
∑∞

m=0

∑∞

n=0
Bmncos(λamx)sin(λbny)

]

e− jωt,

w =

[
∑∞

m=0
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n=0
Cmnsin(λamx)sin(λbny)

]

e− jωt,

(9)  

in which λam = mπ
a ,λbn = nπ

b , j is the imaginary unit, and ω is the natural 
frequency of the coupled system, and Amn, Bmn, and Cmn are the Fourier 
coefficients of modal shapes to be solved. 

Similarly, to satisfy the arbitrary impedance walls [81,82], the sound 
pressure p is assumed as a superposition of a 3D Fourier series and six 
polynomial functions, and p can be expressed as [83] 

p =

⎧
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∑∞
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n1=0

[
ξ1(z)D1

mn + ξ2(z)D2
m1n1

]
cos(λam1 x)cos(λbn1 y)

+
∑∞

m1=0

∑∞

l1=0

[
ξ1(y)D3

m1 l1 + ξ2(y)D4
m1 l1

]
cos(λam1 x)cos(λhcl1 z)

+
∑∞

n1=0

∑∞

l1=0

[
ξ1(x)D5

n1 l1 + ξ2(x)D6
n1 l1

]
cos(λbn1 y)cos(λhcl1 z)

⎫
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

e− jω t,

(10)  

where λam1 = m1π
a ,λbn1 = n1π

b , andλhcl1 = l1π
hc

. The auxiliary functions ξ1(s) 
and ξ2(s) (s = x, y, z) introduced there is a supplement to sound pressure 
p, to eliminate the discontinuities in acoustic walls and can be seen in 
literature [83]. 

2.4. Solution procedure 

The governing equations of the coupled system can be derived by the 
Rayleigh–Ritz method. More specifically, taking partial derivatives of 
both LP and LC against corresponding Fourier coefficients, and equating 
the results to zero, it derives that 

∂LP

∂Θmn
=

∂UP

∂Θmn
−

∂TP

∂Θmn
+

∂WC− P

∂Θmn
−

∂UT

∂Θmn
= 0, (11)  

∂LC

∂Φm1n1 l1
=

∂UC

∂Φm1n1 l1
−

∂TC

∂Φm1n1 l1
−

∂WP− C

∂Φm1n1 l1
−

∂Wwall

∂Φm1n1 l1
= 0. (12) 

Substituting energy expression of the coupled system into Eqs. (11) 
and (12), the governing equation of the system can then be written in 
matrix form as 
[

KP − ω2MP CC− P

ω2CP− C KC − ωZC − ω2MC

][
Θ

Φ

]

=

[
0

0

]

, (13)  

where KP, MP, KC, and MC are the stiffness or mass matrix of the plate and 
the acoustic cavity; ZC is the impedance matrix derived from Wwall (due 
to the dissipative effect of the walls); CC− P and CP− C are the coupling 
matrices satisfying CC− P = CT

P− C due to WC− P = WP− C; Θ and Φ are 
vectors of undetermined coefficients of the displacement field and the 
sound pressure field. Detailed expressions for these matrices are given in 
Appendix B, where the Fourier series are truncated to m = Mp, n = Np, 
and m1 = Mc, n1 = Nc, l1 = Lc for the convenience of numerical 
calculation. 

Obviously, the natural frequencies and eigenvectors of the coupled 
system can be solved by letting 

det

[
KP − ω2MP CC− P

ω2CP− C KC − ωZC − ω2MC

]

= 0. (14)  

3. Numerical results and discussion 

This section carries out several numerical examples, including veri
fication examples of buckling and vibration of individual subsystems in 
the first subsection, and fully coupled thermal plate-cavity system in the 
following subsections. The temperatures of the plate and acoustic me
dium are the same, i.e., ΔTc = ΔTp. The plate is assumed to be isotropic 
and is set as SUS304, whose temperature-dependent material properties 
are referred to in reference [84]. Unless otherwise stated, the cavity is 
non-enclosed with air medium, and the default values of the plate length 
and width are fixed as a £ b = 0.4 m £ 0.4 m. 

3.1. Buckling and vibration modes of subsystems 

First, the thermal effect on the buckling of the plate is studied. As the 
temperature rises, the equivalent stiffness of the plate drops, and the 
buckling would be triggered. Fig. 2(a) gives the critical buckling tem
perature rise (CTR) of plates of different geometry, by setting the 
equivalent stiffness Kp as zero. Altogether, the CTR of the plate decreases 
as the plate becomes thinner or slimmer, in line with common un
derstandings. Secondly, the vibro-acoustic modal frequency ω of a pure 
acoustic cavity is studied for verification. The acoustic cavity is set to be 
at room temperature. Fig. 2(b) displays the calculated first-order ω 
versus the cavity depth hc, with different cavity lengths a. It is seen that 
ω can be divided into two stages. The first stage is for hc < a, where ω is 
flat. The second stage is hc > a, where ω decreases exponentially as hc 
grows. To explain this, Fig. 2(c) gives the first six orders ω for fixed a =
0.4 m, where the logarithmic coordinate system is adopted to better 
display ω when the cavity depth is shallow. From this figure, the first six 
orders of ω  actually are composed of different frequency branches of the 
acoustic cavity through the mode shift phenomenon [85,86]. For 
example, the first order ω  begins with the constant S(1,0,0)/S(0,1,0) 
(the first-order mode dominated by cavity length or width, which is 
constant as a/b is fixed), then intersects with the S(0,0,1) (the first-order 
mode dominated by hc, which exponentially decreases with hc), and 
finally follows S(0,0,1) for hc > 0.4 m since S(0,0,1) is smaller. The other 
orders ω are also plotted in Fig. 2(c). Similar to the first order ω, these 
orders ω are firstly flat, and then decrease exponentially as hc grows, due 
to the mode shift phenomenon. Other convergency analyses of the 
proposed method are also carried out and presented in Tables 1–3, as 
referred to in Appendix C. 

3.2. Thermal effect on the coupled modes of the system 

This subsection investigates the modes characteristics of a fully 
coupled thermal plate-cavity system. First, in Fig. 3(a), the first four 
orders of the coupled ω versus hc at room temperature are plotted. The 
plate is simply supported, and the cavity walls except the coupling 
interface are acoustically rigid, and a = b = 0.4 m. As hc grows, these 
orders ω may increase, remain flattened, or decrease exponentially. And 
they also intersect with each other, as a so-called mode shift phenom
enon. Take the first-order ω for example, when hc is very small, ω re
sembles neither that of the plate nor the pure acoustic cavity, indicating 
the coupling effect is strong. At hc = 0.0012 m, ω intersects with S 
(0,1,0)/S(1,0,0) and follows it. At hc = 0.4 m, ω intersects with S(0,0,1) 
and follows it at an exponentially decreasing rate. Thus for hc > 0.0012 
m, the coupling effect can be regarded as very weak, and can be 
respectively considered as cavity-controlled. 

For plate-cavity coupled systems of thinner plate thickness, as shown 
in Fig. 3(b)–(d), the strong coupling effect is more obvious for a rela
tively large range of hc. For instance, there is a strong coupled frequency 
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Fig. 2. Buckling and vibro-acoustic modes of the subsystem: (a) Critical buckling temperature rise of a plate; (b) First order modal frequency of a pure cavity, with 
respect to the cavity depth hc; (c) First six orders of mode frequencies of a pure cavity with respect to hc, S(nx, ny, nz) represents the acoustic modes with nx, ny, nz 
being the modal orders along spatial directions. 

Fig. 3. Effect of the cavity depth hc on ω of the coupled system at room temperature, with different plate thickness: (a) a/hp = 20; (b) a/hp = 50; (c) a/hp = 80; (d) a/ 
hp = 100. The red dots are the results calculated by approximate theoretical formula, and the black dash lines represent the plate frequencies ω in-vacuo P(i, j) or pure 
acoustic modes S(nx, ny, nz). 
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branch (green dashed line in Fig. 3(b) and (c), or first pink and green 
dashed line in Fig. 3(d)) that decreases gradually to P(1,1). Hence due to 
the mode shift phenomenon, the first-order coupled ω goes through a 
decreasing pattern (Fig. 3(b) and Fig. 3(c)), or a first-increase-then- 
decrease pattern (Fig. 3(d)) at the strong coupling stage, and becomes 
a weakly coupled frequency that is plate-controlled, and eventually 
becomes cavity controlled. Comparing Fig. 3(a) with Fig. 3(c), (d), for 
systems of the thicker plate, the weak coupling stage may not have the 
plate-controlled stage, indicating that a thick-late coupled system re
sembles more like a pure acoustic cavity. In addition, it is seen in Fig. 3 
(c) and (d) that ω4 varies non-monotonically with cavity depth. This is 
because ω4 intersects with higher orders of ω at a certain cavity depth, 
and only ω4 is kept in these subfigures. 

Similarly to Fig. 3, the first four orders coupled ω are plotted in 
Fig. 4, considering different temperature rise ΔT. The dimension of the 
plate is fixed as a = b = 0.4 m, a/hp = 50. Compared with Fig. 3, a similar 
trend of the strong and weak coupling stages is observed in Fig. 4, but 
different orders of the system are affected quite differently by ΔT. Spe
cifically, increasing ΔT leads to the reduction of the values of the first 
and fourth orders ω that are plate-controlled (they respectively stabilize 
to P(1,1) and P(1,2)), while the values of the second and third cavity- 

controlled basically do not change. This indicates that, such a magni
tude of temperature rise affects the plate much more greatly than the 
acoustic cavity. As a result, when hc is in the middle range, the difference 
between the values of the first- and second-order frequencies is greatly 
amplified by the temperature rise. For a large enough hc, whose 
threshold is the intersection value of P(1,1) and S(0,01), the lower 
modes are all cavity-controlled and are not affected much by the tem
perature rise. 

An effort is made to develop simple tools to understand and even 
predict some of the salient modal frequency changes observed from the 
fully coupled analysis. To this end, by assuming that only the rigid cavity 
mode affects the system, the first-order coupled frequency of the system 
can be approximated by [87] 

ω2
c(T) = ω2

v(T) +
ρc(T)c

2
0(T)SL2

p0

Mphc
, (15)  

where ωv = ωp(1,1) is the fundamental plate mode in vacuum, MP is the 
generalized modal mass of the plate, and Lp0 is the coupling coefficient 
defined as 

Fig. 4. Effect of the cavity depth hc on ω of the coupled system for a/hp = 50, with different temperature rise: (a) ΔT = 0 ◦C; (b) ΔT = 10 ◦C; (c) ΔT = 20 ◦C; (d) ΔT =
30 ◦C. The red dots are the result calculated by the approximate formula, and the black dash lines represent the plate frequencies in-vacuo P(i, j) or pure acoustic 
modes S(i, j, k). 
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Lp0 =
1
S

∫

s

∏

p
Ψc ds,

with Πp and ψc being the rigid cavity mode shape and the fundamental 
plate mode shape in vacuum. S is the area of the coupling interface. 
From the approximate formula (15), for plate-cavity systems with only 
hc growing, the aerostatic part of ωc decreases inverse proportionally, 
thus ωc decreases gradually and eventually approaches ωv. Figs. 3(d) and 
4(d) respectively plot the results of Eq. (15) in red solid circles, showing 
that the approximate formula agrees very well with the plate-controlled 
mode for the given systems. Eq. (15) not only enables effective predic
tion of the changes in the fundamental plate-controlled frequency under 
thermal loads, but also provides an intuitive understanding on how this 
mode changes with system parameters. For instance, the righthand-side 
term of Formula (15) gives a rough estimation of the weak/strong 
coupling effect for a given cavity depth or structural thickness. However, 
the mode calculated by Eq. (15) is not necessarily the first-order one of 
the system. To obtain the exact orders of the modes, other modes need to 
be calculated and the mode shift phenomenon ought to be considered 
too. 

3.3. Thermal buckling of the plate in the coupled system 

To further reveal the thermal effect of the coupled system, this 
subsection discusses the buckling behaviors. First in Fig. 5, the effect of 
ΔT on the first four orders ω is shown for a coupled system of a/hp = 20, 
wherein each sub-figure, hc is chosen differently so that the system is 
strongly Fig. 5(a)–(c)) or weakly (Fig. 5(d)–(f)) coupled. When ΔT 
grows, the plate/cavity-controlled ω decreases/increases monotonously. 
Compared to Fig. 4 where the temperature does not affect the cavity- 
controlled ω, here the cavity-controlled ω increases with ΔT since the 
temperature rise is much larger. For strong coupling cases, the value of 
plate/cavity-controlled ω varies quite much, in accordance with Fig. 4. 
For all sub-figures, the plate-controlled ω becomes the first-order mode 

of the coupled system, and finally decreases to zero. Fig. 6 plots the CTR 
when the plate-controlled ω becomes zero for systems with non-enclosed 
or enclosed cavity (in both cases the medium is considered as an ideal 
gas), where the CTR slowly decreases with hc, and eventually stabilizes 
to a constant value. Actually, this constant value is very close to the first- 
order CTR of the corresponding sub-plate (P(1,1)), and is denoted as T1

cr 
here. Fig. 6 also shows that in the case of an enclosed cavity, the CTR 
significantly increases when hc is not large. According to the simplified 

Fig. 5. Effect of temperature rise change both in structure and cavity on the first four orders ω of the coupled system for a/hp = 20 under the different cavity depths: 
(a) hc = 0.001 m; (b) hc = 0.0011 m; (c) hc = 0.01 m; (d) hc = 0.4 m; (e) hc = 1.0 m; (f) hc = 2.0 m. 

Fig. 6. Effect of the cavity depth hc on the critical buckling temperature rise of 
the coupled system with a/hp = 20, for both the enclosed and non-enclosed 
cases. The black dash line indicates the critical buckling temperature rise of 
the subsystem plate. 
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formula (15), compared to the non-enclosed case, the plate-controlled ω 
is higher for the case of an enclosed cavity due to the higher medium 
density. Therefore, the CTR is larger when the plate-controlled ω be
comes zero. In other words, at the strong coupling stage, the increased 
medium density of the air-proofed cavity increases leads to an even 
larger CTR. 

Similar calculations to Fig. 5 are carried out in Figs. 7 and 8. For the 
plate-cavity system with a/hp = 100, where Fig. 7(a)–(c) correspond to 
strong coupling and Fig. 8(a)–(d) weak coupling. For Fig. 7(a)–(c), all 
first four ω are plate-controlled and keep decreasing as ΔT grows, with 
the two modes being identical in ω since P(1,2) = P(2,1). It is noted that 
the decreasing speed and the value of ω are different, thus the mode shift 
phenomenon happens for different orders ω. In Fig. 7(b), the mode shift 
phenomenon between the second and third modes is observed, and the 
first and second orders ω become zero at ΔT = 20.1 ◦C, which is very 
close to the second-order CTR of the rectangular plate (T2

cr), i.e., the CTR 
related to P(1,2) or P(2,1). For Fig. 8(a), the first three ω of the system 
are plate-controlled, while the fourth one is cavity-controlled, for ΔT =
0. However, the first order ω corresponds to P(1,1), which becomes zero 
at ΔT = 12.21 ◦C, which is larger than T1

cr (ΔT = 8.08 ◦C) but smaller 
than T2

cr (ΔT = 20.1 ◦C). For Fig. 8(b), (c), when the corresponding 
cavity depth is deep, more cavity-controlled ω appears and remains 
nearly constant since ΔT is not large, while the plate-controlled ω de
creases quickly with ΔT. Calculation shows that the CTR is very close to 
T1

cr. 
Fig. 9 gives the CTR and the buckling mode shapes of the coupled 

system with respect to hc. For shallow and strongly coupled plate-cavity 
systems, the CTR of the system is close to T2

cr, with the buckling mode 
shape being anti-symmetric. For a deep plate-cavity system, the CTR is 
close to T1

cr, with a symmetric buckling mode shape. For the depth that is 
in between, the CTR varies between T1

cr and T2
cr, and the buckling mode 

shape is largely symmetric. There is a critical case for hc = 0.0033 m, the 
CTR of the symmetric buckling mode is the same as that of the anti- 
symmetric one. For this case, the symmetric ω and the anti-symmetric 
ω are not the same for ΔT = 0, but decreases to zero at the same ΔT 
due to their having different decreasing rate. Also, it is noted that T2

cr is 
more than two times larger than that of T1

cr, indicating that the CTR of 
the coupled system can be greatly increased due to the strong coupling 
effect, hence preventing the occurrence of buckling. Compared to Fig. 6, 
Fig. 9 plots a system with a thinner plate, whose enhancement in CTR is 
less obvious in magnitude. This difference is mainly because the CTR in 
the thin plate case varies in a much smaller range, hence the difference 
in terms of the CTR between the enclosed and non-enclosed cavity cases 
is not large. 

4. Concluding remarks 

This work studies the modeling, thermal buckling, and vibro- 
acoustics of a plate-cavity system with general impedance boundaries 
exposed to a changing thermal environment, focusing on both weak and 
strong coupling cases and the way in which the plate-cavity coupling 
strengthens the thermal vibro-acoustics and buckling. Generally, the 
coupling is affected by structural geometry and the thermal effect. 
Strong coupling often happens for systems with thinner plates or shallow 
acoustic cavities, in which the coupled modes drastically differ from the 
uncoupled substructure or cavity. For example, for a shallow plate- 
cavity system that is strongly coupled, as the cavity becomes deeper, 
the coupled frequency that is related to the first/second order frequency 
of the uncoupled sub-plate, does not vary monotonically, but first in
creases quickly and then gradually decreases to the first/second order 
frequency of the uncoupled sub-plate. As the structure temperature in
creases, the equivalent structure is regarded to be even thinner, thus the 
system is more likely to be strongly coupled. For a plate with a higher 
temperature, the peak value of the coupled frequency is relatively 
smaller. 

An interesting thermal buckling phenomenon in both weakly and 
strongly coupled plate-cavity systems is observed as the system tem
perature increases. For a sufficiently shallow cavity, the buckling mode 
of the coupled system actually corresponds to the second-order buckling 
mode of the uncoupled sub-plate. As the cavity gets deeper, the system 
gradually becomes weakly coupled, while the buckling mode of the 
coupled system gradually decreases to the first-order one of the 
uncoupled sub-plate. As a result, coupling the plate with a shallow 
cavity, can generally increase the critical buckling temperature rise, thus 
strengthening the system safety. This effect is even stronger if the cavity 
is air-proofed in which case the buckling temperature is high. Also, if the 
coupled cavity is shallow enough, the critical buckling temperature rise 
can even be times higher than that of the uncoupled sub-plate, due to the 
strong coupling effect, and the buckling mode shape can become anti- 
symmetric other than symmetric. 

In practical applications, more complex structures and scenarios are 
involved. For example, various thermal factors such as thermal radia
tion, convective heat transfer, and heat conduction may affect the 
structural-cavity system, and complex non-uniform geometries are often 
encountered as well. Different heat transfer processes may cause com
plex heat distribution, either transient or steady-state, resulting in 
intricate thermal stresses and thermal works that are coupled to the 
system’s vibration. It is worth investigating the vibro-acoustic and 
buckling mechanism of these transient or stable thermal scenarios, to
wards a better understanding and effective design of such systems. To 
achieve this, the existing methods may be extended whilst other 
methods such as finite element methods might need to be considered, 
especially for real-world applications. 

Fig. 7. Effect of temperature rise changes both in structure and cavity on the first four order ω of the coupled system under strong coupling effect for a/hp = 100 
under the different cavity depths: (a) hc = 0.001 m; (b) hc = 0.0014 m; (c) hc = 0.0033 m. 
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Appendix A. The energy function of the coupled system 

The potential energy UP and the kinetic energy TP of the plate takes the form of [76] 

UP =
1
2

∫ a

0

∫ b

0

∫ hp/2

− hp/2

(
σ0

xxε0
xx + σ0

yyε0
yy + σ0

xyγ
0
xy

)
dxdydz,

TP =
ρhω2

2

∫ a

0

∫ b

0

[
U2 + V2 + W2]dxdy

=
ρhω2

2

∫ a

0

∫ b

0

[
u2

0 + v2
0 + w2

0

]
dxdy +

ρω2h3

24

∫a

0

∫b

0

[(
∂w0

∂x

)2

+

(
∂w0

∂y

)2
]

dxdy.

The energy terms of the acoustic cavity can be further expressed as 

UC =
1

2ρCc2
0

∫ a

0

∫ b

0

∫ hc

0
p2dxdydz,

Fig. 8. Effect of temperature rise changes both in structure and cavity on the first four order ω of the coupled system under weak coupling effect for a/hp = 100 under 
the different cavity depths: (a) hc = 0.01 m; (b) hc = 0.8 m; (c) hc = 4 m. 

Fig. 9. Effect of the cavity depth hc on the critical buckling temperature rise of 
the coupled system with a/hp = 100, for both enclosed and non-enclosed cases. 
The black dash line indicates the critical buckling temperature rise of the 
subsystem plate. 
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TC =
1

2ρCω2

∫ a

0

∫ b

0

∫ hc

0

[(
∂p
∂x

)2

+

(
∂p
∂y

)2

+

(
∂p
∂z

)2
]

dxdydz,

WP− C = WC− P =

∫

s

[

u0 + v0 +w0 − ze

(
∂w0

∂x
+

∂w0

∂y

)]

p ds,

Wwall = −
1
2

∫

si

∑5

i=1

p2

jωZi
dsi,

where si (i = 1,…,5) is the 5 walls of the cavity except the plate surface, and Zi (i = 1,…,5) is the corresponding complex surface impedance. 

Appendix B. Matrices of governing equations 

To make the expressions easy and clear, some indexes are pre-defined: 

s = m(Np + 1) + n + 1, t = m’(Np + 1) + n’ + 1,
S1 = m1(Nc + 1) (Lc + 1) + n1(Lc + 1) + l1 + 1, T1 = m’

1(Nc + 1) (Lc + 1) + n’(Lc + 1) + l’
1 + 1,

S2 = m1(Nc + 1) + n1 + 1,T2 = m’
1(Nc + 1) + n’

1 + 1,
S3 = m1(Lc + 1) + l1 + 1,T3 = m’

1(Lc + 1) + l’
1 + 1,

S4 = n1(Lc + 1) + l1 + 1,T4 = n’
1(Lc + 1) + l’

1 + 1.

Thus, the represented matrix KP and CC− P of the plate and their representative part are given as 

KP =

⎡

⎣
K1− 1 K1− 2 K1− 3
K2− 1 K2− 2 K2− 3
K3− 1 K3− 2 K3− 3

⎤

⎦,

{K1− 1}s,t =
1
2

∫ a

0

∫ b

0
hp

[
2Q11λam’ cos(λam’ x)cos(λbn’ y)λamcos(λamx)cos(λbny)

+(Q11 − Q12)λbn’ sin(λam’ x)sin(λbn’ y)λbnsin(λamx)sin(λbny)

]

dxdy

− 2
∫ a

0

∫ b

0
ΔTαhp

[
(Q12 + Q22)λbn’ sin(λam’ x)sin(λbn’ y)λbnsin(λamx)sin(λbny)

+(Q11 + Q12)λam’ cos(λam’ x)cos(λbn’ y)λamcos(λamx)cos(λbny)

]

dxdy,

CC− P =

⎡

⎣
C1− 1 C1− 2 C1− 3 C1− 4 C1− 5 C1− 6 C1− 7
C2− 1 C2− 2 C2− 3 C2− 4 C2− 5 C2− 6 C2− 7
C3− 1 C3− 2 C3− 3 C3− 4 C3− 5 C3− 6 C3− 7

⎤

⎦,

{C1− 1}s,T1
=

∫ a

0

∫ b

0
cos

(
λam’

1
x
)

cos
(

λbn’
1
y
)

cos
(

λhcl’1
ze

)
sin(λamx)cos(λbny)dxdy,

the material stiffness coefficients of the plate are given as 

Q11 = Q22 =
E

(1 − v2)
,Q12 = Q21 = v

E
(1 − v2)

,Q66 =
E

2(1 + v)
.

Similarly, as to the acoustic cavity, the representative matrix ZC and its part are given as follows 

ZC =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Zc
1− 1 Zc

1− 2 Zc
1− 3 Zc

1− 4 Zc
1− 5 Zc

1− 6 Zc
1− 7

Zc
2− 1 Zc

2− 2 Zc
2− 3 Zc

2− 4 Zc
2− 5 Zc

2− 6 Zc
2− 7

Zc
3− 1 Zc

3− 2 Zc
3− 3 Zc

3− 4 Zc
3− 5 Zc

3− 6 Zc
3− 7

Zc
4− 1 Zc

4− 2 Zc
4− 3 Zc

4− 4 Zc
4− 5 Zc

4− 6 Zc
4− 7

Zc
5− 1 Zc

5− 2 Zc
5− 3 Zc

5− 4 Zc
5− 5 Zc

5− 6 Zc
5− 7

Zc
6− 1 Zc

6− 2 Zc
6− 3 Zc

6− 4 Zc
6− 5 Zc

6− 6 Zc
6− 7

Zc
7− 1 Zc

7− 2 Zc
7− 3 Zc

7− 4 Zc
7− 5 Zc

7− 6 Zc
7− 7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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{
Z c

1− 1

}

S1 ,T1
=

j
Zz=hc

( − 1)l’1+l1
∫a

0

∫b

0

cos
(

λam’
1
x
)

cos
(

λbn’
1
y
)

cos(λam1 x)cos(λbn1 y)dxdy

+
j

Zx=0

∫b

0

∫hc

0

cos
(

λbn’
1
y
)

cos
(

λhcl’1
z
)

cos(λbn1 y)cos(λhcl1 z)dydz

+
j

Zx=a
( − 1)m’

1+m1

∫b

0

∫hc

0

cos
(

λbn’
1
y
)

cos(λbn1 y)cos
(

λhcl’1
z
)

cos(λhcl1 z)dydz

+
j

Zy=0

∫a

0

∫hc

0

cos
(

λam’
1
x
)

cos
(

λhcl’1
z
)

cos(λam1 x)cos(λhcl1 z) dxdz

+
j

Zy=b
( − 1)n’

1+n1

∫a

0

∫hc

0

cos
(

λam’
1
x
)

cos
(

λhcl’1
z
)

cos(λam1 x)cos(λhcl1 z) dxdz.

Besides, the collection of unknown Fourier series coefficients Θ and Φ take the form of 

Θ = [A00, ⋅⋅⋅,A0n, ⋅⋅⋅,Amn,⋯AMN ,B00, ⋅⋅⋅,B0n, ⋅⋅⋅Bmn, ⋅⋅⋅,BMN ,C00,⋯,C0n, ⋅⋅⋅Cmn,⋯CMN ]
T
,

Φ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

D0,0,0,⋯,D0,0,l1 ,⋯,D0,0,L1 ,⋯,D0,N1 ,L1 ,⋯,Dm1 ,n1 ,l1 ,⋯,DM1N1L1 ,

D1
0,0,⋯,D1

0,n1
,⋯,D1

m1 ,n1
,⋯,D1

M1 ,N1
,D2

0,0,⋯,D2
0,n1

,⋯,D2
m1 ,n1

,⋯,D2
M1 ,N1

,

D3
0,0,⋯,D3

0,l1 ,⋯,D3
m1 ,l1 ,⋯,D3

M1 ,L1
,D4

0,0,⋯,D4
0,l1 ,⋯,D4

m1 ,l1 ,⋯,D4
M1 ,L1

,

D5
0,0,⋯,D5

0,l1 ,⋯,D5
n1 ,l1 ,⋯,D5

N1 ,L1
,D6

0,0,⋯,D6
0,l1 ,⋯,D6

n1 ,l1 ,⋯,D6
N1 ,L1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

.

Appendix C. Validation analysis 

The convergence and correctness of the modified Fourier series method are presented, by respectively calculating the natural frequencies of the 
subsystems, that is, a rectangular plate, a primary cavity, and a plate-cavity coupled system at room temperature.  

Table 1 

The convergence and accuracy of the first eight non-dimensional natural frequencies Ω = ωPa2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρP/E1h2
P

√

for the SUS304 plate at room temperature with its thickness is 
0.005 m.  

Mp × Np mode number 

1, P(1,1) 2, P(1,2) 3, P(2,1) 4, P(2,2) 5, P(1,3) 6, P(3,1) 7, P(2,3) 8, P(3,2) 

2 19.739 49.348 49.348 78.957 – – – – 
3 19.739 49.348 49.348 78.957 98.696 98.696 128.305 128.305 
4 19.739 49.348 49.348 78.957 98.696 98.696 128.305 128.305 
5 19.739 49.348 49.348 78.957 98.696 98.696 128.305 128.305 
6 19.739 49.348 49.348 78.957 98.696 98.696 128.305 128.305 
7 19.739 49.348 49.348 78.957 98.696 98.696 128.305 128.305 
8 19.739 49.348 49.348 78.957 98.696 98.696 128.305 128.305 
9 19.739 49.348 49.348 78.957 98.696 98.696 128.305 128.305 
Ref.[84] 19.739 49.349 49.349 79.401 100.173 100.186 130.389 – 
Ref.[88] 19.74 49.35 49.35 78.96 98.70 98.70 – –   

Table 2 
Convergence and accuracy of the first eight natural frequencies for the basic acoustic cavity with a/b = 1, a = 0.4 m, hc = 0.25 m under rigid walls.  

Mc × Nc × Lc mode number 

1, S(0,1,0) 2, S(1,0,0) 3, S(1,1,0) 4, S(0,0,1) 5, S(0,1,1) 6, S(1,0,1) 7, S(0,2,0) 8, S(2,0,0) 

3 430.002 430.002 608.115 688.002 811.325 811.325 860.002 860.002 
4 430.003 430.003 608.115 688.003 811.325 811.325 860.003 860.003 
5 430.003 430.003 608.115 688.002 811.325 811.325 860.003 860.003 
6 430.003 430.003 608.115 688.002 811.325 811.325 860.003 860.003 
7 430.003 430.003 608.115 688.002 811.325 811.325 860.003 860.003 
8 430.003 430.003 608.115 688.002 811.325 811.325 860.003 860.003 
Analytical [55] 430.000 430.000 608.112 688.000 811.322 811.322 860.000 860.000 
FEM 430.000 430.000 608.120 688.011 811.342 811.342 860.020 860.020 

Usually, the chosen truncation orders of the plate part are larger than those of the cavity part. In the following study, considering both the calculation precision and 
efficiency, truncation numbers Mp = Np = 16 and Mc = Nc = Lc = 6 are adopted.  
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Table 3 
Accuracy and validation comparison study of the first six natural frequencies for the brass plate coupled system with a/b = 1, a = 0.2 m, hp = 0.9144 mm.  

Cavity depth Methods Model number 

1 2 3 4 5 6 

hc = 0.02 Present 145.02 193.04 193.04 310.55 389.12 394.43  
Ref. [78] 145.00 193.01 193.01 310.51 389.06 394.35  
Ref. [14] 143.85 193.00 193.00 310.47 388.90 394.08  
Ref. [89] 143.89 – – – 389.59 394.75 

hc = 0.2 Present 87.07 194.59 194.59 311.68 389.85 390.15  
Ref. [78] 86.99 194.43 194.43 311.43 389.64 389.93  
Ref. [14] 86.78 194.44 194.44 311.40 389.47 389.74  
Ref. [89] 86.82 194.55 194.55 311.66 390.11 390.46 

hc = 0.8 Present 79.47 194.85 194.85 216.86 311.99 389.49  
Ref. [78] 79.42 194.45 194.45 216.84 311.48 389.02 

hc = 2.0 Present 73.11 92.09 173.08 195.01 195.01 258.56  
Ref. [78] 72.81 91.89 173.09 194.54 194.54 258.56  
Ref. [14] 72.56 91.07 171.06 194.42 194.42 255.54  
Ref. [89] 72.58 91.08 171.05 – – 255.54 

In-vacuo Present 78.08 195.15 195.15 312.24 390.31 390.31  
Analytical 78.06 195.15 195.15 312.24 390.31 390.31  
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