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Abstract
Acoustic black holes (ABHs) offer new opportunities for designing mechanical devices that can
trap and reduce the vibrational energy of a system. This paper proposes the digital realization of
the ABH effect, also called virtual ABH (VABH), through piezoelectric patches. A
self-contained and autonomous reduction vibration device is thus developed. However,
piezoelectric VABHs raise theoretical and experimental difficulties which are discussed herein.
An improved pseudo-collocated approach is proposed, and the synthetic impedance is
theoretically derived. Experiments are conducted using a cantilever beam where the VABH is
implemented with few piezoelectric patches. It is shown to provide excellent vibration reduction
over a large frequency range. The herein presented original concept solves the two long-lasting
challenges of mechanical ABHs, i.e, its manufacturing and inability to operate at low
frequencies, making it highly attractive for applications on real-life structures.

keywords: acoustic black hole, piezoelectric, vibration mitigation, dynamic substructuring

1. Introduction

Reducing structural vibration remains one important topic of
research in the mechanical community. A classical approach
to mitigate the resonant vibrations of a structure (also called
host structure) is the concept of a tuned mass damper (TMD)
developed in 1909 and realized using a spring-mass system
[1]. In [2], a damper was added to the TMD. The augmented
system exhibits two resonance peaks featuring a much lower
amplitude than that of the uncontrolled structure. Despite its
simplicity and effectiveness, the TMD can only attenuate the
vibrations of a single resonance. Moreover, its tuning requires
great care.

∗
Author to whom any correspondence should be addressed.

In 1988, Mironov proposed the concept of an acoustic
black hole (ABH) [3] for vibration mitigation. The ABH
corresponds to a tapered wedge beam whose thickness fol-
lows a power law profile. When used as a vibration mitigation
device, it is attached to a host structure, and the vibrational
energy of the coupled system gets localized inside the ABH
device. To enhance the vibration reduction effects, damping
layers were added to the ABH [4]. Unlike the TMD, the
ABH can be effective in a wide frequency range and is not
very sensitive to changes in the host structure. However, to
be effective at low excitation frequency, the ABH must be
very long [5, 6], which currently represents the main bottle-
neck of this concept. Moreover, due to the power law profile
of the thickness, the ABH tip can be very thin and, hence,
brittle and fragile. Typically, to achieve vibration reduction
below 10Hz with steel material, the tip might have a thickness
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around 100 nm, which raises important manufacturing issues.
Research has attempted to address this issue, see, e.g. [7, 8]
but it still remains an open and unsolved question.

In this context, piezoelectric systems represent an inter-
esting alternative to mechanical systems. A piezoelectric
transducer converts mechanical energy into electrical energy.
By connecting a shunt circuit (resistors and/or inductors in
series or in parallel) to the transducer, energy dissipation
can be achieved. The concept of a resonant piezoelectric
shunt was first proposed by Hagood and von Flotow [9] and
was exploited in many applications since then [10, 11]. It
was also used together with an ABH to enhance vibration
mitigation [12–14]. One difficulty is that high inductances
are required to tackle low-frequency modes. To remedy this
problem, Flemming et al [15] proposed the idea of a syn-
thetic impedance where the electrodes of the piezoelectric
material are connected to an electronic circuit driven by a
digital unit that can implement any control law. This offers
numerous possibilities [16–18], including nonlinear vibration
absorbers [19] and rainbow trapping devices [20].

The idea to reproduce digitally the properties of an ABH
to trap the energy was proposed in [21]. The wave compres-
sion property was also mimicked in [22]. In these papers,
a large number of piezoelectric devices were used to digit-
ally and gradually modify the beam’s Young modulus. In the
same spirit, Soleimanian et al [23] reproduced the variations
in ABH thickness with successive capacitors, which led to a
maximum of 11% power radiation reduction in numerical sim-
ulations. Recently, we proposed the concept of a virtual ABH
(VABH) where the mechanical ABH impedance, derived with
a state-space approach [24], is simulated digitally. All ABH
properties, namely the low reflection coefficient, the energy
trapping, and vibration mitigation can be reproduced with a
VABH. Due to its virtual nature, any ABH can, in principle,
be implemented. For instance, we considered ABHs which
could hardly be manufactured, e.g. a 2 m long ABH featur-
ing a 150 nm thickness at the tip. The experimental demon-
stration of the VABH concept led to excellent performance,
i.e. all modes between 0 and 500Hz could be attenuated by
at least 12 dB. However, a shaker was employed to implement
the VABH effect. Obviously, this made the system bulky and
non-autonomous.

The main thrust of this paper lies in the theoretical
and experimental investigations of the so-called VABH [24]
with piezoelectric patches and a digital unit to form a self-
contained and autonomous system, as depicted in figure 1.
This research thus offers a very compact implementation
of a highly versatile ABH. Specifically, it will be shown
that the proposed design solves the bottleneck problem
of mechanical ABHs by allowing vibration mitigation at
very low excitation frequencies. The resulting electromech-
anical problem is described in section 2 for an improved
pseudo-collocated approach. Section 3 is dedicated to numer-
ical simulations. Section 4 presents the experimental res-
ults obtained using a cantilever beam as a host structure.
Excellent vibration reduction is obtained with a small num-
ber of piezoelectric patches. Finally, conclusions are drawn in
section 5.

Figure 1. Schematics of the proposed implementation of the VABH.

Figure 2. Cantilever beam with a mechanical ABH.

2. Theoretical developments

2.1. VABH formulation

In this paper, the ABH effect is obtained by digital means. The
ABH impedance is first derived. A uniform cantilever beam
of length L, width b and thickness h0 depicted in figure 2
constitutes the host structure. The cantilever has traction-
compression and flexural, but the focus is on the flexural
modes. The beam is attached to an ABH comprising a tapered
wedge beam of length (LABH − x0) and width b, where x0
denotes the residual truncation. The ABH thickness varies
according to

h(x) = h0

(
L+LABH − x

LABH

)m

, x ∈ [L,L+LABH − x0] . (1)

The readers are referred to [24] for a full description of the
VABH formulation in state-space. In what follows, the ABH
impedance is derived briefly using the Laplace transform.

The system is discretized using the finite element method.
Each node is characterized by three displacements, namely the
longitudinal (u), transversal (v), and rotational (ϕ) displace-
ments. Superscripts b and tb denote the uniform and tapered
wedge beams, respectively. For both systems, the internal and
boundary nodes are represented by the subscripts I and B,
respectively. The equations of motion read[

Mb
II Mb

IB

Mb
BI Mb

BB

][
ẍbI
ẍB

]
+

[
Cb

II Cb
IB

Cb
BI Cb

BB

][
ẋbI
ẋB

]

+

[
Kb

II Kb
IB

Kb
BI Kb

BB

][
xbI
xB

]
=

[
fext,I

fext,B + ftb→b

]
(2a)

[
Mtb

II Mtb
IB

Mtb
BI Mtb

BB

][
ẍtbI
ẍB

]
+

[
Ctb

II Ctb
IB

Ctb
BI Ctb

BB

][
ẋtbI
ẋB

]

+

[
Ktb

II Ktb
IB

Ktb
BI Ktb

BB

][
xtbI
xB

]
=

[
0

−ftb→b

]
, (2b)

whereM,C, andK correspond to the mass, damping and stiff-
ness matrices, respectively. External forces fext are applied to
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Figure 3. Beam covered with piezoelectric patches for the pseudo-collocated approach.

Figure 4. Classical pseudo-collocated approach.

the uniform beam. The internal forces, ftb→b are transmitted
at the boundary between the two beams. Using the Laplace
variable s, equation (2b) becomes

Xtb
I =−

(
s2Mtb

II + sCtb
II +Ktb

II

)−1 (
s2Mtb

IB + sCtb
IB +Ktb

IB

)︸ ︷︷ ︸
ZIB(s)

XB

(3a)

−Ftb→b

=
[(
s2Mtb

BI + sCtb
BI +Ktb

BI

)
ZIB (s)+

(
s2Mtb

BB + sCtb
BB +Ktb

BB

)]
︸ ︷︷ ︸

ZABH(s)

XB

(3b)

whereXtb
I ,XB, andFtb→b are the Laplace transforms of xtbI , xB,

and ftb→b, respectively. The (3× 3) ZABH matrix is the ABH
impedance.

2.2. Mechanical system with piezoelectric patches

In [24], the theory of section 2.1 was implemented with an
accelerometer and a shaker that applies the transversal com-
ponent of Ftb. This design allowed to demonstrate the feasib-
ility of the VABH concept but it lacked compactness. The use
of rectangular piezoelectric transducers (PZTs) remedies this
issue. When a PZT is deformed, a current is created between
its electrodes. On the other hand, applying a voltage difference
between its electrodes deforms the PZT, which applies forces
and torques to the host structure.

The formulation proposed in this paper is referred to as
pseudo-collocated. A beam composed of N pairs of identical
collocated piezoelectric patches is considered, see figure 3.
The PZTs work together in pairs, see figure 4. In one pair, one
PZT is actuating the structure whereas the other is sensing its
motion. This sensor is assumed to be connected to a perfect
current sensing device and is thus considered to be in short
circuit (Vi,s = 0).

The equations of motion of the system are
Mẍ+Cẋ+Kscx+

∑N
i=1 (Θi,aCpVi,a) = F

Θ⊺
i,ax− (Cp)

−1 qi,a = Vi,a, ∀i ∈ [[1,N ]]

CpΘ
⊺
i,sx= qi,s, ∀i ∈ [[1,N ]],

(4)

where [[1,N]] denotes the range of integers contained between
1 and N. The scalar Cp represents the capacitance at constant
strain of a piezoelectric patch. The vector x (3×Nnodes) con-
tains the displacements of all degrees of freedom

x=

u1,v1,ϕ1︸ ︷︷ ︸
node 1

, . . . ,uj,vj,ϕj︸ ︷︷ ︸
node j

, . . . ,uk,vk,ϕk︸ ︷︷ ︸
node k

, . . . ,uNnodes ,vNnodes ,ϕNnodes︸ ︷︷ ︸
node Nnodes


⊺

,

(5)

where j and k are two arbitrary nodes. The matrices Θi,a and
Θi,s are the ith PZT coupling vectors for the actuator and
sensor, respectively [25]. Assuming that the boundaries of the
ith PZT are connected to the nodes j and k and following the
same layout as in equation (5), these matrices read

Θi,a =

0,0,0︸ ︷︷ ︸
node 1

, . . . ,θu,0,−θϕ︸ ︷︷ ︸
node j

, . . . ,−θu,0,θϕ︸ ︷︷ ︸
nodek

, . . . , 0,0,0︸ ︷︷ ︸
node Nnodes


⊺

.

(6)

Θi,s =

0,0,0︸ ︷︷ ︸
node 1

, . . . ,θu,0,θϕ︸ ︷︷ ︸
node j

, . . . ,−θu,0,−θϕ︸ ︷︷ ︸
nodek

, . . . , 0,0,0︸ ︷︷ ︸
node Nnodes


⊺

.

(7)

where θu and θϕ are two piezoelectric constants for the longit-
udinal and rotational displacements, respectively. Each con-
stant is the same for all patches. The matrix Ksc is the stiff-
ness matrix of the short-circuited system. The finite element
method [25] is employed to compute all the quantities with
the dynamics of the piezoelectric patches accounted for.

It is important to remark that, due to the simultaneous pres-
ence of both longitudinal and rotational effects, the coupling
matrix can result in the instability of the pseudo-collocated
approach, see [26–28] and references therein. The theoretical
evidence for this is given in appendix A. To remedy this issue,
the design of the PZT connections proposed herein follows the
idea in [27] and is represented in figure 5. An actuator pair (or
a sensor pair) is composed of two PZTs connected in parallel
located at the lower and upper sides of the beam. The polariz-
ations of the two PZTs are oriented in the same direction. As a
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Figure 5. Improved layout for the PZTs.

result, the coupling matrixΘi is identical for both the actuator
and sensor PZTs

Θi,a =Θi,s =Θi =

0,0,0︸ ︷︷ ︸
node 1

, . . . ,0,0,−2θϕ︸ ︷︷ ︸
node j

, . . . ,0,0,2θϕ︸ ︷︷ ︸
node k

, . . . , 0,0,0︸ ︷︷ ︸
nodeNnodes


⊺

.

(8)

Moreover, the contributions of the longitudinal effects have
now disappeared from the coupling matrix, removing the risk
of a potential instability.

The voltage applied Vi,a by a PZT is evaluated with the
impedance Zi implemented in the digital unit multiplied by
the current sensed in the collocated PZT. In Laplace domain,
this gives

Vi,a = Zi (s)Qi,s = Zi (s)CpΘ
⊺
i X= 2Zi (s)Cpθϕ∆ϕi.

(9)

The term ∆ϕi represents the difference of rotation between
the edges of the ith PZT. The notation

(
ϕp
i

)
i∈[[1,N]]

describes
the rotation of the right edge of the ith PZT. The superscript p
was introduced to distinguish between the rotation of an arbit-
rary node i and the rotation of a node connected to the edge
of a PZT. Substituting (9) in the dynamics of the beam (4) and
equating the result to the dynamics of the beamwithABH (2a),
the equations

(2Cpθϕ)
2 ZN∆ϕN = −ZABH,ϕϕ

p
N

(2Cpθϕ)
2 Zi∆ϕi = (2Cpθϕ)

2 Zi+1∆ϕi+1 ∀i ∈ [[1,N− 1]].

(10)

must be satisfied. The first equation expresses the sought ABH
effect: ZABH,ϕ denotes the torque component Z3,3 of ZABH

defined in equation (3b). The second equation corresponds to
the torques created by two adjacent patches which need to be
canceled out. The solution is

Zi =
−ZABH,ϕ

(2Cpθϕ)
2

(
ϕp
N

∆ϕi

)
∀i ∈ [[1,N]]. (11)

Summing the measured charges (see the third equation in (4))
gives

ϕp
N =

1
(2Cpθϕ)

∑N

j=1
Qj,s. (12)

Finally,

Zi =
−ZABH,ϕ

(2Cpθϕ)
2Qi,s

∑N

j=1
Qj,s ∀i ∈ [[1,N]] (13)

and the voltage to be applied to each piezoelectric patch is
equal to

Vi,a = ZiQi,s =
−ZABH,ϕ

(2Cpθϕ)
2

∑N
j=1Qj,s. (14)

Applying the ABH effect with this improved pseudo-
collocated approach requires to sum the current of the
sensing PZTs and to apply the same voltage at the elec-
trodes of all actuating PZTs. A practical way to imple-
ment this is to connect all PZTs (sensing and actuat-
ing) in parallel. A single controller with −ZABH,ϕ

(2Cpθϕ)
2 is then

defined.

3. Numerical results

The cantilever beam studied in [24] is considered herein. The
beam is excited at its tip, and the transversal tip displace-
ment is measured. Table 1 lists the beam parameters together
with those of the mechanical ABH which will be implemen-
ted digitally through a VABH. The finite element method was
employed for the discretization [29]. Both beam models were
then reduced using a Craig–Bampton method [30] to decrease
the computational cost. For the cantilever beam, 50 modes
were retained to ensure excellent predictive accuracy between
0 and 500Hz. Twenty modes were kept for the ABH beam
due to the limitation imposed by the real-time controller (RTC)
processor. Beyond foff, the highest eigenfrequency of the fixed
modes kept in the Craig–Bampton reduction, the ABH dynam-
ics is no longer described accurately. In addition, the ABH
effect usually takes place above a cut-on frequency [5, 6]
equal to

fon =
h0

2πL2
ABH

√
40EABH

12ρABH
. (15)

According to table 1, fon is equal to 9Hz. Therefore, the VABH
effect is expected to occur in the frequency range [fon, foff] rep-
resented by a colored rectangle along the x-axis in the next
figures.

3.1. Improved pseudo-collocated approach

3.1.1. VABH performance. The cantilever beam is covered
with ten PZT cells comprising each four PZTs as in figure 5.
They are placed next to each other, and their length is equal to
10 cm so that they cover the entire beam length4. The system’s

4 Excellent vibration results can also be obtained when the PZTs are not
placed exactly next to each other.
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Table 1. System parameters.

Parameter Cantilever beam Digital ABH PZT

Length L= 1m LABH = 1m Variable
Width b= 20mm b= 20mm bp = 6.4mm
Thickness h0 = 6mm m= 2, x0 = 10mm hp = 0.23mm
Young modulus Eb = 210GPa EABH = 210GPa Ep = 52GPa
Density ρb = 7800 kgm−3 ρABH = 7800 kgm−3 ρp = 7800 kgm−3

Modal damping ξb = 0.05% ξABH = 5% NA

Figure 6. Bode plot of the improved pseudo-collocated approach.

Bode plot in figure 6 confirms that a perfect alternating
pole-zero pattern is obtained; thus, a collocated system is
achieved [28].

The frequency response function (FRF) obtained with the
control law (14) is presented in figure 7. As expected from the
theory in section 2.2, the performance of the PZT-basedVABH
is identical to that of the reference VABH, i.e. the PZT-less
ABH which applies directly the rotational component ZABH,ϕ

at the tip of the beam. They lead to excellent vibration mitig-
ation (more than 20 dB of reduction) in the expected working
range of the device. However, being below fon, the amplitude
of the first resonance peak cannot be attenuated. To address
this limitation, the ABH length is increased up to 3000mm in
figure 8. The VABH is now effective from 1Hz and can then
mitigate the vibrations around the first resonance. In this case,
foff is drastically reduced to 19.2Hz due to the large number
of VABH modes at low frequencies, as shown in figure 8(b).

Zhou and Cheng [8] showed that the ABH effect can also
be reproduced if the ABH is not located at beam tip. To con-
sider a more practical and compact implementation, a single
cell comprising four PZTs of length 47.1mm is placed at
three different locations, namely near the clamping, in the

middle of the beam and near the tip. The FRFs are displayed in
figure 9. The cell placed near the tip does not offer any reduc-
tion compared to the plant since the strain there is very small.
Conversely, the strain near the clamping is important for all
modes; a cell placed at this location thus offers a performance
comparable to that of the reference VABH. For the cell located
in the middle of the beam, the VABH offers no reduction for
modes 3 and 5 because the strain there is very small for these
modes.

Finally, the sensitivity with respect to the PZT parameter
θϕ is analyzed, because its value cannot be known very pre-
cisely experimentally. Figure 10 shows the FRFs with a single
cell at the clamping for three different values of this para-
meter. When θϕ is reduced by 50%, all peaks in the working
range are still reduced by at least 20 dB. By decreasing the
parameter much further, the reduction then only amounts to a
few dB.

3.1.2. Energy dissipation brought by the VABH. This section
provides physical insight into the VABH properties through
the energy dissipated by structural damping and by the PZTs:

5
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Figure 7. FRF of the pseudo-collocated approach with an ABH length of 1000mm. : plant, : reference VABH, and : VABH
with PZTs.

Figure 8. FRF of the pseudo-collocated approach with an ABH length of 3000mm. : plant, : reference VABH, and : VABH
with PZTs.

Wstruct =

ˆ T

0
ẋ⊺Cẋdt, WPZT =

ˆ T

0
ẋ⊺
(∑N

i=1
ΘiCpVi

)
dt.

(16)
These quantities are normalized by the energy brought by the
external force Wext =

´ T
0 ẋ⊺fextdt.

The cantilever beam is completely covered by ten PZT
cells. VABHs with different lengths and modal dampings are
considered. Figure 11 illustrates the normalized energies when
LABH = 300mm and ξABH = 0.05%. At low excitation fre-
quencies where the VABH is not effective, the dissipation is

6
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Figure 9. FRF of the pseudo-collocated approach with different PZT configurations. : plant, : reference VABH, : single cell at
the clamping, : single cell in the middle, : single cell at the tip.

Figure 10. FRF of the pseudo-collocated approach for a single PZT cell near the clamping. : plant, : reference VABH, :
VABH with PZTs (θϕ), : VABH with PZTs (0.5θϕ), : VABH with PZTs (0.1θϕ).

entirely due to structural damping. From 80Hz, i.e. just below
fon, energy starts to be dissipated by the PZTs. However, due
to the lowmodal damping, both the PZTs and structural damp-
ing dissipate a similar amount of vibrational energy. When
ξABH = 5% in figure 12, the PZTs dissipate a much greater
amount of energy. In fact, between 60Hz and 500Hz, more

than 90% of the energy is dissipated by the PZTs except at
the antiresonances. In figure 13, LABH = 1000mm and ξABH =
5%, which corresponds to the case in figure 7. The energy is
dissipated by the PZTs from as low as 6Hz. Beyond foff, the
energy can still be dissipated by the PZTs, but the effect is
lessened.

7
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Figure 11. Energy dissipation for ξ = 0.05% and LABH = 300mm. : WPZT, : Wstruct.

Figure 12. Energy dissipation for ξ = 5% and LABH = 300mm. :WPZT, : Wstruct.

Figure 13. Energy dissipation for ξ = 5% and LABH = 1000mm. : WPZT, : Wstruct.

8
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Figure 14. Self-sensing approach.

Figure 15. FRF of the self-sensing approach. : plant, : reference VABH, : VABH with PZTs, and : VABH with PZTs with
a 0.1% decrease of Cp.

3.2. A self-sensing approach

Another piezoelectric layout that could be envisioned for the
VABH is a self-sensing approach for which the control law
is imposed between the voltage and the current of a single
PZT; this is portrayed in figure 14. However, this approach
results in an ill-conditioning of the control law and is thus not
suitable for practical applications. The ill-conditioning is evid-
enced numerically with one pair of PZTs whose length is equal
to the beam length. Following the theoretical derivations in
appendix B, the PZT impedance is

Z1 =
1
Cp

(
4Cpθ

2
ϕ

4Cpθ2ϕ +ZABH,ϕ
− 1

)
. (17)

Figure 15 shows that, if the VABH with the nom-
inal value for Cp offers excellent vibration reduction, a
0.1% decrease in Cp yields a completely different FRF,
which is almost coincident with that of the uncontrolled
system.

4. Experimental demonstration

4.1. Experimental setup

Figure 16 presents the experimental cantilever beam whose
parameters are listed in table 1. The excitation signal was
generated with an electrodynamic shaker connected to an RTC
dSPACE MicroLabBox and connected to the beam using a
nylon stinger and an impedance head. The signal was a multi-
sine function in the [0.1Hz,1000Hz] frequency interval with
an amplitude of 0.01V. The gain between the command in
volt and the applied force was 160NV−1. The excitation was
applied at 40% of the beam length from the clamped side. The
sampling frequency was set to 40 kHz.

Three cells of four PZTs (PSI-5A4E piezoceramic with
Cp = 28 nF) were glued to the beam to realize the improved
pseudo-collocated approach. The dimensions were: length =
45.7mm, width = 6.4mm and thickness = 0.23mm. The
value of θϕ was estimated to be 1.1× 104 NC−1. The gap
between the first cell of PZTs and the clamping was 5mm. The
longitudinal gap between the PZTs was equal to 2mm. Even
if several cells connected in parallel gave successful results,
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Figure 16. Experimental setup.

Figure 17. Schematics of the analog circuits.

only the results with a single cell are discussed herein for con-
ciseness. The main difference between this setup and the one
in [24] is that the controller reproducing the ABH effect is
implemented with PZTs. An autonomous and a very compact
design is thus proposed.

Contrary to PZTs, the dSPACE MicroLabBox cannot
handle large voltages; it is restricted to a range of amplitude
of 10V. To deal with appropriate voltages, analog electronics
with operational amplifiers was employed. For the actuator,
the analog circuit presented in figure 17(a) consists of a voltage
amplifier

Va =

(
1+

R2

R1

)
VDAC, (18)

with Ri the resistors of the circuits and VDAC the output voltage
of dSPACE. A current amplifier and a low-pass filter were used
after the sensing unit

VADC =
Rs

1+ iωRsCs
q̇s, (19)

where Cs is a capacitor, and VADC is the voltage at the input of
dSPACE. The cut-off frequency of the low-pass filter was set to

Table 2. Parameters of the electronic components.

Parameters R1 R2 Rs Cs

Value 22kΩ 10kΩ 100kΩ 0.1 nF

approximately 16kHz to avoid noise pollution and aliasing of
the signals. The values of the electronic components are listed
in table 2.

VABHs with different lengths were considered, see table 3.
The material was steel, and the truncation x0 was set to 1mm
with a power law exponent equal tom= 2. Themodal damping
was set to 50%.

Because the first resonance of the experimental beam
around 5Hz has a very low magnitude, the focus is on the next
six resonance peaks whose frequencies are given in table 4.

4.2. Open-loop features

The plant transfer function for a single PZT cell is q̇s
Va
. All

VABH transfer functions have two more zeros than poles and
are thus improper. An additional pole acting as an integrator
to obtain the charge from the sensed current was added to the

10
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Table 3. Length of the different VABHs.

Parameter VABH 1 VABH 2 VABH 3 VABH 4

Length LABH (inmm) 1000 700 500 400

Table 4. Resonance frequencies of the plant.

Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6

31.5Hz 89.5Hz 176Hz 283.5Hz 595Hz 816.5Hz

Figure 18. Bode plot of the open-loop transfer function for one PZT cell. Black circles denote potential instabilities.

function ZABH at s= 0 (see equation (14)). As it has still one
more zero than poles, the resulting VABH remains improper.
As an example, VABH 1 was numerically implemented. The
Bode plot is depicted in figure 18. Initially, the magnitude
increases by approximately 20 dB per decade due to the addi-
tional zero of the system. Due to the analog circuit and the
first-order low-pass filter, the magnitude becomes relatively
constant at high frequencies.

To make a digital implementation possible, the VABH
transfer function must be proper. Furthermore, the closed-loop
system is neutrally stable if the open-loop transfer function is
equal to−1. A sufficient condition to guarantee stability in our
setting is that the magnitude of the open-loop transfer func-
tion be smaller than 0 dB when the phase crosses −180◦ [31].
Notice that the conversion from analog to digital data (and
inversely) leads to additional delays in the system and thus
an additional phase lag. Therefore, in practice, having a mag-
nitude greater than 0 dB when the phase is close to −180◦ is

likely to result in an unstable closed-loop system. The black
circles in figure 18 highlight problematic frequency regions.
Around 670Hz, it is believed that the open-loop system has a
phase close to −180◦ due to noise. Because the gain margin
is close to 10 dB, no instabilities should rise from this area.
Conversely, the circles around 8250Hz and 9120Hz corres-
pond to magnitudes greater than 0 dB.

Both issues (proper feature of the controller and stability of
the closed-loop system) were solved by adding second-order
low-pass filters to the controller:

h=
ω2
LP

s2 + sωLP +ω2
LP

(20)

where ωLP is the cut-off frequency. Using these filters was
not straightforward. Although the magnitude of the open-loop
system is lowered, its phase is also decreased. The poten-
tial areas of instabilities are thus shifted to lower frequencies

11
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Figure 19. FRF with one PZT cell (accelerance at the shaker location). : plant, : LABH = 700mm, : LABH = 500mm, and
: LABH = 400mm.

Table 5. Vibration attenuation in dB.

Type VABH Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6

LABH = 400mm −2 17 25 10 3 −16
LABH = 500mm 0 14 23 9 −9 −6
LABH = 700mm 4 12 20 7 8 0

where the magnitude may still be greater than 0 dB. Moreover,
setting a too low value of ωLP restricts the working range of
the VABH. In what follows, two filters multiplied the VABH
control law with ωLP,1 = 2π× 1000 rad s−1 and ωLP,2 = 2π×
1100 rad s−1. The experimental FRFs are represented in the
range [20Hz,1000Hz] where the low-pass filters should not
influence the results.

4.3. VABH performance

The FRFs of VABHs 2–4 are depicted in figure 19, and their
respective performance is summarized in table 5. Excellent
vibration reduction is obtained for the first five peaks with
a length of 700mm. Peak 6 is beyond the working range of
this VABH and is thus not attenuated. When LABH = 400 mm,
the first peak is below the cut-on frequency of the VABH.
However, peak 6, which lies in the working range of the
VABH, is amplified. A similar amplification is also obtained
when LABH = 500mm. This phenomenon may come from a
coupling between the cut-off frequency of the low-pass filter
and the one from the Craig–Bampton reduction. Nevertheless,

for these two VABHs, greater vibration attenuation is achieved
for peaks 2–4.

The impact of the controller gain is now studied for VABH
3. Physically, increasing the gain is equivalent to considering a
VABHwhose mass, stiffness and damping matrices have been
multiplied by this gain. Overall, figure 20 and table 6 confirm
that increasing the gain allows for better vibration reduction.
This comes, however, at the expense of reduced gain margins.
At high frequencies, the FRF for the greatest gain becomes
quite noisy; increasing the gain further would have resulted in
an unstable closed-loop system.

To optimize VABH performance, specific low-pass fil-
ters are now designed for each considered VABH. Indeed,
by adapting ωLP, the stability margins can be increased,
enabling the gain to be increased. VABHs with lengths equal
to 1000mm, 700mm and 500mm are considered. Their gain
is set to 1, 1.5, and 2, respectively. The FRFs are displayed
in figure 21 and the corresponding peak attenuations are lis-
ted in table 7. In all cases, all peaks are reduced by at least
3 dB. The VABH with the highest gain and LABH = 500mm
provides overall the best attenuation.
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Figure 20. FRF for VABH 3 with different gain values. : plant, : gain of 2, : gain of 1, and : gain of 0.5.

Table 6. Vibration attenuation in dB for VABH 3 with different gains.

Gain Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6

0.5 0 7 19 6 −5 −3
1 0 14 23 9 −9 −6
2 5 27 26 8 5 −10

Figure 21. FRF with low-pass filter tuning. : plant, : LABH = 1000 mm, : LABH = 700 mm, and : LABH = 500 mm.

13
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Table 7. Improved VABH performance with low-pass filter tuning.

Type VABH Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6

LABH = 500mm 3 18 28 15 12 6
LABH = 700mm 7 15 22 8 11 9
LABH = 1000mm 3 11 18 7 7 6

Table 8. Features of different enhanced ABH devices.

ABH device Advantages Drawbacks

Mechanical ABH + active
feedforward strategy [32]

• Better reduction than an
ABH with a damping
layer

• No reduction at low frequencies
• Need external power
• Bulky and brittle

Mechanical ABH +
vibro-impact device [33]

• Efficient reduction even
at low frequencies

• Need to tune the vibro-impact
device

• Bulky and brittle

Mechanical ABH +
shunts [34]

• Efficient reduction even
at low frequencies

• Need to tune the shunt to target
low frequencies modes

• Need external power
• Bulky and brittle

Virtual ABH with
piezoelectric patches

• Compact
• Versatile
• Efficient reduction even

at low frequencies

• Need external power
• Potential stability issues
• Performances at high frequencies

depend on the processor

5. Conclusion

Piezoelectric transducers and digital controllers are exploited
in this paper to reproduce the rotational effect of a mechanical
ABH, which, in turn, allows for the realization of a compact
and autonomous VABH. The piezoelectric layout follows an
improved pseudo-collocated approach with cells made of four
PZT patches. It was shown that excellent vibration attenuation
can be obtained even with a single PZT cell placed where the
strain energy is high.

The proposed VABH concept was demonstrated numeric-
ally and experimentally using a cantilever beam and exhibited
impressive performance. However, great care which includes
the design of a low-pass filter is needed to guarantee the sta-
bility of the closed-loop system. The impact of different para-
meters including the VABH length, the controller gain and the
cut-off frequency of the filter was carefully investigated.

The advantages and drawbacks of a few enhanced ABH
devices used in experimental simulations are summarized in
table 8. The VABH remedies to all ABH classical difficulties,
e.g. reduction at low excitation frequencies, manufacture and
brittleness issues. Its potential is hindered only by the afore-
mentioned stability issues and by the processor of the RTC. In
this study, the processor limited the number of modes to be
retained during the Craig–Bampton process to 20. Eventually,
this reduces the VABH performance at higher frequencies.

The versatility of the VABH and its efficiency over a large
range of frequency could make it a good choice to reduce the
structural vibration of real-life systems. To attain this final
goal, two main challenges would be (i) to define a more

systematic design of the low pass filters in order to progress
toward a ‘plug and play’ VABHwhich would require very few
a priori knowledge about the host structure and (ii) to apply
the VABH to more complex structures including, e.g. plates or
cyclic systems.
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Appendix A. Noncollocated nature of the
pseudo-collocated PZT configuration

A.1. Theoretical developments

This section provides mathematical insights into the non-
collocated nature of the system in figure 4. For simplicity,
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Figure 22. Bode plot of the pseudo-collocated PZT configuration. The red rectangle highlights the first traction-compression mode.

equation (4) is written without damping and external forcing,
and a single PZT cell is used:{

Mẍ+Kscx+ΘaCpVa = 0
CpΘ

⊺
s x= qs.

(21)

To derive the plant transfer function qs/Va, the eigenvalue
problem of the short-circuit system is solved. ωn and αn rep-
resent the eigenfrequency and the normalized mode shape of
mode n, respectively:

x=αη α⊺Mα= I α⊺Kα=Ω2,
(22)

where η is the vector of generalized control coordinates, I is
the identity matrix and Ω is a diagonal matrix comprising the
eigenfrequencies. Substituting x by αη in (21), projecting the
equations along α and using (22) yields{ (

−ω2I+Ω2)η+α⊺ΘaCpVa = 0

CpΘ
⊺
s αη = qs,

(23)

where ω is the excitation frequency. Considering expres-
sions (6) and (7), the following relations are obtained:

Θ⊺
s α= θuαu+ θϕαϕ (24a)

α⊺Θa = θuαu− θϕαϕ, (24b)

where αu and αϕ represent the projected modes α on the
coupling matrix Θ when only the u and ϕ components are

retained, respectively. Substituting these relations in (23) and
expressing η as a function of Va gives

qs
Va

=−C2
p

∑3Nnodes

n=1

(
(θuαu,n+ θϕαϕ,n)(θuαu,n− θϕαϕ,n)

−ω2 +ω2
n

)
,

(25)

which after expansion finally yields

qs
Va

=−C2
p

∑3Nnodes

n=1

(
(θuαu,n)

2

−ω2 +ω2
n
− (θϕαϕ,n)

2

−ω2 +ω2
n

)
. (26)

Due to the different signs for the terms in αu,n and αϕ,n, the
transfer function qs/Va is not monotonous. As a consequence,
the alternating poles/zeros pattern is not achieved, which may
result in an unstable closed-loop system [28].

A.2. Numerical results

The sensing PZTs are connected in parallel to retrieve the
sum of the currents (and hence the displacement at beam tip).
Similarly, the actuating PZTs are also connected in parallel
to apply the same voltage and to obtain a single resulting
moment at beam tip. The current over voltage Bode plot of
the system is depicted in figure 22. If the system was colloc-
ated, the poles and zeros should alternate with the result that
the phase should be comprised within a 180◦-wide interval.
However, this feature is lost around 1300Hz where a traction-
compression mode exists, which leads to a noncollocated sys-
tem. To move away from an unstable closed-loop system, a
low-pass filter with a cut-off frequencywell below the traction-
compression mode could be considered within the control-
ler with the drawback that this would reduce the frequency
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range in which the VABH is effective. The improved pseudo-
collocated PZT layout proposed in figure 5 represents a better
solution to this issue.

Appendix B. Derivation of the impedance for the
self-sensing approach

The equations of motion of the system are Mẍ+Cẋ+Kscx+
∑N

i=1 (ΘiCpVi) = fext

Θ⊺
i x− (Cp)

−1 qi = Vi, ∀i ∈ [[1,N]]
.

(27)

The voltage applied to the electrodes of the ith PZT is Vi =
ZiQi in the Laplace domain. Substituting this equation in the
second line of (27) gives

Vi =
CpZi

1+CpZi
Θ⊺
i X. (28)

Further, substituting this latter equation in the first line of (27)
gives the equations that the impedance Zi must satisfy to obtain
the ABH effect

(2Cpθϕ)
2 ZN
1+CpZN

∆ϕN =−ZABH,ϕϕ
p
N

Zi+1

1+CpZi+1
∆ϕi+1 =

Zi
1+CpZi

∆ϕi ∀i ∈ [[1,N− 1]].

(29)

The first equation states that the moment applied by the PZT
at the tip must be equal to the moment of the ABH effect
(see equation (3b)). The second equation indicates that adja-
cent PZTs must produce an equal moment. As a result, the
moments will cancel out each other, except at the boundar-
ies. The moment at the clamping does not impact the system’s
dynamics whereas the moment at the tip mimicks the ABH
effect. Equation (29) can be recast into

ZN =
1
Cp

(
4Cpθ

2
ϕ∆ϕN

4Cpθ2ϕ∆ϕN+ZABH,ϕϕN
− 1

)

Zi =
1
Cp

(
∆ϕi (1+CpZi+1)

∆ϕi (1+CpZi+1)−CpZi+1∆ϕi+1
− 1

)
∀i ∈ [[1,N− 1]]

(30)

which enables to compute the impedance for the different
PZTs to reproduce the ABH effect.

A simplification of this approach is to consider the PZTs
connected in parallel. They are thus all subjected to the same
voltage whereas their charges add up. Summing the electrical
equations for i = 1, . . . ,N, equation (27) become{

Mẍ+Cẋ+Kscx+ 2Vθϕϕ
p
NCp = fext

2θϕϕN− (Cp)
−1∑N

i=1Qi = NV.
(31)

The moments of adjacent PZTs directly cancel out each other,
and only the equality condition between the moment at beam

tip and that of the ABHmust be enforced. In this case, a single
control law is defined

V= Z
∑N

i=1
Qi. (32)

with

Z=
1

NCp

(
(2Cpθϕ)

2

(2Cpθϕ)
2
+NCpZABH,ϕ

− 1

)
. (33)
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