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A B S T R A C T   

The second harmonic Lamb waves have high sensitivity to microstructural defects in materials and are therefore 
promising for incipient damage detection and monitoring of thin-walled structures. Existing studies have shown 
that the second harmonic Lamb waves can be cumulative with increasing propagation distance under the internal 
resonance conditions, which is conducive to nonlinear wave measurements in view of structural health moni-
toring. However, when propagating in a lossy structure with damping, the cumulative properties of the second 
harmonic Lamb waves are affected by energy dissipation and thus need to be re-examined. In this paper, a 
method for predicting the cumulative characteristics of second harmonic Lamb waves in damped plates is pro-
posed. Instead of using material damping parameters which are difficult to obtain in practice, the proposed 
method relies on the attenuation patterns of Lamb waves at fundamental and double frequencies while taking 
into account the influence of the wave beam divergence. The proposed methodology is validated by finite 
element simulations and experiments. The results show that the cumulative second harmonic Lamb waves in the 
damped plate tend to increase and then decrease, and a “sweet” zone of relatively large amplitude can be pre-
dicted using the proposed method. The elucidation of the cumulative characteristics of the second harmonic 
Lamb waves provides guidance for effective system design for structural damage detection and monitoring 
applications.   

1. Introduction 

Material nonlinearity, which is characterized by the macroscale 
nonlinear stress–strain relationship, usually arises from microstructural 
defects such as lattice anomalies, dislocations, microcracks, etc. [1–3]. 
With guided waves propagating in thin-walled structures like a plate 
with material nonlinearity, nonlinear components are generated such as 
higher harmonics and mixed-frequency components [4–7]. Due to their 
generation mechanism, nonlinear guided waves are inherently sensitive 
to changes in material microstructure and therefore hold great promise 
for non-destructive evaluation (NDE) and structural health monitoring 
(SHM) applications [8–11]. 

Among various types of nonlinear guided waves, the second har-
monic Lamb waves have been widely studied and exploited for NDE and 
SHM applications [8,12]. For example, Li et al. proposed a damage 
localization algorithm to identify and image a micro-defect in a 1060 
aluminum plate according to the phase matching conditions of the S0 

mode second harmonic Lamb waves [13]. Chen et al. also used the S0 
mode second harmonic Lamb waves to characterize the interfacial 
property of a double-layer plate (two metal plates bonded with epoxy) 
subjected to different annealing conditions [14]. Masurkar et al. used 
the internally resonant second harmonic Lamb waves (S1-S2 mode pair) 
to monitor the material microstructural changes in Al 7075-T651 plate 
during fatigue [15]. 

As a prerequisite to NDE and SHM applications, it is crucial to un-
derstand the propagation characteristics of the second harmonic Lamb 
waves. Existing work has shown that the second harmonic Lamb waves 
generated by distributed material nonlinearity can be cumulative with 
the propagation distance if the internal resonance conditions are satis-
fied [16–19]. Specifically, this requires non-zero power flux from 
fundamental to second harmonic waves and the phase velocity matching 
between them. The cumulative effect is of great benefit to NDE and SHM 
applications for two reasons: 1) the energy of the second harmonic Lamb 
waves accumulates with propagation distance which facilitates their 
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measurement; 2) the cumulative feature can be used as an indicator of 
incipient damage incurred in structures. In practice, only a limited 
number of fundamental-second harmonic Lamb wave mode pairs strictly 
satisfy the internal resonance conditions [20]. Apart from these identi-
fied mode pairs, the S0 mode Lamb waves have recently been found to 
approximately meet the internal resonance conditions due to their 
slightly dispersive nature at low frequencies [21,22]. As a result, the 
corresponding second harmonic S0 mode Lamb waves are deemed 
quasi-cumulative with the wave propagation distance. This provides 

considerable flexibility in the choice of excitation frequencies in prac-
tical applications. It is worth noting that the internal resonance condi-
tions for the cumulative effect apply to Lamb waves in both isotropic and 
anisotropic plates, as demonstrated in [23]. 

Most of the existing studies focus on the cumulative second harmonic 
Lamb waves without considering the effect of material damping. When 
material damping is taken into account, the amplitude of the primary 
Lamb waves is attenuated during propagation. As a result, the cumula-
tive characteristics of the second harmonic Lamb waves are affected. To 
address this issue, Kanda and Sugiura proposed a theoretical framework 
to investigate the amplitude variation of internally-resonant second 
harmonic waves as a function of the wave propagation distance [24]. 
Considering the effect of material damping, the amplitude of the second 
harmonic Lamb waves first increases and then decreases. That work is 
only a theoretical investigation and still lacks experimental validation. 
In addition, in practical applications, it is difficult to obtain the accurate 

Fig. 1. Sketch of linear and nonlinear Lamb wave propagation in a damped plate.  

Fig. 2. 2D finite element model.  

Table 1 
Material parameters for simulations.  

ρ[kg/ 
m3] 

λ[GPa] μ[GPa] λ̃[Pa‧ 
s] 

μ̃[Pa‧ 
s] 

A[GPa] B[GPa] C[GPa] 

2700  55.27  25.95 2500 1000  –351.2  –149.4  –102.8  

Fig. 3. Typical responses at different locations to the excitations at (a) 100 kHz and (b) 200 kHz.  

S. Shan et al.                                                                                                                                                                                                                                    



Ultrasonics 138 (2024) 107229

3

material damping parameters, so the proposed method is difficult to use 
to guide practical damage monitoring applications. 

Motivated by this, we propose a simple method to predict the cu-
mulative feature of the second harmonic Lamb waves, by considering 
the lossy effect of material damping in a plate. Theoretical analyses are 
first performed to explain the concept of the proposed method. Nu-
merical simulations are then presented to demonstrate the method with 
two-dimensional cases. Three-dimensional studies are further consid-
ered to investigate the influence of wave beam divergence. Finally, ex-
periments are carried out on a composite plate to further validate the 
proposed method. 

2. Prevailing ideas for predicting cumulative features 

Consider the propagation of a plane fundamental Lamb wave in a 
weakly nonlinear plate. As the wave propagates, the second harmonic 
Lamb wave is generated, as sketched in Fig. 1. In the absence of 
damping, without loss of generality, the amplitude of the cumulative 
second harmonic Lamb wave A2 can be written as 

A2(x) = kA2
1x (1)  

where A1 and x are the amplitude of the fundamental wave and the 
propagation distance, respectively. The coefficient k denotes the gen-
eration efficiency of the second harmonic Lamb wave, which is related 
to the elastic constants of materials and wave structures of the funda-
mental and second harmonic Lamb waves [20]. 

In a lossy medium where material damping should be considered, 
both fundamental and second harmonic Lamb waves are attenuated 
during propagation. Specifically, the attenuation patterns of the linear 
waves at fundamental and double frequencies are characterized by the 
functions fω(ξ) and f 2ω(ξ), in which ξ stands for the position. For a 
segment dξ at position ξ, the fundamental wave amplitude should be A1 
fω(ξ). Accordingly, the second harmonic Lamb wave amplitude gener-
ated by the segment is 

dA2 = k(A1fω(ξ))2dξ (2) 

Fig. 4. Characterization of attenuation patterns of Lamb waves at (a) 100 kHz and (b) 200 kHz.  

Fig. 5. Cumulative effect of the second harmonic Lamb waves: (a) Typical second harmonic responses (b) comparison between the theoretical prediction and 
numerical data. 
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Reaching a position x, the amplitude of the second harmonic Lamb wave 
attenuates to dA2(f2ω(x − ξ)). As a result, the second harmonic Lamb 
wave amplitude is obtained as 

A2(x) =
∫x

0

k(A1fω(ξ))2f2ω(x − ξ)dξ (3)  

Eq. (3) suggests that the cumulative characteristics of the second har-
monic Lamb waves in the damped plate can be predicted if the attenu-
ation patterns of the Lamb waves at the fundamental and double 
frequencies can somehow be obtained. This can be readily done through 
measuring the Lamb waves at these two frequencies. This way, one can 
predict the cumulative characteristics of the second harmonic Lamb 
waves without the specific knowledge on material damping parameters, 
whose accurate quantification turns out to be difficult in practice. While 
confirming the variation trend of the second harmonic Lamb waves 
versus propagation distance, we also intend to use this method to predict 
the “sweet” zones in the wave propagation path in which the amplitude 
of the second harmonic Lamb waves is large to facilitate the 
measurement. 

3. Numerical demonstration and validations 

Finite element simulations are performed to validate the prediction 
method described above. Taking the material damping of the plates into 

account, the cumulative characteristics of the second harmonic Lamb 
waves are investigated. In addition, the influence of the wave beam 
divergence is also evaluated. 

3.1. Cumulative characteristics of second harmonic Lamb waves in 
damped plates 

First, two-dimensional (2D) simulations are carried out under the 
plane wave assumption. A finite element model is created in Abaqus as 
illustrated in Fig. 2. A representative plate with a thickness of 2 mm and 
a length of 1 m is studied. By combining the Kelvin-Voigt viscoelastic 
model and the Landau-Lifshitz model [24], we use a constitutive model 
to characterize the weakly nonlinear material with damping as 

σ = λtr[ε]I + 2με + λ̃tr[ε̇]I + 2μ̃ε̇ + Aε2 + Btr[ε2]I + 2Btr[ε]ε + C(tr[ε])2I
(4)  

where λ and μ are Lamé constants and λ̃ and μ̃ are the two viscosity 
parameters. A, B, and C are the Landau third-order elastic constants 
(TOECs). I is the identity tensor and the operation tr[] represents the 
trace. σ and ε are the nominal stress and engineering strain respectively. 
Note that the second Piola-Kirchhoff stress and the Lagrangian strain are 
used in the original Landau-Lifshitz model. Since it has been shown that 
geometric nonlinearities have much less effect than material non-
linearities, the nominal stress and engineering strain can be reasonably 

Fig. 6. Influence of low damping (λ̃ = 1000 Pa‧s, μ̃ = 400 Pa‧s) on the cumulative effect: attenuation patterns of Lamb waves at (a) 100 kHz and (b) 200 kHz; (c) 
cumulative pattern of the second harmonic Lamb waves. 
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Fig. 7. Influence of high damping (λ̃ = 7500 Pa‧s, μ̃ = 3000 Pa‧s) on the cumulative effect: attenuation patterns of Lamb waves at (a) 100 kHz and (b) 200 kHz; (c) 
cumulative pattern of the second harmonic Lamb waves. 

Fig. 8. The 3D finite element model.  
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Fig. 9. Typical Lamb wave responses at different positions and their extracted attenuation patterns of: (a) and (c) 100 kHz; (b) and (d) 200 kHz.  

Fig. 10. Cumulative effect of the second harmonic Lamb waves: (a) typical second harmonic responses (b) comparison between the theoretical prediction and 
numerical data. 
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used for simplicity. The constitutive model is coded with the user ma-
terial subroutine (UMAT) in Abaqus. The material parameters used in 
the simulations are given in Table 1. 

A prescribed displacement in the x-direction is uniformly applied to 
the left end of the plate. Only symmetrical Lamb waves can then be 
generated. The excitation is a 5-cycle tone burst signal windowed by a 
Hann function with a center frequency of 100 kHz or 200 kHz. As the 
frequencies are far below the cut-on frequencies of higher order modes 
in a 2 mm-thick plate, only the lowest S0 mode waves are generated in 
the present case. The amplitude is set to 0.1 μm. A fine mesh of 0.5 mm 
× 0.5 mm is used with more than 40 elements per smallest wavelength. 
The displacements in the x-direction (U1) of 11 points on the top surface 
from 0 cm to 50 cm with a step size of 5 cm to the left end are extracted 
as the output of the system at a sampling frequency of 10 MHz. 

Fig. 3(a) and 3(b) show some typical responses at different locations 
corresponding to the excitations at 100 kHz and 200 kHz, respectively. 
By tracking the time of flights of the first arrivals, the group velocities 
are deducted to be 5430 m/s and 5380 m/s for the 100 kHz and 200 kHz 
waves, respectively, which are very close to the theoretical values of the 
S0 mode waves. The wave packets after 200 μs in Fig. 3(a) correspond to 
the reflection of S0 mode waves from the right edge of the plate, which 

arrive much later than the first arrivals. Therefore, the influence of 
boundary reflections can be neglected in the subsequent analyses. As 
there is only a very slight dispersion in the S0 mode waves in the low 
frequency range, changes in the waveform can hardly be visible during 
propagation. In addition, the effect of damping is evident from the wave 
attenuation versus the propagation distance. The material damping 
leads to a higher attenuation rate for the 200 kHz wave. 

The complex Morlet wavelet transform [25] is then applied to extract 
the Lamb wave amplitudes at different locations. By normalizing the 
maximum amplitude, the Lamb wave the amplitudes at 100 kHz and 
200 kHz corresponding to different propagation distances are obtained 
in Fig. 4(a) and (b). According to the literature [26,27], the exponential 
function can be used to extract the attenuation patterns of Lamb waves 
induced by material damping as 

f (x) = e− bx (5)  

In which b is the attenuation factor from which b1 and b2 are derived for 
the waves at fundamental and double frequencies. It can be seen that the 
exponential function fits the finite element result very well. Substituting 
the attenuation patterns of Lamb waves into Eq. (3), the amplitude of the 
second harmonic Lamb waves can be predicted as 

Fig. 11. Influence of weaker wave beam divergence (w = 7 cm) on the cumulative effect: attenuation patterns of Lamb waves at (a) 100 kHz and (b) 200 kHz; (c) 
cumulative pattern of the second harmonic Lamb waves. 
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A2(x) =
kA2

1

b2 − 2b1
e− b2x(e(b2 − 2b1)x − 1) (6) 

To verify this, the second harmonic Lamb waves corresponding to the 
100 kHz excitation are extracted with the phase inversion method 
[28,29]. Specifically, a pair of phase-reversed excitations is applied, and 
the second harmonic components are extracted by averaging the cor-
responding responses. The second harmonic responses at some repre-
sentative positions are presented in Fig. 5(a), showing an increasing and 
then decreasing trend. After extracting their amplitudes using the 
complex Morlet wavelet transform and normalizing the maximum value, 
the simulation results are compared with the theoretical prediction in 
Fig. 5(b). It can be seen that the theoretical result is in good agreement 
with the numerical data and the “sweet” zone for the maximum 
amplitude is well predicted by the proposed method. 

Two other cases with different damping levels are then considered. 
The first one is low damping with λ̃ and μ̃ set to 1000 and 400 Pa‧s 
respectively. Other parameters are the same as those in Table 1. 
Following the same procedure, the attenuation patterns of the Lamb 
waves at 100 kHz and 200 kHz are extracted as shown in Fig. 6(a) and 6 
(b). The cumulative effect can then be predicted using Eq. (6) and 
compared with the finite element result in Fig. 6(c). The second case 
involves higher damping with λ̃ and μ̃ of 7500 and 3000 Pa‧s respec-
tively. The attenuation patterns are measured in Fig. 7(a) and 7(b) and 
the corresponding cumulative feature is presented in Fig. 7(c). In both 
cases, the theoretical predictions are in good agreement with the finite 
element results. In addition, we can see that the “sweet” zone of the 
maximum second harmonic Lamb wave amplitude is shifted forward 
with increasing damping. 

3.2. Influence of wave beam divergence 

In practice, Lamb waves are usually generated by transducers of 
limited size. As a result, the generated Lamb waves are non-planar and 
attenuate during propagation due to wave beam divergence. To assess 
the effect of the wave beam divergence, three-dimensional (3D) finite 
element simulations are carried out, as shown in Fig. 8. The dimensions 
of the plate are 600 mm × 300 mm × 2 mm. The sizes of the plate are 
selected to mitigate the influence of boundary reflections from the edges 
on the S0 mode waves of interest. In the simulations, ̃λ and ̃μ are fixed at 
1000 and 400 Pa‧s respectively, and other parameters can be obtained 
from Table 1. A prescribed displacement with an amplitude of 1 μm is 
applied at the left end and uniformly distributed over the entire thick-
ness to excite the Lamb waves in S0 mode. By varying the excitation 
width w, the level of wave beam divergence can be controlled. The 
excitation signals are the same as those used in the 2D cases, with 
excitation frequencies of 100 kHz and 200 kHz. The mesh size is 0.5 mm 
× 0.5 mm × 0.5 mm. The outputs are the displacements in the x di-
rection (U1) of 11 points on the top surface along the center line from 0 
cm to 30 cm, with a step size of 3 cm at the left end. The sampling 
frequency is set to 20 MHz. 

In the first case, the width of the excitation is set to 5 cm. The 
resulting responses to the 100 kHz and 200 kHz excitations at some 
typical locations are shown in Fig. 9(a) and 9(b). It is worth noting that 
the we have tracked the wave propagation process carefully in the 
simulation to ensure that the boundary reflections do not affect the first 
arrivals of the signals. The S0 mode wave packets can be clearly seen as 
the first wave packet in each signal. The complex Morlet wavelet 
transform is then applied to extract the amplitudes corresponding to 
different propagation distances as shown in Fig. 9(c) and 9(d). The 

Fig. 12. Influence of stronger wave beam divergence (w = 3 cm) on the cumulative effect: attenuation patterns of Lamb waves at (a) 100 kHz and (b) 200 kHz; (c) 
cumulative pattern of the second harmonic Lamb waves. 

S. Shan et al.                                                                                                                                                                                                                                    



Ultrasonics 138 (2024) 107229

9

exponential function is used to describe the wave attenuation pattern. In 
this case, the first two amplitudes corresponding to the 0 and 3 cm 
propagation distances are not used for curve fitting. This is because the 
waves at these two positions are more susceptible to near-field effects. 

Similarly, the second harmonic Lamb wave responses are then 
extracted using the phase-inversion method, and typical results are 
shown in Fig. 10(a). By applying the attenuation patterns of the Lamb 
waves at the fundamental and double frequencies in Eq. (6), the theo-
retical predictions of the second harmonic amplitude with respect to the 
propagation distance are obtained and compared with the numerical 
results shown in Fig. 10(b). Good agreement is again observed and the 
“sweet” zone is well predicted. 

Considering different levels of wave beam divergence, two addi-
tional cases are then considered, In the first case, a 7 cm-wide excitation 
is used corresponding to a lower wave beam divergence case. Following 
the same procedure, the attenuation patterns of the waves at 100 kHz 
and 200 kHz are extracted as shown in Fig. 11(a) and 11(b). The theo-
retical predictions are shown in Fig. 11(c), which shows a longer cu-
mulative distance. It can be seen that the proposed method also allows 

an accurate prediction of the cumulative effect. The second case con-
siders a 3 cm-wide excitation with a higher wave beam divergence level, 
as evidenced by the rapid attenuation of the Lamb waves near the 
excitation in Fig. 12 (a) and (b). The resulting theoretical prediction is 
shown in Fig. 12(c), where the cumulative distance becomes shorter. 
The discrepancy between the theoretical predictions and the numerical 
results becomes larger because the extracted attenuation patterns 
cannot accurately characterize the wave attenuation due to the 
increased wave beam divergence. However, the predicted trend of the 
second harmonic amplitudes remains consistent with the simulation 
results. The proposed method can still provide acceptable prediction of 
the “sweet” zone in practical applications. 

To sum up, the proposed method for predicting the cumulative effect 
of second harmonic Lamb waves is validated by finite element simula-
tions. Both 2D and 3D simulation results confirm the influence of the 
material damping on the cumulative effect. Specifically, the amplitude 
of the second harmonic Lamb wave generally undergoes increasing and 
then decreasing trends, resulting in a “sweet” zone which is conducive to 
measurement. The results show that the larger the damping and the 
greater the wave beam divergence, the smaller the cumulative distance 
becomes. In addition, the linear and nonlinear waves in the 3D simu-
lation results attenuate faster than their counterparts in the 2D scenario 
for the same level of material damping. The wave beam divergence in 
the 3D case results in a significant shift of the “sweet” zone towards the 
excitation source. Meanwhile, it is also found that the proposed method 
is significantly affected when the wave beam divergence is large, which 
should be considered in practical applications. 

4. Experimental investigations 

Finally, experiments are carried out to further validate the proposed 
prediction method using a 400 mm × 500 mm × 2 mm carbon fiber 
reinforced plate (CFRP) (shown in Fig. 13(a)). The plate contains 12 
layers ([0◦/90◦]6) made of AS4M3502 (transversely isotropic material). 
The engineering constants of a single layer are tabulated in Table 2. A 
30 mm × 16 mm × 0.5 mm PZT wafer is bonded to the plate for wave 
excitation. The measurement system works as follows: a KEYSIGHT® 
33500B waveform generator is used to generate the excitation signal, 
which is a tone burst signal windowed by a Hann function. The signal is 
then amplified by a RITEC® GA-2500A power amplifier and sent to the 
PZT actuator. The out-of-plane velocity of Lamb waves are measured by 
a Polytec® PSV-500 vibrometer. Meanwhile, the excitation signal is also 
sent to the vibrometer to ensure the synchronization of wave generation 
and reception. The sampling frequency of the vibrometer is set to 5 MHz. 

The dispersion curves of the Lamb waves in the composite plate are 
calculated using Dispersion Calculator in MATLAB. The AS4M3502 with 
the properties in Table 2 is first selected in the software, followed by the 
lay-up setup ([0◦/90◦]6 in this case). Then a wave propagating angle is 
specified which is 0◦ to match the experiments. As a result, the disper-
sion curves of the Lamb waves propagating at 0◦ direction in the 12-ply 
CFRP are obtained and shown in Fig. 13(b). Note that the shear hori-
zontal modes are not considered. It can be seen that the B1 mode Lamb 
wave is slightly dispersive in the low frequency range, so according to 
the theory [23], the second harmonic B1 mode Lamb waves in this fre-
quency range should be cumulative. By sweeping the excitation fre-
quency from 50 kHz to 400 kHz, it is found that the amplitude of the B1 
mode wave is maximum at 160 kHz. Therefore, in the following ana-
lyses, the excitation signal is determined as a 5-cycle tone burst signal 
with the center frequency of 160 kHz and its double frequency at 320 
kHz. 

Following the procedure of the proposed prediction method, the 
Lamb waves at 160 kHz and 320 kHz are measured along the 0◦ direc-
tion at different locations corresponding to the wave propagation dis-
tances ranging from 9 cm to 33 cm in 3 cm increments. Two typical 
responses corresponding to a distance of 15 cm at 160 kHz and 320 kHz 
are shown in Fig. 14(a) and (b), respectively. The attenuation of the 

Table 2 
Engineering constants of AS4M3502 (single layer).  

ρ[kg/m3] E1[GPa] E2 [GPa] G12 [GPa] υ12 υ23 

1550  144.6  9.6 6  0.30  0.28  

Fig. 13. (a) Experimental set-up and (b) dispersion curves of Lamb waves 
propagating at 0◦ direction in the 12-ply CFRP. 
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Lamb waves in this structure is evident due to both material damping 
and wave beam divergence. 

The first wave packets corresponding to different wave propagation 
distances are then examined with typical results shown in Fig. 15(a) and 
(b). By tracking the first peaks in the signals (marked by triangles), the 
phase velocities of the Lamb waves at 160 kHz and 320 kHz are calcu-
lated to be 6977 m/s and 7058 m/s respectively, which are very close to 
the theoretical values (7065 m/s at 160 kHz and 7029 m/s at 320 kHz). 
It is therefore concluded that the first wave packets are indeed B1 mode 
Lamb waves. The amplitudes of the first peaks for Lamb waves at 
different locations are then extracted as shown in Fig. 15 (c) and (d). The 
reason for choosing the first peak is to minimize the influence of re-
flections as explained in the literature [30]. Curve fitting is then per-
formed to determine the attenuation pattern of the B1 mode Lamb waves 
at 160 kHz and 320 kHz. As mentioned above, the responses corre-
sponding to short propagation distances are more susceptible to near- 
field effects, so the first two data are excluded in the curve fitting pro-
cess. Based on the extracted wave attenuation pattern, the amplitude of 
the second harmonic Lamb waves can be predicted according to Eq. (6). 

The second harmonic responses corresponding to the 160 kHz exci-
tation are then extracted using the phase-inversion method. A Butter-
worth filter with passbands from 240 kHz to 400 kHz [28] is then 
applied to purify the second harmonic responses at different locations, 
and typical results are shown in Fig. 16 (a). It can be seen that the second 
harmonic Lamb waves first increase and then decrease with the propa-
gation distance. To quantify the variation pattern, the complex Morlet 
wavelet transform is used in Fig. 16 (b) to extract the wave amplitudes at 
320 kHz. Through normalization to the maximum value, the cumulative 
characteristics of the second harmonic Lamb waves are obtained and 
compared with the theoretical prediction in Fig. 16(c). The measure-
ments are repeated four times and the error bars are calculated to 
demonstrate the reliability of the results. It can be seen that discrepancy 
increases the further the propagation distance. This can be attributed to 
the inevitable nonlinearities in the measurement system, such as the 
instrumentation nonlinearity and nonlinearities at the actuation section 
[28,29,31]. The second harmonic Lamb waves generated by these 
nonlinear sources are not cumulative therefore decay monotonically 
during propagation. Therefore, the further the propagation distance, the 
more the amplitude of the second harmonic Lamb wave is affected. 
Nonetheless, the theoretical predictions are still in agreement with the 
experimental results in terms of the variation trend and the “sweet” 

zone, which can still provide guidance for NDE and SHM applications. 
As a final remark, this work aims to propose a method to characterize 

the cumulative effect of the second harmonic Lamb waves in a lossy 
plate. We intended to demonstrate the dominant physical phenomena 
concerning wave propagation using simple models and verify their 
extensibility to more general cases. More specifically, we would reiterate 
that the proposed method is simple and general regardless of the 
anisotropy of the plate. Therefore, we used an isotropic material in the 
simulations for convenience and an anisotropic CFRP in the experiments 
to validate the proposed method from different perspectives. In fact, a 
practical consideration is that it is very difficult to build an accurate 
constitutive model for nonlinear anisotropic material with damping. 
Even if we opted an existing one, it would have been extremely difficult 
to accurately identify all the parameters involved. Therefore, we 
decided to use an isotropic plate in the simulations by following the 
common practice reported in literature [24]. On the other hand, the 
CFRP is a typical lossy structure which has been widely used for various 
engineering applications. We believe using a CFRP in the experiments to 
confirm the numerically predicted physical phenomena in simpler 
structures would be more meaningful and conclusive in showing the 
generic characters of the wave propagation in a lossy medium, in 
addition to the practical relevance of the CFRP for engineering appli-
cations. In return, such a strategy (using different materials in the sim-
ulations and experiments) allows to demonstrate the versatility and 
flexibility of the proposed method. 

5. Conclusions 

In this paper, the cumulative effect of second harmonic Lamb waves 
in lossy plates with damping is investigated. A method is proposed to 
predict the cumulative properties and the location of the maximum 
second harmonic Lamb wave amplitude (“sweet” zone). Finite element 
investigations are first carried out to validate the proposed method. In 
addition, the influence of the wave beam divergence is also evaluated to 
better understand the cumulative effects. Finally, experiments are per-
formed on a composite plate to further validate the method. 

Due to material damping, the cumulative second harmonic Lamb 
waves generally exhibit an increasing and then decreasing trend. By 
capturing the attenuation patterns of Lamb waves at fundamental and 
double frequencies, the proposed method can predict the cumulative 
features, as demonstrated by both numerical and experimental results. It 

Fig. 14. Typical responses of Lamb waves at x = 15 cm of (a) 160 kHz and (b) 320 kHz.  
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Fig. 15. Typical Lamb wave responses at different positions and their extracted attenuation patterns of: (a) and (c) 160 kHz; (b) and (d) 320 kHz.  
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is found that larger the damping and the greater the wave beam diver-
gence, the smaller the cumulative distance. In addition, strong wave 
beam divergence can significantly affect the prediction accuracy. 

The understanding of the cumulative characteristics of the second 
harmonic Lamb waves and the availability of the proposed method can 
guide further NDE and SHM applications in two ways. First, a “sweet” 
zone with relatively large amplitude of the second harmonic Lamb 
waves can be identified in advance to facilitate the measurement. Sec-
ond, one needs to be alert to the detrimental effects of wave beam 
divergence in practical applications for better system design. 
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