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ABSTRACT:
Vibrational acoustic black holes (ABHs) have shown great promise for reducing structural vibrations and sound

radiation in light fluids. However, it is still unknown whether the acoustic black hole (ABH) effect can be

materialized in heavy fluids. This paper discusses this issue by developing a semi-analytical model on a simply sup-

ported ABH plate that vibrates and radiates sound into water. The proposed model is validated by finite element

models and used to investigate the vibration and sound radiation properties of the ABH plate in different frequency

ranges. The results show that the ABH effect can be systematically manifested in heavy fluids, as reflected by a sig-

nificant increase in structural damping and a decrease in vibration and sound radiation. Numerical analysis of the

radiation damping and mass loading effects shows that the radiation damping has little effect on the vibration reduc-

tion of the water-loaded plate. However, the mass loading effect mitigates the low-frequency drawback of conven-

tional ABH structures in air, resulting in a broadband reduction in structural vibration and sound radiation from the

water-loaded ABH plate. VC 2023 Acoustical Society of America. https://doi.org/10.1121/10.0020067
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I. INTRODUCTION

Mitigating structural vibration and sound radiation is of

great significance for many applications. As a novel, light-

weight and effective passive solution, advanced structural

design based on acoustic black hole (ABH) principles have

been a subject of intense research over the past decade, as

reviewed in a recent paper (Pelat et al., 2020).

The pioneering work of Mironov (1988) and the experi-

mental confirmation by Krylov and Winward (2007) both

demonstrated that, as flexural waves propagate towards a

one-dimensional (1D) wedge whose thickness is tailored

according to a power–law variation, i.e., hðxÞ ¼ exc (with c
� 2), their phase velocity gradually slows down and the

time taken to reach the edge tip would become infinite. This

process neutralizes wave reflection at the edge tip and

results in wave compression and energy concentration,

which can be effectively absorbed by a small amount of

damping materials deployed around the tip region. Based on

this principle, extensive research has been conducted to

explore the ABH-enabled benefits in terms of vibration and

sound radiation reduction. Up until now, the problem has

been predominantly addressed for structures in light fluid,

such as air (Pelat et al., 2020). In particular, using finite ele-

ment (FE) models that consider the full fluid loading effects

from the surrounding air, Conlon et al. (2015) first demon-

strated that periodically embedded ABH plates can drasti-

cally reduce the vibration velocity and sound power. Tang

et al. (2016) experimentally verified that ABH beams coated

with a damping layer entail largely increased system loss

factors. Typical phenomena were also experimentally veri-

fied (Bowyer and Krylov, 2015; Ma and Cheng, 2019).

Meanwhile, potential applications of the ABH have also

been attempted (Prill and Busch, 2016).

Most existing analyses on ABH have been performed

for light fluid (e.g., air), a topic that has been well mastered.

Comparatively, exploration of ABH phenomena in heavy

fluid receives little, if not completely inexistent, attention in

the open literature. The topic, however, is of paramount

importance for many underwater applications in which flu-

id–structure coupling needs to be considered. Although the

issue has been well studied in classical vibro-acoustics

involving conventional structures, like plates (Berry, 1990;

Nelisse et al., 1998) and shells (Laulagnet and Guyader,

1989; Dana et al., 2020), it receives little attention in the

context of ABH, which raises a series of intriguing yet

important questions. More specifically, the structural specif-

icity of the ABH structures, in terms of spatial wavelength

variation and wave velocity changes, might challenge the

common understandings on conventional or ABH structures,

either in vacuum or immersed in light fluid, such as air.

Meanwhile, due to the strong fluid–structural interaction,

how the mass loading and radiation damping in heavy fluid

would affect the ABH phenomena, as well as the sound radi-

ation, remains obscure. These issues call for the develop-

ment of efficient simulation tools as well as the assertion of

typical ABH phenomena and their implication on vibration

and sound radiation control applications. This forms the

major motivation of the present work.a)Electronic mail: li.cheng@polyu.edu.hk
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The objectives of this paper are therefore twofold which

show its novelty: (1) to establish an efficient simulation

model to describe the vibro-acoustic behaviors of ABH

plates coated with viscoelastic materials and immersed in

heavy fluid, which calls for the rigorous consideration of

strong fluid–structure coupling, (2) to examine whether

ABH effects can still be materialized in heavy fluid (e.g.,

water), and if so, how the phenomena differ from the light

fluid case (e.g., air) and what are the dominant factors that

would impact on vibration and sound radiation in heavy

fluid.

The remainder of the paper is organized as follows: in

Sec. II, a semi-analytical model that considers the strong

coupling between a simply supported ABH plate and its sur-

rounding heavy fluid is proposed. The coupled model is then

validated through comparisons with FE results in Sec. III. In

Sec. IV, ABH-specific phenomena in water-loaded plates

are scrutinized through examining some key vibro-acoustic

indicators, with results cross-checked against their counter-

parts in air. In particular, numerical results are presented to

show the effect of the fluid loading and that of the radiation

damping on the vibrational behavior of the strongly coupled

ABH plates in different frequency ranges. Finally, a sum-

mary is given in Sec. V.

II. SEMI-ANALYTICAL MODEL

We first present a semi-analytical model for the vibration

and sound radiation analyses of a fluid-loaded ABH plate

excited by transverse point forces. Figure 1 shows a rectangu-

lar, baffled plate for which the z < 0 infinite half-space is

filled with a fluid (characterized by density qf and sound

speed cf ), while the z > 0 infinite half-space is in vacuum.

Fluid loading effect is accounted for in the equation of motion

of the plate so that light and heavy fluids can be managed.

The investigated rectangular plate (with length a and width b)

contains a circular indentation of radius RABH centered at

ðxc; ycÞ. Both sides of the indented area are symmetrically

coated with damping layers. The thickness of the uniform

portion of the plate is h, while that of the ABH indentation

follows hðx; yÞ ¼ e

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 þ ðy� ycÞ2

q �c

þ h0, in

which e is a constant, c is the power law index, and h0 is the

smallest residual thickness of the indentation at the center.

Material damping is introduced through complex Young’s

modulus, i.e., E�0 ¼ E0ð1þ ig0Þ and E�d ¼ Edð1þ igdÞ, for

the metal panel and the damping material, respectively, where

g0 and gd represent their respective loss factors. Modal analy-

ses on the plates with combined damping layers yield com-

plex eigenvalues x2
d ¼ x2

nð1þ ignÞ, where gn is the total loss

factor of the entire structure. In principle, gn includes the struc-

tural loss factor gs and radiation loss factor gr. While the latter

might be negligible for light fluid, it might become important

for heavy fluid. This will be dealt with in Sec. IV A.

The plate under investigation is assumed to be thin and

symmetrical with respect to its mid-plane, for which case

Kirchhoff’s plate theory is valid. The displacement of the

plate at a given point is written as

u; v;wf g ¼ �z
@w

@x
;�z

@w

@y
;w

� �
; (1)

where w is the transverse displacement, and u and v are the

in-plane displacements in the x and y directions, respec-

tively. Employing dimensionless coordinates �x ¼ x=a and

�y ¼ y=b, w can be expressed as

w ¼
XN

m¼1

XN

n¼1

amnum �xð Þun �yð Þ; (2)

where umð�xÞ and unð�yÞ are the admissible functions in x
and y directions, respectively, truncated to the order N. amn

are the unknown complex coefficients and the generalized

coordinates in the Euler–Lagrange equations resulting from

the stationary state of the system:

Qmn �
d

dt

@T

@ _amn

� �
� @V

@amn
þ @Wfluid

@amn
¼ 0; (3)

where T and V are, respectively, the kinetic energy and

potential energy of the plate, Qmn is the generalized mechan-

ical force, _amn is the first order time derivative of the gener-

alized coordinate amn, and Wfluid is the work done by fluid

loading, which yields the generalized force from the sur-

rounding fluid f p
mn ¼ @Wfluid=@amn ¼ ix

P
p

P
qZmnpqamn.

The determination of T and V can be found in the literature

(O’Boy and Krylov, 2016). The acoustic pressure field

should satisfy the continuity between the plate and the

acoustic velocities at the interface:

vn x; yð Þ ¼ �
1

ixqf

@p

@z

����
z¼0

; (4)

where vn and p are the velocity and the acoustic pressure

and x is the circular frequency. Substituting the expressions
FIG. 1. (Color online) Coordinate system of an ABH plate inserted in an

infinite rigid baffle.
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of the kinetic energy T, potential energy V, the work from

the fluid loading Wfluid, and the generalized mechanical

force Qmn into Eq. (3) and assuming a harmonic state for the

time dependence, a ¼ Aeixt yields a series of linear equa-

tions which can be cast into a matrix form as

K� x2Mþ ixZð ÞA ¼ Q; (5)

where K and M are the stiffness and mass matrices, respec-

tively, Q is the force vector of generalized mechanical force,

and A is the amplitude of generalized coordinate. The deri-

vations of K, M, and Q are detailed in Appendix A. Z is the

sound radiation impedance matrix whose coefficients are

Zijrs¼ ixqf

ð
s

ð
s0
uij x0;y0
� 	

G x0;y0;0;x;y;0
� 	

urs x;yð Þds0ds; (6)

where Gðx; y; 0; x0; y0; 0Þ ¼ e�ikr=2pr is the Green function for

the semi-infinite free field with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q
.

The real part of Z is the radiation resistance which rep-

resents the radiation damping of the plate, while the imagi-

nary part is the radiation reactance which represents the

mass loading from the fluid on the plate. Equation (6)

requires the evaluation of fourfold integrals. Employing an

appropriate mapping of the coordinates, the fourfold inte-

grals can be transformed into twofold integrals which can be

evaluated using Gaussian quadrature scheme (see Appendix

B). The topic was discussed in the literature (Sandman,

1975; Nelisse et al., 1998; Foin et al., 1999).

Dropping the mechanical excitation term in Eq. (5) yields

a nonlinear eigenvalue problem. Employing the state-space

coupling method, the implicit frequency of the radiation

impedance Z is made explicit via a power series expansion

over circular frequency (Giordano and Koopmann, 1995;

Cunefare and De Rosa, 1999). In this case, the coupled sys-

tem can be recast into a canonical state-space form as a stan-

dard eigenvalue problem. Solution to this problem produces

complex eigenvalues and the corresponding system loss fac-

tors comprising structural loss factors and radiation loss fac-

tors. The solving procedure of this eigenvalue problem is

detailed in Appendix C.

Upon obtaining the transverse vibration velocity of the

fluid-loaded system under the excitation of mechanical

forces, the sound pressure radiated into the fluid can be

obtained (Fahy and Gardonio, 2007):

p rð Þ ¼
ixqf

2p

ð ð
S

vn rð Þ e
�ikr

r
dS; (7)

where r is the position vector from a vibrating point to a

receiver point in the far field and S is the surface of the

vibrating plate. The sound power can then be computed:

Wrad ¼
ð2p

0

ðp=2

0

jp R0; h;/ð Þj2

2qf cf
r2 sin hdhd/; (8)

where R0 is the radius of the integrating hemispherical sur-

face, h is the polar angle, and / is the azimuth angle. For

analysis, the radiation efficiency of the plate-fluid system is

used, defined as

r ¼ Wrad

qf cf Svhjvnj2i
; (9)

where Sv is the surface area of the vibrating plate and hjvnj2i
is the surface mean square velocity.

III. FEM VALIDATIONS

The accuracy of the proposed semi-analytical model is vali-

dated through comparisons with finite element method (FEM)

simulations using COMSOL (Tabatabaian, 2014). Table I shows

the geometric parameters of a simply supported steel ABH plate

(density q0¼ 7800 kg/m3, Young’s modulus E0¼ 200 GPa,

material loss factor g0¼ 0.01, and Poisson’s ratio ld ¼ 0.33).

Herein, for the coating damping layer on each side of the plate,

the thickness and radius are 3 h0 and 0.408 RABH , respectively.

Corresponding properties of the damping layers are

qd ¼ 950 kg/m3, Ed ¼ 5 GPa, gd ¼ 0.3, and ld ¼ 0.33.

Two admissible functions are implemented that satisfy

the simply supported boundary conditions of the plate:

umð�xÞ ¼ sin ðmp�xÞ and unð�yÞ ¼ sin ðnp�yÞ. After a meticu-

lous convergence study, N¼ 40 terms are used in each

direction (x and y) to expand the plate displacement in Eq.

(2). Corresponding FEM model is constructed using solid

elements. The radius of the fluid domain is 810 mm with the

outer layer (thickness 60 mm) tuned to be a perfectly

matched layer (PML) that absorbs all outgoing waves with-

out any impedance mismatch causing reflections at the

boundary. The fluid is water with a density qf ¼ 1000 kg=m3

and sound speed cf ¼ 1640 m=s. The maximum element

sizes of the uniform portion of the plate, ABH portion, and

the fluid domain are 11.43, 2.85, and 37.5 mm, respectively,

resulting in 6 47 565 domain elements in the FEM model.

Applying a unit point force at ðx; y; zÞ ¼ ð�200; 90; 2:35Þ
mm, the surface mean square velocity and radiated sound

power of the fluid-loaded ABH plate are calculated and

compared using the semi-analytical model and the FE

model, as shown in Figs. 2(a) and 2(b), respectively. It can

be seen that, despite the slight discrepancy at the first reso-

nant peak, the agreement between the two models is good

up to 3000 Hz. This indicates that the coupled matrix con-

taining the radiation impedance coefficients is accurately

computed in the current heavy fluid scenario, such as vali-

dating the semi-analytical model.

IV. NUMERICAL ANALYSES AND DISCUSSIONS

In this section, we elucidate the vibration and sound radi-

ation behaviors of an ABH plate immersed in heavy fluid

TABLE I. Geometrical parameters of the ABH plate.

a¼ 0.5 m xc ¼ 0.25 m e¼ 0.2/m

b¼ 0.45 m yc ¼ 0.2 m c¼ 2

h¼ 4.7 mm h0 ¼ 0.2 mm RABH ¼ 0.15 m
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(e.g., water) versus in light fluid (e.g., air). Vibro-acoustic

metrics used for analyses include structural loss factors, sur-

face mean square velocity, radiated sound power, and radia-

tion efficiency. All geometrical and material parameters of

the ABH plate are identical to those used in the previous case

in Sec. III. A uniform plate coated with damping layers of

the same configuration is also used as a reference.

A. ABH effect in heavy fluid

Largely enhanced structural loss factor is an important

indicator of ABH effects as a result of energy focalization

and dissipation. In a light fluid, structural loss factors can be

computed directly from the standard complex eigenvalue

problem (Ma et al., 2018), while in heavy fluid, the solution

to the eigenvalue problem leads to the total loss factors of

the coupled system (see Appendix C). Therefore, in the lat-

ter case, the structural loss factors need to be extracted by

subtracting the radiation loss factors from the total damping

factors as gs ¼ gt � gr, with gs, gt, and gr being the struc-

tural loss factors, total loss factors, and radiation loss fac-

tors, respectively. The radiation loss factor quantifies the

power lost to radiation, which is defined as (Hambric and

Fahnline, 2007)

gr ¼
Wrad

xWsys
; (10)

where Wsys is the system power which is twice of the kinetic

energy.

Using a three-order interpolation (see Appendix C) of

the radiation impedance, the state-space method employed

to the eigenvalue problem of the coupled system would

yield 7 N2 eigenvalues and eigenvectors and only N2 are

physical (Cunefare and De Rosa, 1999; Li, 2005). There

seems to be no eigenvalue theory that would allow one to

analytically pick out the physical eigenvalues from the

computed eigenvalues. In the present case, we use refined

sweeping frequency (1 Hz resolution) to calculate the

forced vibration responses and extract the resonant fre-

quencies and the overall damping factors. Identified reso-

nant frequencies from the forced vibration peaks are found

to be a sub-set of the computed complex eigen-frequencies

using the state-space method. As is known, with the same

amount of damping material coated over the surface of an

ABH indentation, the ABH plate is heavily damped, much

more significantly than a uniform plate. Therefore, the

method of selecting complex eigenvalues from the reso-

nant peaks only allows the identification of the dominant

modes (a sub-set of the entire structural modes) that con-

tribute the most to the vibration response, which is suffi-

cient to elucidate the dynamic features of the water-loaded

plate. Solutions to the eigen-frequencies and the corre-

sponding total loss factors can be found in Appendix C.

Figure 3 compares the structural loss factors of dominant

modes of the ABH plate in water, in comparison with those

of its uniform counterpart below 3000 Hz. It shows that

with the use of damping layers and the results compared

with the intrinsic materialistic factors, structural loss fac-

tors of the uniform plate are only slightly increased, while

those of the ABH plate are significantly increased to nearly

four times. Additionally, the front view of the water-loaded

vibration displacement maps at three typical resonant fre-

quencies (318, 1222.2, and 2926 Hz) are also presented in

Fig. 3. It can be seen that the vibration displacements

inside the ABH indentation are drastically amplified,

alongside a significant wavelength compression towards

the ABH center, as exemplified by the front view of the

vibration displacement at 1222.2 Hz. Meanwhile, distribu-

tions of the total system loss factors, structural loss factors,

and radiation loss factors of the ABH plate are compared

in Fig. 4. It shows that for the ABH plate in water, struc-

tural loss factors contribute the most to the total system

loss factors. These results are the salient features that tes-

tify to the occurrence of ABH effects in heavy fluid.

FIG. 2. (Color online) Comparisons of the mean square velocity and sound

power for an ABH plate coated with damping layer in water between the

present model (solid line) and FEM (dotted line). (a) Mean square velocity,

(b) sound power.
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B. Vibration and sound radiation characteristics

Vibration and sound radiation characteristics of air- and

water-loaded ABH plates are then, respectively, investigated

using the proposed semi-analytical model, with results com-

pared with their uniorm counterparts. Figure 5(a) shows the

mean square velocities of the ABH plate and its uniform coun-

terpart, both in air. It follows that, compared with the uniform

plate, the vibration of the ABH plate is largely reduced above

the so called cut-on frequency (Conlon et al., 2015), 504 Hz in

the present case, at which the ABH effect begins to show sys-

tematically. However, an increase is also obvious below the cut-

on frequency, all consistent with the common understanding

reported in the literature for ABH structures without surround-

ing fluid (Conlon et al., 2015; Ma et al., 2018).

The phenomenon is then examined for the water-loaded

plate in Fig. 5(b). It shows that above the cut-on frequency,

the vibration of the ABH plate in water is heavily damped

compared with that of the uniform counterpart. The reduc-

tion in terms of the averaged mean square velocity is 1.7 dB

larger than that in air [Fig. 5(a)]. Remarkably, below the

cut-on frequency, the vibration of the water-loaded ABH

plate is also reduced in most cases, which is different from

what is observed for the plate in air. The reduction of the

averaged mean square velocity amounts to roughly 2 dB

larger than that in air. Similar phenomena (a reduction of

1.9 dB larger than in air) can be observed in terms of the radi-

ated sound power (Fig. 6). The phenomena can be partly

explained by the fact that the sound power of the ABH plate

in water is significantly smaller than that of its uniform coun-

terpart in the whole frequency range, which can be attributed

to the reduced mean square velocity [Fig. 5(b)] and the

reduced radiation efficiency [see Fig. 7(b)]. Also, as can be

seen from Fig. 7(a), the radiation efficiencies of both plates

in air steadily increase and remain high above the critical fre-

quency (2554 Hz, estimated based on the thickness of the

FIG. 3. (Color online) Structural loss factors of the dominant modes of

structures in water. (a) Uniform plate (squares), (b) ABH plate (circles). DL

denotes the coated damping layer.

FIG. 4. (Color online) Loss factors of the dominant modes of an ABH plate

coated with damping layer in water. (a) Total loss factor (squares), (b) radi-

ation loss factor (triangles), (c) structural loss factor (circles).

FIG. 5. (Color online) Comparison of mean square velocity between uni-

form plate (dotted line) and ABH plate (solid line). (a) In air, (b) in water.

DL denotes the coated damping layer. The green box highlights the reso-

nant peaks at low frequencies for both plates.
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uniform part of the plate), while in water, they fluctuate [see

Fig. 7(b)] as the critical frequency in water far exceeds that

in air. All of these factors echo the observation that there

is a substantial reduction in vibration and sound radiation

of the ABH plate in water, compared with its uniform

counterpart, and the reduction is obvious compared with

the case in air.

A closer examination is conducted to better understand

the differences of the ABH effects on plates in water and in

air. Figure 8 shows the mean square velocity for the uniform

plate [see Fig. 8(a)] and that of the ABH plate [see Fig.

8(b)], immersed in air and water, respectively. For both

plates, one can see a clear downshifting of the resonant fre-

quencies due to the mass loading effect which is more sig-

nificant from water. On the other hand, compared with the

air case, the vibration of the ABH plate in water is heavily

damped, yielding a reduction up to 10 dB in the mid-to-high

frequency range, much more visible than that of the uniform

plate. To explain these phenomena and understand the

underlying mechanisms, the effect of the radiation damping

and that of the mass loading on vibration responses of the

ABH plate and the uniform plate are scrutinized hereafter.

C. Effects of radiation damping and mass loading
on vibration response

In contrast to the light fluid case, two dominant phenomena

feature the heavy fluid effects on the plate: mass loading effect

(mainly in low-frequency range) and radiation damping effect

(mainly in high frequency range). To assess their respective

importance in the context of ABH plates, the real and imaginary

parts of the radiation impedance Z are separately considered in

Eq. (5) to analyze the effects of radiation damping and mass

loading on the mean square velocity of an ABH plate in water

[Fig. 9(b)], in comparison with the uniform plate [Fig. 9(a)].

Figure 9(a) shows that with radiation damping, the vibra-

tion response of the uniform plate at resonant peaks is evidently

reduced, in contrast to the case without radiation damping,

especially in the mid-to-high frequency range. This observation

agrees with the results obtained by Foin (1999). However, the

radiation damping has little influence on the vibration response

of the ABH plate, as shown in Fig. 9(b). This is because the

FIG. 6. (Color online) Comparison of radiated sound power between the

uniform plate (dotted line) and the ABH plate (solid line). (a) In air, (b) in

water. DL denotes the coated damping layer.

FIG. 7. (Color online) Comparison of radiation efficiency between the uni-

form plate (dotted line) and the ABH plate (solid line). (a) In air, (b) in

water. DL denotes the coated damping layer.
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structural damping, which is significantly enhanced by the

ABH effects as a result of energy focalization and dissipation,

overwhelms the radiation damping (see Fig. 4).

Furthermore, comparisons of radiation damping effect

on vibration responses between the ABH plate and its uni-

form counterpart are presented in Fig. 10(a). It merely

shows that with the radiation damping effect without the

mass loading effect, the resonant peak levels of the ABH

plate are larger than that of the uniform plate in the low-

frequency range (typically below 500 Hz). This is because

radiation damping is more significant for the vibration

reduction of the uniform plate in the higher frequency range,

while it is less predominant in the case of the ABH plate.

Additionally, comparisons of mass loading effect

between the ABH plate and its uniform counterpart are pre-

sented in Fig. 10(b). It seems that, different from radiation

damping effect in Fig. 10(a), the resonant peaks (of the mass

loading effect) of the ABH plate are less energetic than

those of the uniform plate almost in the whole frequency

range. Focusing on the low-frequency range, the observed

reduction is attributed to the mass loading effects from the

fluid, which is more significant on the ABH plate due to the

reducing thickness of the ABH indentation. These results

indicate that in heavy fluid, the mass loading effect can com-

pensate for the low-frequency deficiency of the air-loaded

ABH structures. In the mid-to-high frequency range, the

considerable vibration reduction is attributed to the com-

bined effects of mass loading and the ABH effects. These

parametric analyses provide a physical insight into the

vibration reduction behaviors of ABH plates in heavy fluid.

V. CONCLUSIONS

This paper is dedicated to the study of vibration and

sound radiation characteristics of ABH plates in either light

or heavy fluid. A general semi-analytical model is presented

alongside a Rayleigh–Ritz procedure to simulate the dynam-

ics of a simply supported plate radiating sound into an infi-

nite surrounding medium. FEM results are presented to

validate the accuracy of the model in a strongly coupled

FIG. 8. (Color online) Comparison of mean square velocity in air and in water.

(a) Uniform plate, (b) ABH plate. DL denotes the coated damping layer.

FIG. 9. (Color online) Effect of radiation damping on mean square velocity:

(a) Uniform plate, (b) ABH plate.
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context. Meanwhile, vibration and sound radiation behaviors

of the ABH plate in water versus in air are analyzed and dis-

cussed with significant differences highlighted and mecha-

nisms elucidated. Drawn from the simulated cases and

analyses, main conclusions are summarized as follows:

(1) The proposed semi-analytical model can handle the

vibration and sound radiation of an ABH plate in heavy

fluid, for which fluid–structure coupling needs to be rig-

orously considered. Good agreement is found between

the proposed model and FEM simulations in the strong

coupling context.

(2) ABH effects can be systematically materialized in heavy

fluid, as evidenced by the increased structural loss fac-

tors and reduced mean square velocity of the ABH

plates and its impaired sound radiation efficiency and

sound power. In water, radiation damping, which plays

an important role in the case of uniform plate, is only a

minor part in the overall system damping in an ABH

plate due to the overwhelming structural damping,

which is significantly enhanced by ABH effects.

(3) With the same damping treatment, a water-loaded ABH

plate entails a more significant and systematic vibration

reduction than its counterpart in air. More remarkably,

the well-acknowledged low-frequency deficiency of the

air-loaded ABH structures (in terms of vibration

increase) can be alleviated by the enhanced mass load-

ing effects coming from the water, which is more signif-

icant than air. Note, however, that the fluid loading

effect cannot directly overcome the low-frequency defi-

ciency of the ABH effect. Instead, due to the reducing

thickness in the ABH indentation, ABH plates are thin-

ner than their uniform counterparts. As a result, the

overall damping of the ABH plates is higher than that of

the uniform plates in the low-frequency range, condu-

cive to vibration reduction. Alongside the ABH-induced

effects above the cut-on frequency, this results in a

cross-frequency and wide-band vibration and sound

radiation reduction of the water-loaded plate.
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APPENDIX A: DETERMINATION OF M, K, AND Q
MATRICES

The plate structure is divided into five parts: uniform

parts from 1 to 4 and an ABH part 5. The part coated with

damping layers is numbered 6 (Fig. 11):

M ¼MUniform þMABH þMDamping;

K ¼ KUniform þKABH þKDamping;

FIG. 10. (Color online) Effect of mass loading on mean square velocity. (a)

Uniform plate, (b) ABH plate. DL denotes the coated damping layer.

FIG. 11. (Color online) Division of a circular ABH plate.
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The quadrature integrals in K and M can be calculated

using 2D Gaussian integral scheme.

The generalized mechanical force is written as

Qmn ¼ QAumð�xÞunð�yÞ;

where QA is the amplitude of the mechanical force.

APPENDIX B: CALCULATION OF THE RADIATION
IMPEDANCE

The components of the radiation impedance matrix are

Zmnpq ¼ ixqf

ð
s

ð
s0
umn x0; y0

� 	
G x0; y0; 0; x; y; 0
� 	

upq x; yð Þds0ds;

(B1)

where the Green function is G ¼ e�ikr=2pr and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q
.

Assuming a¼ 2x=a;b¼ 2y=b, and a0 ¼ 2x0=a;b0 ¼ 2y0= b,

the impedance terms can be transformed in the form

Zmnpq ¼ ixqf

ab2
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ð1
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in which FmpðuÞ and Kðu; u0Þ are
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2

p

cos
m� p

2
pþ mþ p

4
pðuþ 1Þ

� �
sin

m� p

2
p� m� p

4
pðuþ 1Þ

� �
m� p

�
cos

mþ p

2
pþ m� p

4
pðuþ 1Þ

� �
sin

mþ p

2
p� mþ p

4
pðuþ 1Þ

� �
mþ p

2
66666664

3
77777775

and Kðu; u0Þ ¼ e�iðk0a=2Þr=r, respectively, where r ¼ ½ðuþ 1Þ2 þ ðu0 þ 1Þ2=r2
0�

1=2
with r0 ¼ a=b.

When m ¼ p, FmpðuÞ becomes

Fmp uð Þ ¼ 1� uþ 1

2
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4
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� 2

p

cos
mþ p

2
p

� �
sin

mþ p

2
p� mþ p

4
p uþ 1ð Þ

� �
mþ p

: (B3)

When mþ p or nþ q is odd, FmpðuÞ ¼ FpmðuÞ ¼ Fnqðu0Þ ¼ Fqnðu0Þ ¼ 0.
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APPENDIX C: SOLUTION TO THE EIGENVALUE
PROBLEM OF THE COUPLED SYSTEM

Kðu; u0Þ in Eq. (B2) can be expressed as

K u; u0ð Þ ¼ 1

r
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2
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2
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; (C1)

where k0 ¼ x=c0. Expanding the real part of Zmnpq into a

power series, truncated up to three terms:

Zmnpq Rð Þ ¼ xqf
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where
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(C3)

Similarly, the imaginary part of Zmnpq can be expressed as

Zmnpq Ið Þ ¼ xZI1;mnpq þ x3ZI3;mnpq þ x5ZI5;mnpq; (C4)

where

ZIð2kþ1Þ;mnpq¼ qf ðab2=4pÞ
ð1

�1

ð1

�1

FmpðuÞFnqðu0Þ1=r

�ðð�1Þk=ð2kÞ!ðar=2c0Þ2kÞdudu0 k¼ 0;1;2:

Zmnpq can then be written as

Zmnpq ¼ x2ZR2;mnpqþx4ZR4;mnpqþx6ZR6;mnpq

� 	
þi xZI1;mnpqþx3ZI3;mnpqþx5ZI5;mnpq

� 	
: (C5)

Assuming the generalized displacement a ¼ Aeixt leads

to xn ¼ 1=a aðnÞ=in
� 	

and yields:

ixZmnpqa ¼ �ZR6;mnpqð Það7Þ þ ZI5;mnpqð Það6Þ

þ ZR4;mnpqð Það5Þ þ �ZI3;mnpqð Það4Þ

þ �ZR2;mnpqð Það3Þ þ ZI1;mnpqð Það2Þ : (C6)

The eigenvalue equation M€a þKaþ ixZa ¼ 0 can

be transformed into the form B _yþCy ¼ 0. Assuming y

¼ Yeixt yields

�Cy ¼ ixð ÞBy; (C7)

where y ¼ að6ÞT að5ÞT að4ÞT að3ÞT að2ÞT að1ÞTf gT
and the super-

script T represents the transpose. The solution to Eq. (C7)

yields the complex eigen-frequencies and the corresponding

system loss factors. Matrices B and C are

B ¼
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and

C ¼
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(C9)
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