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The acoustic black hole (ABH) structure exhibits superior vibration and sound radiation control capability
compared to its flat counterpart. However, for a coupled plate-cavity system under interior acoustic exci-
tation, the underlying suppression mechanism of noise radiation has not been explored, especially below
the critical frequency of the structure. In this paper, the noise suppression mechanism of an ABH-cavity
system under interior acoustic excitation is investigated both theoretically and numerically. Based on the
theoretical analysis, the noise radiation depends on both the structural modes and the cavity modes,
which can be suppressed in two ways. One is to lower the magnitude of structural transfer functions.
The other is to change the mapping matrix which maps the structural modal amplitude to the amplitude
of radiation modes. For the former, numerical analysis based on FEM demonstrates that a lower structural
transfer function is obtained in the ABH-cavity system compared to its flat counterpart because of the
damping enhancement characteristic of the ABH structure. Therefore, attenuated flexural vibrations
and reduced sound radiation are achieved at corresponding modal frequencies. For the latter, ABH-
cavity systems with varying numbers of ABHs are constructed to demonstrate a simple solution of
manipulating the mapping matrix to achieve the reduced radiation efficiency of structural panels and
the enhanced suppressing effect of noise radiation. The study in this paper indicates a feasible direction
for the further optimization analysis of noise radiation suppression of the ABH-cavity system.

� 2023 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of noise radiation [1,2] (or the break-out noise) of
a coupling system between acoustic space and flexible structure is
very common and important in heating, ventilation and air condi-
tioning (HVAC) ducts, aircraft cabins, space capsules, etc. Many
studies about the noise radiation of the structural–acoustic cou-
pling system focus on the numerical modeling [3–5], investigations
on the effects of different geometrical forms [5,6], analytical mod-
els of prediction [7–9] and the noise suppression of active noise
control [10]. Compared with active control, passive control is
always a reliable and economic option in applications. A represen-
tative technique of the traditional passive control is using exten-
sive damping material for vibration control [11]. However, these
extra dissipative components inevitably increase the mass of the
whole system considerably.

Recently, there has been growing interest in utilizing acoustic
black hole (ABH) structures for efficient passive structural vibra-
tion control [12]. The concept of ABH was first introduced by Mir-
onov in 1988 [13]. ABH structures exhibit the phenomenon of
energy localization and damping dissipation [14], which is a result
of trapped flexural waves in the ABH region due to local hetero-
geneities in stiffness or damping. This enhanced damping capabil-
ity has led to the application of ABHs in numerous numerical and
experimental analyses for vibration control. Various analytical
methods have been employed to study the damping mechanism
of ABHs. These include the geometric acoustic approach [15,16]
and the impedance method [17]. For handling complex boundary
problems and multi-field coupling problems, the semi-analytical
method [16,18–20] and the finite element method (FEM) [21–24]
have been adopted. In experimental analyses of vibration control,
ABH beams have been used to achieve low-frequency elastic wave
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Nomenclature

Ae area of each element in coupling interface S [m2]
B a vector related to nodal load [m]
C damping matrix [kg/s]
E Young’s modulus [Pa]
F excitation force [N]
I sound intensity [W/m2]
K stiffness matrix [N/m]
L the total number of the radiation mode [dimensionless]
M mass matrix [kg]
N the total number of the elements [dimensionless]
P spatial distribution matrix of radiation modes [dimen-

sionless]
R radiation resistance matrix [kg/s]
S; S’ integration surface [m2]
T; Tsi; Taj matrix of transfer functions; the transfer function of the

ith structural mode; the transfer function of the jth cavity
mode [rad�2*s2]

V interior domain of the cavity [m3]
W sound power [W]
Z impedance matrix [kg*m�2*s�1]
a a constant of power-law profile of the ABH part [dimen-

sionless]
c0 velocity of sound in air [m/s]
dij distance between the centers of the ith and jth elements

in the coupling interface [m]
f frequency [Hz]
h; h0 thickness; residual thickness [m]
i the order of the structural mode (i = 1,2,. . .,m) [dimen-

sionless]
j the order of the cavity mode (j = 1,2,. . .,n) [dimension-

less]
j imaginary unit [dimensionless]
k0 wavenumber [m�1]
l the order of the radiation mode (l = 1,2,. . .,L) [dimen-

sionless]
m the total number of the structural mode [dimensionless]
n the total number of the cavity mode [dimensionless]
p; p vector of sound pressure; sound pressure [Pa]
q amplitude of the monopole sound source [kg/s2]
r; r0; r1 radius; the radius of the central platform; the radius of

the whole ABH area [m]
u acoustic particle velocity [m/s]
v; v vector of structural velocity; structural velocity [m/s]
w; w structural displacement [m]
xl eigenvalues of diagonal matrix K [kg/s]
y; yl vector of radiation modes in terms of velocities of the

individual radiators; the lth radiation modes in terms
of velocities of the individual radiators [m/s]

Greek symbols
K diagonal matrix of eigenvalues xi [kg/s]
U;/i structural modal shape functions; the ith structural

modal shape [dimensionless]
W; wj pressure distribution functions of cavity modes; the jth

pressure distribution [dimensionless]
u spatial distribution vector of radiation modes [dimen-

sionless]
H a matrix that transforms the nodal displacement vector

to normal surface displacement vector [dimensionless]
Xp surface set as Dirichlet boundary condition [dimension-

less]
X1 boundary surface located at infinity [dimensionless]
Xv surface set as rigid boundary condition [dimensionless]
Xs radiation surface of the flexible panel [dimensionless]
Xz surface set as Robin boundary condition [dimension-

less]
f; fsi; faj modal damping ratio; the ith structural modal damping

ratio; the jth cavity modal damping ratio [dimension-
less]

g loss factor [dimensionless]
k; ksi; kaj vector of modal coordinates; the ith structural modal

coordinates; the jth cavity modal coordinates [dimen-
sionless]

l Poisson’s ratio [dimensionless]
q; q0 density; density of air [kg/m3]
r; r’ radiation efficiency of the whole panels; self-radiation

efficiency that represents the radiation efficiency of
radiation modes [dimensionless]

x; xsi; xaj angular frequency; the ith structural modal fre-
quency; the jth cavity modal frequency [rad/s]

Subscripts and superscripts
AL aluminum
H Hermitian matrix
T transpose of a matrix
a acoustic
c coupling
crit critical
d damping layer
n normal direction
k the serial number of N elements
ref reference
s structural
* complex conjugate
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attenuation [25]. The bandwidth of flexural and longitudinal waves
in ABH beams can be adjusted by employing embedded mass oscil-
lators [26]. In situations where structural space and design con-
straints arise, spiral ABHs [27,28] and vibration absorbers based
on the ABH effect [29,30] can be attached to the host structure to
control its vibrations.

While previous works have primarily focused on vibration con-
trol of ABHs, there has been a growing interest in studying the
sound properties of ABH structures subjected to force excitation.
Ma et al. [31,32] investigated the sound radiation of ABH plates
under force excitation and found that these plates exhibit signifi-
cantly reduced sound radiation efficiency across a wide dynamic
frequency range compared to their uniform counterparts. Simi-
larly, Deng et al. [33] demonstrated the effectiveness of annular
2

ABHs in reducing air-borne radiation in free field conditions. Addi-
tionally, Tang et al. [34] examined the sound radiation properties
of plates composed of periodically tangled ABH cells.

In the context of a more complex vibro-acoustic system,
Feurtado and Conlon [35] demonstrated that ABHs redistribute
supersonic vibrations into subsonic components, resulting in a
reduction in sound radiation efficiency through wavenumber
transfer analysis when the structure is subjected to a point
force excitation. Additionally, Deng et al. [36] illustrated that
ABHs are not only capable of reducing radiation in air cavities
but also help suppress radiation in water [37]. Our previous
numerical and experimental analyses [23,38] have also revealed
a reduction in the coupling strength between the ABH plate and
the cavity.
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The aforementioned works have primarily focused on investi-
gating the sound properties of ABH structures under force excita-
tion. However, in practical applications, acoustic excitation is
commonly encountered. In terms of sound transmission loss, sev-
eral experiments [39,40] have demonstrated that ABH plates with
a damping layer exhibit promising performance for transmission
loss applications. Furthermore, concerning sound insulation
between two cavities, with one of them being the sound source
cavity, ABH plates have shown a significant improvement in trans-
mission loss near the critical frequency of uniform plates, as ana-
lyzed through statistical modal energy distribution analysis
(SmEdA) [41]. Although SmEdA is effective in estimating the aver-
age behavior of a population and is commonly used for efficient
modeling at high frequencies, the prediction of detailed vibro-
acoustic behavior of a specific sample at such frequencies still
remains a challenge. Therefore, the comprehensive exploration of
the underlying mechanism of a plate-cavity system under interior
acoustic excitation, especially below the critical frequency (also
known as coincident frequency), remains an area that requires fur-
ther investigation.

As mentioned, ABH structures under a force excitation exhibit
an excellent performance on the vibration and sound radiation
control. Unlike the situation of the force excitation where the
structural mode is the dominant factor to be considered, the cavity
mode would have a significant influence on the noise radiation for
a plate-cavity system under interior acoustic excitation. In this
study, we aim to explore the underlying mechanism behind the
suppression of radiated sound in the coupled ABH-cavity system
through theoretical analysis and numerical verification using the
finite element method (FEM). Our focus is primarily on frequencies
below 2500 Hz (below the critical frequency where main noise
reduction challenges remain), which are typically considered rele-
vant for human auditory perception. It is important to note that the
results obtained using FEM at lower frequencies are sufficient to
demonstrate the relevant mechanisms. The insights gained from
this study regarding the coupling mechanics between ABH struc-
tures and cavities can contribute to an enhanced understanding
of the ABH effect and provide valuable guidance for the acoustic
applications of ABH structures.

This paper is organized as follows. The theories of vibration and
sound radiation of the coupled plate-cavity system are introduced,
and the related suppression mechanisms of noise radiation are
proposed in section 2. The FE models under investigation and the
corresponding discussions are presented in section 3. In section
4, theoretical analyses of suppression mechanisms are verified by
numerical studies of different plates with varying numbers of
ABHs. Conclusions are drawn in section 5.
Fig. 1. Model of sound radiation of plate-cavity system excited under a monopole
sound source. Xp for Dirichlet BC; Xz for Robin BC or mixed BC.
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2. Theory

A schematic of the noise radiation of the cavity-plate system is
shown in Fig. 1. A harmonic monopole sound source is placed in
the rectangular cavity. The plate is excited by an acoustic excita-
tion. The sound power radiated from the plate is examined. This
process can be numerically regarded as a combined interior/exte-
rior coupled vibro-acoustic problem. For the exterior domain of
the far-field, the Sommerfeld radiation condition must be satisfied
at the boundary surfaceX1. For the interior domain V of the cavity,
all surfaces can be divided into three types of boundary condition
(BC) [42]. This work focuses on the Neuman or natural boundary
condition on the surfaceXv (set as the rigid boundary for this case)
and the surface Xs (set as the radiation surface of the flexible
panel). For the completeness of the paper, previously developed
theories about vibro-acoustic coupling system and sound radiation
are briefly recalled as follows.

2.1. Vibration theory of the plate-cavity system

Note that the fluid loading caused by far-field is irrespective, the
discretized interior vibro-acoustic coupling equation of the plate-
cavity system can be expressed as [42]
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0 Ca

� �
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Mc Ma

� �� �
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where x ¼ 2pf is the angular frequency; w
�
is the column vector of

the nodal displacement of the plate; p
�
is column the vector of the

sound pressure; the matrices K , C and M are the stiffness, damping
and mass matrices of the structure (subscript s) and the acoustic
(subscript a) region, respectively. Kc and Mc represent cross-
coupling matrices and satisfy the relationship Mc ¼ �q0K

T
c . q0 is

the density of air. j ¼
ffiffiffiffiffiffiffi
�1

p
represents the imaginary unit. F

�
is a col-

umn vector of the excitation force. The different forms of the exci-
tation ultimately lead to different responses of the whole system.
The problem of noise reduction inside the cavity under force excita-
tion has been investigated previously [23,38]. However, for the
noise radiation reduction of the plate-cavity system under interior
acoustic excitation, the influence of cavity modes (including non-
resonant (0,0,0) cavity modes) on sound radiation cannot be

ignored because of the existence of the cavity. In this case, F
�
s is

the force loading on the structure, and it is equal to 0. The acoustic

force F
�
a ¼ B

�
q is introduced by the monopole sound source. B

�
is a

column vector related to nodal load and q is the amplitude of the
monopole sound source.

Based on the modal superposition theory, the structural dis-
placement and the pressure can be expressed as

w
� ¼ U k

�
s; p

� ¼ W k
�
a ð2Þ

where U ¼ ½/i� ði ¼ 1;2; � � � ;mÞ and W ¼ ½wj� ðj ¼ 1;2; � � � ;nÞ are the
matrices of modal amplitudes of displacement and pressure,

respectively. k
�
s ¼ k

�
s1 k

�
s2 � � � k

�
sm

h iT
and k

�
a ¼ k

�
a1 k

�
a2 � � � k

�
an

h iT
are

the column vectors of structural and acoustic modal coordinates
(or amplitudes), respectively.m and n are the total number of struc-
tural modes and cavity modes, respectively.

Then, Eq. (1) can be cast into the following form
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The unknown quantity in Eq. (3) is the vector of complex modal

coordinates k
�
. Take the first row of Eq. (3) into account, for the

structural domain,

KsU k
�
s þ KcW k

�
a þ jxCsU k

�
s �x2MsU k

�
s ¼ 0 ð4Þ

The structural modal coordinates, k
�
s, can be expressed as

k
�
s ¼ �TsU

TKcW k
�
a ð5Þ

where Ts ¼ diag½Ts1; Ts2; � � � ; Tsm� is a diagonal transfer matrix, the
ith element of which is the transfer function

Tsi ¼ ðx2
si þ 2jxfsixsi �x2Þ�1, representing the transfer characteris-

tics of ith structural mode from the modal force induced by the inte-

rior acoustic pressure p
�
to the modal coordinate k

�
si; fsi and xsi are

the ith modal damping ratio and the modal frequency of the struc-
ture, respectively.

For the second row of Eq. (3), in the acoustic domain,

KaW k
�
a þ jxCaW k

�
a �x2MaW k

�
a �x2McU k

�
s ¼ B

�
q ð6Þ

where the coupling term x2McU k
�
s generated by structural vibra-

tions is negligible because its influence on the pressure response
is far small than the acoustic excitation. Similarly, the modal coor-

dinates of the cavity, k
�
a, are given by

k
�
a ¼ TaW

T B
�
q ð7Þ

where Ta ¼ diag½Ta1; Ta2; � � � ; Tan� is a diagonal transfer matrix, the
jth element of which is the transfer function

Taj ¼ ðx2
aj þ 2jxfajxaj �x2Þ�1, representing the transfer character-

istics of the jth cavity mode from the modal force B
�
q to the modal

coordinate k
�
aj; faj and xaj are the modal damping ratio and the

modal frequency of the cavity, respectively. Considering faj is very
small in the air, the influence of the cavity modes on the noise radi-
ation is significant, as it will be seen later.

Substitution of Eq. (7) into Eq. (5) yields

k
�
s ¼ �TsU

TKcWTaW
T B

�
q ð8Þ

Thus, the complex modal coordinates k
�
s can be solved based on

FEM.

2.2. Sound radiation theory of the plate-cavity system

According to the Kirchhoff-Helmholtz integral equation [43],
the sound pressure at any position in the near or far field can be
calculated. The total radiated sound power W [43] is

W ¼
Z
S0
I
�
dS0 ¼ 1

2

Z
S0
Reðu��

p
� ÞdS0 ¼ 1

2

Z
S
Reðm��

n p
� ÞdS ð9Þ

where I
�
the sound intensity; u

�
is the acoustic particle velocity on

the integration interface S0 in the near or far field; and m
�
n is the

structural normal velocity on the radiation interface S. The super-
script � denotes complex conjugate and Re the real part.

Given that the radiation surface S can be divided into a grid of N
same elements, Eq. (9) is rewritten into the following form [42]

W ¼ 1
2

Z
S
Reðm��

n p
� ÞdS ¼ m

�H
nR m

�
n ð10Þ
4

where N � N matrix R is the radiation resistance matrix that is

detailed in Appendix A; the column vector m
�
n consists of the normal

velocities of the N elements for radiation calculation; and the super-
script H is the Hermitian transpose operator. Then, Eq. (10) is
rewritten as

W ¼ m
�H
nPKP

Tm
�
n ¼ y

�H
K y

� ¼
XL

l¼1

xl y
�
l

��� ���2 ð11Þ

where y
� ¼ PTm

�
n is the vector of complex amplitude of the ‘‘radiation

modes” in terms of velocities of the individual radiators [42,44], and
P ¼ ul½ � ðl ¼ 1;2; � � � ; LÞ is a matrix of orthogonal eigenvectors; ulf g
is the vector that represents the spatial distribution of the lth radi-
ation mode, which represents specific normal velocity distributions
on the panel [45]. L is the total number of the radiation mode. The
normal velocity can be calculated from the normal surface displace-

ment w
�

n, that is, m
�
n ¼ jxw

�
n ¼ jxHw

� ¼ jxHU k
�
s, where H is a

N �m matrix that transforms the nodal displacement vector w
�

to

normal surface displacement vector w
�

n and the matrix HU is the
modal shape matrix of the radiation surface. The former relation-

ship means that w
�

n is obtained by interpolation of nodal displace-
ments of the FEM grid. And K is a diagonal matrix of eigenvalues
xl. The eigenvalues xl are proportional to the self-radiation efficien-
cies r0

l that represent the radiation capacity of the lth radiation
mode as

r0
l ¼ 2xl=q0c0S0 ð12Þ

where c0 is the velocity of air.

The vector y
�
can be expressed as

y
� ¼ PTm

�
n ¼ jxPTHU k

�
s ð13Þ

Obviously, PTHU is a mapping matrix, which maps the structural

modal amplitude k
�
s to the amplitude of radiation modes y

�
(the jx

has been excluded in the mapping matrix).
Substitute Eq. (8) into Eq. (13),

y
� ¼ �jxPTHUTsU

TKcWTaW
T B

�
q ð14Þ

The sound power W is rewritten as

W ¼
XL

l¼1

xl jxPTHU k
�
s

��� ���2

¼
XL

l¼1

xl jxPTHUTsU
TKcWTaW

T B
�
q

��� ���2 ð15Þ
2.3. Suppression mechanism of noise radiation

Equation (15) indicates that there is a long chain of energy
transfer from the sound source inside an acoustic space to the radi-
ated noise, as shown in Fig. 2, different from the case of direct
structural force excitation. An acoustic excitation q is placed in
an enclosed acoustic space. The acoustic modes W depend only

on the geometrical shape of the cavity, but their amplitudes k
�
a

are determined by the acoustic transfer matrix Ta and nodal force

B
�
q, as shown in Eq. (7). The structural nodal force is determined by

the coupling term UTKcW and the amplitude of the acoustic modes

k
�
a. Then, the structure subjected to this structural nodal force
would vibrate in a superimposed form of some structural modes
and the response of each mode is expressed in terms of the modal

amplitudes k
�
s based on the modal summation [42]. Besides the

structural nodal force, the structural transfer matrix Ts determines



Fig. 2. Schematic of energy transfer.
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the values of modal amplitudes k
�
s as shown in Eq. (5). Above pro-

cesses are similar to a kind of ‘‘frequency filter” of the response,
which makes the structural vibration peaks only appear at some
certain frequencies, such as the cavity modal frequencies and the
structural modal frequencies. Finally, air particles near the vibrated
structural surface begin to vibrate, then, noise radiation appears in
the near field and far field successively and the peak frequencies of
radiation are basically consistent with above filtered frequencies.
The sound power of the noise radiation is radiated by a set of radi-
ation modes that are characterized by self-radiation efficiencies r0

l

as shown in Eq. (11) and the complex amplitude of these modes are

determined by the modal amplitudes k
�
s and the mapping matrix

PTHU.
Therefore, considering a typical plate-cavity system under inte-

rior acoustic excitation, focusing on the noise radiation reduction
effect of replacing the flat plate with an ABH plate to form an
ABH-cavity system, above parameters can be classified as follows:

a. The invariant parameters. These parameters, such as interior

acoustic modal force B
�
q and cavity modal shape WT, are the

same for both systems (i.e., plate-cavity and ABH-cavity) in
this work. Meanwhile, for plates of the same size, eigenval-
ues xl of the diagonal matrix K and spatial distribution
matrix of radiation modes P are also the same. Those param-
eters are categorized as invariant parameters that will not be
considered in this work.

b. The coupling strength UTKcW, represents the coupling
strength between the cavity modal shape W and the struc-
tural modal shape U. It has been shown in a previous study
[38] that coupling coefficients for both systems are very
close to each other in the low frequency range.

c. The structural transfer matrix Ts and the acoustic transfer
matrix Ta. The elements of these matrices represent the
transfer characteristics of their own modes from the modal
force to their own modal coordinates. And the values of ele-
ments of transfer matrices Ts and Ta are decided by their
corresponding modal damping ratio fs and fa. Compared
with the cavity modal damping ratio fa, the structural one
fs is much easier to manipulate. Massive damping layer are
usually used to obtain a high value of fs in traditional passive
control, but for ABHs, only a small amount damping layer
need to be added in the center of the ABH region to achieve
the high damping loss.

d. The mapping matrix PTHU. The element ulf gTH /if g of the
matrix PTHU denotes the contribution of the ith structural
mode to the lth radiation mode. In order to obtain a reduced
noise radiation, considering that the matrix P of radiation
modal distributions is unalterable because the size of the
plate is determinate, it is viable to lower the absolute value
of the element ulf gTH /if g by changing forms of the struc-
tural modal shape of the radiation surface HU. It should be
noted that sound power W is a sum of the product of the
5

mapping matrix PTHU and the complex structural modal

coordinate k
�
s. A cross-cancellation effect or a cross-

enhancement caused by the mismatch/match between the
mapping coefficients and the structural modal coordinates
will weaken or enhance the sound power accordingly.

As indicated above, the noise radiation of the ABH-cavity sys-
tem is suppressed in two ways in this work.

One is to lower the structural transfer function by increasing
the structural damping loss fs. For the ABH structure, a lager fs is
achievable by adding a small amount of damping layer in the cen-
ter of ABH structures due to the damping enhancement of ABH
plates that has been validated as mentioned above.

The other is to reduce the absolute value of the mapping coeffi-
cient ulf gTH /if g by changing forms of the structural modal shape
U. It should be pointed out that generating a series of local reso-
nance modes in the central area of ABHs is one of the remarkable
characteristics of ABH structures. Therefore, rearranging the num-
ber and distribution of ABHs can change the form of the modal
shapes U. For a simply supported rectangular uniform plate, the
analytical solution of radiation efficiencies of structural modes
indicates that structural mode (2,2) and (2,1) enable a relatively
low radiation efficiency than mode (1,1) at low frequencies [46].
Combining these two concepts, two ABH plates whose shapes are
very similar to the mode (2,1) and (2,2) are designed to reduce
the sound power in the following sections.
Fig. 3. Four plates under investigation. (a) UNI; (b) 1-ABH; (c) 2-ABH; (d) 4-ABH.



Table 1
List of cases.

Cases Plate Loss factor
of DL

Purpose

1 UNI 0.1 Reference results
2 1-ABH 0.1
3 UNI 0.3 Lowering the magnitude of structural

transfer function4 1-ABH 0.3
5 2-ABH 0.3 Manipulating the mapping matrix
6 4-ABH 0.3
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3. FE model and results

3.1. FE model

To verify above mentioned suppression mechanism of noise
radiation in an ABH-cavity system, one uniform plate and three dif-
ferent ABH plates with the same plate thickness h1 are built,
named UNI, 1-ABH, 2-ABH and 4-ABH, respectively, as shown in
Fig. 3. Six cases of above plates are created and listed in Table 1,
details of each case are given below.

In case 1, a UNI plate is coated with a damping layer whose loss
factor of damping layer (DL) is 0.1. And the UNI plate is replaced by
the 1-ABH plate in case 2. The detailed analyses of case 1 and 2 are
shown in section 3.2 as a reference for latter cases. In case 3, the
loss factor of damping layer of the UNI plate system is increased
to 0.3 and other parameters remain unchanged so it is comparable
with case 1. Similarly, in case 4, the loss factor of damping layer of
the 1-ABH plate system is tripled to be compared with case 2. Case
3 and 4 are carried out for demonstrating the suppression mecha-
nism of noise radiation by decreasing the magnitude of structural
transfer functions. In case 5 and 6, the loss factor of the damping
layer is kept at 0.3 but the ABH plate is designed differently. The
numbers of ABHs in the plate are increased to 2 and 4 to form
the 2-ABH and 4-ABH model, whose modal shapes correspond to
structural mode (2,1) and mode (2,2) respectively. This design is
inspired from the above analysis that those two structural modes
show lower radiation efficiency than mode (1,1). Therefore, the
suppression mechanism of noise radiation is investigated by
manipulating the mapping matrix PTHU in case 5 and 6.

3.1.1. Geometrical and material parameters of ABHs
The geometrical parameters of ABHs are shown in Fig. 4. For an

ABH-cavity system, the thickness of the uniform part of the ABH is
denoted as h1, the thickness power-law profile of the ABH part is
described as

hðrÞ ¼ h0; 0 6 r 6 r0
aðr � r0Þ2 þ h0; r0 6 r 6 r1

�
ð16Þ

where h0 represent the residual thickness; a is a constant; r0 and r1
symbolize the radius of the central platform and the whole ABH
area, respectively. A damping layer with a radius of rd and a thick-
Fig. 4. Geometrical parameters of ABHs.
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ness of hd, is concentrically attached on the backside of the ABH
region, as shown in Fig. 4.

Thegeometrical andmaterial parameters of the FEmodel are illus-
trated in Table 2. The 1-ABH and 2-ABH has the same ABH curves
described above, while the profile curve of the 4-ABH has shrunk
slightly to a = 1.92 and r1 = 0.07 m because of the limitation of the
structuralsize.OtherparametersremainthesameasshowninTable2.
E is the Young’smodulus;l is the Poisson’s ratio;g is the loss factor;q
is thedensity.And subscriptsALandddenote the aluminumplate and
the damping layer, respectively. The same damping layers are added
in the center of ABH regions for all ABH plates in this work.

3.1.2. Boundary conditions and meshes of FE model
A FE model of a cavity-plate-far-field system is established as

shown in Fig. 5(a). Given the existence of the damping layer, the
complex modal analysis of the structural domain is firstly done
in ABAQUS, then the result is imported into LMS.virtual Lab (Sie-
mens PLM Software, LMS, Belgium) to complete the calculation
of structural vibrations and acoustic response. As shown in Fig. 5
(a), a rectangular cavity with a dimension of
0:40 m� 0:30 m� 0:18 m is built with one of the bottom corners
as the origin of the coordinate system. The acoustic excitation is
introduced by a monopole sound source with a fixed amplitude

of q ¼ 1 kg=s2. It is applied at ð0:02 m; 0:02 m; 0:02 mÞ, which,
as shown in Fig. 5(a), is close to the corner of the rectangular
acoustic space. This is considered to be an ideal location to drive
the rectangular space when it is desirable to introduce sound
[46], because every cavity mode has a pressure antinode at corners.

The boundary conditions of the whole system are shown in
Fig. 5(b). First and foremost, to ensure the normal fluid velocity
equals the normal structural velocity along the vibro-acoustic cou-
pling interface, vibro-acoustic coupling boundary conditions are
applied on both the cavity-ABH interface and ABH-far-field inter-
face. For boundary conditions of the structural domain, edges of
the plate are clamped. For boundary conditions of the acoustic
domain, to realize a perfect sound absorption in the far-field, the
automatically matched layer boundary condition (AML BC) in
LMS.virtual Lab is set on the convex interface of far-field mesh.
The AML interface satisfies the Kirchhoff radiation condition. And
the remaining five cavity walls are assumed as perfectly rigid walls
to prevent flanking sound leakage.

All meshes of the FE model are generated in ABAQUS. For the
acoustic meshes shown in Fig. 5(a), more than six elements
(AC3D8, an 8-node linear acoustic brick) per local acoustic wave-
length are used to guarantee the computation accuracy in acoustic
analysis. The corresponding element size of the cavity mesh is
5.7 mm. Finer meshes are generated for the far-field part. For the
structural meshes shown in Fig. 5(c)�(e), C3D20 solid elements (a
second-order element with 20 nodes) are used to discretize the
ABH plate. Since the critical frequency [37] (calculated by

f crit ¼ c20=ð2ph0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12qALð1� l2

ALÞ=EAL

q
) of the uniform plate is about

2405 Hz, the interested frequency range in this study is set from
10 to 2500 Hz. So, the size of elements at the central area of the
ABH plate are carefully set so that there are more than ten elements
per local wavelength to satisfy the calculation accuracy require-
ment. The resulting total element number of the 1-ABH, 2-ABH
and 4-ABH plate is 9728, 12644 and 21712, respectively. For com-
parison purpose, the UNI plate is modelled with a total element
number of 4178.

3.2. Preliminary results and discussions

In order to better discuss the acoustic and vibration character-
istics of the plate-cavity system, several evaluation parameters
are introduced as follows.



Table 2
Geometrical and material parameters.

Geometry Material

a = 4/3
h0 = 0.0002 m
h1 = 0.005 m

r0 = 0.02 m
r1 = 0.08 m
rd = 0.03 m
hd = 0.002 m

EAL = 70 GPa
lAL = 0.33
qAL = 2700 kg/m3

gAL = 0.001

Ed = 0.1 GPa
ld = 0.45
qd = 1780 kg/m3

gd = 0.1

q0 = 1.29 kg/m3

c0 = 343 m/s

Fig. 5. Configuration of the cavity-plate-far field system. (a) FEM model; (b) boundary conditions; (c) 1-ABH mesh; (d) 2-ABH mesh; (e) 4-ABH mesh.

f

Fig. 6. SWL of plates. (a) narrow band; (b) 1/3 octave frequency band. DL0.1
denotes that the loss factor of damping layers is 0.1.
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The structural velocity at any position can be easily accessed
from the FEM results. The mean quadratic velocity (represents
the level of vibrations, Lv) of the plate at the radiation interface S
is calculated by [38]

Lv ¼ 10 lg
hv2i
hv2

ref i
ð17Þ

where hv2i ¼ 1
2S

R
S m
�
nm
��
ndS; the reference normal velocity

mref ¼ 1 m=s. S is the area of the vibration interface.
The sound power level (SWL) can be defined as

SWL ¼ 10lg
W
W ref

ð18Þ

where the sound radiationW can be derived through the AML inter-
face; and the reference sound power in air W ref ¼ 1� 10�12 W.

The radiation efficiency r of panels, which represents the radi-
ation capacity of the whole vibrating interface, can be defined as
follows [31]

r ¼ W
q0c0Shv2i ð19Þ

Firstly, for UNI and 1-ABH plates in case 1 and 2, results of the
noise radiation and structural vibrations are discussed. The SWLs
radiated by both 1-ABH and UNI plates are compared in Fig. 6 in
narrow band and 1/3 octave frequency band. Generally, the noise
radiation of the 1-ABH system is noticeably lower than the UNI
one above 1000 Hz center frequency, but the 1-ABH plate does
not always exhibit a reduced SWL below 1000 Hz as illustrated
in Fig. 6(b). Specific analyses of different frequency ranges are as
follows.

It is found that the 1st modal frequencies of the 1-ABH plate,
the UNI plate and the cavity are 366 Hz, 387 Hz and 428 Hz,
respectively. Hence, below 366 Hz, the structural vibrations and
the sound radiation are affected by the (0,0,0) cavity mode. In
the low frequency range, the masses of the plates play a significant
7

role on structural vibrations. Comparing with the UNI plate, the
mass of the ABH system is smaller, that causes a much higher
SWL below 366 Hz. The similar phenomena has been reported in
a literature [41] and it is the limitation of ABHs at lower frequen-
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cies where the local modes of ABHs do not exist. And an alternative
way to suppress structural vibrations at these lower frequencies is
to attach periodic local resonators to form a metamaterial ABH
(MMABH) plate [47].

On the other hand, systematic ABH effect can be expected above
the cut-on frequency, above which the local resonance modes con-
centrate the vibration energy in the central area of ABHs [23].
According to [48], the cut-on frequency of the 1-ABH plate is
1911 Hz in this work, that is calculated by

f cut�on ¼ 2ph1

ð2r1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EAL

12qALð1� l2
ALÞ

s
ð20Þ

Above this frequency, the structural bending wavelengths are
smaller than the ABH outer diameter ð2r1Þ. Consequently, the
SWL of the 1-ABH plate is much lower than the UNI plate in both
narrow band and 1/3 octave frequency band beyond the cut-on fre-
quency as shown in Fig. 6.

The ABH effect begins to take effect from the 1st modal fre-
quency of 1-ABH plate (366 Hz), but it will not produce systemic
effects until the cut-on frequency 1911 Hz. Specially, as shown in
Fig. 6(b), from 366 Hz to 1000 Hz, the 1-ABH plate exhibits a higher
SWL at some frequency ranges. In this frequency range, the vibra-
tion comparison between the ABH plate and UNI one is shown in
Fig. 7. The green color bars correspond to cavity modal frequencies.
As expected, peak frequencies of structural vibrations are affected
by above two kinds of dominant modes: the structural modes and
the cavity modes. For the structural modes, the material parame-
ters, such as the density, elastic modulus and stiffness, play a sig-
nificant role in determining the structural modes of a structure.
Regarding the acoustic modes, they are primarily determined by
the geometry and size of the cavity with boundaries assumed to
be acoustically rigid. The vibration level of the ABH plate at cavity
modal frequencies is obviously higher than the reference one.
Given that the SWL result of 1/3 octave frequency band is an accu-
mulative outcome of the whole bandwidth, the higher vibrations at
any frequencies are disadvantageous for the reduction of noise
radiation in far-field.

The further analysis on the reduction of the vibrations and radi-
ation for the ABH plate in this frequency range is carried out in fol-
lowing sections.
4. Suppression mechanism of noise radiation in an ABH-cavity
system

As mentioned in section 2.3, the noise radiation of the plate-
cavity system is suppressed in two ways: One is to lower the mag-
nitude of structural transfer function; the other is to change the
Fig. 7. Vibration comparison between the 1-ABH plate and the UNI plate.
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mapping matrix PTHU. The corresponding numerical results are
shown in section 4.1 and 4.2.
4.1. Decreasing the magnitude of the structural transfer function

UNI and 1-ABH plates coated with two different loss factors gd

(case 1 � 4) are compared to verify the suppressed mechanism by
decreasing the magnitude of the structural transfer function. The
corresponding SWL results are compared in Fig. 8. The SWL of
the UNI plate has little change when gd is triply increased. As
expected, the 1-ABH plate achieves a significant SWL reduction.

As mentioned that other parameters are unchanged or of little
influence, the sound radiation is mainly decided by the structural
transfer matrix Ts. The ith structural transfer function Tsi is inverse
to the modal loss ratio fsi. Due to the damping enhancement effect
of ABH structures as shown in Fig. 9, the modal damping ratio of
the ABH plate is much higher than the UNI one, which means the
ABH plate accesses a smaller Tsi. Then, the corresponding vibration
suppression of 1-ABH plate is achieved as shown in Fig. 10. Thus,
the noise radiation of 1-ABH plate system can be suppressed by
decreasing the values of elements of transfer matrix Ts. For exam-
ple, due to this mechanism, at the 1st structural modal frequency
(366 Hz for the 1-ABH plate and 388 Hz for the UNI plate), the
modal loss factor of 1-ABH-Mode1 increases from 0.036 to 0.105
where the loss factor of the damping layer is significantly
increased. And the corresponding structural vibration level and
sound power level obtain a reduction of 8.5 dB simultaneously.
But for the UNI plate, its structural modal loss factor shows little
change with the additional damping material, consequently, the
vibration level and sound power level show no noticeable change.
4.2. Influence of the mapping matrix

Based on the theoretical analysis mentioned in section 2.3, low-
ering the values of elements of the mapping matrix PTHU is an
Fig. 8. SWL of plates with different loss factors of the damping layer. (a) narrow
band; (b) 1/3 octave frequency band.



Fig. 9. Modal loss factor as the loss factor of the damping layer varies.

Fig. 10. Vibrations and sound radiation of plates under 1000 Hz. (a) Lv; (b) SWL.

Fig. 11. Vibrations and sound power levels of different ABH designs. (a) SWL in 10–
2500 Hz; (b) SWL in 10–1000 Hz; (c) Lv; (d) radiation efficiency.
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optional way to suppress the noise radiation. The 2-ABH and 4-
ABH plates (case 5 and 6) are investigated for demonstrating this
mechanism. For comparison, results of UNI and 1-ABH plates (case
3 and 4) are provided.

The results of the SWL, the structural vibration level and the
radiation efficiency of above plates are illustrated in Fig. 11. At
most modal frequencies, in terms of the vibration levels, the values
of mean quadratic velocity of 2-ABH and 4-ABH plates are larger
than the UNI plate. But 2-ABH and 4-ABH plates radiate less radi-
ated sound energy into far-field. In other words, the radiation effi-
ciencies r of the 2-ABH and 4-ABH plates are decreased as shown
in Fig. 11(d). For example, at 428 Hz (the 1st modal frequency of
the cavity), 2-ABH plate shows the highest vibration and the low-
est SWL as compared with other plates. However, the situation
reverses at some modal frequencies, such as the 1st structural
modal frequency. This reduction or enhancement mechanism of
9

SWL and radiation efficiency of ABH plates is discussed in detail
as follows.

Given the orders of the structural modes are massive because of
the degrees of freedom of systems, mode truncation technique is
used for analyzing the mapping matrix PTHU at a specific fre-
quency. For example, at 428 Hz (the 1st cavity modal frequency),
considering the first 4, 8, 11 and 16 structural modes of UNI, 1-
ABH, 2-ABH and 4-ABH plates is accurate enough for analysis.
For radiation modal shapes, only the lower radiation modes have
much influence on sound radiation at low frequencies. Therefore,
only the first 5 radiation modes are taken into account at 428 Hz.
The detail of truncation of modes is shown in the Appendix B.



Fig. 12. Mapping matrix of plates. (a) UNI; (b) 1-ABH; (c) 2-ABH; (d) 4-ABH. DR denotes the dominant region.

Table 3
Modal coordinates and mapping coefficients of plates at 428 Hz.

Structural modes Modal coordinates (10�5) Mapping coefficients u2

	 
T
H /if g

Complex form Absolute value

Case 3 UNI-Mode2 1.60–3.00j 3.40 –32.50
Case 4 1-ABH-Mode3

1-ABH-Mode5
�2.80–5.50j
0.40 + 0.60j

6.17
0.72

�31.53
10.31

Case 5 2-ABH-Mode2
2-ABH-Mode8
2-ABH-Mode5

�4.10 + 4.50j
0.40–1.10j

�0.10 + 0.50j

6.09
1.17
0.51

–23.01
�36.48
10.31

Case 6 4-ABH-Mode2
4-ABH-Mode6

3.00 + 2.50j
�0.10 –0.60j

3.91
0.61

33.59
–23.76
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Based on above truncation principle, the related mapping
matrix PTHU of plates at 428 Hz are illustrated in Fig. 12. The black
dashed lines in Fig. 12 represent a dominant region (DR) in which

both of modal coordinates k
�
si and self-radiation efficiencies get

quite higher values simultaneously. The related results are sum-
marized in Table 3. As illustrated in Table 3, the mapping
coefficients of the dominating structural modes of 2-ABH
(2-ABH-Mode2 and 2-ABH-Mode5) are very small, which is one
of the reasons that the SWL and radiation efficiency r of the 2-
ABH plate simultaneously get a reduction at 428 Hz.

On the contrary, a higher mapping coefficient would enhance
the noise radiation. The absolute value of the coefficient
u2f gTH /if g of 4-ABH-Mode2 is 33.59 and it is larger than the coef-

ficient u2f gTH /if g of UNI-Mode2. Thus, 4-ABH plate exhibits a
10
SWL enhancement of 2.1 dB as compared with UNI plate shown
in Fig. 11.

Meanwhile, the cross-cancellation or cross-enhancement effect
caused by the mismatch/match between the mapping coefficients
and the structural modal coordinates will weaken or enhance the
sound power accordingly. For instance, for the 2-ABH plate, the
real and imaginary parts of the modal coordinates between
2-ABH-Mode2 and 2-ABH-Mode8 are in contrary signs (the vibra-
tions are in nearly opposite phase), whilst the coefficients
( u2f gTH /2f g ¼ �23:01 and u2f gTH /8f g ¼ �36:48) are in the same
sign, which means that a numerical cancelation is obtained when a
summation is executed as suggested by Eq. (15). But for 1-ABH
plate, the situation is in reverse, which leads to a cross-
enhancement effect.
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At other frequencies, above analysis remains applicable. For
results of the cavity-mode3-714 Hz, the vibration level of the 4-
ABH plate is about 13 dB higher than the UNI plate, but the SWL
of the 4-ABH plate system is 3.54 dB lower as shown in Fig. 11
(b) and (c). Thus, the corresponding radiation efficiency of the 4-
ABH plate is smaller (6:45� 10 - 5 for the 4-ABH plate and
7:03� 10 - 4 for the UNI plate) as shown in Fig. 11(d). As compared
with the UNI plate, the smaller SWL and radiation efficiency of the
4-ABH plate are realized at 714 Hz and the detailed results are
shown in Table C1 in Appendix C. Above analysis focuses on the
noise radiation suppression of the 1st and the 3rd cavity modes,
however, it should be noted that the noise radiation at any fre-
quency (other cavity modal frequencies under the cut-on fre-
quency especially, as shown in Fig. D1 in Appendix D) will be
suppressed by manipulating the mismatch if a further optimiza-
tion analysis of rearranging the number and distribution of ABHs
is carried out.
Fig. A1. The subdivision of the coupling interface.
5. Conclusions

This paper focuses on investigating the suppression mechanism
of noise radiation in the ABH-cavity system when a sound source is
positioned within a rectangular air cavity. The objective is to exam-
ine the underlying mechanism of the coupling between the acous-
tic space and the ABH plate. The investigation is carried out
through theoretical analysis, and the findings are validated numer-
ically using the finite element method within the lower frequency
range.

For the coupled plate-cavity system under the interior acoustic
excitation, the noise radiation in air is related to both the structural
modes and the cavity modes. Theoretical analysis shows that the
structural transfer matrix and the mapping matrix are two key fac-
tors to reduce the noise radiation of the ABH-cavity system. To ver-
ify the theory, finite element models of the ABH-cavity system as
well as uniform-plate-cavity system are built. Due to the damping
enhancement of ABHs, a smaller structural transfer function can be
obtained by increasing the loss factor of the damping layer. The
results show the structural vibrations and sound power of ABH
plates are reduced as expected. As for the mapping matrix that is
the product of radiation modal shapes and structural modal shapes
of the radiation surface, its influence on suppression of noise radi-
ation can be explained by two factors. The first one is the small
absolute value of the mapping coefficient u2f gTH /if g. The other
is the cross-cancellation effect caused by the mismatch between
the mapping coefficients and the structural modal coordinates.
ABH-cavity systems with varying number of ABHs are constructed
to demonstrate a simple solution of manipulating the mapping
matrix to achieve enhanced noise radiation suppressing effect by
changing forms of the structural modal shape U. Numerical analy-
ses show that reduced radiation efficiency and less radiated noise
of 2-ABH and 4-ABH plates can be achieved at some frequencies
because of the changed mapping matrix.

In general, this work indicates that further optimization analy-
sis of rearranging the number and location of ABHs is a feasible
direction for noise radiation suppression of the plate-cavity
system.
Fig. B1. Modal coordinates of plates at 428 Hz.
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Appendix A: Radiation resistance matrix

For the convenience of calculation, the coupling interface S can
be divided into a grid of N same elements as shown in Fig. A1. The

v
�
i and p

�
i are structural normal velocities and the pressures of the

corresponding elements at their center position. The area of each
element is Ae.

Thus, impedance matrix Z
�

is a N � N matrix. Because of

reciprocity, Z
�
is symmetric and Z

�
ijðxÞ ¼ ðjxq0Ae=2pdijÞe�jk0dij . And

the relationship between radiation resistance matrix R and Z
�

is
given by



Fig. B2. Self-radiation efficiency r0 of first 20 radiation modes.

Fig. B3. Comparison of SWL between the first 10 modes and the LMS results.
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R ¼ 1
2
AeReðZ

�
Þ ðA1Þ

where R can be expressed by [44]

R ¼ x2q0A
2
e

4pc0

1 sinðk0d12Þ
k0d12

� � � sinðk0d1N Þ
k0d1N

sinðk0d21Þ
k0d21

1 � � � ..
.

..

. ..
. . .

. ..
.

sinðk0dN1Þ
k0dN1

� � � � � � 1

2
66666664

3
77777775

ðA2Þ

where dij is the distance between the centers of the ith and jth

elements. k0 is the wavenumber. And R has an eigenvalue/eigen-
vector decomposition such as

R ¼ PKPT ðA3Þ
Appendix B: Truncation of structural modes and the radiation
modes

For the uniform plate, only the 4 lowest orders of structural
modes are considered because the 4th structural modal frequency
Table C1
Modal coordinates and mapping coefficients of plates at 714 Hz.

Structural modes Modal coor

Complex form

Case3 UNI-Mode5
UNI-Mode10

�2.00 + 4.00j
0.21–0.42j

Case6 4-ABH-Mode4
4-ABH-Mode17
4-ABH-Mode9

1.00 + 11.00j
1.00 + 3.00j
�2.00–2.00j

12
is 1090 Hz and higher order modes have little influence on the
structural vibrations at 428 Hz. For the same reason, the first 8,
11 and 16 structural modes are taken into account for 1-ABH, 2-
ABH and 4-ABH plates, respectively. And only some modes have
a contribute to the structural vibrations at 428 Hz, as shown in
Fig. B1.

The self-radiation efficiencies r0
l ¼ 2xl=q0c0S0 remain

unchanged for plates with a same size and the self-radiation effi-
ciency of first 20 radiation modes of the 0:40 m � 0:30 m plate is
shown in Fig. B2. In low frequencies, lower order radiation modes
have a greater impact on sound power. Hence, taking some lower
order radiation modes into consider is accurate enough under
1000 Hz. To specify this statement, the SWL comparison between
the first 10 radiation modes and LMS results is illustrated in
Fig. B3 and the truncation error is of little significance. According
to this principle, only the first 5 radiation modes is taken into
account for a distinct indication. Given above truncations and
dominate modes, the dominant regions in Fig. 12 are decided.
Appendix C: Results of cavity-mode3-714 Hz

As illustrated in Table C1, the absolute value of the mapping
coefficient u3f gTH /if g of 4-ABH-Mode4 is 26.09 and it is smaller
than the coefficient of UNI-Mode5 which is 29.14. Meanwhile, for
the 4-ABH plate, the cross-cancellation effect still exists, i.e., the
modal coordinates are in the same sign for both 4-ABH-Mode4
and 4-ABH-Mode17, but the related coefficients are in the opposite
sign.

Therefore, as compared with the UNI plate, smaller SWL and
radiation efficiency of the 4-ABH plate are realized at 714 Hz
because of the mismatch.
Appendix D: Modal shapes and vibration velocity distributions
at 428 Hz

The first 5 radiation modal shapes at 428 Hz are shown in
Fig. D2.
dinates (10�6) Mapping coefficients u2

	 
T
H /if g

Absolute value

4.47
0.47

�29.14
14.28

11.05
3.16
2.83

26.09
�28.99
4.24



Fig. D1. Modal shapes and vibration velocity distributions. (a)�(e) cavity modal shapes; (f)�(i) structural modal shapes; (j)�(m) vibration velocity distributions at 428 Hz;
(a) cavity-mode1-428 Hz; (b) cavity-mode2-571 Hz; (c) cavity-mode3-714 Hz; (d) cavity-mode4-857 Hz; (e) cavity-mode5-952 Hz; (f) UNI-mode2-659 Hz; (g) 1-ABH-
mode3-563 Hz; (h) 2-ABH-mode2-368 Hz; (i) 4-ABH-mode2-462 Hz; (j) UNI; (k) 1-ABH; (l) 2-ABH; (m) 4-ABH.

Fig. D2. Radiation Modal shapes at 428 Hz.
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