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Acoustic black hole (ABH) has shown great potential and aroused tremendous interest for vibration and
sound control in the past two decades. However, efficient computational methods are still lacking for the
design of ABH structures with practically required properties. Herein, a multibody system transfer matrix
method is proposed to deal with a system comprising a host structure with an attached ABH cluster,
exemplified by a novel tree-shaped ABH dynamic vibration absorber (ABH-DVA). Capitalizing on the flex-
ibility offered by the method, the eigen-solutions and the steady-state vibration response of the com-
bined system are derived and validated by finite element results. Observed vibration reduction and the
underlying mechanisms are elucidated in terms of the vibrational energy ratio and vibration spatial dis-
tribution in the system. Owing to its rich modal dynamics and energy trapping capability, the proposed
absorber demonstrates extraordinary and robust low-frequency and broadband vibration reduction per-
formance from 25 Hz to 2500 Hz for different host structures. This can be ensured by designing its thresh-
old frequency as the lower limit of the targeted frequency range. The proposed method and the vibration-
reduction-effect are experimentally validated. This study offers a novel yet general approach for address-
ing complex ABH structures with various structural components and topologies.

� 2023 Elsevier Ltd. All rights reserved.
1. Introduction

The use of dynamic vibration absorbers (DVAs) as add-on
devices to a host structure is a common approach to suppress
structural vibration. Ormondroyd and Den Hartog [1] showed the
working principle of DVA by using a single degree of freedom
(DOF) system. DVA can be broadly classified into discrete and con-
tinuous parameter types based on their structural configuration.
The former is typically composed of mass-spring-damping ele-
ments with a single or a finite number of DOFs [2]. For broadband
vibration control, multiple single DOF-DVA or a DVA with multiple
DOFs are usually required and complex optimization are usually
involved for determining their parameters [3–5]. In the latter cat-
egory, plate- and shell-type absorbers are proposed to control the
multi- modal vibrations of the host plate and shells [6,7]. Wang
et al. reported a beam-type absorber with variable cross-section
to absorb the vibration of a host plate [8]. Compared with the dis-
crete parameter type DVA, the continuous parameter type DVA
generally offers multi- and broadband modal control capabilities
due to their rich dynamic properties.

In the 1980s, Ungar and Kurzweil first proposed viscoelastic
waveguide absorbers [9] (WGA) for structural wave attenuation.
Since then, various kinds of WGA have been proposed, such as vis-
coelastic beam type and plate type [10–12]. WGAs draw the vibra-
tion energy away from a structure through a proper design of
waveguides with the aid of strong dissipative elements such as vis-
coelastic materials.

Despite their widespread use, both DVA and WGA suffer from
some limitations in terms of effectiveness as well as design and
implementation. The former, though simple in its structural form,
often works at specific frequencies and requires tedious and com-
plex parameter tuning. The latter usually has relatively weak
dynamic coupling with the host structure and thus too often can
hardly provide the required energy dissipation unless multiple
absorbers with properly designed attachment locations are uti-
lized. In addition, any changes in the host structure or environmen-
tal/operational conditions may jeopardize the effectiveness of both
DVA and WGA.

During the last two decades, the phenomenon of the Acoustic
Black Hole (ABH) has aroused great research interest in the field
of vibration and noise control [13–20], due to its compactness,
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lightweight and high energy-concentration properties. ABH allows
for the manipulation of flexural wave propagation in a thin-wall
structure by tailoring its thickness profile according to power law
function, namely hðxÞ ¼ ex2 þ h0, where e is a constant and h0 is
the truncated thickness. When bending waves propagate into the
ABH part, their phase velocity gradually decreases, and the wave-
length is gradually compressed so that the wave amplitude
increases accordingly alongside the gradual decrease of the struc-
ture thickness. As a result, energy is concentrated near the tip of
the structure [21], which can then be effectively attenuated by a
small amount of damping materials.

To cope with the robustness issue in conventional DVA design,
ABH-featured absorbers embracing the combined DVA and WGA
principles were first proposed by Zhou and Cheng in the form of
a unilateral ABH-DVA [14]. The idea was further extended by Ji
et al. to two-dimensional (2D) cases [22]. The proposed absorbers
show broadband vibration suppression with relatively simple and
easily achievable configuration. However, both studies were based
on finite element (FE) analyses. In fact, this remains generally true
for the large majority of works reported in the open literature, in
which numerical tools like FE became the predominant means
for ABH research. Although other methods like geometric acoustic
methods, impedance analysis methods, and semi analytical meth-
ods [23–27] were also attempted, they typically apply to ABH
structures with relatively simple geometries. For more complex
ABH structures, numerical methods such as the finite element
method or experimental methods are required [28,29]. More speci-
fic to the present topic, analytical/theoretical model of the host
structure with ABH-DVAs has not been developed. In addition, as
a distributed DVA, an in-depth investigation into different vibra-
tion reduction mechanisms in terms of the spatial distribution of
vibration energy is essential to understand the energy transfer
and distribution among different parts of the structure. Finally,
there is a lack of effort in developing design guideline assisted by
efficient simulation tools for achieving low frequency and broad-
band vibration reduction.

Herein, we provide an alternative to existing analysis methods
based on multibody system transfer matrix method (MSTMM) for
complex ABH-DVA design and analyses. MSTMM is an efficient
multibody system dynamics method that has been proposed and
gradually improved in the last two decades. The MSTMM is charac-
terized by replacing the global dynamic equations with low-order
transfer equations. Therefore, the matrix order involved in solving
the dynamics of a multibody system is independent of the number
of degrees of freedom of the system so that the computational effi-
ciency can be greatly improved [30–32]. Besides, MSTMM does not
require spatial discretization of the continuous elements when
dealing with rigid-flexible coupled linear systems including beams,
rods and shafts, and thus can accurately solve the system vibration
characteristics and steady-state response. While the linear finite
element method (FEM) uses polynomial functions etc. to interpo-
late the displacement at any point in the cell, which requires spa-
tial discretization of the continuous elements and introduces
additional approximations.

In this paper, a theoretical model of a combined structure con-
sisting of a host structure with a tree-shaped ABH-DVA is devel-
oped and solved using the MSTMM with results validated by
COMSOL FEM and experiments. Results show that the MSTMM
substantially improves the computational efficiency for getting
eigen-properties of the combined structure. Using the established
model, we further explore the vibration reduction mechanisms of
the ABH-DVA in terms of the spatial energy distribution. Based
on the understanding acquired, a design strategy for achieving
low-frequency and broadband vibration reduction is then pro-
posed. The proposed tree-shaped ABH-DVA is shown to entail a
2

denser modal density, resulting in wider absorption band and
enhanced low frequency vibration reduction compared with the
previous unilateral ABH-DVA. Meanwhile, the design demonstrates
its robustness to accommodate different host structures without
tedious tuning of the DVA parameters.
2. Dynamical equations by multibody system transfer matrix
method

The proposed modelling approach is exemplified by a combined
system consisting of a host structure and a tree-shaped ABH-DVA
add-on, as shown in Fig. 1. Here the host structure can take any form.
The tree-shaped ABH-DVA add-on consists of a connector and
several ABH units which can be of different scales. Each ABH unit
contains a tapered part, a uniform part, and a thin damping layer.

The basic idea of the MSTMM in solving the dynamics of the
combined system is as follows: first, the combined system can be
regarded as a complex multibody system and dismantled into ele-
ments with simple dynamic properties, such as rigid body, beam,
etc. whose dynamic properties can be expressed by transfer
matrix. Then, the overall transfer matrix of the system can be
obtained by assembling these transfer matrices according to the
topology of the system and the overall transfer equation (TE) of
the system could be obtained accordingly. Next, the boundary con-
ditions are substituted into the overall TE of the system to obtain
the characteristic equation of the system, and the eigenfrequencies
of the system are then obtained by solving the characteristic equa-
tion. The steady-state response of the system can also be obtained
by solving the overall TE of the system with the load function [30].

To illustrate the process, a uniform cantilever beam is taken as
the host structure onto which a tree-shape ABH-DVA consisting of
four ABHs units (Fig. 2(a)) is attached. It should be noted, however,
the modeling and analysis methods to be demonstrated is general
and not limited to the beam case. As shown in Fig. 2(a), for each
ABH unit, the thickness of the tapered part follows
hðxÞ ¼ ex2 þ h0(e is a constant and h0 ¼ 0:1 mm), and a viscoelastic
damping layer of constant thickness hd is coated on the surface of
the entire tapered region. All elements have the same width b
(20 mm). A transverse excitation F ¼ sinðxtÞ is applied at the free
end of the host beam.

This specific combined system can be regarded as a bifurcated
multibody system with eleven elements shown in Fig. 2(b). Ele-
ments 2, 6, 10 are the connection among different transmission
paths which can be modelled as a virtual unit without mass [33].
Since low frequency vibration is concerned, Euler-Bernoulli beam
theory is utilized for the host beam, the ABH-DVA and the connec-
tor. The state vector of elements j in the coordinate system xr � yr
is defined as zrj;p ¼ ½x; y; hz;mz; qx; qy�Tj;p, where p denotes input I or

output O and j ¼ 1;2;3; :::;11; x and y denote linear displacements
in the x and y directions; hz denotes angular displacements; qx,qy

andmz denote the forces and moments, respectively. The state vec-
tor in the associated modal coordinate[28] system can be
expressed by Zr

j;p ¼ ½X;Y;Hz;Mz;Qx;Qy�Tj;p, where zrj;p ¼ Zr
j;pe

ixt with

x being the angular frequency.
2.1. Transfer equations of elements

2.1.1. Transfer equation of an ABH unit
For an ABH unit shown in Fig. 3(a), since the transfer matrix of

the variable-section beam cannot be obtained directly, each ABH
unit can be considered as a series of beam segments (composite
beam segment) of equal length which are connected sequentially,
as shown in Fig. 3(b). For each beam segment comprised of a Euler



Fig. 1. A host structure with a tree-shaped ABH-DVA.

Fig. 2. (a) Schematic diagram of a host beam with a tree-shaped ABH-DVA, and 2(b) Planar bifurcation multibody system.

Fig. 3. Schematic cross section of ABH structure with damping layer. (a) Before simplification (b) After simplification.
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Bernoulli beam and a damping layer, as shown in Fig. 4(a), Geor-
giev et al. expressed the flexural stiffness of the composite beam
in plural form and took the additional mass of the damping layer
into account when its thickness is comparable to or even larger
than the thickness of the ABH [34].

The flexural stiffness and the linear density of beam segment
writes:

EIð1þ igÞ ¼ EiIi ð1þ igiÞ þ eH3ð1þ iglÞ þ
3 1þ Hð Þ2eH 1� gigl þ i gi þ glð Þ½ �

1þ eH 1þ iglð Þ

" #

ð2:1Þ
3

and

m
� ¼ qiAi þ qlAl ð2:2Þ
where EI and EiIi are the flexural stiffness of the composite beam
and the beam itself, respectively;g is the material loss factor of
the composite beam; gi; Ei; hi;qi and Ai are the material loss factor,
Young’s modulus, thickness, density, and cross-sectional area of the
beam itself; gl; El;hl;ql and Al are the material loss factor, Young’s
modulus, thickness, density, and cross-sectional area of the damp-
ing layer; e ¼ El=Ei is Young’s modulus ratio, and H ¼ hl=hi is thick-
ness ratio.



Fig. 4. (a) Schematic diagram of cross section of composite beam, and (b) Sign convention of the state vector of the beam element in MSTMM library [32].
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Z0;1;Z1;2; :::;Znþ1;nþ2 denote the state vectors of each connection
point and Ui the transfer matrix of the ith segment of the beam.
According to the positive sign convention shown in Fig. 4(b) and
considering the beam transverse bending and longitudinal rigid
body motion, the overall TE of the ABH unit can be obtained as:

Znþ1;nþ2 ¼ Unþ1Un . . .Ui . . .U2U1Z0;1 ¼ UZ0;1 ð2:3Þ
where Uiði ¼ 1;2; :::nþ 1Þ is the transfer matrix of the ith Euler-
Bernoulli beam considering the transverse bending and longitudinal
rigid body motion [30]:

Ui ¼

1 0 0 0 0 0
0 SðklÞ TðklÞ

k
UðklÞ
EIk2

0 VðklÞ
EIk3

0 kVðklÞ SðklÞ TðklÞ
EIk 0 UðklÞ

EIk2

0 EIk2UðklÞ EIkVðklÞ SðklÞ 0 TðklÞ
k

m
�
x2l 0 0 0 1 0
0 EIk3TðklÞ EIk2UðklÞ kVðklÞ 0 SðklÞ

2
66666666664

3
77777777775

i

ð2:4Þ

with

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
�
x2=EI

4
q

;
S xð Þ ¼ cosh xþcos x

2 ; T xð Þ ¼ sinh xþsin x
2

U xð Þ ¼ cosh x�cos x
2 ;V xð Þ ¼ sinh x�sin x

2

(
ð2:5Þ

Therefore, the transfer matrix of the ABH unit is obtained as
U ¼ Un:::Ui:::U2U1.

2.1.2. Transfer equations for other elements in the combined system
For element j j ¼ 2;6;10ð Þ or the massless virtual unit as a mul-

tiple input (N input) and single output elements, to obtain the cor-
responding TE in the principal coordinate system x� y, the
kinematic and kinetic relationships need to be established. The
motion continuity and force/moment balance of massless elements
give:
Xj;O ¼ Xj;I1 ;Yj;O ¼ Yj;I1 ;Hj;zO ¼ Hj;zI1 ;Mj;zO ¼ Mj;I1 þ :::þMj;IN ;

Qj;xO ¼ Qj;xI1 þ :::þ Qj;xIN ;Qj;yO ¼ Qj;yI1 þ :::þ Qj;yIN ; j ¼ 2;6;10ð Þ
ð2:6Þ

The above kinetic equations of elements can be synthesized as:

Zj;0 ¼ E6

X

Y

Hz

Mz

Qx

Qy

2
666666664

3
777777775

j;I1

þ O3 O3

O3 E3

� �
X

Y

Hz

Mz

Qx

Qy

2
666666664

3
777777775

j;I2

:::þ O3 O3

O3 E3

� �
X

Y

Hz

Mz

Qx

Qy

2
666666664

3
777777775

j;IN

¼ Uj;I1Zj;I1 þ Uj;I2Zj;I2 :::þ Uj;ILZj;IN ðj ¼ 2;6;10Þ ð2:7Þ
The motion compatibility of different inputs yields the follow-

ing geometric equations:

Xj;I1 ¼ Xj;I2 ¼ ::: ¼ Xj;IN ;Yj;I1 ¼ Yj;I2 ¼ ::: ¼ Yj;IN ;Hj;zI1 ¼ Hj;zI2

¼ ::: ¼ Hj;zIN ðj ¼ 2;6;10Þ ð2:8Þ
4

which may be abbreviately written as geometric equations:

Hj;I1Zj;I1 ¼ Hj;I2Zj;I2 ¼ ::: ¼ Hj;INZj;IN ðj ¼ 2;6;10Þ ð2:9Þ
where

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

2
64

3
75 ¼ Hj;I1 ¼ Hj;I2 ¼ ::: ¼ Hj;IN ðj ¼ 2;6;10Þ

ð2:10Þ
The TE of element j in the coordinate system xj � yj is

Zj
j;O ¼ Uj

jZ
j
j;I j ¼ 1;3;4;5;7;8;9;11ð Þ. The transfer matrix Uj

jðj ¼ 1;3;
5;7Þ of the ABH unit in their respective coordinate systems can
be obtained from Eqs. (2.1) to (2.5), and the transfer matrix

Uj
j j ¼ 4;8;9;11ð Þ of elements 4, 8, 9 and 11 in their respective coor-

dinate systems can be obtained from Eqs. (2.4) and (2.5). The TE of
the element j in the principal coordinate system are obtained from
the following equations:

Zj;O ¼ UjZj;Iðj ¼ 1;3;4;5;7;8;9;11Þ ð2:11Þ

where Uj ¼ Aj
� ��1

Uj
jA

j is the transfer matrix of elements j in the

principal coordinate system x� y, and Aj denotes the coordinate
transformation matrix of the state vector from the coordinate sys-
tem xj � yj to the x� y. The TE of all elements in the principal coor-
dinate system can then be obtained.

2.2. Overall transfer equations, steady state response and eigenvalues
of the combined system

For a complex system containing multiple elements, the cumu-
lative errors arising from the multiplication of a large number of
transfer matrices may lead to computational stability problems,
which can be solved by combining Riccati transformation with
the MSTMM to form the reduced MSTMM [32,35,36] or RMSTMM
[32,35].

The relationships among the state vectors of the multiple inputs
(N input) and single output, and among the state vectors of multi-
ple inputs (N input) of element j write, respectively [36]:

Zj;O ¼
XN
k¼1

ðUj;IkZj;Ik Þ þ f j ð2:12Þ

Hj;IkZj;Ik ¼ Hj;I1Z1 k ¼ 2; . . . ;Nð Þ ð2:13Þ
where Zm�1 is the state vector; Um�m is the transfer matrix;Hm=2�m is
the geometric equation coefficient matrix, and fm�1 is the load func-
tion array. In the present example, L ¼ 2 for elements 2, 10 and
L ¼ 3 for element 6, m ¼ 6. Riccati MSTMM chunks the state vector
array of elements and Eqs. (2.12) and (2.13) can be rewritten as:

Za

Zb

� �
j;O

¼
XN
k¼1

Taa Tab

Tba Tbb

� �
Za

Zb

� �
j;Ik

( )
þ fa

fb

� �
j

ð2:14Þ



K. Huang, Y. Zhang, X. Rui et al. Applied Acoustics 210 (2023) 109439
Ha Hb½ �j;Ik
Za

Zb

� �
j;Ik

¼ Ha Hb½ �j;I1
Za

Zb

� �
j;I1

k ¼ 2; . . . ;Nð Þ ð2:15Þ

At the boundaries of the system, the Za part contains m=2 zero
elements, and the Zb part contains the remaining m=2 unknown
elements. Whether the state vector of intermediate connection
points is divided into Za or Zb is arbitrary. For N inputs, single out-
put elements j, the Riccati transform of the state vector at the kth
input is denoted as:

Za;j;Ik ¼ Sj;IkZb;j;Ik þ ej;Ik k ¼ 1;2; . . . ;Nð Þ ð2:16Þ
Substituting Eq. (2.16) into Eqs. (2.14) and (2.15) yields the Ric-

cati transformed form of the state vector at the output of a multiple
inputs and single output element j as:

Za;j;O ¼ EaE
�1
b Zb;j;O � eb
� �þ ea ¼ Sj;OZb;j;O þ ej;O ð2:17Þ

where

Sj;O ¼ EaE
�1
b

ej;O ¼ ea � Sj;Oeb

(
ð2:18Þ

Ea ¼ U
�
a;j;I1 þ

PN
k¼2U

�
a;j;IkH

�
j;Ik

ea ¼ u
�
a;j þ

PN
k¼2U

�
a;j;Ikh

�
j;Ik

Eb ¼ U
�
b;j;I1 þ

PN
k¼2U

�
b;j;IkH

�
j;Ik

eb ¼ u
�
b;j þ

PN
k¼2U

�
b;j;Ikh

�
j;Ik

8>>>>>><
>>>>>>:

ð2:19Þ

U
�
a;j;Ik ¼ Taa;j;IkSj;Ik þ Tab;j;Ik

U
�
b;j;Ik ¼ Tba;j;IkSj;Ik þ Tbb;j;Ik

u
�
a;j ¼ fa;j þ

PN
k¼1

Tba;j;Ikej;Ik

u
�
b;j ¼ fb;j þ

PN
k¼1

Tba;j;Ikej;Ik

8>>>>>>>>>><
>>>>>>>>>>:

ð2:20Þ

H
�
j;Ik ¼ Ha;j;IkSj;Ik þHb;j;Ik

� ��1 Ha;j;I1Sj;I1 þHb;j;I1

� �
h
�
j;Ik ¼ Ha;j;IkSj;Ik þHb;j;Ik

� ��1ðHa;j;I1ej;I1 �Ha;j;Ikej;Ik Þ

8<
: ð2:21Þ

where Ea, Eb, ea, eb satisfy:

Zb;j;Ik ¼ H
�
j;IkZb;j;I1 þ h

�
j;Ik ðk ¼ 2;3; :::; LÞ ð2:22Þ

Za;j;O ¼ EaZb;j;I1 þ ea ð2:23Þ

Zb;j;O ¼ EbZb;j;I1 þ eb ð2:24Þ
Fig. 5. Calculation process of steady state response

5

Eq. (2.18) is the recurrence equation for S and e of elements 2, 6,
10. The recursive equations of S and e for single input and single
output elements 1, 3, 4, 5, 7, 8, 9 and 11 can be simplified by
removing the redundant inputs and the terms of the geometric
equations in Eqs. (2.12) to (2.21).

Sj;O ¼ Taa;jSj;I þ Tab;j

� �
Tba;jSj;I þ Tbb;j

� ��1

ej;O ¼ Taa;jej;I þ fa;j
� �� Sj;O Tba;jej;I þ fb;j

� �
(

ð2:25Þ

In the bifurcated multibody system shown in Fig. 2(b), each
input of the system corresponds to Za ¼ 0 and Zb–0, then at the
input side S ¼ 0 and e ¼ 0. S and e at each intermediate connection
point of the system and S11;O and e11;O at the output can be obtained
recursively from Eqs. (2.18) and (2.25). Boundary condition
Za;11;O ¼ 0 at the output of the system is then substituted into Eq.
(2.17) to solve for the unknown variables in the state vector at
the output of the system. After obtaining the state vector at the
output of the system, the state vector of any connection point of
the system can be obtained from Eqs. (2.16), (2.22) and (2.24), as
shown in Fig. 5.

The above procedure gives the solution to the steady state
response of the bifurcated multibody system shown in Fig. 2(b).
As to the associate eigenvalue problem, by removing the external
excitation in the above categories, the characteristic equation of
the bifurcated multibody system is obtained as
DðxÞ ¼ det S11;O ¼ 0, where det denotes the determinant of a
matrix. However, the solution when the determinant of matrix Eb

or Tba;jSj;I þ Tbb;j equals zero is the pole of the characteristic equa-
tion DðxÞ. If the root-seeking method based on symbol change
such as dichotomy is directly adopted, these poles would be mis-
takenly taken as the roots of the equation [37]. To tackle this prob-

lem, the U
�
b;j;Ik is written as Uj;IK and ðHa;j;IkSj;Ik þHa;j;Ik Þ is written as

Wj;Ik to obtain the general form of the characteristic equation of the
bifurcation system [37]

detURTMM ¼ Sn;0
		 		Yn

j¼1

Cj

		 		 ð2:26Þ

where n is the element number at the system output, and the
expression of Cj

		 		 is as follows:

Uj

		 		 single inputð Þ

Uj;I1 þ
PN

k¼2Uj;I1W
�1
j;Ik

� �
Wj;I1

			 			 QN
k¼2

Wj;Ik

		 		 multiple inputð Þ

8><
>:

ð2:27Þ

Sn;0

		 		Qn
j¼1 Cj

		 		 avoids the influence of zero denominator in Sn;0
		 		. As a

result, the eigenfrequencies can be solved directly using the
of combined system based on Riccati MSTMM.
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dichotomy method or recursive eigenvalue search algorithm [38].
The characteristic equation of the linear bifurcated multibody sys-
tem shown in Fig. 2(b) can be expressed by:

detURTMM ¼ S11;0

		 		Y11
j¼1

Cj

		 		 ð2:28Þ

The eigenfrequencies of the bifurcated multibody system of
Fig. 2(b) can be obtained by solving Eq. (2.28).
3. Vibration reduction and mechanisms analyses

3.1. Model validation

For model validation, the results calculated from the proposed
MSTMM are compared with the COMSOL finite element simulation
results calculated using the solid mechanics module. In order to
simplify the model, set the four ABH units in Fig. 2 (a) as the same.
A FE model of the combined system consisting of a host beam with
tree-shaped ABH-DVA shown in Fig. 2(a) is established. The con-
vergence is reached when the errors of the first fifteen eigenfre-
quencies of the system are all within 1% as the density of the
grid gradually increases. The coating attached to the ABH is a vis-
coelastic material and the rest of the system is aluminum. The
detailed material and geometric parameters of each part of the
combined system are listed in Table 1.

Comparisons in terms of eigenfrequencies are shown in Table 2,
where n is the number of segments of the ABH-DVA tapered part, t
is the calculation time, and the relative error is calculated by
r ¼ fMSTMM � f FEMð Þ=f FEM.

Table 2 shows that the relative errors of the eigenfrequencies
using the MSTMM and the FEM in COMSOL are generally small
and are getting smaller as the number of segments increases. The
relative error of the first fifteen eigenfrequencies when n ¼ 200 is
Table 1
Material and geometric parameters of the combined system.

Material parameters

aluminum Ea 70 GPa
qa 2700 kg/m3

g1 0.001
Damping layer E 30 MPa

q 980 kg/m3

g2 0.3

Table 2
Comparison of eigenfrequencies calculated by MSTMM and FEM in COMSOL.

Mode number MSTMM

n = 10 n = 50

f /(Hz) r/% f /(Hz)

1 34.82 �0.37 34.96
2 159.77 0.59 159.48
3 213.42 �0.18 214.05
4 295.36 �0.81 300.23
5 366.99 0.13 366.31
6 384.69 1.21 381.36
7 625.56 18.49 566.14
8 662.94 14.46 609.71
9 719.75 19.91 615.02
10 757.08 20.33 653.77
11 772.40 15.29 685.90
12 982.57 12.81 908.51
13 1251.75 1.11 1250.24
14 1672.63 14.56 1525.66
15 1805.23 15.52 1634.44
t/s 0.18 0.26
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within 3.45%, which demonstrates the correctness of the proposed
method. Although the computation time becomes longer for a lar-
ger number of segments, the computation time by MSTMM is still
less than that by FEM, typically one tenth of that by FEM when the
number of segments reach 200. That is, MSTMM significantly
reduces the computation time.

Next, the steady state responses calculated by the two methods
are compared. To ensure the convergence of the calculation results
by both methods, the tapered part of ABH-DVA is divided into 200
segments, and the calculation frequency interval is taken as 0.1 Hz.
The driving point mobility Mobility ¼ 20 log jxY=Fð Þ of the system
at the excitation point is calculated using the two methods and
compared in Fig. 6, showing good agreement except at higher fre-
quencies where the response curves are similar in trend but
slightly shifted in frequency position. This is expected since in
the MSTMM, Euler Bernoulli beam theory is used which neglects
the rotational inertia and shear deformation, which results in a
slight overestimation of the eigenfrequencies at higher frequen-
cies; while FEM solid mechanics module result is based on the lin-
ear elasticity. To reduce the difference in accuracy at high
frequencies between the two methods, the Timoshenko beam the-
ory could be used in the MSTMM by replacing the transfer matrix
of the Euler-Bernoulli beam with that of the Timoshenko beam,
which can be referred to Ref. 30. Nevertheless, the amplitudes of
the resonance peaks corresponding to the same eigenfrequency
are basically the same, which demonstrate the correctness of the
proposed method.

3.2. Vibration reduction and associated mechanisms

To evaluate the vibration reduction performance of the tree-
shaped ABH-DVA, the driving point mobility of the combined sys-
tem is shown in Fig. 7 using MSTMM, with the counterpart
response without absorber being used as a reference. The loss fac-
Geometric parameters

L 600 mm hc 3 mm
L1 50 mm hd 1 mm
L2 50 mm h 16 mm
LABH 50 mm h1 3 mm
Lc 16 mm

FEM in COMSOL

n = 200

r/% f /(Hz) r/% f /(Hz)

0.03 34.97 0.06 34.95
0.41 159.21 0.24 158.83
0.12 214.15 0.16 213.80
0.83 300.49 0.91 297.77
�0.06 364.46 �0.56 366.52
0.34 378.81 �0.33 380.08
7.24 546.16 3.45 527.93
5.27 590.73 1.99 579.19
2.46 608.89 1.44 600.23
3.91 634.69 0.88 629.15
2.38 678.85 1.33 669.96
4.31 896.34 2.91 870.97
0.99 1249.80 0.95 1238.00
4.50 1493.61 2.30 1460.00
4.59 1594.88 2.06 1562.70

0.41 5
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Fig. 6. Comparison of the driving point mobility calculated by MSTMM and FEM.

f

Fig. 8. Driving point mobility of the combined system with different damping layer
loss factors: near the 5th resonance peak; driving point mobility of the host beam
without ABH-DVA acts as a reference.
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tor of the damping layer is set as g2 ¼ 0:3 as indicated in Table 1
alongside other system parameters.

Fig. 7 shows that, with the introduction of the tree-shaped ABH-
DVA, most of the resonance peaks are suppressed except for the
first two ones, indicating that the ABH add-on can effectively sup-
press the vibration of the host beam. Based on the peak vibration
suppression, the resonance peaks can be divided into four cate-
gories: resonance peak reduction without splitting (e.g., 4th and
5th ones), resonance peak reduction with splitting (e.g., 3rd and
7th ones), low frequency resonance peaks with almost no changes
(e.g., 1st and 2nd ones), and resonance peaks without obvious
vibration reduction (e.g., 6th one). To investigate the underlying
physical mechanisms, some typical peaks are selected and
scrutinized.

For the first category, the mobility variation of the 5th reso-
nance peak with different loss factors is shown in Fig. 8. It can be
seen that, without damping, the frequency position and mobility
amplitude at the peak hardly change. A damping increase leads
to a reduction of the mobility amplitude with gradually broadened
bandwidth. Therefore, this peak reduction can be attributed to the
increased modal damping with the introduction of the ABH-DVA
attached with a damping layer, which can be classified as ‘‘damp-
ing dominated”[14].

Examining the variation of the 3rd resonance peak as an exam-
ple of the second category, the original resonance peak is obviously
split into two peaks, similar to a conventional single DOF-DVA. This
is due to the strong coupling/interaction between the ABH-DVA
and the host beam at this frequency where their eigenfrequencies
match. Gradually increasing the loss factor of the damping layer,
the amplitudes of the resonance peaks decrease rapidly before
reaching a smooth and flattened region (Fig. 9), while the response
f

Fig. 7. Driving point mobility of the host beam with and without tree-shaped ABH-
DVA.
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curves at different loss factors intersect at two fixed points P and Q,
satisfying the well-known fixed-point theory [39] of conventional
DVAs. The modal loss factor at this frequency is significantly
enhanced from about 0.001 to 0.04, as to be further demonstrated
later in Fig. 15. The peak reduction at this point is thus the result of
the combined effect of strong interaction and enhanced damping
[14].

However, for the same damping case ðg2 ¼ 0:3Þ, the decrease in
amplitude of the 5th resonance peak (14 dB, Fig. 8) is much smaller
than that of the 3rd resonance peak (28 dB, Fig. 9). This means the
vibration reduction under the frequency matching condition is
substantially increased. To further investigate the physical
mechanisms behind the difference in vibration reduction, the
vibration energy at different parts of the combined system is
investigated. To clarify the effect of structural interaction alone,
the damping layer loss factor g2 is set to zero to avoid the effect
of energy loss. The kinetic energy of the host beam EHost and that
of the ABH-DVA EABH�DVA (ignoring the vibration energy of the
connector due to its much smaller vibration energy relative to that
of the ABH unit and the host beam) at these two resonant
frequencies are calculated. The associated kinetic energy ratio
C ¼ 10 log EABH�DVA=EHostð Þ is thus obtained, are shown in Fig. 10.
The spatial distributions of the associated root mean square
(RMS) velocity at these two frequencies are shown in Fig. 11.

Fig. 10 shows that C3rd (0.73 dB) is about 9 dB higher than
C5th (-8.25 dB). Therefore, a greater amount of vibration energy is
transferred from the host beam to the ABH-DVA due to the strong
interaction between them when their eigenfrequencies are
matched. Meanwhile, Fig. 11 shows that, for both frequencies,
the velocity amplitude at the ABH tapered section is much higher
f

Fig. 9. Driving point mobility of the combined system with different damping layer
loss factors: near the 3rd resonance peak; driving point mobility of the host beam
without ABH-DVA acts as a reference.
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Fig. 10. Kinetic energy ratio of ABH-DVA to that of the host beam near the (a) 3rd and (b) 5th resonance frequencies.

Fig. 11. Spatial distribution of the root mean square (RMS) velocity at the (a) 3rd and (b) 5th resonance frequencies.
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than that of the rest of the structure, indicating an ABH-specific
energy concentration in both cases, thus leading to a significant
enhancement of the system damping at both frequencies.
However, the velocity amplitude of the ABH tapered section at
the 3rd resonance frequency (Fig. 11(a)) is much larger compared
with that of the 5th resonance frequency (Fig. 11(b)) due to the
strong interaction effect at the frequency matching conditions. As
a result, the energy concentrated in the ABH tapered part at the
3rd resonance frequency is much higher, resulting to a more signif-
icant damping increase and vibration reduction.

For the third category, exemplified by the 1st resonance peak,
the original resonance peak does not drop when the ABH-DVA is
f

Fig. 12. (a) Driving point mobility of the combined system with different damping laye
without ABH-DVA acts as a reference. (b) Spatial distribution of root means square (RM

f

Fig. 13. (a) Driving point mobility of the combined system with different damping layer
the host beam without ABH-DVA acts as a reference. (b) Root means square spatial dist
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added, even with a very large damping loss factor of the layer
(Fig. 12(a)). To understand the reason for the absence of energy
loss increase in the system, the spatial distribution of the RMS
velocity of the combined system at this frequency (f ¼ 35 Hz) with
g2 ¼ 0:9 is shown in Fig. 12(b). One can see that no local modal
response is excited in the tapered part of the ABH unit and the
whole ABH unit acts as a rigid body moving with the host beam.
This is because this frequency is well below the threshold fre-
quency (f et) at which the ABH effect starts to take systematic
effects [40], featuring a sudden increase of the modal loss factor
of the ABH structure. This typically happens when the length of
the tapered profile LABH gets close to the quarter wavelength of
r loss factors: near the 1st resonance peak; driving point mobility of the host beam
S) velocity at the 1st resonance frequencies (f ¼ 35 Hz) with g2 ¼ 0:9.

loss factors at the 1st resonance peak frequency matching; driving point mobility of
ribution of velocity at the 1st resonance frequencies (f ¼ 34:5 Hz) with g2 ¼ 0:9.
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the incoming waves estimated over the homogeneous region of the

beam at f et , i.e., LABH ¼ 0:25� 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh2

=12q 2pf etð Þ24
q

. Here f et ¼ 692
Hz. Hence at this frequency, the modal loss factor of the system
hardly increases as to be further quantified in Fig. 15. Actually,
the ABH acts as a rigid mass added to the host beam so that the res-
onance frequency of the system shifts to a lower frequency, with
the amplitude of the resonance peak nearly unchanged.

To further demonstrate whether low frequency resonance
peaks below f et can be reduced when strong structural interaction
f

Fig. 14. The driving point mobility near the 6th resonance peak after changing the
installation position; driving point mobility of the host beamwithout ABH-DVA acts
as a reference.

f
f

Fig. 15. Loss factors of different systems: the host beam alone, tree-shaped ABH-
DVA, combined system (all fixed-free,g2 ¼ 0:9), and the configurations of different
system elements are the same as those in Fig. 7.

f
Fig. 16. Comparison of modal loss factors between non-gradient tree-shaped ABH-DVA
damping material.

9

is present, a frequency matching condition is created by adjusting
the eigenfrequency of ABH-DVA via increasing the size of the con-
nector hc while keeping the ABH unit unchanged. When hc ¼ 1
mm, frequency matching occurs at the first resonance peak, as
shown in Fig. 13(a). The corresponding structural deformation is
plotted in Fig. 13(b).

Fig. 13(a) shows that when the eigenfrequency of the host beam
matches that of the ABH-DVA, the first resonance peak splits into
two with their amplitudes reduced by approximately 5 dB and
12 dB respectively. It is noted that this vibration reduction varies
little with the increase of damping loss factor. Fig. 13(b) shows that
the ABH unit is moving as a whole like a single degree of freedom
dynamic vibration absorbers (SDOF-DVA), with most of the vibra-
tion energy transferred from the host beam to the upper branches
of the ABH-DVA. So, the driving point mobility amplitude
decreases. The associated mechanism can thus be attributed to a
pure ‘‘interaction-dominated” phenomenon and the loss effect of
the damping layer could hardly work due to the little deformation
of the ABH at such a low frequency below f et .

For the fourth category exemplified by the 6th resonance peak,
no vibration reduction can be achieved. This is because the instal-
lation position of ABH-DVA (0.6L) is near a nodal position of the
6th-order transverse vibration mode of the host beam, making it
difficult to generate energy transfer from the host beam to ABH-
DVA [5,14]. The vibration reduction effect can be achieved by
changing the installation position, as shown in Fig. 14, where the
ABH-DVA installation position is moved to 0.55L to successfully
entail a vibration reduction of the resonance peak.

The above analyses on the amplitude drop of different types of
formants indicate that the observed phenomena are largely related
to ABH characteristics. To better illustrate this point, the modal
distribution, and the corresponding loss factors of the host beam
alone as a uniform beam, the ABH-DVA and the combined system
are shown in Fig. 15. It can be seen that the modal loss factor of the
tree-shaped ABH-DVA is small at low frequencies. From about
600 Hz onwards, the loss factor increases abruptly to a higher level.
This frequency starting from which the loss factor increases
abruptly is basically consistent with the f et proposed by Denis
et al. [40]. That is, with the addition of the ABH add-on, the loss fac-
tor of the combined system increases substantially near and above
f et , where a significant vibration reduction effect can be achieved
with less damping material. Especially, when the eigenfrequencies
of the host beammatch those of the ABH-DVA, the loss factor of the
combined system is also significantly enhanced. Note that in this
section, the kinetic energy ratio, the velocity spatial distribution
and loss factor figures, Figs. 10, 11, 12(b), 13(b) and 14 are from
, gradient tree-shaped ABH-DVA and unilateral ABH-DVA with the same mass and
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f
Fig. 17. Driving point mobility of the host beam with non-gradient tree-shaped, gradient tree-shaped and unilateral ABH-DVAs for different dimension of the host beams,
with that of same host beam without ABH-DVA as a reference: (a)L ¼ 0:6 m (b)L ¼ 0:72 m and (c)L ¼ 0:84 m, and the configurations of different DVA are the same as those
used in Fig. 16.
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COSMOL FEM to offer a better visualization. All the other figures
are based on the MSTMM.

4. Robust low-frequency and broadband vibration reduction

4.1. ABH-DVA for low-frequency and broadband vibration mitigation

Previous analyses demonstrate that the ABH-DVA can entail
systematic vibration reduction above its threshold frequency,
while the effect is less obvious when frequency matching condi-
tions are not satisfied due to the limited amount of concentrated
vibration energy. Besides, at low frequencies below or near thresh-
old frequency, where the ABH effect is poor, it is difficult to achieve
effective vibration reduction by relying solely on the ABH or DVA
effect. However, through a combined control of ABH effect and
strong interaction of DVA, vibration reduction effect can be greatly
enhanced.

This understanding alludes to the possibility of increasing the
modal density of the DVA so that more ABH-DVA’s eigenfrequen-
cies can match with those of the host beam to generate better
vibration reduction effects. To demonstrate this, low-frequency
broadband vibration reduction in the range of 25 Hz-2500 Hz is
targeted with the help of a tree-shaped ABH-DVA containing four
branches of ABH unit. First of all, the threshold frequency f et of
the ABH-DVA is set to be equal to the lower bound of the con-
cerned frequency range, i.e. 25 Hz. A simple way is to adjust the
length of the tapered part LABH of each ABH branch by the rule of
thumb provided by Denis et al. [40]:

LABH ¼ 0:25� 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh2

1=12qð2pf etÞ2
4
q

ð4:1Þ
This yields LABH ¼ 260 mm when f et ¼ 25 Hz.
As a result, the longer tapered section of ABH lowers the thresh-

old frequency and increases the number of local modes at low
frequencies, especially in the present tree-shaped configuration.
This would favor the eigenfrequency matching between the DVA
and the main structure. This is demonstrated by Fig. 16, which
Fig. 18. (a) Experimental set-up, (b) test principle, and (c) the frequency dependence of
20℃ [41].
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compares the loss factors of the proposed tree-shaped ABH-DVA
of two types with those of the unilateral counterpart. The first type
is a non-gradient tree-shaped ABH-DVA with four identical ABH
units (L1 ¼ L2 ¼ 50 mm), and the second type is a gradient tree-
shaped ABH-DVA with gradiently and linearly varied branch length
(L1 ¼ 75 mm, L2 ¼ 25 mm), with the taper length LABH of both types
260 mm as calculated by Eq. (4.1). The unilateral ABH-DVA has
only one ABH branch whose relevant sizes L1, h1 and LABH are twice
as large as those of the non-gradient tree-shaped ABH-DVA, with
other parameters being kept the same as those in Table 1. The mass
and damping materials of the above three ABH-DVAs are kept the
same, with g2 ¼ 0:6.

Fig. 16 shows that the loss factors of proposed non-gradient
tree-shaped, gradient tree-shaped and unilateral ABH-DVAs are
all high in the frequency range from 0 Hz to 500 Hz. For the same
additional weight and damping material of the ABH-add on, the
two types of tree-shaped ABH-DVAs exhibit much higher modal
density than the unilateral one, especially the gradient tree-
shaped ABH-DVA, which increases the chance of frequency match-
ing. Thus, the tree-shaped ABH-DVA, especially the gradient one, is
expected to have better vibration reduction performance, which
will be demonstrated in the following section.

4.2. Robust vibration reduction for different host structures

To verify the vibration reduction effect of the gradient tree-
shaped ABH-DVA and its robustness in coping with structural
changes in the host structure, the two types of tree-shaped
ABH-DVAs are installed on three different host beams. At the same
time, the unilateral ABH-DVA combined system with the same
mass and damping material is taken as a reference for comparison
in Fig. 17.

Fig. 17 shows that for the three different host beams, these two
tree-shaped ABH-DVAs provide good vibration reduction for
almost all resonance peaks in the range of 25 Hz-2500 Hz (except
for some resonance peaks due to the installation position). Among
them, the gradient tree-shaped ABH-DVA produces a minimum
the Young’s Modulus and (d) the associated loss factor of the 3MTM F9473PC tape at
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reduction of 21.6 dB and an average of 27.3 dB, slightly better than
non-gradient tree-shaped ABH-DVA with a minimum reduction of
19.9 dB and an average of 26.4 dB. Both tree-shaped ABH-DVAs far
outperform their unilateral counterpart, especially in the very low
frequency range. This again confirms that the rich dynamics of the
tree-shaped ABH-DVA facilitate the creation of better frequency
matching with the host structure, which in turn produces com-
bined damping-controlled and strong interaction-controlled vibra-
tion reduction. The fact that no parameter tuning is needed to
accommodate different host structures also demonstrates the
robustness of the proposed DVAs.

5. Experimental validations

Experiments were then conducted to verify the proposed
MSTMM model and the predicted low-frequency and broadband
vibration reduction effects. The experimental setup and the test
principle are shown in Fig. 18(a) and (b). A tree-shaped ABH-DVA
was manufactured through the electro discharge machining
method. Both the host beam and the ABH-DVA are made of 7050
aluminum alloy, which has an excellent strength-to-weight ratio.
A multilayered 3MTMF9473PC adhesive transfer tape with a total
thickness of merely 1.04 mm surface-coats the tapered portion of
Fig. 19. Comparison of the measured driving point mobility with the predicted one. (a) h
DVA.

Fig. 20. Comparison of the measured driving point mobility of t
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the ABH-DVA. The frequency-dependent Young’s modulus and
the loss factor of the tape [41] at the room temperature (20 �C)
are used in the theoretical model, as shown in Fig. 18(c) and (d).
Other geometrical and material parameters of the combined
systems are: h ¼ 16 mm,L ¼ 650 mm;h1 ¼ 3:36 mm, h0 ¼ 0:49
mm, LABH ¼ 260 mm, L1¼ L2 ¼ 70 mm; hc ¼ 2:95 mm, Lc ¼ 15:9
mm; qa ¼ 2800 kg/m3, Ea ¼ 70:3Gpa and q ¼ 1012 kg/m3. All
structural components have the same width of 20.5 mm.

The host beam was mounted on a rigid metallic clip with its
other end free, mimicking a cantilever beam or clamped-free
boundary conditions. The attachment position of the ABH-DVA
was 60 %L from the clamped end of the host beam. The host struc-
ture was excited by a sinusoidal sweep signal at the free end using
an electromagnetic shaker (JZK-5). An impedance head (CL-YD-
331) with combined force and acceleration sensors was used to
measure the input force and the acceleration at the driving point,
which were amplified by a charge amplifier (YE5857A-10). The
shaker, the transducers and the amplifier are all from the Sinocera
Piezotronics, Inc.

The driving point mobilities of the host beam with and without
the tree-shaped ABH-DVA are shown in Fig. 19. Generally, a good
agreement is observed between the predicted results using
MSTMM and the measured ones, demonstrating the correctness
f

f

ost beam without tree-shaped ABH-DVA, and (b) host beam with tree-shaped ABH-

f
he host beam with and without the tree-shaped ABH-DVA.
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of the proposed method. The slight left-shift of the measured
results from the theoretical ones could be attributed to that the
Euler-Bernoulli beam theory used in theoretical model neglects
the rotational inertia and shear deformation. To better
demonstrate the vibration reduction effect of the ABH-DVA, the
comparison of the measured driving point mobility of the host
beam with and without the tree-shaped ABH-DVA are shown in
Fig. 20. It can be observed that, with the introduction of the tree-
shaped ABH-DVA, all resonant peaks are suppressed within the
entire frequency range concerned, demonstrating the low-
frequency and broadband vibration reduction effects of the pro-
posed ABH-DAV design.
6. Conclusions

This study reports the development of an efficient and flexible
tool for the simulation and analysis of complex ABH structures,
alongside the proposal of a novel tree-shaped ABH-DVA for the
mitigation of structural vibration.

An analytical dynamic model based on a multibody system
transfer matrix method (MSTMM) is established for dealing with
a vibrating structure coupled with an ABH cluster. The MSTMM
consists in replacing the global dynamic equations with low-
order transfer equations, which features high computational speed,
and flexible computational implementation. Using the method,
eigenvalues and the steady state vibration response of the com-
bined system can be obtained. The method is demonstrated and
validated by COMSOL finite element simulation results of a com-
bined system composed of a host beam structure with a tree-
shaped ABH-DVA.

The vibration reduction mechanisms of the tree-shaped ABH-
DVA are investigated in terms of the vibrational energy ratio and
vibration spatial distribution of the combined system. Results
show that in contrast to previous ABH structures, the ABH-DVA
as an add-on device could reduce vibration of the host beam both
above and below its threshold frequency (TF) through three differ-
ent physical processes. Below the TF, ‘‘interaction-dominated”
mechanism prevails since the ABH effects are minimal due to the
absence of its local deformation and the ABH-DVA basically acts
as a SDOF DVA. Vibration reduction takes place when frequency
mating condition is satisfied. Above the TF, the ABH unit starts to
deform to produce resonant local modes in the tapered section.
As a result, a thin layer of damping material can produce consider-
able energy loss owing to the emergence of the ABH effects. For the
unmatched frequencies, the vibration reduction is caused by
‘‘damping-controlled” mechanism or enhanced modal damping
due to the ABH-specific energy concentration phenomenon. For
the matched frequencies, a greater amount of vibration energy is
trapped into the ABH unit due to strong interaction, so the same
amount of damping could produce much higher vibration reduc-
tion due to ‘‘combined interaction and damping” mechanism.

The efficacy of the tree-shaped ABH-DVA for low frequency and
broadband vibration reduction can be ensured by designing its
threshold frequency as the lower limit of the targeted frequency
range. This would create abundant local modes inside the ABH
units with high loss factors. Considering the denser modes of pro-
posed tree-shaped ABH-DVAs compared with the unilateral coun-
terpart within the same frequency range, the former delivers
extraordinary vibration reduction (minimally 19.9 dB and
21.6 dB respectively for non-gradient and gradient cases studied
here) within a broad and low frequency range (25 Hz–2500 Hz),
outperforming the latter with the same added weight and damping
material. The rather consistent vibration reduction effects
observed on three different host beams demonstrate the robust-
ness of the proposed DVA to cope with structural changes in the
13
host structure without tedious tuning process that is usually
required by conventional DVAs. The proposed theoretical model
using MSTMM and the low-frequency broadband vibration reduc-
tion effect are also validated by experimental results.

In a broader sense, this research offers a novel and general
approach, alongside the simulation and analysis method, for the
design and research of more complex ABH structures with various
structure components and topologies.
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