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Abstract Subjected to high level forcing, flexible

and curved beams exhibit pronounced geometrical

nonlinearities. In particular, intrinsic nonlinearities of

cantilevers are different from their counterparts with

end-constrained boundaries and the combination of

the enhanced nonlinear-inertia effects with initial

curvature creates harsh demand on the modeling,

numerical simulation and understanding of associated

physical phenomena. This paper investigates the

salient nonlinear features in a curved cantilever beam,

with particular attention paid to the inertia-induced

effects through both linear and nonlinear analyses. An

inextensible condensation model, with the considera-

tion of the initial curvature, is proposed based on a

geometrically exact model for an Euler–Bernoulli

cantilever beam. The free boundary of the cantilever

gives rise to more significant longitudinal motion,

which increases the inertia effects in the beam

vibration which is in turn enhanced by the initial

curvature. Specific techniques are proposed to numer-

ically implement the developed model with increased

accuracy and robustness. Numerical simulations are

then conducted to validate the proposed model

through comparisons with the finite element method,

examine the assumptions underpinning the model and

explore the salient physical features, in particular the

inertia-induced effects in both linear and nonlinear

cases. Results show a decrease in the natural frequen-

cies due to the initial curvature effect, a transition of

the first mode from hardening to softening caused by

enhanced curvature-induced inertia effect, and a

pronounced asymmetry of the higher order modes

with respect to frequencies.

Keywords Geometrical nonlinearities � Curved
cantilever beam � Inextensible model � Nonlinear
inertia

1 Introduction

The wide use of lightweight and flexible structures in

engineering applications has aroused persistent inter-

est in studying their intrinsic nonlinear behaviors.

Among various types of basic structural elements,

beam-like structures with initial curvature are of

particular interest to the scientific community, exem-

plified by rotor blades [1], buckled beams [2], thin-

walled composite beams [3], imperfect micro-beams

[4] and shallow arches [5, 6], etc. Their highly flexible
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and thin-walled nature usually results in large ampli-

tude vibration which gives rise to significant geomet-

rical nonlinearity and leads to rich and complex

nonlinear dynamic behaviors which are absent in

linear systems. Different from other types of nonlin-

earities such as mechanical or contact nonlinearity,

geometrical nonlinearity is distributed over the entire

structure, which makes the problem more compli-

cated. While the literature provides rather compre-

hensive knowledge on the source of intrinsic

nonlinearities as well as the resultant dynamic behav-

iors such as hardening/softening phenomena [7],

existing condensation models are mostly associated

with specific boundary condition [8, 9]. The so-called

condensation model couples multi-dimensional inter-

nal forces or displacements to form one governing

equation with explicit nonlinear terms. Moreover, the

consideration of the initial curvature creates additional

challenges in both system modeling, numerical imple-

mentation and the understanding of nonlinear phe-

nomena with increasing complexities, such as the

hardening-to-softening transition of the first mode in a

shallow arch [6].

The issue has been predominantly addressed on

clamped–clamped beams with initial curvature

[3, 5, 6, 10]. The nonlinear stretching is an intrinsic

nonlinearity feature specific to a clamped–clamped

beam due to constrained ends. Among several contri-

butions, the classical von Karmanmodel [11–15], with

axial stain truncated to quadratic terms, was developed

and applied to geometrical nonlinearity analyses in a

straight configuration [16, 17]. This analytical model

combines the membrane and bending forces, in which

the internal longitudinal force is generated by the end-

constraint-induced tensile rigidity. In the proposed

treatment, the axial inertia term is deemed negligible

and therefore omitted [7, 18]. Such models lead to a

resultant nonlinear force described by cubic terms

which dominate the hardening effects on all vibration

modes [19]. Considering an initial curvature, a mod-

ified von Karman model [20] was proposed through

two separate equations: one on the transverse motion

and another on longitudinal force inside a beam.

Analyses show quadratic terms which cause the

softening phenomenon of vibration modes [20, 21].

From a different perspective, by integrating all

nonlinear terms into one equation, Nayfeh and Mook

[16] and Lacarbonara et al. [22] developed an

integral–differential condensation model with the

consideration of nonlinear stretching. The work

clearly illustrates that the initial curvature generates

quadratic terms instead of cubic terms in the system

equation. The ultimate hardening/softening is deter-

mined by the domination level of these competing

terms. Meanwhile, Yi et al. [23] investigated the

nonlinear dynamic behaviors and modal interactions

in the presence of elastic supports, in which harden-

ing/softening can coexist. Qiao et al. [6] utilized a

refined multi-scale method to simulate the hardening–

softening transition with the consideration of the

initial curvature. Analyses show that a near-transition

region appears where the competing nonlinearities

from hardening/softening balance each other. Mean-

while, Ghayesh et al. [4] exploited coupled stress

tensor in a micro-beam structure, with results showing

that the softening induced by the initial curvature can

turn into hardening with increasing forcing level.

Different with end-constrained structures, i.e.,

clamped or pinned boundaries, a free boundary in a

cantilever beam would cause the shortening effect [9],

which creates intriguing problems. More specifically,

the strain along the neural axis of the beam becomes

zero and the coupling between the transverse and

longitudinal motions of the beam is enhanced.

Together with the initial curvature, significant nonlin-

ear inertia effect is expected to surge to significantly

impact on the nonlinear dynamic behaviors of the

system. Note this inertia effect has traditionally been

ignored in an end-constrained beam. Meanwhile, as to

be illustrated later, the consideration of the inertia

effect also creates additional difficulties in solving the

system dynamic equations. Past attempts to address

similar problems were only based on straight can-

tilever beams using geometrically exact beam models

[1, 9, 24–27]. In particular, an inextensible condensa-

tion model on a straight cantilever beam

[7, 9, 26, 28–31] shows cubic nonlinear terms arising

from the nonlinear stiffness and nonlinear inertia,

whose relative dominance levels ultimately determine

the modal hardening or softening. In general, nonlin-

ear inertia effect is commonly considered to dominate

high frequencies in a uniform beam, which is

accountable for the modal softening [16], while

nonlinear stiffness has noticeable effects on the first

vibration mode through producing hardening effect, as

verified both theoretically [9, 28–30] and experimen-

tally [32–34]. More recently, Thomas et al. [29]

extended the inextensible model to a rotating
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cantilever beam and discussed distinctions between

von Karman’s theory and the inextensible model.

Considering the rotation-induced centrifugal force, a

reduced order model was applied to investigate the

hardening/softening phenomena. With increasing

rotating speed, the rotary effect, coupled with the

nonlinear stiffness and nonlinear inertia, results in a

hardening–softening transition for the first mode, and

an enhanced softening effect for higher order modes.

Meanwhile, Farokhi et al. [34] utilized a geometrically

exact model to investigate the scenario of extremely

large motion in cantilevers with experimental valida-

tions, and the reported results emphasized the defi-

ciency of the well-known truncated inextensible

model [9, 26] in this extreme case. Amabili et al.

[35] considered shear effects and rotary inertia, which

may become more important than nonlinear inertia in

a thick cantilever beam. Related studies investigated

pipes conveying fluid [36, 37], inextensible plates [38]

and other structures [39–43]. Exploiting existing

literature, it is felt that apart from a few analyses

using finite element models [44–46] and non-conden-

sation analytical models [47, 48] on curved can-

tilevers, there is a lack of inextensible condensation

model as well as a clear understanding of the inertia-

induced nonlinear features in an initially curved

cantilever beam.

The aforementioned challenges are also accompa-

nied by some specific needs and difficulties associated

with the numerical implementation of the model,

particularly in terms of discretization and numerical

solver development. In fact, proper numerical treat-

ments are needed to cope with the large deformation

and inertia-induced nonlinearity terms, which are

distributed over the entire structure. On account of this,

geometrical nonlinearities, from a modal viewpoint,

can be regarded as the result of nonlinear coupling of

linearmodes [7], which carry clear physical meaning in

real life and commonly used as discrete basis in modal

approach. The popular technique known as reduced-

order model (ROM) [7, 29, 49] can then be applied to

construct semi-discrete system equations to mimic/

simulate nonlinear complexity in a full order model.

Nonlinear frequency response (NFR) curves, back-

bones and nonlinear normal modes (NNMs) can be

numerically solved by asymptotic numerical method

(ANM) combined with harmonic balance (HB) method

[7, 29, 34, 49, 50]. This approach, thoughwidely used in

geometrical nonlinearity analysis with great success,

suffers from two drawbacks. The first one is related to

ROM, which usually requires a prohibitive number of

linear modes to reach convergence, most of them

having natural frequencies out of the frequency band of

interest. The second issue relating to ANM is the need

for recasting the nonlinear terms into quadratic order by

introducing auxiliary variables and additional equa-

tions, in which the second-order PDEs are transformed

to the first order, for which a sufficiently large number

of harmonics are required in harmonic balance proce-

dure [51]. As to be demonstrated later in this paper, both

limitations are detrimental for the problem to be

investigated in this paper, since both the free end of

the cantilever beam and its initial curvature would

jeopardize the applicability of these techniques.

Although conventionalHB continuationmethod (based

on alternating frequency/time procedure) [19, 52, 53]

can be directly applied to semi-discretized equations,

no attempt has been made so far to cope with nonlinear

inertia terms using this method, which is also one of the

problems to be addressed in this work through the

proposal of a dedicated numerical technique. The

generalized-amethod [54] (one of the time-integration

methods), which is conventionally used to confirm the

frequency domain results, is very time-consuming, and

such method is sensitive to geometrical nonlinearities

[29]. This problem also needs to be tackled, which is

accomplished in the later part of this paper by

introducing an operator splitting (OS) method in the

Newton iteration procedure.

Motivated by the aforementioned challenges, this

paper targets a threefold objective: (a) to propose a

geometrically exact inextensible condensation model

on a curved cantilever beam; (b) to modify the HB

continuation method and the generalized-a method in

iteration procedure on account of inertia terms and

(c) to explore salient nonlinear dynamic features of the

structure with particular emphasis on the effects of the

nonlinear inertia enhanced by the curvature and the

free boundary of the beam.

The rest of the paper is organized as follows. The

proposed theoretical formulation is first presented. A

set of modified numerical methods is then proposed to

cope with the numerical problems arising from the

inertia effects. The established model is compared

with a linear finite element (FE) model to validate the

linear features of the model on the one hand and to

assess the simplification assumptions being made in

the development of the nonlinear model so that its
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applicable range can be established on the other hand.

Discussions on the stiffness and inertia terms induced

by the initial curvature are then carried out. Numerical

analyses are then conducted to elucidate the harden-

ing/softening phenomena as well as the influence of

the initial curvature. Results show that the first mode

undergoes transition from hardening to softening with

increasing initial curvature, while the higher order

modes exhibit significant asymmetry with respect to

frequencies.

2 Inextensible condensation model with initial

curvature

We consider a highly flexible and initially curved

cantilever beam, which undergoes transverse flexural

vibration coupled to the longitudinal motion along its

length direction. Due to the free end, large deforma-

tion is induced which leads to non-negligible geomet-

rical nonlinearity and compelling nonlinear stiffness

and inertia effects. The initial curvature of the beam

would further enrich the nonlinear behaviors of the

structure as well as the complexity in their analyses.

After a brief recap on the geometrically exact model, a

novel inextensible condensation model for a cantilever

with initial curvature is developed in this section.

2.1 Recap on geometrically exact model

For the completeness of the paper, the geometrically

exact model is briefly recalled hereafter. As shown in

Fig. 1, three coordinate systems are adapted to

describe the geometric deformations of a curved beam

segment. As the reference frame, Cartesian coordinate

ab is used to define the local rotating coordinates xy

and ng. Before the beam segment is deformed, the

undeformed coordinate xy is fixed to the structure and

rotates in the plane alongside the initial curve of the

beam segment, whereas the deformed coordinate ng
specifies the segment motion with respect to xy. Their

unit vectors are denoted, respectively, by

ðia; ibÞ,ðix; iyÞ and ði1; i2Þ in the 2D plane. The location

of an arbitrary point p on the beam is defined as Dp ¼
Aia þ Bib in the ab coordinate, and the point q is Dq ¼
Dp þ D0

pds through infinitesimal distance ds, which

gives

ix ¼ D0
p ¼ A0ia þ B0ib; iy ¼ �B0ia þ A0ib ð1Þ

where ð�Þ0 ¼ oð�Þ=os is the derivative with respect to

the arclength s, and the module of ix follows A02 þ
B02 ¼ 1 whose first derivative follows

A0A00 þ B0B00 ¼ 0. The rotation angle between the

reference and the undeformed coordinates is u3

calculated by cosu3 ¼ ix � ia ¼ A0 and

sinu3 ¼ ix � ib ¼ B0, of which the derivative with

respect to s is the initial curvature k3,

k3 ¼ u0
3 ¼ A0B00 � B0A00 ð2Þ

Combining Eqs. (1), (2), and the above-mentioned

relations of ix, the derivatives of ðix; iyÞ write

i0x ¼ k3iy; i0y ¼ �k3ix ð3Þ

Unlike the conventionally global description of

displacements in the reference coordinate system, the

co-rotational frame fastens deformed beam segment to

the deformed coordinate without relative motion. The

local displacement is therefore described by (u, v),

which is the distance between ng coordinate with xy

coordinate. The end points p̂, q̂ of the deformed

segment are represented by Dp̂ ¼ Dp þ uix þ viy,

Dq̂ ¼ Dp̂ þ D0
p̂ds, based on which the unit vector i1

of the deformed coordinate is expressed by

i1 ¼
D0

p̂

1þ eð Þds ¼
1þ u0 � vk3

1þ e
ix þ

v0 þ uk3
1þ e

iy ð4Þ

where e is the axial strain along the undeformed

neutral axis, and i1 is orthogonal to i2, i.e., i1 � i2 ¼ 0.

Projecting i1 to xy axes and calculating its module, one

obtains
Fig. 1 Definition of coordinate systems and relationship

between the undeformed and deformed beam segments
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cos h3 ¼
1þ u0 � vk3

1þ e
; sin h3 ¼

v0 þ uk3
1þ e

ð5Þ

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u0 � vk3ð Þ2þ v0 þ uk3ð Þ2
q

� 1 ð6Þ

where h3 is the deformed angle between i1 and ix.

Eq. (5) shows that the initial curvature affects the

deformation of the beam through orthogonal compo-

nents like vk3, and then, causes changes in the bending

as well as the stretching properties different from a

straight beam.

A flexible and thin structure would experience large

deformation but small strain. In this case, it has been

demonstrated that [29] engineering strains, consistent

linearization of Green–Lagrange strains and Biot-

Jaumann strains [1, 55] are identical in an Euler–

Bernoulli beam. Consider a cantilever beam with a

length L, a cross sectional area A, moment of inertia I,

made of homogeneous and isotropic elastic material of

density q, Young’s modulus E. For the bending-

dominant oscillations, the normal strains e11,e22 and

shear strain e12 on the cross section write

e11 ¼ e� yh03; e12 ¼ e22 ¼ 0 ð7Þ

which gives the normal stress r11 ¼ Ee11. By inte-

grating the normal stress over the cross section A, the

longitudinal internal force F1 and the bending moment

M can be obtained as

F1 ¼
Z

A

r11dA ¼ EAe; M ¼ �
Z

A

r11ydA ¼ EIh03

ð8Þ

which can lead to the transverse internal force F2 ¼
�M0=ð1þ eÞ through moment balance equation by

neglecting the rotating inertia [9]. Since the acceler-

ations a ¼ ð€u; €vÞ are defined in xy coordinate, internal

forces are projected to ðix; iyÞ giving

F ¼ Fxix þ Fyiy
¼ F1 cos h3 � F2 sin h3ð Þix

þ F1 sin h3 þ F2 cos h3ð Þiy ð9Þ

Applying Newton’s second law dF ¼ mds � a to an

infinitesimal segment ds of an initially curved beam,

one has

F1 cos h3 � F2 sin h3ð Þ0�k3 F1 sin h3 þ F2 cos h3ð Þ
¼ m€u

ð10Þ

F1 sin h3 þ F2 cos h3ð Þ0þk3 F1 cos h3 � F2 sin h3ð Þ
þ fext
¼ m€v

ð11Þ

where m ¼ qA and fext is the external force applied to

the transverse direction of the beam. Note that the

above governing equations obtained by Newton’s

second law could also be derived from extended

Hamilton principle [56] for Euler–Bernoulli beam

vibrating in the xy plane. At the end of the curved

cantilever beam fixed at s ¼ L, boundary conditions

write

u ¼ v ¼ h3 ¼ 0; at s ¼ L;

Fx ¼ Fy ¼ M ¼ 0; at s ¼ 0:
ð12Þ

2.2 Shortening effect and assumptions made

for inextensible condensation model

Compared with an end-constrained beam, a cantilever

beam with a free boundary bears no axial strain along

its central line, called neutral line, i.e., e ¼ 0. The

longitudinal displacement is coupled with the trans-

verse displacement through Eq. (6) and expressed as

u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v0 þ uk3ð Þ2
q

� 1þ vk3 ð13Þ

u ¼ �
Z L

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v0 þ uk3ð Þ2
q

� 1þ vk3

� �

ds ð14Þ

by using uL ¼ 0 at the constrained end s ¼ L. Analyt-

ical solution of u is not available even though v is

known. We herein assume that in the bending

dominant oscillation, the transverse displacement v

and its derivative v0 have greater impact than uk3 on

calculation of the longitudinal displacement u in

Eq. (14). Omitting uk3 in the presence of v0 with

moderate initial curvature or local curvature (an

assumption whose validity and the applicable range

are to be assessed later), one has
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u � �
Z L

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v02
p

� 1þ vk3

� �

ds

�
Z L

s

1

2
v02 � vk3

� �

ds ð15Þ

by keeping those terms up to quadratic order through

Taylor expansion. Compared to a straight configura-

tion, the longitudinal displacement u reaches the first-

order magnitude because of the initial curvature effect,

which means that the coupled motion could be

enhanced, either by the magnitude of k3 or the curved

length. Considering the force-free condition Fx ¼ 0 at

s ¼ 0 and neglecting F1 sin h3 in the presence of

F2 cos h3 as a higher order term, the internal longitu-

dinal force, from Eq. (10), can be obtained as

F1 ¼
1

cos h3

Z s

0

m€uþ F2 cos h3k3ð Þdsþ F2 sin h3

� �

ð16Þ

Equation (16) shows the involvement of the non-

linear inertia in the beam vibration. Meanwhile, the

initial curvature as well as the curved length affect

both the nonlinear inertia and nonlinear stiffness.

Substituting Eqs. (15) and into Eq. (11), assuming a

constant initial curvature k3 and expanding all the

terms up to the cubic order, one has the full set of

condensed dynamic equation which governs the

vibration of the cantilever expressed as

Note the above equation contains all linear and

nonlinear effects in the system, which describes the

full dynamics of the system in themost comprehensive

and coupled manner. It is therefore the key equation to

be further exploited in this paper. More specifically,

the equation explicitly shows that stiffness, inertia,

and initial curvature interact with each other both

linearly and nonlinearly, giving rise to complex and

rich dynamics (to be demonstrated later). More

specifically, the first row (comprising the first four

terms) presents the linear stiffness k23ðEIvÞ
00 þ

k3½k3EIðv00 þ vk23Þ
	

	

s

0
� and inertia k3

R s

0
m
R L

s €vk3dsds

induced by the initial curvature. The second and the

third rows account for the nonlinear stiffness and

nonlinear inertia, respectively, cast into quadratic and

cubic order terms. The most significant stiffness terms

are connected to the local region of the structure,

whereas the double integral of inertia terms takes into

account the entire structure. It implies that inertia

effect increases with the curved length due its

increased portion participating in the vibration.

Quadratic order terms appear in the curved cantilever

beam, whose nonlinear features rise from the compet-

ing effects between the quadratic and cubic order

nonlinear terms, which is similar to an end-constrained

beam. However, nonlinear stiffness and inertia effects

competing inside quadratic order terms are also

responsible for the nonlinear dynamic responses.

m€vþ c _vþ EIv00ð Þ00þk23 EIvð Þ00þk3 k3EI v00 þ vk23

 �

	

	

s

0

h i

þ k3

Z s

0

m

Z L

s

€vk3dsds

þ

1

2
EIv02 v00 þ vk23 � k3


 �� 0þv02 EI v00 þ vk23

 �� 0þ2v0 k3EI v00 þ vk23 �

1

2
v02k3

� �
	

	

	

	

s

0

� �� �0

þk3

Z s

0

EI v00 þ vk23

 �

v0v00k3ds�
1

2
k3 k23EIv

02	
	

s

0

� �

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

� v0
Z s

0

m

Z L

s

_v02 þ v0 €v0 � €vk3

 �

dsds

� �0

�k3

Z s

0

m

Z L

s

_v02 þ v0 €v0

 �

dsds

¼ fext

ð17Þ
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3 Modified harmonic balance method

and generalized-a method

This section proposes an efficient numerical approach,

in frequency domain or time domain, respectively, to

implement and solve the afore-established model with

the consideration of the enhanced inertia effects. With

Fourier series truncated to limited terms, HB method,

combined with the continuation method, would allow

for the calculation of the nonlinear frequency response

by balancing the coefficients of the dominant har-

monic orders. However, as discussed in Introduction,

nonlinear inertia terms are usually handled in ANM by

transforming the second-order PDEs to the first order

through introducing additional equations, which

requires sophisticated mathematic treatment espe-

cially for systems with initial curvature. Besides,

analytical mode shape functions are seldom available

for complex structures, for which we have to resort to

FEM. Therefore, we hereafter combine the HB

continuation method with FEM. This turns out to be

possible since, thanks to the inextensible condensation

model, the nonlinear inertia terms are explicitly

expressed, which allows proper modifications on the

Jacobian matrix, as to be detailed in Sect. 3.1.

In a slightly different perspective, the generalized-a
method is often used in nonlinear analyses. However,

nonlinear systems usually require sufficiently small

time steps, which becomes exorbitantly demanding in

the present inertia-dominant system with initial cur-

vature. Thomas et al. [29] opined that time evaluations

should be carried out by using very small time steps

and stepped-sine excitation to reach convergent

results. This proved to be extremely time-consuming

(typically 9 million time increment in a single curve)

and sensitive to geometrical nonlinearities. To achieve

efficient simulation under the proposed modeling

umbrella, we propose a splitting technique in the

iteration stage of the Newton–Raphson method at each

time step, to be detailed in Sect. 3.2.

To discretize Eq. (17), the finite element method is

followed by Galerkin procedure to build semi-discrete

governing equation, with its element vector expressed

as

Z le

0

N½ �T m€vþ c _vþ EIv00ð Þ00
� 

dse ¼
Z le

0

N½ �T fextdse

�
Z le

0

N½ �T fint v; v0; v00; €v; _v0; €v00; k3

 �

dse

ð18Þ

where ½N� is the cubic shape function of Hermitian

element containing four degrees of freedom (DOFs),le
is the element length, superscript T is the vector

transpose operator. The continuous variable v in an

element is approximated by v ¼ ½N�½de�, in which

½de� ¼ ½v0 v00 v1 v01�
T
is the element vector of the DOF.

The global mass, damping as well as stiffness matrices

are then constructed for left side terms of Eq. (18),

with the clamped boundary conditions imposed [57].

All other portions including curvature-induced linear

and nonlinear terms are gathered into a resultant force

fint vector, which allows for the treatment of piece-

wise constant initial curvature for locally curved

configuration.

3.1 Modified harmonic balance method

Based on Eq. (18), the corresponding general non-

autonomous nonlinear dynamic system with N DOFs

is cast into the following general form

M€xþ C _xþKxþ f int x; _x; €xð Þ ¼ fext x; tð Þ ð19Þ

in which all internal force terms are regrouped in to

f int x; _x; €xð Þ,xðtÞ and f ¼ fext x; tð Þ � f int x; _x; €xð Þ in

Eq. (19) are approximated by Fourier series truncated

to the NH-th harmonic as

x tð Þ ¼ cx0
ffiffiffi

2
p þ

X

NH

k¼1

sxk sin kxtð Þ þ cxk cos kxtð Þ

 �

ð20Þ

f tð Þ ¼ cf0
ffiffiffi

2
p þ

X

NH

k¼1

sfk sin kxtð Þ þ cfk cos kxtð Þ
� �

ð21Þ

The coefficients are gathered into the ð2NH þ
1ÞN � 1 vectors as

z ¼ cx0

 �T

sx1

 �T

cx1

 �T � � � sxNH

� �T

cxNH

� �T
� �T

ð22Þ
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b ¼ cf0

� �T
sf1

� �T
cf1

� �T
� � � sfNH

� �T
cfNH

� �T
� �T

ð23Þ

Substituting Eqs. (20–23) into Eq. (19) and follow-

ing the standard Fourier–Galerkin balance procedure,

a new target function h [52] depending on Fourier

coefficients gives

h z;xð Þ ¼ A xð Þz� b zð Þ ¼ 0 ð24Þ

with

A ¼ r2 �Mþr� Cþ I2NHþ1 �K ð25Þ

where A is ð2NH þ 1ÞN � ð2NH þ 1ÞN matrix for

linear system;� stands for the Kronecker tensor

product;r and r2 are gradient and Laplace operator

matrices defined in [52]. The above equation is settled

once the force coefficient vector b is provided.

Through displacement–force relationship in time

domain, alternating frequency/time method [58] and

trigonometric collocation method are applied through

Fast Fourier Transform (FFT) procedure, which gives

z �!FFT�1

~x ¼ C xð Þz ! ~f�!FFT b zð Þ ¼ Cþ xð Þ~f ð26Þ

where ~x ¼ ½x1ð~tÞ � � � xNð~tÞ � and ~f ¼ ½f1ð~tÞ � � � fNð~tÞ �
contain NT time samples ~t ¼ ½t1 � � � tNT

� in each DOF,
and the superscript ? stands for the Moore–Penrose

pseudoinverse. The linear operator matrix for inverse

Fourier transform of displacement writes

C xð Þ ¼ IN � 0 � ~t
� T

IN � sin x~t

 �� T

IN � cos x~t

 �� T � � �

h

IN � sin NHx~t

 �� T

IN � cos NHx~t

 �� T

i

ð27Þ

and similar matrices for velocity and acceleration are

_C xð Þ ¼ IN � 0 � ~t
� T

IN � x cos x~t

 �� T

IN � x � sin x~t

 �� T

h

� � �

IN � NHx cos NHx~t

 �� T

IN � NHx � sin NHx~t

 �� T

i

ð28Þ

€C xð Þ ¼ � IN � 0 � ~t
� T

IN � x2 sin x~t

 �� T

IN � x2 cos x~t

 �� T � � �

h

IN � NHxð Þ2 sin NHx~t

 �� T

IN � NHxð Þ2 cos NHx~t

 �� T

i

ð29Þ

The Newton–Raphson method is utilized to reach

the final solution iteratively through the calculation of

the Jacobian matrix, which has impact on stability and

accuracy of solution specific to inertia-induced fea-

ture. Using the chain rule, the Jacobian matrix of

Eq. (24) with respect to z is written as

oh

oz
¼ A� ob

oz
¼ A� ob

o~f

o~f

oz
¼ A� ob

o~f

o~f

o~x

o~x

oz
þ o~f

o _~x

o _~x

oz
þ o~f

o€~x

o€~x

oz

 !

¼ A� Cþ o~f

o~x
C� Cþ o~f

o _~x
_C� Cþ o~f

o€~x
€C

ð30Þ

which includes independent variables related to

resultant forces fðx; _x; €xÞ, and inertia effects associ-

ated with entire DOFs. Since the stiffness terms are

only connected to adjacent DOFs, the matrix o~f=o~x is

sparse and diagonally dominant, which usually has

analytical formulation [19]. On the contrary,o~f=o _~x and

o~f=o€~x are dense matrices because of the integral term

in Eq. (17) and numerically approached by finite

difference method. However, this approximation

approach would slow down the convergence of

iteration. To work out partial equations both efficiently

and precisely, the eighth-order central difference

scheme is adopted to calculate o~f=o~x,o~f=o _~x and

o~f=o€~x. The predicted solution is then corrected by

Moore–Penrose continuation method. This is formu-

lated as

y i;jþ1ð Þ ¼ y i;jð Þ �G�1
y; i;jð ÞG i;jð Þ

v i;jþ1ð Þ ¼ v i;jð Þ �G�1
y; i;jð ÞR i;jð Þ

ð31Þ

with

G ¼ h
0

� �

; J ¼ hz hx½ �; Gy ¼
J
vT

� �

;

R ¼ Jv
0

� � ð32Þ

by introducing optimization tangent vectors initialized

as v i;1ð Þ ¼ ti, and y i;jð Þ ¼ ½ z i;jð Þ x i;jð Þ �T .

3.2 Operator splitting (OS) technique

for the generalized-a method

Time-integration methods are often used in dynamic

simulation of cantilevers [29, 30, 59] and additionally

become a basic part of more sophisticated algorithms

like nonlinear normal modes (NNMs) [60]. In the

present case with the presence of initial curvature, the

generalized-a method is utilized to calculate the time
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history to confirm the frequency domain results.

Detailed derivation of this method can be found in

Appendix 1.

At each time step, the residual function is calculated

as shown in Eq. (55), and approaches to zero in an

iterative manner until converged results are reached.

However, it is found that the numerical calculation is

not stable due to the singularity of Jacobian matrix,

which is triggered and amplified by the substantial

inertia effects in the beam configuration under inves-

tigation here. To tackle the problem of avoiding

singular iteration matrix, an OS technique is proposed

here. The rationale behind is taking apart a complex

function into several simple ones which are stable and

easy to solve. The sequential splitting idea is herein

proposed and presented as follows.

For k þ 1 th iteration at the time step iþ 1, the

residual vector is expressed as

rkþ1
iþ1 � rkiþ1 þ SL þ 1� af


 � ofknl
ox

þ
c 1� af

 �

bDt
ofknl
o _x

þ 1� am
bDt2

ofknl
o€x

� �

Dxkiþ1 ¼ 0

ð33Þ

Taking apart the nonlinear Jacobian matrix and

dividing the iteration into 3 steps, by considering the

first step k þ 1=3, the residual vector writes

r
kþ1

3

iþ1 � rkiþ1 þ SL þ 1� af

 � ofknl

ox

� �

Dxkiþ1 ¼ 0 ð34Þ

to obtain the updated value x
kþ1=3
iþ1 before calculating

the second step k þ 2=3,

r
kþ2

3

iþ1 � r
kþ1

3

iþ1 þ SL þ
c 1� af

 �

bDt
of

kþ1
3

nl

o _x

" #

Dx
kþ1

3

iþ1 ¼ 0

ð35Þ

By following the same procedure, the final stage

k þ 1 is

rkþ1
iþ1 � r

kþ2
3

iþ1 þ SL þ
1� am
bDt2

of
kþ2

3

nl

o€x

" #

Dx
kþ2

3

iþ1 ¼ 0 ð36Þ

If jjrkþ1
iþ1 jj � e(e ¼ 10�6), converged results are

reached, and one can proceed to the next time step.

Overall, this method divides the original expression

into three different nonlinear sub-problems, each

involving their respective nonlinear Jacobian matri-

ces, and the sub-problem is accordingly solved in

sequence. As such, while the Jacobian matrix involv-

ing nonlinear stiffness terms being generally

diagonally dominant, the ill-condition problem of

Jacobian matrix due to nonlinear inertia terms with

increasing geometrical nonlinearities is avoided and

emerged in the numerical solver. As a result, the

splitting procedure improves the accuracy, efficiency

and the robustness of the generalized-a method, as

demonstrated in Appendix 2.

4 Numerical results and analyses

4.1 Curvature-induced inertia/stiffness effects

in linear models

This section focuses on the verification of the

proposed model through examining the frequency

responses and mode shapes of cantilevers in linear

cases, to be used as a benchmark for the subsequent

nonlinear analyses. Consistent with the reference

solutions [29] provided for in a straight beam config-

uration, the same geometrical and material parameters

are used: length L ¼ 1 m, rectangular cross section

with a thickness h ¼ 0:005 m and width b ¼ 0:1m,

Young’s modulus E ¼ 104GPa and density

q ¼ 4400 kg=m3. When the beam is initially bended

to form an initial curvature, two additional parameters

are used for geometry description of the curved part:

level of the initial curvature k3 as defined in Eq. (2) and

the curved arc length lc starting from the free end tip of

the beam.

From slightly to largely curved configurations, four

cases are first examined as shown in Fig. 2:

(i)k3 ¼ 0:5p,lc=L ¼ 0:1; (ii)k3 ¼ 0:5p,lc=L ¼ 0:5;

(iii)k3 ¼ 0:5p,lc=L ¼ 1; (iv)k3 ¼ p,lc=L ¼ 1. These

Fig. 2 Definition of the curved configurations for cantilever

beam
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configurations are also used to clarify the application

range of the approximation used during the develop-

ment of the condensation model in Eq. (15). A free

boundary is imposed at s ¼ 0, and the other extreme

end of the beam is clamped at s ¼ L. A concentrated

harmonic excitation force with an amplitude F0 is

transversely applied at the free end tip of the beam.

Totally 20 uniform elements along the beam are

utilized in the proposed model for analyses, and 24

Euler–Bernoulli beam elements are used in the beam

interface of COMSOL software to provide linear

reference solutions with the consideration of the initial

curvature effect. For linear cases, a damping matrix

C ¼ gK=2pfi, proportional to the stiffness matrix with

a structural damping coefficient g of 0.005, is

introduced. Denoting the natural frequency of each

mode by fi, both methods give very consistent values

for the first four natural frequencies of the straight

cantilever beam, i.e., f1 ¼ 3:927 Hz,

f2 ¼ 24:644 Hz,f3 ¼ 68:907 Hz and f4 ¼ 135:03 Hz.

4.1.1 Linear frequency response

Linear frequency responses are first calculated using

different numerical strategies. The proposed model

utilizes the HB method with NH ¼ 1 and Newton

iteration z	 ¼ z� h�1
z h, where z	 is the accurate

Fourier coefficient vector when results are converged.

Calculated frequencies are equally spaced with Df ¼
2 Hz to cover the range up to 500 Hz. The calculated

Fig. 3 Linear FRFs at the free end tip. From a to d: configuration (i)–(iv), respectively
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point mobility of the beams is quantified in terms of

20 log10ð _v=F0Þ dB, where _v is the transverse velocity

defined in local xy coordinate. Figure 3 depicts the

calculated mobilities of both the straight and curved

beams with increasing initial deformation. For all four

configurations, results show nice agreement between

the results obtained from the proposed model and

COMSOL (Fig. 3a–d). Upon a very close examina-

tion, some barely noticeable differences, especially

when the initial deformation becomes severe (e.g.,

Fig. 3d for a demi-circle), exist but are all within an

acceptable error range. This thus validates the linear

part of the proposed model.

Cross figure comparisons between Fig. 3a–d,

alongside the comparison with the straight beam,

allow for the examination of the effects of the initial

curvature and the curved arclength on the dynamics of

the beams. It can be observed that the differences

between the curved beams and the straight beam

increase when the beam is more severely curved. By

increasing the curved portion of the beam (through

increasing either k3 or lc), natural frequencies gradu-

ally decrease for all modes. Taking the fourth natural

frequency as an example, it drops by 2.03 Hz, 6.53 Hz

and 19.03 Hz from Fig. 3b–d. Meanwhile, resonance

peaks also change with the frequency shift. It can be

seen that, compared with the straight beam, the first

resonance peak of the curved beam increases in

Fig. 3b but decreases again in Fig. 3c and d, and the

second to the fourth resonance peaks increase with

increased curvature/arclength. All these can be

attributed to the curvature, albeit still linear in the

present stage, as a result of the coupled motion

between the longitudinal and transverse

displacements.

4.1.2 Linear mode shapes

To further substantiate the above and explain the

underlying effects of the initial curvature, Fig. 4

shows the normalized mode shapes of the first three

modes in the four curved configurations (i)–(iv) (as

illustrated in Fig. 2). First of all, comparisons of mode

shapes show good agreement between the proposed

model and COMSOL simulation in terms of modal

deformation. Mode shapes, in terms of longitudinal

displacement u, are shown in the left column of Fig. 4.

It can be observed that the initial curvature effect

causes a larger portion of the beam to deform

longitudinally, especially within the curved portion.

The longitudinally deformed area expands for higher

order modes as shown from Fig. 4a–c. It can then be

surmised that this phenomenon, coupled with trans-

verse deformation of the beams, would in principle

create enhanced inertia effects. Moreover, initial

curvature also affects the transverse deformation, as

illustrated by the right column in Fig. 4, although

variation patterns would be mode-specific. For exam-

ple, the first mode (Fig. 4a) shows that the largest

displacement of configuration (iv) no longer occurs at

the free end tip of the beam but moves closer to the

middle when the initial deformation is large. The

second and the third modes, however, show reduced

deformation as compared to the tip when initial

curvature increases.

4.1.3 Examination of assumptions and effects

of curvature-induced linear stiffness/inertia

In addition to the verification of the frequency

responses and changes in the mode shapes, observa-

tions on the longitudinal deformation also testify the

efficacy of the piece-wise treatment with constant

initial curvature used in proposed model, thus expand-

ing the application range to locally curved configura-

tion. As mentioned above, an approximation is used in

Eq. (15) to facilitate the treatment of the longitudinal

components so that the condensedmodel can finally be

established. Therefore, it is important to revisit and

assess this critical assumption which was used for

approximation and at the same time check its valida-

tion range. To this end, we re-examine Eq. (13) by

applying Taylor expansion and neglecting terms

starting from ðuk3Þ2. This process leads to the

truncated expression of u0 written as

u0 ¼ � 1

2
2v0k3 � uþ v02
� 

þ vk3 ð37Þ

which is then cast into the standard first-order non-

homogeneous linear differential equation as

u0 þ v0k3 � u ¼ � 1

2
v02 þ vk3 ð38Þ

The method of variation of constants [61] is then

applied to solve Eq. (38) in which the following

adjacent homogeneous equation needs to be solved

first
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Fig. 4 Normalized mode shapes for curved cantilever beams. Left to right: u, v
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u0 þ v0k3 � u ¼ 0 ð39Þ

Integrating the above equation from s to L, the

homogeneous solution ~u writes

~u ¼ Cu Lð Þe
R L

s
v0k3ds ð40Þ

where C is a constant. Then, replacing the constant C

with C(s) and substituting ~u into Eq., the unknown

function C(s) can be determined. Substituting C(s)

back into ~u, the final general solution, denoted by ufull,

of the non-homogeneous equation writes

ufull ¼ e

R L

s
v0k3ds

Z L

s

1

2
v02 � vk3

� �

e
�
R L

s
v0k3dsds ð41Þ

Note the above procedure allows for a more

accurate estimation of the longitudinal displacement

than the solution u obtained previously based on the

approximation made in Eq. (15). To quantify the

difference, a relative error factor over the entire beam

span is defined as

P1 ¼
R L

0
uk kds�

R L

0
ufull
�

�

�

�ds
R L

0
uk kds

�

�

�

�

�

�

�

�

�

�

� 100% ð42Þ

To introduce noticeable nonlinear effects, the

transverse displacement at the free end tip of the

beam is set to v0 ¼ 50rg for all modes, where rg is the

radius of gyration and defined by rg ¼ h=
ffiffiffiffiffi

12
p

with a

rectangle cross section. In the present

case,v0 ¼ 0:072 m. For even larger deformation used

in the subsequent analyses, this issue will be com-

mented again in due course. Using the linear mode

shapes calculated above as an approximation, the

calculated relative error P1 for the first three modes in

all four previous curved configurations is illustrated in

Fig. 5. It follows that, the slightly curved configura-

tion (i) generates a very small error for all three modes,

typically below 1%. As the beam is bent more

severely, error increases. Nevertheless, even for the

largest curved configuration (iv), the relative error is

still capped below 8%, which is still acceptable.

Therefore, the assumption used is deemed valid for all

four configurations, even for the last one which is a

severely curved semi-circle beam.

As presented in the governing equation (Eq. 17), the

initial curvature affects the linear terms through a

combined stiffness term and an inertia term, denoted

by

kIC ¼ k23 EIvð Þ00þk3 k3EI v00 þ vk23

 �

	

	

s

0

h i

;

mIC ¼ k3

Z s

0

m

Z L

s

€vk3dsds
ð43Þ

Their respective impacts on the linear system

response are demonstrated. To this end,kIC and mIC

are separately considered for the extreme case of the

curved configuration (iv). The calculated FRFs are

depicted in Fig. 6, which shows that both curvature-

induced stiffness and inertia terms cause a reduction in

the resonant frequencies, resulting in the ultimate

differences between the straight and curved beams. A

closer examination suggests that the peak shift caused

by the curvature-induced stiffness and inertia is

roughly the same starting from the third to higher

order modes, although differences are noticeable on

Fig. 5 P1 for different curved configurations Fig. 6 The initial curvature effect of linear stiffness and inertia
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the first two modes. More specifically, for the second

mode, the inertia-induced effect affects more the

second resonant frequency, while the stiffness-in-

duced effect has a greater impact on the resonance

peak level of the first mode.

4.2 Nonlinear dynamic features and curvature-

induced inertia effect

This section focuses on the numerical simulations and

analyses of nonlinear dynamic behaviors of initially

curved cantilever beams. The HB continuationmethod

established in Sect. 3.1 is utilized to provide fre-

quency domain results, to be confirmed by the time

history of the response signals. Truncated harmonics

and time samples for all numerical simulations are set

to NH ¼ 5 and NT ¼ 64, respectively. The general-

ized-a method should adopt a sufficiently high sam-

pling frequency to slowly sweep in time domain, and

the corresponding parameters are determined by the

concerned frequency range. A damping matrix

C ¼ 2gx0M, proportional to the mass matrix, is

introduced, i.e.,g ¼ 0:005 herein. The amplitude of

displacement in nonlinear frequency response (NFR)

curves writes

Displacement ¼ cx0
ffiffiffi

2
p þ 0:5 max x ~t


 �

�min x ~t

 �
 �

ð44Þ

which considers the rigid body motion cx0=
ffiffiffi

2
p

, so that

observations of asymmetry behaviors in frequency

domain could coincide with the time history.

Numerical simulations on the curved beam in

frequency domain are conducted and verified through

comparisons with the time history of the system

responses. With the initial curvature increasing from

k3 ¼ 0(straight beam) to k3 ¼ 0:5p and a curved

arclength of lc=L ¼ 0:1, corresponding NFR curves

for the first mode are calculated and illustrated in

Fig. 7. In this case, the generalized-a method adopts a

sampling frequency fs ¼ 400 Hz to sweep from

3.7 Hz to 4 Hz with a rate of 0:01 Hz=min. The

horizontal axis denotes a dimensionless frequency,

which is normalized by the first natural frequency of

the corresponding straight beam f0 ¼ 3:927 Hz. Note

that the straight beam simulations are firstly carried

out using the proposed model, whose results have been

compared to reference solutions [29]. At 1.5 N

excitation level for the straight configuration, Fig. 7a

shows that NFR curves obtained by the proposed

model agree well with the reference solution. Mean-

while, the observed NFR variation is also in good

agreement with the time history responses obtained

from frequency sweeping. More importantly, the

hardening effect is obvious for the first mode, as a

result of dominant level of the nonlinear stiffness

effects. As the initial curvature increases in Fig. 7b–d,

the resonance frequency gradually decreases while the

hardening evolves to softening. Meanwhile, it can be

observed that the resonance frequency peaks of the

curved beams are all slightly lower than that of the

straight beam (with the normalized frequency smaller

than 1). From k3 ¼ 0 to k3 ¼ 0:4p, the time domain

responses corresponding to the sweeping up process

are completely enveloped by the NFR curves, and the

process is reversible. The situation is, however,

different when the initial curvature increases to

k3 ¼ 0:5p. In fact, Fig. 7d shows that there exist two

turning points on the NFR curve for the curved beam.

The sweeping up curve jumps around the first turning

point to the upper stable branch, while the sweeping

down curve would jump around the second turning

point so that hysteresis occurs.

Additional numerical studies are conducted for

different curved configurations and different forcing

levels. Multiple harmonics, as a salient feature in

nonlinear dynamic analysis, would better inform on

the complex nonlinear behaviors of the system

through revealing the energy level of dominant

harmonic orders. Therefore, the normalized harmonic

coefficient for each order is calculated by

ri ¼
/i

PNH

k¼1 /i

; i ¼ 0; 1; 2; � � � ;NHð Þ ð45Þ

with

/0 ¼
cx0
	

	

	

	

ffiffiffi

2
p ; /i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sxið Þ2þ cxið Þ2
q

;

i ¼ 1; 2; � � � ;NHð Þ

which depends on the excitation frequency and is

comprised between 0 and 1.

The same curved configurations as simulated in the

above case are examined with the forcing level

changing from 0.5 N to 2 N with a step size of

DF ¼ 0:5 N. Figure 8a displays the NFR curves for

the first mode. Comparing the straight configuration
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results from the HB method with ROM [29] shows

nice agreement, even for the largest free-end displace-

ment considered, which amounts to 0.6 m (almost 2/3

of the beam length), with the first five harmonics

considered in the current numerical method. For this

large displacement, the error indicator P1(as defined in

Eq. (42)) for this curved configuration is only 0.869%,

which is rather small to further confirm the validity of

the assumption used in Eq. (15). It can be observed that

resonance frequencies decrease with the increasing

initial curvature (Fig. 8a). Meanwhile, a similar

hardening–softening transition can be observed when

the curvature reaches a certain level, as a result of the

effective curvature-induced inertia effect. Obviously,

a larger excitation level leads to a more significant

frequency shift. There exists a specific initial curvature

value (between k3 ¼ 0:3p and k3 ¼ 0:4p), at which the
nonlinear system shows no frequency shift like its

linear counterpart. Similar phenomenon, called near-

transition, has also been observed in the literature

although cases are different [6]. At this specific

curvature, various competing nonlinear factors in the

system balance each other.

Fig. 7 Comparisons of the HB method and the generalized-a method under 1.5 N force in the first mode for the curved beams with

different initial curvature. a k3 ¼ 0, b k3 ¼ 0:3p, c k3 ¼ 0:4p, d k3 ¼ 0:5p. Circle: reference solution for the straight beam
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The normalized harmonic coefficients are logarith-

mically shown in Fig. 8b–e. Consistent with the NFR

curves in Fig. 8a, the appearance of multiple harmon-

ics also confirms the occurrence of the hardening–

softening transition. For the straight configuration,

Fig. 8b illustrates that the third harmonic coefficient is

the largest followed by the fifth one. Note even-order

harmonics, which should not exist theoretically,

appear because of the computer calculation error, but

they have a smaller magnitude than odd-order har-

monics. When a small initial curvature is added, it

changes system response and induces zero- and even-

order harmonics as shown in Fig. 8c. The same pattern

basically remains when further increasing the initial

curvature, except a slight downshifting of the peak

region to lower frequencies as shown in Fig. 8d. It can

be observed that the dominant even-order harmonics

account for the hardening–softening transition. As to

the most severely curved beam (Fig. 8e), a turning

point phenomenon similar to that observed in Fig. 8d

bFig. 8 NFR curves of the first mode with the various initial

curvature and excitation level, as well as normalized harmonic

coefficients. a NFR curves when

F0 ¼ 0:5N 1N 1:5N 2N½ �. Circle: reference solution.

The first six harmonic coefficients at the forcing level of 2 N:
b k3 ¼ 0, c k3 ¼ 0:3p, d k3 ¼ 0:4p, e k3 ¼ 0:5p

Fig. 9 NFR curves of higher modes with various initial

curvatures and forcing levels. a, b: Mode 2 at the forcing level

of 6 N and 12 N, respectively. c, d: Mode 3 at the forcing level

of 6 N and 12 N, respectively. Circle in a, b: reference solution
of the second mode for the straight beam
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is reflected back to each harmonic. The energy level of

the harmonics generally reduces when harmonic order

increases. Note that the zero-order harmonic is the

largest among all harmonic coefficients in Fig. 8d, e,

since all even-order terms contribute to the zero-order

coefficient through the quadratic order terms in the

governing equation.

Considering the dominant nonlinear inertia, the

straight cantilever beam essentially exhibits softening

phenomenon in higher modes, which is different from

the first mode [9]. Therefore, the curvature-induced

effects on higher modes are demonstrated when the

initial curvature is involved. To this end, the NFR

curves of the second and third modes are depicted in

Fig. 9 for different initial curvatures and forcing

levels. With 6 N and 12 N excitation applied to the

second mode, straight configuration shows good

agreement between the results obtained from the HB

continuation method and ROM (Fig. 9a, b). When the

initial curvature is added, the resonance peaks of the

curved beam shown in Fig. 9a reduce with the

increasing initial curvature. To quantify the changes,

the relative displacement ratio between the curved

configurations k3 ¼ 0 and k3 ¼ 0:7p is calculated,

yielding 16.2%. The ratio increases up to 27.6% at the

higher forcing level of 12 N, as shown in Fig. 9b.

Meanwhile, the curved beams in higher modes show

slight frequency shift when the initial curvature

increases. Nevertheless, because of the curvature-

induced quadratic terms in the governing equations,

higher modes show asymmetric responses, which can

be observed through time responses for the case of

k3 ¼ 0:7p, shown in the subplot of Fig. 9a. This

phenomenon becomes more obvious when the forcing

level increases, as shown through comparisons

between the two figures (Fig. 9a and b). Besides, with

the largest initial curvature k3 ¼ p, Fig. 9a shows a

loop in the second mode, which is further enlarged and

heads down when the excitation force increases to

12 N, as depicted in Fig. 9b. The occurrence of

negative displacement represents asymmetric vibra-

tion, which can be explained by Eq. (44). Similar

patterns remain for the third mode (Fig. 9c and d).

However, the third mode is more difficult to excite to

trigger its inherent nonlinear behavior than the second

mode, unless a larger excitation force is applied.

The initial curved deformation of the beam also

depends on curved arclength lc. Therefore, a longer

arclength lc=L ¼ 0:2 is investigated. At a moderate

forcing level of 1.5 N and 2 N, NFR curves in Fig. 10a

show a reduction in the resonance frequency of the

first mode. In this regard, increasing lc leads to the

same effects as k3 in terms of hardening–softening

transition in the first mode. However, at an even higher

forcing level, 3 N, the NFR curve becomes more

complex. In fact, four turning points can be observed,

alongside a reversed trend, turning from softening to

hardening. A plausible explanation can be offered. In a

straight beam, the nonlinear stiffness dominates the

first mode to produce the commonly observed

Fig. 10 a NFR curves for the first mode when F0 ¼ 1:5N 2N 3N½ �. b Normalized harmonic coefficients at the forcing level of 3 N
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hardening phenomenon due to its large deformation.

When the beam is initially curved, inertia effects are

amplified and compete with the stiffness effects.

However, for a sufficiently high forcing level, the

larger deformation would enhance nonlinear stiffness

effects to produce the ultimate softening-hardening

behavior observed in Fig. 10a. Similar phenomenon is

reflected in the normalized harmonic coefficients at

the same forcing level of 3 N (Fig. 10b). In addition,

the zero-order and the second harmonics show more

complex variation, as evidenced by the appearance of

loop, shown in the inset plots. It is relevant to note that

nonlinear dynamic behaviors of the curved beam are

not only determined by the curved condition (curva-

ture and arclength), but also the excitation level.

To further substantiate the above, effects of differ-

ent arclengths in terms of harmonics are compared.

Figure 11 shows that the overall level of the normal-

ized zero- and even-order harmonic coefficients

increases with the curved arclength. However, varia-

tions of the odd-order coefficients are marginal and

inconsistent in magnitude. For example, the third-

order coefficient even decreases slightly. In general,

an increase in the initial deformation of the beam

would favor the generation of more energetic higher

order harmonics, which at the same time generates

increased energy transfer, mainly to the even-order

components.

5 Conclusions

In this paper, a cantilever beam with constant initial

curvature is investigated. Combining a geometrically

exact model and the shortening effect, specific to a

cantilever, an inextensible condensation model is

established with the consideration of initial curvature.

Specific techniques are proposed to numerically

implement the developed model with increased accu-

racy and robustness. The proposed model explicitly

shows different nonlinear stiffness and inertia terms

arising from the initial curvature, as well as their

interplay in the system equation. This explicit expres-

sion allows for the proposal of a modified Jacobian

matrix calculation method (a necessity arising from

the curvature-induced nonlinear inertia effects)

involved in the HB method. Meanwhile, an OS

technique is adopted and integrated into the general-

ized-a method for the calculation of time domain

system responses.

The validity and the assumptions made for the

development of the model are first validated through

comparisons with COMSOL results based on linear

FRFs and mode shape analyses. Results show that

initial curvature and curved arclength both lead to a

decrease in the resonance frequencies, more obvious

when the beam is severely bent. Initial curvature

causes increased longitudinal motion in the beam,

which through its coupling with the transverse vibra-

tion, generates enhanced inertia effects. Numerical

analyses demonstrate that both curvature-induced

linear stiffness and inertia terms in the system equation

are responsible for the reduction in the natural

frequencies, which can be combined and regarded as

effective inertia.

Confirmed by the time-domain results from the

generalized-a method, nonlinear frequency responses

of the first mode are shown to experience a hardening–

softening transition with the increasing initial curva-

ture. This is accompanied by a similar softening

process in the harmonics. NFR curves become com-

plex at a high forcing level which might create

reversed trend from softening to hardening. The

physical process behind can be explained. In fact,

the initial curvature of the beam generates significant

inertia effects which compete with the stiffness

effects. With a sufficiently high forcing level, the

stiffness effects eventually overwhelm and prevail to

produce the observed softening-to-hardening

Fig. 11 Normalized harmonic coefficients of the first mode for

different curved length at the forcing level of 2 N. Solid

line:lc=L ¼ 0:2. Dashed line:lc=L ¼ 0:1
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reversion. Higher modes, at an increased forcing level,

show slight frequency downshifting while experienc-

ing asymmetric responses. Both phenomena become

more obvious when the forcing level increases.

As a final remark, this paper puts emphasis on some

fundamental issues related to the intrinsic nonlinear-

ities and inertia-induced features in an initially

deformed cantilever from the perspective of system

modeling and analyses. The model could be refined

and further developed for other structural

configurations.
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Appendix 1

The generalized-a method

The generalized-a method is applied to offer intuitive

time history of the system responses. In the main text,

Eq. (19) requires the treatment of different system

response terms, especially displacement x, as well as

its derivatives representing velocity _x and acceleration
€x. The interrelation among them can be cast into the

following general form [54]:

_xiþ1 ¼ _xi þ 1� cð ÞDt€xi þ cDt€xiþ1

xiþ1 ¼ xi þ Dt _xi þ Dt2
1

2
� b

� �

€xi þ Dt2b€xiþ1

ð46Þ

The governing equation of motion, Eq. (19), is built

on semi-point scheme in the time discretization. The

semi-point values of these quantities write

xiþ1�af ¼ 1� af

 �

xiþ1 þ af xi

_xiþ1�af ¼ 1� af

 �

_xiþ1 þ af _xi

€xiþ1�am ¼ 1� amð Þ€xiþ1 þ am€xi
tiþ1�af ¼ 1� af


 �

tiþ1 þ af ti

ð47Þ

A residual vector is formulated from Eq. (19) as

r xð Þ ¼ M€xþ C _xþKxþ fnl x; _x; €xð Þ � fext ¼ 0

ð48Þ

Discretized version of the above equation in terms

of ðxiþ1�af ; _xiþ1�af ; €xiþ1�amÞ writes

r xiþ1�af ; _xiþ1�af ; €xiþ1�am


 �

¼ 0 ð49Þ

Let us denote ðxkiþ1�af ; _x
k
iþ1�af ; €x

k
iþ1�amÞ as the

approximate value of ðxiþ1�af ; _xiþ1�af ; €xiþ1�amÞ result-
ing from the iteration k. In the vicinity of the prediction

value, the residual equation can be replaced with

sufficient accuracy through the following linear

expression:

rkþ1 � rk þ SkDxkiþ1�af
¼ rk þ SkTDx

k
iþ1 ¼ 0 ð50Þ

in which the Jacobian (also called iteration) matrix

writes:

SkT ¼ 1� af

 �or

ox

	

	

	

	

xk
iþ1�af

ð51Þ

whose expression is detailed as

ST xð Þ ¼ 1� af

 �

M
o€x

ox
þ C

o _x

ox
þKþ ofnl

ox
þ ofnl

o _x

o _x

ox
þ ofnl

o€x

o€x

ox

� �

ð52Þ

The integration relationship, Eq.(46), can be writ-

ten as

o€xiþ1�am

oxiþ1�af
¼ 1� am

1� af

 �

bDt2
I;

o _xiþ1�af

oxiþ1�af
¼ c

bDt
I ð53Þ

Combining Eqs. (52) and (53) yields the expression

of the iteration matrix as:

ST xð Þ ¼ 1� am
bDt2

Mþ
c 1� af

 �

bDt
Cþ 1� af


 �

K

þ 1� af

 � ofnl

ox
þ
c 1� af

 �

bDt
ofnl
o _x

þ 1� am
bDt2

ofnl
o€x

ð54Þ
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The nonlinear equation (50) is then solved using an

iteration scheme using Newton–Raphson method.

Substituting Eqs. (46 and 47) into Eq. (50) gives

SkTDx
k
iþ1 ¼ �rk ð55Þ

with

rk ¼ bDt2SL€x
k
iþ1þ fknl;iþ1�piþ1

SL ¼
1�am
bDt2

Mþ
c 1�af

 �

bDt
Cþ 1�af


 �

K

piþ1 ¼ 1�af

 �

fext;iþ1þaf fext;i� a1xiþa2 _xiþa3€xið Þ
a1 ¼K

a2 ¼Cþ 1�af

 �

DtK

a3 ¼ amMþ 1�af

 �

1� cð ÞDtCþDt2 1�af

 � 1

2
�b

� �

K

ð56Þ

The velocity and acceleration are found from

D€xkiþ1 ¼
1

bDt2
Dxkiþ1; D _xkiþ1 ¼

c
bDt

Dxkiþ1 ð57Þ

When k ¼ 0, the initial prediction to initialize the

process is €x0iþ1 ¼ €xi as the first-order approximation,

which would need more correction steps.

To simplify the process and reduce the computation

burden, an alternative prediction formulation with

third-order precision,

i.e.,€x0iþ1 ¼ 4€xi � 6€xi�1 þ 4€xi�2 � €xi�3, is proposed

by using the four latest points. Stepwise correction

continues until jjrðxkiþ1Þjj � e, where e is a predefined
tolerance value.

The above calculation scheme is combined with the

generalized-a method [54]. The parameters are chosen as

follows

am ¼ 2q1 � 1

q1 þ 1
; af ¼

q1
q1 þ 1

; q1 2 0; 1½ �

c ¼ 1

2
� am þ af ; b ¼ 1

4
1� am þ af

 �2

ð58Þ

The dissipation parameter q1 is set to 0.8 in the

present study.

Appendix 2

Efficiency and robustness enhanced by OS

technique

The OS technique discussed in Sect. 3.2 is expected to

improve the efficiency and the robustness of the

generalized-a method by separating a full complex

problem into several sub-problems. To demonstrate

this, the generalized-a methods with and without the

OS technique are compared using a beam vibration

problem.

Fig. 12 a Time responses obtained by the generalized-a method with and without OS technique, b close-up view taken in the

stable region for a period. Note the two curves coincide perfectly, so it is difficult to visually differentiate them
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Examine the straight cantilever beam (used in

Sect. 4) excited by a harmonic force at its free end.

The excitation force has an amplitude 0.5 N at

3.85 Hz, which is arbitrarily chosen around the first

natural frequency of the beam. The computation

duration is 70 s, which is long enough to get stable re-

sponse in the system. The sampling frequency is

fs ¼ 400 Hz. Figure 12a illustrates the overall time

response signals obtained by using the two methods.

The two curves coincide completely during the entire

time duration, as better shown in the close-up view

(Fig. 12b). The residual values (as defined by Eq. (56)

in Appendix 1) are calculated for both methods and

shown in Fig. 13a. It follows that OS technique yields

very small residuals, which are smaller than the ones

without OS for nearly every single time point,

demonstrating the accuracy of the proposed OS

technique. Figure 13b shows the minimum iteration

number required to achieve converged result with a

residual value capped at 10�6. It can be seen that, by

embedding the OS technique into the generalized-a
method, it takes only one iteration to reach converged

result, while more iterations are required without OS

technique. This happens even within the stable region.

Moreover, it was also noticed that generalized-a
method without OS technique may not always yield

converged solution for some frequencies, while the

one with OS technique always does. The above

comparison shows the high efficiency and the

robustness of the generalized-a method after embed-

ding the proposed OS technique.
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