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Abstract Nonlinear metamaterials exhibit unique

features allowing for wave manipulation. Despite the

increasing attention received, the underlying physical

mechanisms and the evolution process of the band

structures and bandgaps in strongly nonlinear meta-

materials remain unclear. Here we establish and

examine four strongly nonlinear metamaterial models

(triatomic models) to show the evolution process of

typical nonlinear band structures using analytical and

numerical approaches. We find that the strongly

nonlinear triatomic models present particular band

degeneration and bifurcation, accompanied with the

wave mode transfer in their unit cells. The evolution

processes and the physical mechanisms of the band

degeneration in different models are clarified with the

consideration of the mode transfer. The observed

degeneration exhibits shifting, bifurcating, shortening,

merging or disappearing of dispersion curves, all

depending on the arrangement of the coupled nonlin-

ear elements. Meanwhile, the dimension of the unit

cell reduces, alongside changes in the frequency range

and mechanisms (Bragg and local resonance) of the

bandgaps. These findings provide answers to some

essential questions pertinent to the study of nonlinear

periodic structures, nonlinear crystals and nonlinear

metamaterials, which are of interest to the broad

community of nonlinear physics.

Keywords Strongly nonlinear metamaterials � Band
degeneration � Wave mode transfer � Coupled
nonlinear elements

1 Introduction

Band structures are essential features of periodic

structures including conventional crystals and more

advanced superlattices [1–3]. Metamaterials are

superlattice structures featuring exceptional subwave-

length functionalities which are unusual to nature

materials such as perfect absorption, negative refrac-

tion, asymmetric transmission and phase modulation

[4–10]. Despite the extensive attention received, most

studies on superlattices and metamaterials are limited

to linear systems. Based on Bloch theorem, band

structures of various types of linear metamaterials are

well understood and tactically structured to achieve
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nonclassical wave functionalities exemplified by

topological insulators. Bandgaps can also entail effi-

cient suppression of elastic wave and vibrations, a

salient feature that can be obtained through manipu-

lating bandgaps and the subsequent wave propagation

by tuning material and structural parameters.

Nonlinear metamaterials can enable properties/

behaviors that are inaccessible and potentially supe-

rior to their linear counterparts, such as harmonic

generation [11, 12], phase matching [13, 14], nonlin-

ear resonance shifting [15–18], dispersion modulation

[19–21], chaos [11, 22, 23], breathers [24–26] and

solitons [27–29]. Recently, strongly nonlinear elastic/

acoustic metamaterials (NAMs), consisting of peri-

odic nonlinear local resonators, were shown to offer

ultralow and ultra-broadband vibration suppression

arising from the chaotic band effects [30] and the

bridging coupling of bandgaps [23] among other

salient features specific to nonlinear metamaterials.

The Bragg and locally resonant bandgaps in a NAM

are amplitude-dependent [15, 19–23, 30–42]. This

property has been extensively investigated using the

perturbation method [19, 35–37, 41], harmonic bal-

ance method [15, 20], homotopy analysis method

[22, 38] and equivalent method [23, 33, 39, 43, 44].

With increasing wave amplitude, bandgaps in a NAM

show complex variation such as shifting

[15, 19–23, 31, 33–37, 41, 42], switching and even-

tually mutual coupling among them [32, 38–40]. In a

weakly nonlinear diatomic granular chain, it was

observed that a propagative band can transit to a

bandgap due to the amplitude-dependent effects [32].

In a strongly nonlinear triatomic chain, bandgap effect

can be adaptively broadened along with the wave

amplitude attenuation during propagation, which leads

to broadband acoustic limiting [39]. Wave transmis-

sion within nonlinear bandgaps also features multiple

stability behavior. Excessive nonlinearity may even

lead to the disappearance of some bandgaps [38, 39].

Recently, the spectro-spatial properties of wave prop-

agation in a weakly nonlinear metamaterial consisting

of nonlinear chain with multiple nonlinear local

resonators are investigated by using perturbation

method and 2D Fourier transform [36]. However, the

perturbation results [36] failed to predict the behavior

of the nonlinear system in regions near the frequency

of pseudo-bandgaps (i.e., the shifted bandgap by

amplitude).

Therefore, although the amplitude-dependent band-

gaps in nonlinear metamaterials have attracted broad

attention, the rich phenomena incurred, especially in

strong nonlinear models, have not been well under-

stood. Particularly, the underlying physical mecha-

nisms and the evolution process of these peculiar

bandgap phenomena remain largely unclear. For

example, as a result of the bandgap shifting under

strongly nonlinearity, the band structure reflected by

the dispersion curves changes; but the underpinning

reasons, the associated evolution process as well as its

influences on the wave propagation remains unknown.

This is seen as one of the bottlenecking problems

which hinder the exploration of the NAM-specific

properties as well as the applications of strongly

nonlinear metamaterials.

In this paper, we establish four one-dimensional

metamaterials models to elucidate the evolution

process of typical nonlinear band structures and

explore the underlying physical mechanisms. In

Sect. 2, we introduce the models alongside the ana-

lytical method for band structure analysis. In Sect. 3,

we take a typical case to demonstrate our methods. In

Sect. 4, based on a typical model, we report and

scrutinize the band degeneration and merging phe-

nomenon and analyze the evolution of the band

structure and the associated wave modes. In addition,

we explore the adaptive broadening bandgap effect

and validate the applicability of Bloch theorem. In

Sect. 5, we first consider two other models to show the

generality of the band degeneration phenomenon. In

addition to the discovery of other types of band

degeneration, we consider one more model along with

the above three models to show the property of

dimensionality reduction and establish the common

features in these four nonlinear models and their

relationships.

2 Metamaterials model and analysis methods

A nonlinear triatomic chain with two local resonators

offers two nonlinear resonant bandgaps and a Bragg

bandgap that may shift, merge, switch and couple.

Therefore, a triatomic chain is a versatile metamaterial

model that can showcase typical wave dynamics in

nonlinear metamaterials. Here, we establish an infinite

model to investigate the dispersion properties and
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wave propagation of this strongly nonlinear metama-

terials model. As shown in Fig. 1, a unit cell contains

three oscillators with respective masses m0, m1 and m2

interconnected by different springs. As such, nonlin-

earity can appear between m1-m2, m0-m2 or m0-m0,

which will alter the wave propagation. Before consid-

ering other cases, we take the case with nonlinearity

between m1 and m2 as an example to demonstrate the

methods and show typical phenomena. More specifi-

cally, cubic stiffness nonlinearity k1p ? kNp
3 is con-

sidered, with k1 and kN denoting the linear and

nonlinear stiffness coefficients, respectively.

In this case, the neighboring oscillators m0 in the

primary chain are coupled through linear stiffness k0,

and m2 couples to m0 through a linear stiffness k2.

Damping is not considered. The displacements of m0,

m1 and m2 are un and yn and zn, respectively, and

pn = yn - zn. Thus, the equations of motion for the nth

unit cell write:

m0 €un ¼ k0ðunþ1 þ un�1 � 2unÞ þ k2ðzn � unÞ
m1 €yn ¼ �k1pn � kNp

3
n

m2€zn ¼ �k2ðzn � unÞ þ k1pn þ kNp
3
n

8
<

:

ð1Þ

Mindful of the possible deficiencies of the Bloch–

Floquet theorem in dealing with nonlinear systems

[39], we still use it to solve the above system to get the

dispersion curves and then clarify its limitations

hereafter. According to the Bloch–Floquet theorem,

un?1 = une
-ija, un-1 = une

ija, ja = l [ [0, p], the

motion equation of the nth unit cell can be written as:

M€X þ KX þ KNX3 ¼ 0 ð2Þ

where

M¼
m0 0 0

0 m1 m1

0 0 m2

2

6
4

3

7
5;

K¼
k2�k0ðe�ikaþeika�2Þ 0 �k2

0 k1 0

�k2 �k1 k2

2

6
4

3

7
5;

KN¼
0 0 0

0 kN 0

0 �kN 0

2

6
4

3

7
5andX¼

un

pn

zn

2

6
4

3

7
5

Natural frequencies of individual oscillators before

they are coupled together are denoted by

xi ¼
ffiffiffiffiffiffiffiffiffiffiffi
ki=mi

p
¼ 2pfi, i = 0, 1, 2. Taken from a recent

experimental configuration [39], parameters used in

the simulation are: a = 1, m0 = 5.8, m1 = 2.1,

m2 = 2 g; f0 = 322, f1 = 100, and f2 = 390.6 Hz. We

took kN = 1 9 1013 N/m3 to show the nonlinear

phenomena.

In our previous work [38], we have performed a

comparison among different methods, namely equiv-

alent method, homotopy analysis method, perturbation

approach and harmonic balance method to assess their

suitability for the study of the dispersion properties in

strongly nonlinear acoustic metamaterials. The equiv-

alent method only allows for a rough estimate of the

dispersion and reaches its limit when the nonlinearity

become very strong. The perturbation approach,

however, is only applicable to weakly nonlinear

periodic models. By contrast, harmonic balance

method and homotopy analysis method are, in prin-

ciple, good candidates for analyzing both weak and

strong nonlinearities, although the latter is more

complicated. Thus, we opt for the harmonic balance

Fig. 1 Metamaterials model. a Schematic of the periodic triatomic chain. b Linear dispersion curves of the model calculated by

analytical and numerical methods (kN = 0). The solid curves are analytical results, and the gray shading regions are numerical results
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method in this work. Here, we adopt the first-order

harmonic balance method to solve Eq. (2) by assum-

ing the solution as

X ¼ A sinðxtÞ ð3Þ

in which A = [A0, A12, A2]
T with A0, A12 and A2

standing for the amplitudes of un, pn and zn, respec-

tively; x = 2pf. Substituting Eq. (3) into (2) and

balancing the coefficients of sin(xt) give:

½K � x2M�Aþ 3

4
KNA

3 ¼ 0 ð4Þ

By specifying A0 for a given wave number

l = ja [ [0, p], the eigenfrequency x and the eigen-

vector [A0, A12, A2]
T can be obtained from Eq. (4). A1

is the amplitude of yn, and A1 = A12 ? A2. The

normalized eigenvector [A0, A1, A2]
T/A0 represents

the corresponding wave mode (i.e., the vibration mode

of the periodic unit cell).

Meanwhile, a numerical approach is adopted to

calculate the dispersion curves. The numerical model

consists of 2000 triatomic cells. An optimized perfect

matching layer is connected to the right end of the

chain to suppress possible wave reflection. A dis-

placement excitation, u0(t), is imposed at the left end

of the chain. u0(t) is a chirp harmonic wave whose

frequency increases from 0 to 1000 Hz within 1 s. It

takes more than 1 s for the wave to reach the metacells

in the far field. Thus, the duration of the response is 2 s

(i.e., the simulation time), which is enough for the first

500 metacells to endure the wave propagation process

(in the present case, we just involve the calculation of

the first 200 metacell). Once the time-domain response

u(n, t) for the nth cell is extracted, we conduct a 2D fast

Fourier transform (2DFFT) to obtain the 2D frequency

spectrum:

Vðl; f Þ ¼
XN�1

n¼2

Z T

0

uðn; tÞe�jðlnþxtÞdt ð5Þ

where N denotes the number of cells used in the

2DFFT, and T = 2 s denotes the simulation time.

While transforming the time-domain signal into

frequency domain by using 2DFFT, the space variable

n is transformed into the wave number l. Therefore,
the spectrum V(l, f) represents the dispersion curves.

A largerN offers a higher resolution of the wave vector

l in V(l, f). However, N cannot be excessively large

due to the self-adaptive band structure (see Appendix).

Here, the 2DFFT is conducted using the signals of the

first 50 cells (N = 50) counting from the excitation

position.

To validate the method, we calculate the dispersion

curves of the corresponding linear metamaterials

model (with kN = 0). As shown in Fig. 1b, the

analytical and numerical dispersion curves agree well

with each other. This particular configuration entails a

Bragg bandgap (from 700 Hz on) and two locally

bandgaps LR1 (96.1, 110.4) Hz and LR2 (373.4, 462)

Hz.

3 Salient properties of nonlinear band structure

In this section, we explore typical dispersion proper-

ties of the model with A0 = 5 lm, as shown in Fig. 2.

The complex frequency solutions, f = x/2p = fR-
? ifI, are obtained for any given wave vector l,
where fr and fI denote the real and imaginary parts,

respectively. As shown in Fig. 2a and b, the harmonic

balance solution presents six dispersion curves,

instead of three in the linear model. Several interesting

phenomena are noteworthy. All solutions on curves 1

and 4 are real numbers (fI = 0), which shift upwards

relative to the linear curves, and the part in l [ [0, 0.5]

on curve 4 is also uplifted. Curves 2 and 3 correspond

to the conjugate solutions with very large fI. Interest-

ingly, curves 5 and 6 feature a bifurcation at the

π
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Fig. 2 Dispersion curves of nonlinear metamaterials model

with A0 = 5 lm. a and b The real part fR and imaginary part fI of
the curves. There are 6 curves. The corresponding curves in the

upper and lower panels use the same type of lines. c Curves only
with real numbers (i.e., fI = 0). Herein, the gray curves are the

linear results. d Numerical and analytical dispersion curves
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specific wave vector lBif (lBif = 0.56 for the present

case with A0 = 5 lm).

In l [ [0, lBif], solutions on curves 5 and 6 are

conjugate with large fI, while in l [ [lBif, p], they
bifurcate into two branches with zero imaginary part

fI = 0. This means the two dispersion curves degen-

erate at lBif, a degeneration induced by nonlinearity.

Expressing the wave in the nonlinear lattice as

U(x,t) = Aexp(xt - kx), any solution component with

large fI = 0 implies a rapid attenuation of the wave.

Therefore, we can remove these solutions from the

band structure and finally obtain four dispersion

curves shown in Fig. 2c. Now they are re-numbered

as curves 1 to 4. As shown in Fig. 2c, the numerical

solution is consistent with the analytical one. Some

differences appear due to the wave amplitude which

varies in the chain (i.e., in the analytical solution, all

amplitudes in n\ 50 are set to A0, but actually it is not

a constant across the units). Importantly, the numerical

curve 3 is also noncomplete—the part in [0, lBif]

disappears, as the analytical curve does. This confirms

the degeneration of the nonlinear band structure.

Meanwhile, the numerical results fail to present curve

4 predicted by the analytical solution. The following

study will clarify its observation.

On the other hand, the normalized vector [A0, A1,

A2]
T/A0 from the analytical solution represents a wave

mode. The normalized displacements of m1 (A1/A0)

and m2 (A2/A0) are shown in Fig. 3a and b, respec-

tively. The wave modes at l = p include the phase

between different oscillators and their respective

vibration displacement amplitudes. They are impor-

tant metrics of local resonances and scattering,

showing the essence of the bandgaps. As shown in

Fig. 3c, d, three circles represent the oscillators m0, m1

and m2; and vectors represent their wave modes.

Similarly, the direction and the length of a vector

denote the phase and displacement, respectively.

For the linear metamaterials in Fig. 3c, mode 1 is

the local resonance of m1; mode 2 is the local

resonance of both m1 and m2 (vibrating in phase),

respectively; in mode 3, the displacements of m1 and

m2 are tiny relative to that of m0, which belongs to the

Bragg scattering of m0 at the periodic lattice interface.

The observed resonance and scattering inform on the

well-known mechanisms of locally resonant bandgap

and Bragg bandgap in linear metamaterials [6, 7]. For

the nonlinear metamaterials in Fig. 3d, modes 1 and 2

still show typical local resonances, but A1/A0 in mode

1 and A2/A0 in mode 2 decrease greatly relative to the

corresponding linear modes and curves (see Fig. 3a,

b). A1/A2 in modes 1 and 2 change from 13 and 0.08 in

the linear metamaterials, further to 1.75 and 0.54 in the

nonlinear metamaterials, which suggests that both m1

andm2 take part in the local resonance in the nonlinear

metamaterials. Mode 3 remains nearly unchanged at

l = p for A0 = 5 lm. Moreover, the nonlinear meta-

materials possesses an extra mode 4 owing to an extra

dispersion curve 4 in Fig. 2c. In this mode, m0 and m2

vibrate with opposite phase, |A2|[A0, but |A2|[|A1|,

which indicates an inverse resonance of m2 (different

from the resonance of modes 1 and 2). More features

of this mode will be scrutinized in the following.

These phenomena show the band degeneration and

mode transition in nonlinear metamaterials. Next, we

will study their evolution process and the underlying

mechanisms.

Fig. 3 Normalized vectors and wave modes of the linear and

nonlinear metamaterials. A0 = 5 lm. a and b Normalized

vectors A1/A0 and A2/A0 with respect to the wave number l,
respectively. Herein, curve L and curves 1–4 denote the linear

and nonlinear cases, respectively. Colors used in (a) and

(b) correspond to the curves with the same colors in Fig. 2(c).

c and d wave modes for linear and nonlinear metamaterials at

l = p, respectively. Mode j corresponds to curve j in (a) and (b).
The length and the direction of arrows denote the generalized

length Ai/A0 and the corresponding phase (positive or negative),

respectively. Numbers (value = Ai/A0,) are labeled near arrows.

The arrow length ofm0 is set to 1, and other arrows are presented

relative to 1. Some arrows are dashed lines as the value Ai/A0 is

so large, which are truncated in length and presented by dashed

arrows
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4 Evolutionary process of the nonlinear band

structure

Figure 4 shows the variation process of the dispersion

curves and wave modes when A0 increases. Interest-

ingly, the harmonic balance method predicts 4

dispersion curves for weakly nonlinearity in mathe-

matics. With increasing A0, curves 3 and 4 (the blue

and pink ones) disconnect for A0 ? 0, connect at

l = 0 for A0 = 4.4 lm, and then degenerate (becomes

incomplete) and bifurcate at 0\ lBif\ p. At last,

curves 3 and 4 disappear under very strong nonlin-

earity: only two curves are left behind. Moreover, the

behaviors manifested by curves 1 * 4 are accurately

confirmed by numerical results.

We take four typical cases to explain the afore-

mentioned degeneration and bifurcation process, as

shown in Fig. 4c–f. When nonlinearity is negligibly

weak (the case A0 = 0.1 lm in Fig. 4c), four disper-

sion curves are present mathematically. Curves 1 * 3

are all below 700 Hz while curve 4 appears in

19,810–19,790 Hz at A0 = 0.1 lm. Except for curve

4, all other analytical curves agree with those from

simulations that are identical with the linear band

structure. Different from modes 1 and 2, curve 4

represents the reverse resonances of m1 and m2, in

which A2/A0 and A1/A0 abnormally reach - 7452 and

7091 for A0 = 0.1 lm, respectively. As the nonlinear

force is k1(A1 - A2) ? kN(A1 - A2)
3, this means that

this nonlinearity should become extremely strong,

contradicting to the small input A0 = 0.1 lm. Our

simulationmethod by inputtingwave energy u0(t) from

the left end of the chain fails to get this curve that

matches the analytical result, from weak to moderate

nonlinearity range in Fig. 4d. Presenting this abnormal

mode in simulation may requires accurately control-

ling the phase and displacement of all oscillators. In

this paper, we will focus on curves 1 * 3 to clarify

other phenomena and mechanisms.

With further enhanced nonlinearity by increasing

A0, as shown in Fig. 4a, curve 1 (the black one) shifts

upwards from (0, 173.3) to (0, 242.6) Hz, and curve 2

(the red one) from (118.6, 379.8) to (313.4, 661.3) Hz.

This leads to the modulation of bandgap 1 between

curves 1 and 2: it first becomes blind at A0& 1 lm and

then opens again when A0[ 8 lm. The wave modes

inform on the mechanism. By increasing A0 from 0.1

to 40 lm, A1/A2 decreases from 9.1 (in Fig. 4) to 1.2.

Fig. 4 Evolution of dispersion curves and wave modes with

increasing incident amplitude A0. a Overall view of analytical

dispersion curves varying with increasing amplitude A0. b Trace

of bifurcation in (a). c–f Four typical cases showing their

analytical and numerical dispersion curves and wave modes;

c Case-1: weak nonlinearity (A0 = 0.1 lm), d Case-2: moderate

nonlinearity (A0 = 5 lm), e Case-3: strong nonlinearity

(A0 = 30 lm), f Case-4: stronger nonlinearity (A0 = 40 lm)
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This suggests a change in the dominant mechanism of

bandgap 1 from ‘‘the local resonance of m1’’ to ‘‘the

synchronous local resonance of m1 and m2’’.

The shifting of curve 2 is highly relevant to the

degeneration of curves 3 and 4 in this process. The

bifurcation point lBif of curves 3 and 4 increases from
0 to p as A0 increases from 4.4 to 37.8 lm (see

Fig. 4b). Meanwhile, curves 3 and 4 shorten, merge

and disappear at last. However, the cutoff frequency of

curve 3 (when it exists) remains almost unchanged.

The merging takes place as a result of the downward

shifting of curve 4. Moreover, the cutoff frequency of

curve 2 increases just right to the cutoff frequency of

curve 3. ‘‘Disappearance of curve 3’’ occurs at the

same A0 as ‘‘the arriving of curve 2’’. This alludes to an

interesting suspicion: curve 2 takes over the role of

curve 3 when enhancing nonlinearity from weak to

extremely strong state. Sure enough, an analysis on the

variation of modes 2 and 3 would confirm this. As

shown in Fig. 4c–f, when A0 increases from zero to

30 lm, the phases of m1 and m2 remain opposite, |A2/

A1| changes slightly, but A2/A0 decreases from 6.2 to

1.2, and A2/A0 finally decreases to 0.43 at A0 = 40 lm.

In the whole process, mode 3 nearly remains invariant.

The only difference between mode 2 and mode 3 at

A0 = 40 lm is the sign of A2/A0. As A2/A0 ? 0, the

positive or negative signs negligibly influence the

wave dynamics. Therefore, same with mode 3, mode 2

at A0 = 40 lm represents the Bragg scattering. This

means all modes 2, 3 and 4 merge and behave as Bragg

scattering under very strong nonlinearity. Thus,

although the shape of curve 2 is not significantly

altered, the mechanism for the response changes from

the ‘‘local resonance of m1 and m2’’ to ‘‘scattering

between m0’’. In this process, the second locally

resonant bandgap between curves 2 and 3 becomes

blind at A0 & 4.3 lm but it does not appear again.

Overall, with enhancing nonlinearity, three band-

gaps retreat and degenerate into two bandgaps owing

to the merging of modes 2, 3 and 4. In other words, the

nonlinear metacell transforms a 3-DoF unit cell to a

2-DoF one under strong nonlinearity. The observed

dimensionality reduction with enhanced nonlinearity

is unique and specific to strongly nonlinear metama-

terials model. This property will be explored in other

strongly nonlinear systems hereafter so that some

Fig. 5 Evolution of dispersion curves and wave modes with

increasing incident amplitude A0 when the position of nonlin-

earity is exchanged. a Triatomic metacell. b Analytical disper-

sion curves with respect to increasing amplitude A0. c–f Four

typical cases showing their analytical and numerical dispersion

curves and wave modes; c Case-1: weak nonlinearity

(A0 = 0.1 lm), d Case-2: moderate nonlinearity (A0 = 5 lm),

e Case-3: strong nonlinearity (A0 = 30 lm), f Case-4: very

strong nonlinearity (A0 = 100 lm)
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universal relations be extracted and established in

Sect. 5.

5 Evolution of the band structure in other typical

models

Here, we consider three other typical models to show

the generality of the band generation and degeneration

phenomena observed above. In the first model, the

position of the nonlinear component is changed and

placed between m2 and m0, while the connection

between m1 and m2 becomes linear, as shown in

Fig. 5a. In the second model, both connections are

nonlinear to represent a complex nonlinear coupling

case, as shown in Fig. 8a. Moreover, unlike the above

three models in which nonlinearity exists between

local resonators, we investigate the fourth model

shown in Fig. 10a, in which the springs connecting the

rings of the primary resonator m0 become nonlinear.

5.1 Nonlinearity with exchanged position

Denoting the displacements of m0, m1 and m2 by un, yn
and zn, respectively, and assuming qn = zn - un, the

equations of motion in a metacell shown in Fig. 5a

write:

m0 €un ¼ k0ðunþ1 þ un�1 � 2unÞ þ k2qn þ k2q
3
n

m1 €yn ¼ �k1ðyn � znÞ
m2€zn ¼ k1ðyn � znÞ � k2qn � kNq

3
n

8
<

:

ð6Þ

Following the same analytical and numerical

procedure as detailed in Sect. 3, we calculate the

corresponding dispersion curves and wave modes.

Figure 5b shows the variation of the dispersion curves

and that of the wave modes when increasing the

incident amplitude A0. Unlike the band structure in

Fig. 4a, only three dispersion curves appear irrespec-

tive of the amplitude value A0. When increasing A0,

the portion l [ [0, lbend] on curve 3 bends upwards,

with the point lbend shifting from 0 to p. At last, the
entire curve 3 shifts upwards to a high frequency under

very strong nonlinearity. Moreover, the variation

trends manifested by curves 1 * 3 are also confirmed

by numerical results.

We also examine four typical cases to explain the

aforementioned bending and shifting phenomena in

Fig. 5c–f. Unlike the nonlinear system discussed in

Sect. 4.1, no degeneration of curves is noticed. Curve

1 (the black one) shifts upwards from (0, 97.2) to (0,

99.1) Hz and curve 2 (the red one) from (110.8, 404.2)

to (111.2, 515.3) Hz. The observed changes are

consistent with those obtained from simulations as a

result of nonlinearity enhancement. Mode 1 always

behaves as the local resonance of m1 although A2/A0

decreases slightly. By contrast, A2/A0 in mode 2

decreases from 6.2 at A0 = 0.1 lm to 1.7 at

A0 = 100 lm (A2/A0 ? 1). This happens because

the stiffness between m2 and m0 expressed by

k1 ? 3kN(A2 - A0)
2 becomes much larger than its

linear counterpart k1, and thus m2 is ‘‘fixed’’ onto m0.

As a result, mode 2 transforms from the local

resonance of m2 to the Bragg scattering between the

‘‘merged’’ mass m0 ? m2.

Mode 3 for small input represents the Bragg

scattering, but A2/A0 increases from 0.46 to 2.8 under

strong nonlinearity. Therefore, curve 3 represents the

high frequency resonance of m2 under the strong

nonlinearity. Meanwhile, curve 3 agrees well with the

simulated one in the weak nonlinearity case. However,

when nonlinearity increases to the moderate case, the

portion l [ [0, lbend] on curve 3 disappears in

simulation. The frequency spectrum covering curve

3 at A0 = 30 lm is continuous, which actually indi-

cates the occurrence of chaotic responses [22].

When nonlinearity becomes extremely strong, the

entire curve 3 (not only the part in l [ [0, lbend]) shifts
to a high frequency range, although it is difficult to find

such a curve in the 2DFFT simulation. Fortunately, we

can still find this curve on the first 5 metacells close to

the excitation, as shown in Fig. 6.

Fig. 6 Normalized frequency spectra of the response of the 5th

metacell under a chirp wave excitation in the range of

0–2500 Hz. a Triatomic metacell. b The frequency spectra

were obtained by the fast Fourier transform (FFT)
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It is obvious that the third passband for curve 3

shifts from * 600 Hz to * 1250 Hz from linear

state to the strongly nonlinear state with

A0 = 300 lm. Therefore, this curve does exist, but it

appears only near the incident source region and its

frequency range deviates from the analytical solution.

A plausible reason is attributed to the self-adaptive

band structure (see Appendix). We note that curve 3

under large input appears in the bandgap of its linear

counterpart. As demonstrated earlier [39], the band

structure of the nonlinear metamaterial is self-adap-

tive. Due to the chaotic responses and harmonic

generation, waves in the passband of nonlinear

metamaterials still undergo attenuations as the prop-

agation distance increases. Due to the amplitude-

dependent property, an attenuated amplitude leads to a

different band structure. The linear bandgap finally

appears when the amplitude becomes small. For

example, although curve 3 shifts to 1250 Hz for

A0 = 300 lm near the excitation source, it rapidly

attenuates as the propagation distance increases.

Moreover, though the incident amplitudes A0 are 50,

100, 200 and 300 lm, the mean amplitudes at the 5th

unit cell are much smaller, i.e., 23, 34, 54, and 90 lm.

Thus, the numerical results deviate from the numerical

results.

In short, although curve 3 does exist, its response

disappears in an infinite chain, and the nonlinear

system is converted from 3 to 2DoF systems with

enhanced nonlinearity. Although the nonlinear sys-

tems in Sect. 4.1 and Sect. 5.1 both evolve from 3 to

2DoF systems when nonlinearity increases, they are

different in principle. While the band degeneration in

the former model undergoes shortening, merging of a

dispersion curve but the first resonant bandgap is

broadened; while the band degeneration in the latter

model mainly features a curve shifting, response

attenuation and a narrowing-down of the first resonant

bandgap. Therefore, the dimensionality reduction in

strongly nonlinear metamaterials model with enhanc-

ing nonlinearity may take place in different ways.

5.2 Complex nonlinear coupling

With the principle demonstrated in Sects. 4 and 5.1,

one could surmise that if the two resonators all become

nonlinear as Fig. 8a, the metacell would then evolve

from 3DoF to a 1DOF system with enhanced nonlin-

earity. This is investigated here. The displacements of

m0, m1 and m2 are un, yn and zn, respectively,

pn = yn - zn, qn = zn - un, and the equations of

motion of in a metacell read:

m0 €un ¼ k0ðunþ1 þ un�1 � 2unÞ þ k2qn þ k2q
3
n

m1 €yn ¼ �k1pn � kNp
3
n

m2€zn ¼ �k2qn � kNq
3
n þ k1pn þ kNp

3
n

8
<

:

ð7Þ

Following the same analysis method in Sect. 3,

Fig. 7 shows the variation of the dispersion curves and

wave modes with respect to increasing incident

amplitude A0 in this complex nonlinear coupling case.

This model features both type of the band degenera-

tion phenomena discussed in Sects. 4 and 5.1. The

harmonic balance method predicts 3 dispersion curves

when nonlinearity is weak. Interestingly, curves 4 and

5 appear with increasing A0 before bifurcating at

0\ lBif1\ p. At last, curves 4 and 5 disconnect at

l = p under moderate nonlinearity and shift down-

wards and upwards, respectively. Then, similar to the

degeneration process in the first model, curves 3 and 4

degenerate and bifurcate at 0\ lBif2\ p. At last,

curves 3 and 4 disappear under strong nonlinearity

with only three curves left behind. When further

increasing A0, curve 2 shifts upwards, similar to that of

Fig. 7 Analytical dispersion curves with increasing amplitude

A0 in the complex nonlinear coupling case
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curve 3 discussed in Sect. 5.1. Moreover, the behav-

iors manifested by curves 1 * 4 are accurately

confirmed by the numerical results.

We take seven typical cases to investigate the

behavior of dispersion curves and the evolution of

wave modes in Fig. 8b–h. When nonlinearity is

negligibly weak (the case A0 = 0.1 lm in Fig. 8b),

there exist three dispersion curves mathematically,

and all analytical curves agree with those from the

simulations, which are identical to the linear band

structure. When nonlinearity evolves from moderate

to strong (the cases A0 = 5.4, 10 and 18 lm in Fig. 8d–

f), complex changes take place. In short, curves 3 and

4 are highlighted by a ‘‘shortening, merging, and

disappearance’’ process, similar to the first model in

Sect. 4.1. At A0 = 7 lm, curves 4 and 5 disconnect at

Fig. 8 Evolution of dispersion curves and wave modes with

increasing incident amplitude A0 in the complex nonlinear

coupling case. a Triatomic metacell. b–h Seven typical cases

showing their analytical and numerical dispersion curves and

wave modes; (b) Case-1: weak nonlinearity (A0 = 0.1 lm),

c Case-2: moderate nonlinearity 1 (A0 = 5 lm), d Case-3:

moderate nonlinearity 2 (A0 = 5.4 lm), e Case-4: strong

nonlinearity 1 (A0 = 10 lm), f Case-5: strong nonlinearity 2

(A0 = 18 lm), g Case-6: strong nonlinearity 3 (A0 = 20 lm)

h Case-7: strong nonlinearity 4 (A0 = 100 lm)
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l = p, but for A0\ 7 lm, curves 4 and 5 have no

wave mode at l = p (i.e., they appear at l = 0 but

cannot reach l = p).
Mode 4 degenerates from local resonance to Bragg

scattering. Mode 5 shows that curve 5 always involve

the reverse resonances of both m1 and m2, like the

reverse resonance in Fig. 4, the simulation method

also fails to present them. When nonlinearity is

extremely strong (the case with A0 = 100 lm in

Fig. 8h), curve 2 cannot be found, but it can be

confirmed in the detailed analysis, like the curve 3 of

the second model in Sect. 5.1. We compare the spectra

of the second and third models when A0 = 100 and

200 lm in Fig. 9. When A0 increases from 100 to

200 lm, the two passbands for curve 3 in the second

model and for curve 2 in the third model both shift to

high frequencies. Particularly in the first cell, the

passbands for curve 3 in the second model cover

0–2500 Hz instead of 0–1700 Hz, and passbands for

curve 2 in the third model cover 0–2400 Hz instead of

0–1800 Hz. Therefore, curves 3 and 2 in the second

and third models do exist, and they do appear only near

the incident source as demonstrated in Sect. 5.1.

In light of the conclusions reached in Sects. 4 and

5.1, the evolution of the band structures undergoes two

stages: (1) shortening and merging (A0\ 20 lm) and

(2) shifting and response disappearance

(A0[ 20 lm).

In the shortening and merging stage, as shown in

Fig. 8b–g, curves 2, 3 and 4 follow the same evolution

as those of curves 2,3 and 4 in Sect. 4.1. The

‘‘disappearance of curve 3’’ catches up with ‘‘the

arrival of curve 2’’, but at different frequencies. This

difference shows that there is a competing mechanism

between the two nonlinearities: kN(A2 - A0)
3 and

kN(A2 - A1)
3, i.e., depending on their respective

dominance nonlinearity level.

In the shifting and response disappearance stage, as

shown in Fig. 8g–h, for mode 1 on curve 1, A1/A0

decreases from 5.9 to 2.6, and A2/A0 from 3.4 to 1.9,

i.e., both approach to the state A1 = A2 = A0. This

means that m0, m1 and m2 can be considered as a

merged oscillator with a total effective massm0 ? m1-

? m2. Therefore, the mechanism for the first bandgap

evolves from the synchronous resonance of m1 and m2

to the Bragg scattering between the merged oscillator.

Similarly, mode 2 also evolves from the local

resonance of m2 to Bragg scattering. Moreover, mode

3 nearly remains intact, like those discussed in

Sect. 4.1. Therefore, in this model, except for curve

5, all other modes evolve to Bragg scattering under

very strong nonlinearity. The unit cell is gradually

converted from a 3DoF system to a 2DoF, and finally

to a 1-DoF system.

5.3 Nonlinearity in the primary chain

In the above three models, the dimension reduction

and the band degeneration depend on the nonlinear

coupling inside every metacell instead of between

metacells. One might also be interested in investigat-

ing the influences of nonlinearity in the primary chain

between metacells. Here we inspect the band structure

of this kind of model, as shown in Fig. 10a. The

equations of motion of a metacell read:

m0 €un¼k0ðunþ1þun�1�2unÞþkNðunþ1�unÞ3þkNðun�1�unÞ3þk2ðzn�unÞ
m1 €yn¼�k1ðzn�ynÞ
m2€zn¼k1ðyn�znÞþk2ðun�znÞ

8
<

:

ð8Þ

Fig. 9 Normalized amplitude Spectra of the nth metacell under

a chirp wave excitation of 0–2500 Hz. a, b Results for the

secondmodel. c,dResults for the thirdmodel. a, cA0 = 100 lm.

b, d A0 = 200 lm. The shade of color represents the amplitude

spectra in the range of 0–2500 Hz. e Normalized frequency

spectra in the first five cells near the incident source of (c), which
is an example to understand (c)
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All resonators inside the metacell are linear. Note

we have to adopt a different way to use Bloch–Floquet

theorem when the neighboring oscillators m0 are

coupled through nonlinear force. The wave in the

nonlinear lattice is expressed as:

Uðx; tÞ ¼ 1

2
U eiðkxþwtÞ þ e�iðkxþwtÞ
h i

ð9Þ

According to the Bloch–Floquet theorem, the Bloch

wave considering the periodic boundary condition can

be written as:

Uðxþ R; tÞ ¼ 1

2
U½eikReiðkxþwtÞ þ e�ikRe�iðkxþwtÞ�

ð10Þ

where R = na. Thus, one has:

D ¼Uðxþ R; tÞ � Uðx; tÞ

¼ 1

2
U ðeikR � 1ÞeiðkxþwtÞ þ ðe�ikR � 1Þe�iðkxþwtÞ
h i

ð11Þ

and

D3 ¼ 1

8
U3½ðeikR � 1Þ3e3iðkxþwtÞ þ ðe�ikR � 1Þ3e�3iðkxþwtÞ

þ 3ð�e2ikR þ 3eikR þ e�ikR � 3ÞeiðkxþwtÞ

þ 3ð�e�2ikR þ 3e�ikR þ eikR � 3Þe�iðkxþwtÞ�
ð12Þ

when neglecting the third-order harmonic terms

e�3iðkxþwtÞ, Eq. (12) can be written as:

D3 � 3

8
U3½ð�e2ikR þ 3eikR þ e�ikR � 3ÞeiðkxþwtÞ

þ ð�e�2ikR þ 3e�ikR þ eikR � 3Þe�iðkxþwtÞ�
ð13Þ

Therefore, kN(un?1 - un)
3 ? kN(un-1 - un)

3 can

be written as:

kN unþ1�unð Þ3þkN un�1�unð Þ3

¼3

4
kN �e2ika�e�2ikaþ4eikaþ4e�ika�6

� �
u3ncosðkx

þxtÞ
ð14Þ
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Fig. 10 Evolution of dispersion curves and wave modes with

increasing incident amplitude A0 when nonlinearity appears in

the primary chain. a Metacell. b Analytical dispersion curves

with respect to increasing amplitude A0. c–f Four typical cases
showing their analytical and numerical dispersion curves and

wave modes; c Case-1: weak nonlinearity (A0 = 0.1 lm),

d Case-2: moderate nonlinearity (A0 = 5 lm), e Case-3: strong

nonlinearity (A0 = 30 lm), f Case-4: very strong nonlinearity

(A0 = 100 lm). g Time domain of the excitation wave and the

output wave of the first cell in case-3
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Then, we adopt the first-order harmonic balance

method as shown in Sect. 3 to get the band structure of

this model like Fig. 5b. Only three dispersion curves

appear in Fig. 10b. We also examine the four typical

cases to explain the observed phenomena in Fig. 10c–

f. The variation trends from the analytical results are

still consistent with the 2D FFT results. The differ-

ence, however, becomes larger under strong nonlin-

earity, mainly because the true wave amplitude in the

numerical response is higher than the preset amplitude

value A0 used in the analytical approach, as shown in

Fig. 10g. Thus, the numerical dispersion curve is

sharper.

In this model, increasing A0 does not lead to the

shortening of the dispersion curves and the merging of

the bandgaps. The cutoff frequencies of curves 1 and 2

almost remain the same because their locally resonant

frequencies remain unchanged. However, all rising

parts on the dispersion curves become steeper for

larger amplitude, and the cutoff frequency of curve 3

quickly shifts to higher frequencies. This effect can be

quantified by the group velocity, calculated by the

slope of dispersion curves dx/dj. As shown in Fig. 11,
an increase in the amplitude results in a drastic rise in

the group velocity near ja = p/2, especially for curve

3. Moreover, we also inspect the wave modes. Despite

a significant change in A2/A0 and A1/A0, mode 1

always behaves as the local resonance of m1; mode 2

that of m2, and mode 3 as Bragg scattering. Thus, the

mechanisms of bandgaps remain.

This analysis shows that the influence of nonlin-

earity in the primary chain mainly exhibits a change in

the group velocity of dispersion curves. The dimen-

sion, wave modes and the initial frequency of the

locally resonant bandgap basically remain intact.

5.4 Summery

We summarize the evolution processes of the disper-

sion curves in the four metamaterials models in

Fig. 12. The dispersion curves of nonlinear metama-

terials may bifurcate at a wave vector for given wave

amplitude; the curves may degenerate (i.e., shorten,

merge or disappear) when the excitation amplitude

increases. Meanwhile, the wave modes on the corre-

sponding curves also vary with amplitude, typically

from local resonances to Bragg scattering, thus

impacting on the underlying mechanisms governing

the formation of the bandgaps. A dimension reduction

of the metamaterials metacell is observed, which

occurs due to the degeneration. Moreover, self-adap-

tive band structures are confirmed by 2DFFT (see

Appendix).

The degeneration process depends on the arrange-

ment of the nonlinear components. When nonlinearity

exists only between two local resonators as shown in

Fig. 12a, the degeneration mainly features bifurcation,Fig. 11 Group velocity of curves 1 2 and 3 in case-2,3,4
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Fig. 12 The comparison of four investigated models in the band structures
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shortening and disappearance of high-frequency dis-

persion curves. Two locally resonant bandgaps merge

into a broader resonant bandgap.

When nonlinearity is imposed only between a

locally resonator and the primary oscillator as shown

in Fig. 12b, the degeneration mainly features the

shifting and response disappearance of bands. A

locally resonant bandgap evolves into a Bragg

bandgap alongside the narrowing-down of the remain-

ing locally resonant bandgap. When both aforemen-

tioned nonlinearities are present as shown in Fig. 12c,

the two types of behaviors occur simultaneously: i.e.,

the merging of multiple bandgaps first and then the

shifting and band disappearance.

With nonlinearity present in the primary chain as

shown in Fig. 12d, there is no band degeneration, but

the group velocity of wave undergoes changes. Thus,

band degeneration occurs when nonlinearity exists

inside at least one local resonator.

6 Conclusion

This paper studies the band degeneration and evolu-

tion in strongly nonlinear triatomic metamaterials

using analytical and numerical methods. The disper-

sion curves are solved with harmonic balance method

and 2DFFT, which offer consistent results in the near

field close to the excitation. Four typical metamate-

rials models (the triatomic model containing two local

resonators) are considered to elucidate the influences

of the nonlinear coupling on the band degeneration

and evolution.

This work sheds light on the formation and

evolution process of the band structure in strongly

nonlinear metamaterials and clarifies the underlying

mechanisms. This is a generic yet fundamental

question to be answered for studying nonlinear

periodic structures, nonlinear crystals and nonlinear

metamaterials. The results are therefore of interest to

the broad community of nonlinear physics.
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Appendix

Appendix: Adaptive broadening bandgap effects

We take note that the band structures observed and

reported in the main text do not consider the influence

of the propagation distance, and the numerical

dispersion curves are calculated for the first 50

metacells. Fang et al. [39] discovered and experimen-

tally demonstrated that the band structure may adap-

tively vary with the propagation distance/time, i.e.,

self-adaptive band structure. In the present case, self-

adaptive properties are shown in Fig. 13 through

examining the band structures at different positions/

segments. Fig. 13a shows the band structure of the first

50 cells as a strong nonlinear case as demonstrated in

Fig. 13 Band structure of the metacells at different positions/

segments with A0 = 10 lm. a Metacells from 0 to 50th;

b Metacells from 50 to 100th; c Metacells from 100 to 150th;

d Metacells from 150 to 200th
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Sect. 4.1. When the propagation distance/time

increases as shown in Fig. 13b, the band structure of

the chain segment containing 50–100th cell exhibits

moderate nonlinearity. This is due to the reduced wave

amplitude as a result of the wave attenuation in the

proceeding cells; meanwhile the broader range will be

swept by the new bandgap, leading to increased energy

reflection. Given sufficiently large propagation dis-

tance/distance increase, the band structure starts to

degenerate to a weak nonlinear case, with a band

structure similar to that of the linear triatomic chain

shown in Fig. 1b. Therefore, the band structure indeed

varies self-adaptively as the propagation distance/time

increases. In other words, the band structure of a

strongly nonlinear metamaterials model varies when

the wave energy changes. In addition, this self-

adaptive property confirms that the Bloch theorem is

no longer applicable to strongly nonlinear metamate-

rials models, which require the consideration of spatial

and temporal variation.
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