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ABSTRACT:
Thermoacoustic instability is a common occurrence in combustors, yielding self-sustained oscillations and caus-

ing potential risk, such as severe structural damage. In this paper, modal instability suppression inside a duct is

studied using periodically arranged membranes within the framework of a linear heat release n-s model embed-

ded into a fully coupled energy-based model. The periodic arrangement of the membranes along the duct side-

wall enables locally resonant and Bragg scattering bandgaps, shown to be conducive for the stabilization of

unstable thermoacoustic modes. Eigen-modes are classified into different groups, which call for specific control

actions in relation with the bandgap frequencies. While multi-modal instability control of low-order modes can

be achieved through the tuning of the resonant bandgaps, the densely packed modal cluster, regrouping modes

featuring similar mode shapes, requires proper adjustment of the flame position for avoiding modal instability.

Compared with the Bragg bandgaps, locally resonant bandgaps, which should be formed near the unstable modes

even without stringent periodicity, are shown to play a decisive role in the control process. Meanwhile, strict

periodicity is not necessary for the proposed control strategy, showing the practicability of the proposed control

strategy. The study shows a promising route to achieve simultaneous suppression of multi-modal instability.
VC 2022 Acoustical Society of America. https://doi.org/10.1121/10.0016554
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I. INTRODUCTION

Low-emission and high-power density combustors rep-

resent the future development trend in modern gas turbines.

With the demand for increasing efficiency, thermoacoustic

instability (TAI) is a common occurrence and becomes a

major concern.1–3 TAI occurs as the result of strong interac-

tion between the acoustic field and the heat source/flame in

a combustor, forming a positive energy feedback in the

interaction loop. The phenomenon leads to unacceptable

vibration/noise in power and energy systems, which might

also generate the structural fatigue to jeopardize their opera-

tion and safety. It was demonstrated that TAI is triggered

when the unsteady rate of the heat input is in phase with the

acoustic pressure perturbation.4,5 In that sense, acoustic

modal characteristics exert vital influence on TAI.6,7 In

addition to acoustic modes, which mainly depend on the

system geometry, intrinsic modes were also shown to exist

by recent research.8–10 Studies show that the heat source or

flame can give rise to a completely new family of system

modes due to the local feedback loop formed in the coupled

system.

Based on the existing understanding of the physical

mechanism behind TAI, intensive efforts were devoted to

suppressing the acoustic pressure oscillations and preventing

the onset of such an instability process. Typical methods can

be loosely grouped into passive and active control methods.

Among existing methods, improving burning conditions was

extensively exploited, such as changing the fuel injection

flow rates or using hydrogen fuel.11,12 Such methods, how-

ever, usually require a complex fuel control system. As an

alternative, acoustic modulation strategies have attracted

persistent attention in the TAI control community.

Active control of the acoustic oscillations can directly

modulate the sound pressure field. Upon monitoring dynam-

ics in the combustor, the measured signal is fed back to a

control system for altering the thermoacoustic interaction.

As a typical example, Heckl13 studied the active control of

thermoacoustic oscillation in a Rijke tube. A physical and

systematic model-based design of an active controller was

reported by Hathout et al.,14 leading to a significantly faster

settling time of the pressure oscillations. The concept of

using feedback control to alter the interaction between the

acoustic waves and unsteady heat release was introduced by

Dowling and Morgans.15 For achieving enhanced efficiency

and capability, a specific feedback control using a time-

delayed integral algorithm was proposed by Olgac and

Zalluhoglu.16 In addition, high-voltage microsecond pulsed

plasma was also used as actuators to attenuate the thermo-

acoustic pressure waves in a Rijke tube.17 Despite its

appealing adaptive feature, active control usually involves

complex electronics and high cost alongside concerns over

requirements regarding actuation authority, bandwidth,

and durability/robustness. Therefore, passive control still

remains an important alternative for TAI suppression.a)Electronic mail: dujingtao@hrbeu.edu.cn
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Passive approaches are exemplified by measures such

as redesign of combustion chambers (duct dimensions and

burner location) and the installation of additional control

devices such as baffles, resonators, and acoustic liners.18,19

Among these measures, the Helmholtz resonator (HR) is a

simple and effective device for the suppression of thermo-

acoustic oscillation.20 Past efforts include the design of the

cavity size and aperture length/width and the use of multiple

HRs in various combustion systems21–23 such as in a com-

plex sound environment like flow medium.24 In addition to

the HRs, perforated liners have also attracted immense

attention.25–27 Compared with HRs, perforated liners in a

flow duct allow for a compact structural design and a signifi-

cant damping enhancement at the same time. In addition,

attempts were made through embedding the elastic mem-

branes on a duct sidewall, whose configuration was deter-

mined through sophisticated numerical analyses and

optimizations.28 The underlying control mechanism under-

pinning the modal instability was revealed in the context of

locally resonant flexible membranes.7 Studies show two dif-

ferent physical processes associated with acoustic and

intrinsic modes, respectively. Despite their demonstrated

success, passive methods are usually effective over a narrow

frequency range or for specific targeted modes, thus, show-

ing limited control capability, especially in complex com-

bustion operating conditions. Therefore, a comprehensive

strategy for multi-mode and broadband TAI control is lack-

ing. This motivates the present work.

Compared with the traditional passive control means

mentioned above, phononic crystals (PCs) have aroused

increasing interest in the scientific community. When sound

waves propagate in a periodic elastic medium, bandgaps can

be generated, within which acoustic wave propagation is

forbidden.29,30 These bandgaps are referred to as Bragg-

reflection-based bandgaps (BBGs). Meanwhile, locally reso-

nant structures can also generate a resonant bandgap (RBG)

at sub-wavelength scale.31 The appealing physical properties

of the periodic structures have been explored for various

acoustic applications, including noise mitigation in ducts. A

typical example is the study of periodically arranged HRs in

a piping/duct system to obtain the low frequency bandg-

aps.32,33 In addition, side-branch tubes,34 micro-perforated

panels,35 and flexible membranes36,37 have also been inves-

tigated to explore the benefits of bandgap features. Periodic

structures allow for tailoring and manipulating acoustic

wave propagation, which holds potential promise for modal

instability control in thermoacoustic systems. However,

studies using acoustic bandgaps for modal instability con-

trol, as well as the understanding of the physical mecha-

nisms behind, still remain unclear and largely unexploited.

This forms another motivation behind the present work.

This paper addresses the above challenges. More specif-

ically, periodic membrane-cells are flush-mounted inside a

heat duct to control its modal instability in the framework of

a linear n-s flame model. Numerical analyses are conducted

based on a proposed energy-based semi-analytical model, in

which pressure continuity is used for the description of

sound propagation in each membrane-cell unit. Numerical

studies demonstrate how the modal instability can be altered

by the deployment of the membranes depending on their

respective modal nature. In particular, the influences of

RBGs and BBGs on the modal TAI control are systemati-

cally investigated. Different from the traditional control

devices, the bandgap features induced by the membrane ten-

sion and lattice are shown to be conducive to multi-modal

instability control.

The remainder of this paper is organized as follows.

The theoretical formulation of the problem under investiga-

tion is first presented. In Sec. III, the BBG and RBG proper-

ties are examined in the absence of flame. This is then

followed by systematic studies on the modal instability con-

trol via periodic membranes, including the possibilities of

customizing bandgap positions through adjusting system

parameters and their impact on the global TAI control.

Finally, conclusions are drawn.

II. MODEL DESCRIPTION

Consider the thermoacoustic system illustrated in

Fig. 1. The system consists of a duct and several flexible

structures (tensioned membranes by default), which are

flush-mounted and periodically arranged along the duct

walls. The first membrane position is determined by the two

end points, x1 and x2, and the distribution distance between

two nearby membranes is denoted by D, also called the lat-

tice length. The left end points of each membrane are

marked as X1, X2, …, Xs. The duct (length L, height h) has

two ends with the reflection coefficients denoted by R0 and

RL, respectively. A compact flame is located at x¼ xq, with

a heat release rate q0(x, t)¼Q0(t)d(x-xq), where Q0(t)¼ Qe�ixt

and d denotes the Dirac d-function.

While the plane wave propagation can be considered in

the rigid segments of the duct below its cut-on frequency,

higher-order duct modes need to be considered for the flexi-

ble portions containing membranes, thus, resulting in the

mutual interaction between the duct and flexible mem-

branes. To tackle the problem, an energy-based approach is

adopted to capture such vibroacoustic coupling behavior.

The transverse vibrating displacement of the sth flexible

membrane with fixed boundaries can be expanded as

wsðxÞ ¼
XM

q¼1

aq
s sin ðqpxs=lÞ ¼ WsðxsÞAs; (1)

FIG. 1. (Color online) Schematic diagram of a thermoacoustic system with

periodic membranes, flush-mounted in the duct sidewalls.
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in which xs¼ x � x1 � (s � 1)D; M is the truncation term

number of Fourier series, and l is the membrane length; W
denotes the mode shape vector. The Lagrangian of the sth

membrane writes

Ls ¼ Us � Ts þWs; (2)

in which Us and Ts denote the total potential and kinetic

energies, respectively; Ws represents the work done by the

sound pressure inside the duct over the upper surface of flex-

ible membrane, namely,

Us ¼
1

2
F

ðl

0

@wsðxsÞ
@xs

� �2

dxs; (3a)

Ts ¼
1

2
x2qm

ðl

0

w2
s ðxsÞdxs; (3b)

Ws ¼
ðl

0

prad
s þpui

s þpdr
sþ1

� �
wdxs; (4)

where F and qm are the tension force applied to the mem-

brane and its mass density, respectively. prad
s is the sound

pressure radiated by the sth membrane. pui
s is the upstream

incident sound pressure and pdr
sþ1 the downstream reflective

sound pressure from the (sþ 1)th cell. The incident and

reflected waves for the sth cell can be seen as the planar

waves when the excitation frequency is much lower than the

cut-on frequency of the duct. It follows

pui
s ¼ Cui

s e�ik xsþx1þsD�Df g; (5a)

pdr
sþ1 ¼ Cdr

sþ1eikðxsþx1þsD�DÞ; (5b)

in which Cui
s and Cdr

sþ1 are the unknown sound pressure coef-

ficients; k¼x/c is the acoustic wave number; x is angular

frequency; and c is the sound speed. The radiated sound

pressure from the sth membrane can be estimated by37

prad
s ðx; yÞ ¼

q
2h

X1
m¼0

x
km

wmðyÞ
ðl

0

wmðy0Þjy0¼0ixws

� Gðxs; x
0
sÞdx0s; (6)

in which wm(y) is the acoustic mode shape function of the

duct; G(xs, x0s) and km are Green’s function and modal wave-

number, respectively; and q represents the air density.

The Green’s function writes

G ¼ Hðx� x0Þe�ikmðx�x0Þ þ Hðx0 � xÞeþikmðx�x0Þ; (7a)

km ¼
x
ic

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp=k0hð Þ2 � 1

q
; (7b)

where H is the Heaviside function. Zero-order plane wave

corresponds to m¼ 0, while higher-order modes correspond

to m> 1.

Combining Eqs. (1)–(4) and using Lagrange’s equations

ðd=dtÞð@L=@ _aqðtÞÞ � ð@L=@aqðtÞÞ ¼ 0 under harmonic

regime for the modal amplitude coefficients aq yield a set of

linear equations, casted into the following matrix form:

ðKs � x2Ms þ ixGsÞAs ¼ Pui
s þ Pdr

s11: (8)

The unknown modal amplitude vector can then be deter-

mined as

As ¼ K� x2Mþ ixGð Þ�1
Pui

s þ Pdr
s11

� �

¼ P Pui
s þ Pdr

s11

� �
; (9)

in which Ks and Ms are the stiffness and mass matrices of

the flexible membrane in vacuo, respectively; Gs is the cou-

pling matrix characterizing the membrane-duct interaction;

and vectors Pui
s and Pdr

s denote the work done by the sound

pressure pui
s and pdr

s , which can be expressed as

Pui
s ¼ Cui

s e�ik x1þsD�Dð Þ
ðl

0

WsðxsÞe�ikxs dxs

¼ Cui
s e�ik x1þsD�Dð Þvui

s ; (10)

Pdr
s11 ¼ Cdr

sþ1eikðx1þsD�DÞ
ðl

0

Weikxs e�ikDdxs

¼ Cdr
sþ1eikðx1þsD�DÞvdr

sþ1: (11)

Based on the continuity of the sound pressure at the

cross-sections Xs and Xsþ1 of the sth cell, one has

Cui
sþ1e�ikðx1þsDÞ ¼ Cui

s e�ikðx1þsDÞþpradþ
s ; (12)

Cdr
s eikðx1þsD�DÞ ¼ Cdr

sþ1eikðx1þsD�DÞ þ prad�
s ; (13)

in which pþrad and p�rad are the radiated sound pressure by the

membrane in x-positive and -negative directions, respec-

tively, which can be simplified from Eq. (6) as

Pþrad ¼ e�ikD qc

2h

ðl

0

ixwðx0sÞei�kx0s dx0s

¼ e�ikDP1
s P Pui

s þ Pdr
s11

� �
; (14)

P�rad ¼
qc

2h

ðl

0

ixwðx0sÞe�i�kx0s dx0s ¼ P�s P Pui
s þ Pdr

s11

� �
;

(15)

where

P1
s ¼

qc

2h

ðl

0

ixWse
ikx0s dx0s; (16a)

P�s ¼
qc

2h

ðl

0

ixWse
�ikx0s dx0s: (16b)

Substituting Eqs. (14)–(16) into Eqs. (12) and (13) gives
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Cui
s e�ik x1þsDð Þ þ e�ik x1þsDð ÞP1

s Pvui
s

� �
� Cui

sþ1e�ik x1þsDð Þ

þ Cdr
sþ1eikðx1þsD�2DÞP1

s Pvdr
sþ1 ¼ 0; (17)

Cui
s e�ik x1þsD�Dð ÞP�s Pvui

s � Cdr
s eikðx1þsD�DÞ

þCdr
sþ1 eikðx1þsD�DÞ þ eikðx1þsD�DÞP�s Pvdr

sþ1

� �
¼ 0: (18)

Based on the equation Xs¼ x1 þ sD � D, the above

equations can then be simplified as

Cui
s e�ikXs þ e�ikXs P1

s Pvui
s

� �
� Cui

sþ1e�ikXs

þ Cdr
sþ1eikXs P1

s Pvdr
sþ1 ¼ 0; (19)

Cui
s e�ikXs P�s Pvui

s � Cdr
s eikXs

þ Cdr
sþ1 eikXs þ eikXs P�s Pvdr

sþ1

� �
¼ 0: (20)

For the periodic membranes, a series of linear equations

can be obtained from Eqs. (19) and (20), assembled as

e�ikX1ð1þP1
1 Pvui

1 Þ 0 �e�ikX1 eikX1 P1
1 Pvdr

2

… …

e�ikXsð1þP1
s Pvui

s Þ 0 �eikXs eikXs P1
s Pvdr

sþ1

e�ikXs P�s Pvui
s �eikXs 0 eikXsð1þP�s Pvdr

sþ1Þ
… …

0 e�ikXS�1 P�S�1Pvui
S�1 �eikXS�1 0 eikXSð1þP�S�1Pvdr

S Þ

2
6666666664

3
7777777775

�

Cui
1

…

Cui
s

Cdr
s

Cui
sþ1

Cdr
sþ1
…

Cdr
S

2
66666666666664

3
77777777777775

¼ 0½ �: (21)

When ignoring the flame and combining the boundary

conditions, one has

pui
0 ð0Þ

pdr
L ð0Þ

¼ R0 ¼
Cui

1

Cdr
1

; (22a)

pui
L ðLÞ

pdr
L ðLÞ

¼ RL ¼
Cui

S e�ikL

Cdr
S eikL

: (22b)

Based on the boundary conditions and coefficient

matrix Eq. (22), dynamic characteristics of the duct coupled

with periodic membranes can be investigated in the absence

of flame. When considering a flame located at xq as pre-

sented in Fig. 1, the sound pressure of upstream x�q and

downstream xþq can be expressed as

pui
x�q
¼ Cui

x�q
e�ikxq ; pdr

x�q
¼ Cdr

x�q
eikxq ;

pui
xþq
¼ Cui

xþq
e�ikxq ; pdr

xþq
¼ Cdr

xþq
e�ikxq : (23)

Using the sound pressure and mass conservation principle,10

one has

pui
x�q
þ pdr

x�q
¼ pui

xþq
þ pdr

xþq
; (24)

vui
x�q
þ vdr

x�q
� ðvui

xþq
þ vdr

xþq
Þ ¼ � c� 1

qc2
Q; (25)

where v is the particle velocity. The right-hand-side part of

Eq. (25) represents the velocity fluctuation generated by the

unsteady rate of the flame heat release. In this work, a linear

n-s flame model is adopted,7 with the coefficient of heat

release rate written as

Q ¼ qc2

c� 1
neixsðvui

x�q
þ vdr

x�q
Þ; (26)

in which n and s correspond to the flame interaction index

and time-lag, respectively; c denotes the specific heat ratio;

and the term neixs represents the flame transfer function

(FTF). Combining Eqs. (23)–(26) yields the following two

linear equations:

Cui
x�q

e�ikxq þ Cdr
x�q

eikxq ¼ Cui
xþq

e�ikxq þ Cdr
xþq

eikxq ; (27)

Cui
x�q
ðe�ikxq þ neixse�ikxqÞ þ Cdr

x�q
ð�eikxq � neixseikxqÞ

¼ Cui
xþq

e�ikxq � Cdr
xþq

eikxq : (28)

Combining Eqs. (21), (22), (27), and (28) yields a series

of homogeneous equations in terms of the unknown sound
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pressure amplitudes Cui and Cdr. The coefficient matrix

should be arranged based on the position of the flame and

that of the membranes. To obtain the nontrivial solutions of

the eigen-problem, cast into the aforementioned linear equa-

tions, the determinant of the coefficient matrix needs to be

zero. Then the eigenroots x of the thermoacoustic coupling

system can be obtained. Due to the existence of the heat

source, these frequencies are generally complex, namely

x¼xreal þ iximag, in which the real part xreal is the natural

frequency of the thermoacoustic coupling system, and the

imaginary ximag is the growth rate (GR) of the correspond-

ing mode, which characterizes its stability nature. When

ximag is negative, the heat disturbance disappears within a

short time, signaling a stable status. However, if ximag is

positive, the system oscillation will grow exponentially with

time and eventually lead to system instability. A numerical

procedure as presented in Ref. 7 is used in this work to

obtain the eigen-solutions of the above system, and the

modal behavior of the thermoacoustic system is illustrated

by the contour plots in the complex frequency plane.

In the current model, the backside of each membrane is

the ambient atmosphere without cavity. Having said that,

the consideration of a backing cavity in the study does not

pose any technical difficulties, which is what we did before

on other occasions. Our modeling framework is built upon

sub-system Lagrangian, which allows very easy inclusion of

additional dynamic/acoustic components or devices into the

proposed general framework. A backing cavity can then be

easily included into the current model. Detailed discussions

about the modeling of a membrane-cavity coupling system

can be found in our previous work.38

III. NUMERICAL RESULTS AND ANALYSES

A. Mode classification inside the duct without flame

Before installing the heat source, natural modes inside

the duct with periodic membranes, as well as their relation-

ship with bandgaps, are first investigated and classified. This

is done by taking the flame interaction coefficient n¼ 0 in

the model. As to be detailed later, the salient feature of each

type of mode calls for specific control actions to achieve

modal stability after the heat source is added.

The following physical parameters are used in the numer-

ical simulation: duct length L¼ 1.8 m, height h¼ 0.045 m,

reflection coefficients R0¼ 1 (rigid boundary), RL¼ –1 (pres-

sure release boundary), sound speed in the air c¼ 345 m/s,

constant temperature 297 K, and air density q0¼ 1.2 kg/m3.

Consider a duct comprising five unit-cells with a periodic dis-

tance D¼ 0.31 m; the membrane parameters are taken as

dimensionless tension F*¼F/q0c
2l¼ 0.1, dimensionless mass

density m*¼ qm/q0l¼ 1, length l¼ 0.1 m, and the first mem-

brane position coordinate x1¼ 0.1 m, x2¼ 0.2 m. Considering

a monopole sound source located in the left-hand portion of

the duct xf¼ 0.05 m, the calculated transmitted sound pressure

at the outlet is depicted in Fig. 2. Obvious low sound pressure

bands can be obtained when considering the membranes.

Exact Bloch wave theory, which is usually adopted for disper-

sion analyses in an infinite structure, is not used in here, since

the number of cells is limited to five. Thus, the frequency

regions, corresponding to low transmitted sound pressure, are

loosely referred to as bandgaps here. A referenced threshold

value as marked in Fig. 2(a) is used to determine the bandgap

width, and the gray area gives an approximate range of the

bandgap.

Obviously, the duct with five membrane-cells enables

two types of bandgaps, namely the RBG and BBG, as evi-

denced by the representative acoustic wave distributions,

shown in Fig. 2(b). Out of these bandgaps, at 200 Hz, sound

propagates as a plane wave and slightly varies along the

duct length. At 400 Hz within the BBG region, however,

sound propagates as a plane wave, while decreasing rapidly

downstream along the cells/duct. At 650 Hz in the RBG

region, local resonance effects are evidenced by basically

the same resonance behavior of the membrane-cells.

Eigenfrequencies of the duct-membrane system are

depicted in Fig. 3(a), in which red blocks are the results

FIG. 2. (Color online) Bandgap characteristics for the duct embedded with five cells with no flame. (a) Sound pressure level; (b) sound pressure

distributions.
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predicted by the current model alongside the FEA results

marked by blue circles. For the latter, COMSOL

Multiphysics
VR

is used, in which Pressure Acoustics and

Truss modular are used to simulate the sound field and the

one-dimensional (1D) membrane structure, respectively.

Normal Acceleration and Edge Load are applied to describe

the coupling between the membrane and sound field

inside the duct. In Fig. 3(a), the marked gray regions corre-

spond to the bandgaps, and the natural frequencies of the

duct (without membranes) are also given in this figure for

easy comparison.

It can be seen that eigenfrequencies can be segmented

into several groups due to the emergence of the bandgaps.

The modes before the first bandgap are categorized as the

so-called low-order modes; those few sparsely located inside

the bandgaps can be referred to as local modes. Meanwhile,

a region between the two bandgaps is noticed, which con-

tains a cluster of densely populated modes. For convenience,

this group of modes is called the dense modal cluster

(DMC). Then the rest of the modes above the bandgap are

considered as the high-order modes.

Figures 3(b)–3(d) show the mode shapes corresponding

to the three types of modes: local, low-order, and DMC

modes, respectively. Obviously, the 6th and 12th modes

belong to the local ones, for which high sound pressure

region is delimited to a portion of the duct, namely, near the

duct outlet in this case. Since the thermoacoustic character-

istics depend on the sound pressure distribution or particle

vibrational velocity as shown in Eq. (25), the system is most

likely stable for these modes as the flame is placed in the

minima region (p� 0) of sound pressure. Thus, the local

modes remain stable in most circumstances (to be verified

later).

Based on our previous study,7 it was found that the

instabilities of thermoacoustic modes are determined by the

relationship between the flame position and the acoustic

mode shape. More specifically, the system is stable when

the flame is located at the pressure drop (PD) region, but

instable at the pressure rise (PR) part, which is consistent

with the well-known Rayleigh criterion. According to the

above conclusion, these modes in different groups call for

the specific control actions in relation with the flame posi-

tion. Therefore, the low-order modes will be simultaneously

stable when the flame is installed near the inlet and outlet of

the duct, as marked in Fig. 3(c). Moreover, it is envisaged

that these modes will be altered altogether by adjusting the

FIG. 3. (Color online) Modal characteristic description of the duct-periodic membranes system: (a) eigenfrequency distribution; (b) local mode shapes;

(c) low-order mode shapes; (d) DMC mode shapes.
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bandgaps, which can be exploited for multi-modal instabil-

ity suppression. This will be confirmed in Sec. III C.

Figure 3(d) shows that the DMC modes share varied yet

similar spatial distributions except for the amplitudes (to

better visualize the differences, no attempts were made to

normalize the amplitudes). The similarity (and the tiny dif-

ferences) among them is due to the vibration behavior of

each membrane-cell, which is identical but installed at dif-

ferent locations. Based on the aforementioned PD-PR crite-

rion,7 it is anticipated that these DMC modes would feature

similar stability properties. It should be noted that the high-

order mode characteristics are of less concern in practice.

Therefore, no particular effort is paid to them in the subse-

quent analysis, although brief comments will be made in the

instability analysis in Sec. III B.

Local modes can be avoided in the frequency band of

interest through the adjustment of membrane position or the

lattice length. For example, taking D¼ 0.36 m, x1¼ 0.15 m,

and x2¼ 0.25 m, and keeping other parameters unchanged,

the corresponding eigenfrequencies are plotted in Fig. 4. It

follows that the local modes disappear in the entire fre-

quency range up to 1000 Hz. The corresponding membrane

distributions are also given in this figure; obviously, as

D¼ 0.36 m, the membranes occupy the whole duct, limiting

the space for accommodating the local modes.

B. Modal TAI control

This section discusses ways to control modal TAI of

specific mode. To elucidate the instability control mecha-

nism using bandgaps, a linear n-s flame model is considered

with the interaction coefficient n¼ 0.5, delay time

s¼ 0.2 ms. These values fall into the common levels that

were used in the literature,39,40 which are also conformable

to the level of a practical combustion system. Different n
and s will naturally alter the modal characteristics of the

system, which necessarily requires further adjustment of the

bandgaps accordingly. Nevertheless, the basic bandgap-

based control mechanism still holds. In addition, the flame

located position is xq¼ 0.2 m, and taking the same set of

model parameters as Fig. 2, the first membrane position is

changed to x1¼ 0.2 m and x2¼ 0.3 m. The modal character-

istics of the thermo-vibro-acoustic coupling system, in terms

of GR and frequency distribution, are displayed in Fig. 5, in

which the red squares denote the system eigenfrequencies in

the presence of periodic membranes, and the green circles

correspond to the results without the membranes. As before,

the bandgaps are marked by gray blocks.

An obvious stable local mode can be observed inside

the first bandgap. For the current configuration, all modes

remain stable in the frequency band 0–1000 Hz upon instal-

ling the membranes, rendering it possible to achieve

multi-modal instability control capability. Similarly, these

thermoacoustic modes are classified into several groups as

presented in Sec. III A: the low-order, local, DMC, and

high-order groups. Since there are few modes in the bandg-

aps, one can design the bandgap position based on the fre-

quency band of interest, in which the instable modes can be

avoided completely.

More specifically, low-order modal characteristics are

studied in Fig. 6. Figure 6(a) shows the mode shapes, and

Fig. 6(b) shows the corresponding complex eigenfrequen-

cies (with GR). Three flame positions (xq¼ 0.2 m, 0.45 m,

and 0.7 m) are considered as marked by the vertical dashed

lines, respectively. It can be found that the modal instabil-

ities of this group of modes are closely related to the pres-

sure state scenario of the flame position, in agreement with

FIG. 4. (Color online) Modal characteristic description of the duct-periodic membrane system with different parameters, D¼ 0.36 m, x1¼ 0.15 m, and

x2¼ 0.25 m.

FIG. 5. (Color online) Modal instability suppression using five cells period-

ically arranged in the duct.
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the PD-PR criterion.7 More precisely, the system is stable

when the flame is located at the PD region but instable at the

PR part. Based on this criterion, the first four modes are

always stable when the flame is applied in the duct inlet or

outlet region as marked by gray blocks in Fig. 6(a).

Figure 7(a) shows the mode shapes of the DMC,

which regroups modes featuring similar mode shapes.

Based on the PD-PR criterion, these DMC modes exhibit

the same stability properties as presented in Fig. 7(b) for

different flame positions (xq¼ 0.2 m, 0.35 m, and 0.75 m);

thus, proper adjustment of the flame position is essential

for the stability of these DMC modes. Knowing the diffi-

culty in adjusting the flame position once the system is

built, the practical significance of the present study is

rather to offer useful guidance at the design stage of the

combustion chamber.

Figure 8 shows the mode shapes of the high-order mode

group, exhibiting rather complex and irregular distributions.

For this group of modes, however, their instability, when-

ever it occurs, is relatively easy to control through introduc-

ing reasonable damping in the system. Due to limitations of

article length, their instable characteristics are not shown in

this paper, while the corresponding identically stable regions

are marked by gray blocks in this figure, which are also in

agreement with the PD-PR criterion.

The complex eigenvalues below 1000 Hz are given in

Fig. 9 for three flame positions: xq¼ 0.2 m, 0.45 m, and

0.75 m. It can be observed that the DMC modes and the

local mode groups remain stable, whilst the low- and high-

order modes may become instable if the flame is inappropri-

ately positioned. In this case, the adjustment of the flame

position turns out to be an effective way to avoid the TAI

since it is closely related to the pressure state scenario of the

flame position. If the flame position cannot be changed for

whatever practical reasons, a proper tuning of the parame-

ters relating to the periodic membrane system should be

considered. Possible system parameters include the lattice

length, membrane tension, and other adjustable parameters

in the system.

In a technical combustion system, high temperature is

always present. Then materials with high temperature resis-

tant coating for the membrane might be a possible way to

achieve the functionality required in a high temperature

environment. To alleviate the possible adverse added

FIG. 6. (Color online) Mode shapes and their GRs for the modes in low frequency range. (a) Mode shape distribution; (b) eigenvalues for different flame

positions.

FIG. 7. (Color online) Mode shapes and their GRs for the characteristic modes in DMC area. (a) Mode shapes; (b) GRs.
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stiffness effects of the resistant coating, parameter tuning or

optimization might be needed, which could be conducted

under the present analysis framework. Meanwhile, we are

also hopeful that advances in material science, heat treat-

ment technology, and manufacturing capability would offer

new possibilities, although nonexistent right now, to imple-

ment the idea developed in this paper.

C. Multi-modal instability control via resonant and
Bragg bandgaps

Capitalizing on the aforementioned bandgap phenom-

ena and their relationship with individual mode, we discuss

ways to achieve simultaneous and multi-modal TAI control

in this section. It is well known that the local RBGs are con-

trolled by the stiffness and mass property of the unit-cells,

while the BBGs mainly depend on the spatial impedance

discontinuity among unit-cells and the lattice distance.

Therefore, the effects of membrane tension F* and lattice

length D on the resonant and Bragg bandgaps are first stud-

ied in this section in the absence of flame (by setting n¼ 0).

The same set of parameters used in Fig. 5 is taken here.

Corresponding results are presented in Fig. 10. Figure 10(a)

shows the evolution of the BBG and RBG with different

membrane tensions. Starting from the nominal case with

F*¼ 0.06 [middle part of Fig. 10(a)], three bandgaps can be

clearly seen: one RBG in the middle of two adjacent BBGs.

Through changing the tension of the membranes, the RBG

is shifted and merged with the adjacent BBG to form a so-

called coupled bandgap (CBG). Similarly, the same merging

phenomenon can also be achieved through changing the lat-

tice distance, as evidenced by Fig. 10(b).

With the aim to further study the evolutionary trend of

BBG and RBG, their contours with respect to continuously

varying membrane tension and periodic distance are pro-

duced and given in Fig. 11. As the membrane tension F*

increases, the RBG shifts to higher frequency, while the

BBG shows little effect. Increasing the periodic distance D
lowers the BBG frequency with negligible effects on the

RBG. What is more, it can be seen that the RBG shows

more effect on the sound field. Therefore, the RBGs can be

easily tuned to change the ultimate bandgap features inside

the duct. It is expected that such a tuning would impact the

acoustic field inside the duct and the targeted control

process.

To further substantiate this point, the influences of lat-

tice distance and membrane tension on the modal instability

control are displayed in Fig. 12. Taking the same flame and

duct-membrane parameters as those used in Fig. 5, but two

different lattice lengths D¼ 0.21 m and 0.11 m, the corre-

sponding complex eigenfrequencies of the system are plot-

ted in Figs. 12(a) and 12(b), respectively. Obviously, when

the lattice distance decreases, the BBG is shifted to higher

frequency, while these modes remain stable. Figures 12(c)

and 12(d) give the distributions of complex eigenfrequen-

cies when using a lower membrane tension F*¼ 0.05.

Instable modes can be found as the membrane tension

decreases, which further suggests that the RBG (controlled

by the membrane parameters) has a significant influence on

the modal instability suppression. In other words, the param-

eters of the local membranes seem to be more important

than the lattice length in terms of modal TAI control.

Considering the nature of the RBG, it can be surmised that a

strict periodicity is not essential, a point to be discussed and

confirmed below.

To further consolidate the point in terms of the domi-

nant role played by the RBG, another numerical example is

given with D¼ 0.21 m, x1¼ 0.5 m, x2¼ 0.6 m, xq¼ 0.45 m,

n¼ 0.5, and s¼ 0.2 ms. The corresponding complex eigen-

frequencies of the thermoacoustic system without the mem-

branes are first plotted in Fig. 13(a), showing four instable

modes in regions of 200–400 and 600–800 Hz. To stabilize

these modes, two RBGs are constructed via using different

membrane tensions, F*¼ 0.03 and 0.12, as shown in Figs.

13(b) and 13(c), respectively. It follows that obvious control

effect is achieved as the RBG is formed near the instable

modes.

Therefore, the modal instabilities can be effectively

controlled by properly setting RBGs, although the eigenfre-

quency distributions are affected by both the RBG and

BBG. This also means that the local or dense cluster

regrouping modes can be avoided upon properly choosing

FIG. 8. (Color online) Mode shapes for the modes in high frequency range

(the gray boxes indicate a stable state).

FIG. 9. (Color online) Instability control effect of periodical membranes for

different flame positions, xq¼ 0.2 m, 0.45 m, and 0.75 m.
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appropriate membrane tension and lattice length as pre-

sented in Fig. 12. In practice, the tailoring of the RBGs

should primarily be considered, along with a less stringent

design of the BBGs.

Based on the above analyses, global and multi-modal

control of TAI can be achieved. This can be materialized

through the proper tuning of various parameters relating to

the periodic structures under the practical constraints. The

room for the tuning, however, is vast. For example, for

multi-modal TAI control, the combination of different peri-

odic structures can be considered. Should a specific fre-

quency band be the control target, bandgap tuning and

positioning should be an effective method to consider.

For a thermoacoustic system with periodically arranged

local resonators, system optimizations can be considered to

accommodate a given scenario and enhance the control per-

formance. The bandgap position and its width can be taken

as the optimization target for different combustion systems.

The process naturally involves many system parameters,

exemplified by the membrane length and tension, lattice

length, and spatial parameters relating to the installation

locations. Existing optimization techniques provide abun-

dant choices to carry out the optimization, such as the

Bayesian optimization algorithm or the genetic algorithm.

Strict periodicity in periodic structures is difficult to

achieve in practice, considering the installation and machin-

ing inaccuracy. This would lead to a quasi-periodical struc-

ture. To examine the issue and its influence on the control

efficacy, we consider a few membranes having slightly dif-

ferent tensions F* or the lattice lengths D. In the simulation

model, a 10% deviation is introduced to the last

two membrane-cells as F0 ¼F* � (1þ 10%) and D0 ¼D
� (1þ 10%). The deviation is from the nominal case studied

in Fig. 13(b). Results of modal GR are shown in Fig. 14. It

can be seen that a slight 10% deviation of D or F* affects

little the modal stabilities, especially for the low-order

modes, demonstrating the robustness of the proposed control

technique.

FIG. 10. (Color online) Evolutions of RBG and BBG with respect to membrane tension and lattice distance. (a) Varying the membrane tension; (b) varying

the lattice distance.

FIG. 11. (Color online) Contours of BBG and RBG with respect to continuously varying membrane tension and periodic distance. (a) D¼ 0.31 m with vary-

ing membrane tension; (b) F*¼ 0.1 with varying periodic distance.
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IV. CONCLUSIONS

In this paper, thermoacoustic oscillation in a heated

duct is investigated, in which periodic and flush-mounted

membrane-cells are proposed to control the modal TAI. An

energy-based formulation in conjunction with a linear heat

release n-s model is established to model the thermo-

vibroacoustic interaction among the duct acoustics, the

membranes, and the heat source. The proposed model pro-

vides a novel and effective tool for the study and design of

multiple thermoacoustic modal instability control systems.

The installation of periodically arranged membranes in

the sidewalls of the duct entails two types of bandgaps,

namely RBG and BBG. In relation to these bandgaps,

vibroacoustic modes inside the duct can be categorized into

several groups, referred to as low-order, local, DMC, and

high-order modes. Different types of modes exhibit different

modal features, thus, calling for different control strategies.

Significant modal instability suppression is obtained

upon installing the periodic membranes into the duct sys-

tem. The modal instabilities are shown to be closely related

to the sound pressure status at the flame position, in agree-

ment with the PD-PR criterion developed in our previous

study. The first group of low-order modes are stable when

FIG. 12. (Color online) Modal instability analysis as taking different lattice length and membrane tension for the periodic system. (a) D¼ 0.21 m, F*¼ 0.1;

(b) D¼ 0.11 m, F*¼ 0.1; (c) D¼ 0.21 m, F*¼ 0.05; (d) D¼ 0.11 m, F*¼ 0.05.

FIG. 13. (Color online) Modal instability control effects using different

membrane tensions.

FIG. 14. (Color online) Modal instability control effects with D and F*
deviated by 10% from their nominal values used in Fig. 12(b).
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the flame position approaches either the duct inlet or outlet.

DMC modes share the same stability properties due to their

close resemblance in terms of mode shapes. Through proper

design and positioning of the membrane-induced bandgaps

in accordance with the frequency band of interest, instable

modes can be completely avoided.

To achieve effective and multi-modal TAI control, sys-

tem parameters including membrane tension and lattice dis-

tance can be tuned. RBGs are shown to play a vital role in

determining the sound pressure distribution inside the duct

and, consequently, the TAI control performance as com-

pared with the BBGs. Significant control effect can be

achieved when the RBG is formed near the instable modes.

Meanwhile, the proposed control method proves to be robust

to a certain extent, since small deviations of the membrane

tension or lattice distance can be tolerated. This is definitely

conducive to practical implementation of the proposed con-

trol technique.
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