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Abstract
The localization of shaking forces acting on an operating machine is an important step to identify vibration and noise sources.

The forced vibration response of a linearly vibrating structure is assumed to be linear. However, the energy distribution of

a linearly vibrating structure contains “coupled terms” in the modal decomposition of the vibration energy density function.

These coupled energy terms represent the cross-modal energy density associated with the exciting force of a dynamic structure

under forced vibration. In this research, it is proved analytically that the high-order cross-modal energy densities of a linear

dynamic structure are highly correlated to the location of the external exciting force. Using this finding, a new force localization

index based on the high-order cross-modal energy densities of a dynamic structure is proposed and tested. Numerical tests on

uniform and step beam structures under force excitation with different frequencies and locations have been carried out to test

the effectiveness of the proposed force localization method. It is found that the proposed force localization method works well

on vibrating beam structures. Experiments are carried out to verify the proposed force localization method.
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1. Introduction

The localization of dynamic forces acting on a structure is
important in locating the vibration and noise sources. In
many practical cases, it may not be possible to measure the
dynamic force directly and detection of unknown forces
from vibration measurements at accessible locations is
required. A large number of studies have been conducted
about indirect determination of the dynamic loadings by
calculating the forces through the measured frequency re-
sponse function (FRF) matrix and structural operational
response with a mathematical model of the structure as an
inverse problem (Ma et al., 2003; Thite and Thompson,
2003; Djamaa et al., 2007; Janssens et al., 2011; Lage et al.,
2013). In practice, the measurement of the FRF of a dy-
namic system takes a long time, and in many cases, the ill-
posedness of the force identification problem results in large
estimation errors. New force identification methods were
developed in order to avoid measuring the FRF matrix.
Force analysis technique (FAT) (Pezerat and Guyader,
2000a and 2000b; Leclere and Pezerat, 2012) is based on
the numerical discretization of the equation of motion of the
structure. Due to the difficulty in formulating the equations
of motion of the dynamic structures in practical applica-
tions, some researchers investigate the function expansion
method (Jiang et al., 2019, Lee et al., 2006; Li et al., 2015;
Qiao et al., 2015, 2016). The function expansion method

employs appropriate basis functions to approximate the
desired unknown force. The coefficients of basis functions
are solved instead of the original force and the number of
unknowns is significantly reduced. The exciting force to
a dynamic structure can also be identified as the energy
source of the structural intensity or power flow in the
structure (Wang et al., 2006; Samet et al., 2017). The force
identification in all the abovementioned methods is con-
sidered as a classical inverse problem, in which the mea-
sured data and the assumed mathematical models of
mechanical structures are used to determine the applied
force. However, the analysis results of the abovementioned
methods are often contaminated by the noise generated
during the derivation of the high-order derivatives of the
measured vibration signal and the local change of the
structure in mass and stiffness (Pezerat and Guyader 2000a;
Lee et al., 2006; Wang et al., 2006; Xu et al. 2011).
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Based on the review of force identification methods,
there are two major difficulties found in the recently de-
veloped methods: (1) the contamination of force identi-
fication index caused by non-uniform geometry or
properties of the structure and (2) amplification of noise in
the generation of high-order derivatives of the vibration
signal.

In this article, we propose an alternative approach for the
identification of dynamic loads in structures based on
concepts different from those presented previously. There
have been some studies on the relationship between the
modal vibration energy (Wong et al., 2009; Wang et al.,
2009) and structural damages of structures. This article
presents an analysis of the effect on the redistribution of the
cross-modal energy density of a continuous structure by the
exciting force. A force localization method is established
based on the determination of the cross-modal energy
density function of the vibrating structure as described in
the following section. A force localization index is con-
structed by relating the change of vibration energy distri-
bution of the structure caused by the exciting force. The
proposed method is proved analytically to work on non-
uniform beam structures and it does not require the de-
termination of high-order derivative of the vibration signal.

Both simulation and experimental tests are carried out to
provide validations of the proposed force localization
method.

2. Theory

Considering the forced vibration of a uniform Euler beam as
illustrated in Figure 1, the equation of motion of the beam
may be written as (Meirovitch, 2001)

mðxÞ ∂
2wðx,tÞ
∂t2

þ ∂2

∂x2

�
YIðxÞ ∂

2wðx,tÞ
∂x2

�
¼ Fδ

�
x� xf

�
sinðωtÞ, 0 < x < L

(1)

where wðx,tÞ is the transverse displacement,mðxÞ is the mass
per unit length, and L is the length of the beam. YIðxÞ is the
flexural rigidity, in which Y is the Young’s modulus and IðxÞ
is the secondmoment of cross-sectional area of the beam. δ is
the Kronecker delta function. f ¼ F sinωt is the exciting
harmonic force of frequency ω acting at point x = xf.

The vibration energy of the beam may be written as
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where EðtÞ is the total vibration energy of the beam
composed of the kinetic energy TðtÞ and strain energy V ðtÞ.

The vibration energy of an infinitesimal element of
length Δx, as shown in Figure 1, may be written as

ΔEðx,tÞ ¼ ΔTðx,tÞ þ ΔV ðx,tÞ

¼ 1

2
mðΔxÞ _wðx,tÞ2 þ 1

2
YI

�
∂2wðx,tÞ
∂x2

�2
ðΔxÞ

(3)
Figure 1. Illustration of the transverse vibration w of a beam

excited by a dynamic point force f at x = xf.

Figure 2. Force localization index (FLI) of a beam with fixed-free boundary conditions (xf ¼ 0:35L).
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where _wðx,tÞ represents ∂wðx,tÞ=∂t. The energy density
function eðx,tÞ is defined as (Wong et al., 2009)

eðx,tÞ ¼ lim
Δx→ 0

ΔEðx,tÞ
Δx

¼ ∂E
∂x

¼ ∂T
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þ ∂V
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¼ 1

2
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2
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�
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�2 (4)

2.1. Decomposition of the vibration energy

The solution of equation (1) may be written as

wðx,tÞ ¼
X∞

i¼1
ηi φiðxÞsinðωtÞ (5)

where φiðxÞ is the ith vibration mode shape of the beam and
ηi is the ith modal ratio coefficient written as

ηi ¼
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where ωi is the ith natural frequency of the beam.
Substituting equation (5) into equation (4), eðx,tÞ can be

rewritten as
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where
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The static or time-unvarying component, EðxÞ, is the
mean total energy density, whose integration along the
beam gives the total energy of the beam. The amplitude of
the dynamic or time-varying component in equation (7),
LðxÞ, on the other hand, represents the mean Lagrangian
energy density (Wong et al., 2009; Wang et al., 2009). The
dynamic component, LðxÞcosð2ωtÞ, implies that there exists
instantaneous energy exchange between adjacent beam ele-
ments at double frequency of the vibrationmotion of the beam.

The static or mean energy density is considered in the
following analysis. It is rewritten as

Figure 3. Setup of the experiments.
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Using equation (9), the mean energy density EðxÞ can be
written in matrix form as
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The amplification coefficient is defined as
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2.2. Interpretation of the vibration energy
decomposition

Equation (11) shows that the mean energy density is
composed of EdiaðxÞ and EcrossðxÞ. EiiðxÞ of EdiaðxÞ repre-
sents the ith modal energy density distribution in the beam
caused by the exciting harmonic force, and

R L
0 EiiðxÞ dx

represents the ith modal energy stored in the beam. The
integration of the mean energy density along the beam can
be written as
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According to equation (9), EiiðxÞ> 0. We may writeZ L

0

EiiðxÞ dx> 0,i ¼ 1/n/ (14)

On the other hand, the cross-modal energy density el-
ement EjkðxÞ, j ≠ k can be positive or negative. The three
classical boundary conditions, including pinned, fixed, and
free end, render the system self-adjoint (Tse et al., 1978),
and therefore, if the mode shapes are mass-normalized, the
alternative companion orthonormality relations can be
written as (Meirovitch, 2001)

Z L

0

YIðxÞ d
2φjðxÞ
dx2

d2φkðxÞ
dx2

dx ¼ δjk ,j,k ¼ 1,/,n,/ (15)

where δjk = 1 if j = k and δjk = 0 if j ≠ k.
The orthonormality relation is

Z L

0

m φjðxÞ φkðxÞ dx ¼ δjk ,j,k ¼ 1,/,n,/ (16)

Using equations (15) and (16), the integration of cross-
modal energy density element over the beam is

Z L

0

EjkðxÞ dx ¼ 0,j ≠ k; j,k ¼ 1,/,n,/ (17)

Therefore, EcrossðxÞ ¼
P∞

j ¼ 1
j ≠ k

P∞
k ¼ 1
k ≠ j

EjkðxÞ � ηjηk
may be considered as the redistribution of the energy
density within the structure. According to equation (11), this
shift is found to be related to Γ jk , and from equation (12),
Γ jk is related to the location and driving frequency of ex-
citing force. Therefore, EcrossðxÞ may be considered as the
redistribution of energy density caused by the exciting
force.

2.3. Force localization index

The cross-modal energy density of the beam may be
written as
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where
φ00jðxÞ ¼ d2ðφjðxÞÞ=dx2 and φ00kðxÞ ¼ d2ðφkðxÞÞ=dx2.

It can be seen that the value of Γ jk EjkðxÞ in equation
(18) is decided by the location xf and the order of modes j
and k. This value varies with the order of modes j and k, and
thus may be positive or negative. However, at the location
of exciting force xf , Γ jk EjkðxÞ can be written as
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If only the high-order modes are considered, where
ωj >ω and ωk >ω, the term F2=4ðω2

j � ω2Þðω2
k � ω2Þ in

equation (19) must be positive. The term
mðxÞω2φjðxf Þ2φkðxf Þ2 in equation (19) is also positive. As
shown in the Appendix A, the term
YIðxÞ φjðxf Þ φkðxf Þ φ00jðxf Þ φ00kðxf Þ in equation (19) can
be proved to be positive for 0 < xf < L of a pinned–pinned
beam and it is positive for a beam with pinned-fixed/free or
fixed/free-fixed/free boundary conditions if xf is not too
close to the fixed/free end of the beam. Quantification of
the required distance from the end of the beam is derived
and shown in Appendix B.

In view of the abovementioned reasons, the cross-
modal energy density Γ jk Ejkðxf Þ is positive at any high-
order mode with ωj >ω and ωk >ω. Therefore, the sum
of high-order terms of Γ jk Ejkðxf Þ with ωj >ω and
ωk >ω would show an accumulation phenomenon at
the location of the exciting force as illustrated in
Figure 2.

Since the accumulation phenomenon of high-order
cross-modal energy density is directly related to the force
location, a force localization index (FLI) is defined as

Figure 4. Outline of the experiment procedure.
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FLI ¼
Xn

j ¼ α
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Xn
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Γ jk EjkðxÞ; ωj >ω and ωk >ω:

(20)

where α and n are selected integers to control the number of
high-order mode in the calculation of the FLI. The proposed
FLI is tested with a uniform beam numerically and ex-
perimentally for force localization and the test results are
shown in the following section.

3. Simulation and experiment

Amild steel beam structure was used in both simulation and
experiment. The beam had a rectangular cross section under
fixed-free boundary condition. The length of it was L =
0.3 m. The height and the width of the beam were h =
0.0047 m and b = 0.0191 m, respectively. The density and
Young’s modulus were ρ = 7740 kg/m3 and 204 GPa,
respectively.

3.1. Simulation

The force localization index (FLI) was calculated according to
equation (20) using MATLAB and plotted in Figure 2 for
illustration of the proposed force localization method. The
exciting force was assumed to be applied at xf ¼ 0:35L
with driving frequency ωf = 300π rad/s, and the parameter
α in equation (20) was chosen to be 1. The accumulation
phenomenon of the FLI was noted at the location of ex-
citing force as the parameter n in equation (20) increased
from 4 to 8.

3.2. Experiment

In practice, the amplification coefficient Γ jk in equation (20)
is unknown and it has to be obtained from the measured
operational response of the structure. Least squares method
(LSM) (Liu and Shepard, 2005) was applied in the ex-
periments in order to reduce the noise influence in the
measurements. The procedure of extracting the amplifica-
tion coefficient as a typical inverse problem is shown in the
following section.

3.2.1. Procedure of experiment. In the experiment, the tested
cantilever beam was excited by a concentrated force
applied by a shaker (B&K Type 4809), which was
powered by power amplifier (B&K Type 2706). The
exciting force was measured by using a force transducer
(B&K Type 8203). The modal parameters and operational
response were measured by using a laser vibrometer
(Polytec PSV-400). The whole experiment setup is il-
lustrated in Figure 3.

The outline of experiment is illustrated by Figure 4. It could
be found that the random noise in the measurement may
influence both the amplification coefficient and modal energy
density in equation (20). Since the force location information

Figure 5. Measurement procedures of the experimental tests.
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was contained in the amplification coefficient, the amplifi-
cation of noise caused by high-order derivative in modal
energy density element had limited effect on the proposed FLI.

The natural frequencies of the beam were extracted from
the standard modal testing software after curve fitting of the
FRF. The mode shapes of the beam were measured by
exciting the fixed-free beam at the free end with corre-
sponding natural frequencies. The velocity response of the
beam was measured with the beam excited by the shaker at
the operational frequency.

The measurement procedure was illustrated in Figure 5.
As shown in Figure 5(a), the excitation and measurement
points for measuring point mobility FRF were chosen at the
location 0.01 m away from the free end. White noise was
applied to obtain the result in a broad-frequency band. In
Figure 5(b), the beam was excited by the exciting force
under the natural frequency ωr at the same location to get
the corresponding mode shape. The laser vibrometer swept
from the point 0.02 m away from fixed end to the point
0.01 m away from free end, and the interval between two
measured points is 0:005 m. In Figure 5(c), the setting of the
sweeping range was the same as that in Figure 5(b), and the
exciting force was applied at the operational location xf ¼
0:35L with the driving frequency ωf = 300π rad/s. Only the
first seven mode shapes were measured as the measure-
ments of the higher mode shapes are less accurate and in
practice only limited mode shapes are available.

In the experiment, the point mobility FRF was approxi-
mated by using the H2 frequency response estimator for
single input single output (SISO) systems with 500-times the
complex average. The modal shapes and operational dis-
placement response were measured with 500-times magni-
tude averaging. The operational response and mode shapes
were measured at a finite number of discrete points. Using

equation (5), the measured displacement values of the beam
may be put into the following equation

wðxÞ ¼ ½W1ðxÞ W2ðxÞ � � � WnðxÞ� � η ¼ W � η (21)

where w(x) and Wi(x) were both m × 1 vectors, and η was
a n× 1 vector. m was the number of measured points and n
was the number of included modes. The truncation error
was neglected.

In order to minimize the difference between the extracted
coefficients and the theoretical ones, the LSM was applied
to obtain the solution. The modal ratio coefficients can be
estimated as

η ¼ �WTW
��1

WT wðxÞ (22)

The amplification coefficients Γ jk could then be calculated
according to equation (12). The cross-modal energy density
function EjkðxÞ could be calculated using the measured mode
shapes of the beam. The force localization index (FLI) could
then be calculated according to equation (20).

3.2.2. Results of experiment. The measured point mobility
FRF and the extracted mode shapes are shown in Figures 6
and 7, respectively. The modal ratio coefficients, which
were directly related to the amplification coefficients, were
extracted by LSM on the basis of the measured data. The
coefficients were normalized to compare with the theoret-
ical ones and listed in Table 1. The coefficient of order 7 as
shown in Table 1 was practically zero, so it means orders 7
or higher had negligible effect to the force localization index
in this case. The proposed force localization index was
calculated according to equations (19) and (20), and the
result was shown in Figure 8, where α was 1.

As predicted in theory and illustrated in the simulation, it
could be found that the accumulation phenomenon occurred

Figure 6. Measured point mobility FRF.

Mao et al. 3865



at the location of exciting force as shown in Figure 8. Points
at the peaks and troughs of the curve with n = 7 in Figure 2
are added and marked with × for comparison. The locations,
x/L, of those points with n = 7 in Figure 2 match with the
location of the peaks and troughs of the curve with n = 7 in
Figure 8. The experimental result matched with the

simulation result in Figure 2. The influence of noise in
experiment on the extraction of amplification coefficients
shown in Table 1 was limited. The proposed force locali-
zation method was validated by experiment.

The proposed approach of force localization was ex-
tended to test on a step beam or shaft which is more

Figure 7. Measured mode shapes of the beam in Figure. 5.
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common in practice. The analytical eigenvalues and ei-
genfunctions of the step beamwere derived and then the FLI
of the step beam was calculated according to equation (20).
The derivations and numerical experiment on the step beam
were presented in Appendix B.

4. Conclusion

A force localization method was established theoretically
based on the accumulation phenomenon of the high-order
cross-modal energy density at the excitation location.
The redistribution of cross-modal energy density of
a uniform or step beam under forced vibration was de-
rived analytically as a function of the location of the
exciting force. It was analytically proved that the cross-
modal energy density of the beam with any classical
boundary condition including pinned, free, and fixed
ends would accumulate at the location of the exciting
force provided that the force was not too close to the
boundary in case of a free or fixed end. Based on this
accumulation phenomenon, selected high-order cross-
modal energy density was used as an index to identify
the location of the exciting force. The proposed method

was validated by both numerical and experimental tests
on a cantilever beam.
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Appendix A

Effect of boundary conditions on the modal energy
density of a beam

Modal energy density of the beam at the location of the
exciting force may be written as

Γ jk Ejk

�
xf
� ¼ F2

4
�
ω2

j � ω2
f

	�
ω2

k � ω2
f

	
�
h
mðxÞω2

f Wj

�
xf
�2

Wk

�
xf
�2

þ YIðxÞWj

�
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�
Wk

�
xf
�

� d2
�
Wj

�
xf
��

dx2
d2
�
Wk

�
xf
��

dx2

�
,j ≠ k

(23)

whereWjðxÞ andWkðxÞ are the jth and kth mode shapes of the
beam, respectively. If just high-order modes where
ωi >ωf , ωr >ωf are considered, then the sign of Γ jk Ejkðxf Þ
depends only on the sign of Wrðxf Þ d2ðWrðxf ÞÞ=dx2.

Table A1. Boundary conditions and coefficient relationship.

Boundary

condition

Mathematics

description

Coefficient

relationship

Pin end wjx¼0 ¼ 0 B + D = 0

∂2w
∂x2

�����
x¼0

¼ 0
-B + D = 0

Fix end wjx¼0 ¼ 0 B + D = 0

∂w
∂x

����
x¼0

¼ 0
A + C = 0

Free end
∂2w
∂x2

�����
x¼0

¼ 0
-B + D = 0

∂3w
∂x3

�����
x¼0

¼ 0
-A + C = 0
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Since the exciting force can be applied anywhere along
the beam, the symbol xf is substituted by x, which does not
affect the result in the following analysis. To analyze the
sign ofWrðxÞ d2ðWrðxÞÞ=dx2, results are enumerated under

all the combinations of the classical boundary conditions
including pinned, fixed, and free end of the beam.

The mode shape of an Euler–Bernoulli beam may be
written as

Fig. A1 Effect of pinned-free/fixed boundary conditions on the FLI.
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Fig. A2 Effect of free/fixed-free/fixed boundary conditions on the FLI.
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WrðxÞ ¼ A sinðβrxÞ þ B cosðβrxÞ
þ C sinhðβrxÞ þ D coshðβrxÞ

(24)

where A, B, C, and D are constants to be determined by the
boundary conditions, and βr is

β4r ¼
ω2

rm

YI
(25)

By using the general form of mode shape, we may write

Wr

ðxÞ d
2ðWrðxÞÞ
dx2

¼ �β2r
�ðA sinðβrxÞ þ B cosðβrxÞÞ2

� ðC sinhðβrxÞ þ D coshðβrxÞÞ2
�
(26)

Some of the relationships among the coefficients in
equation (26) may be determined by the boundary con-
ditions at the location x ¼ 0, as shown in Table A1.

In general, there are two sets of boundary conditions that
need to be considered: pinned end and fixed or free (fixed/
free) end for the sign of WrðxÞ d2ðWrðxÞÞ=dx2. Three
different combinations of the boundary conditions of the
beam are considered in the following.

(a) Pinned–pinned boundary conditions
For a pinned end at x ¼ 0, B ¼ D ¼ 0. Equation (26) is

simplified as

WrðxÞ d2ðWrðxÞÞ
dx2

¼ �β2rA
2

�
sin2ðβrxÞ �

C2

A2
sinh2ðβrxÞ

�
(27)

For the pinned–pinned boundary conditions, the pinned
end at x ¼ L results in C ¼ 0. Therefore, the sign of
WrðxÞ d2ðWrðxÞÞ=dx2 is determined by �sin2ðβrxÞ in
equation (27), which is always negative. Therefore,
Γ jk Ejkðxf Þ of equation (23) is positive throughout the beam
span if ωi >ωf , ωr >ωf .

(b) Pinned-free and pinned-fixed boundary conditions
For pinned-free/fixed boundary condition, the compo-

nent sinh2ðβrxÞ also has effect on the sign. The free/fixed
end condition results in the coefficient relationship

C2

A2
¼ sin2ðβrLÞ

sinh2ðβrLÞ
(28)

The effects of sin2ðβrxÞ and C2=A2sinh2ðβrxÞ in equation
(27) are calculated and plotted in Figure A1 to show their
effects on the accumulation phenomenon of the FLI along
the beam. It could be seen in Figure A1 that with the in-
crease of the order of mode r, the effect of hyperbolic
component sinh2ðβrxÞ is gradually shifted to the free/fixed
end. Therefore, when considering high-order modes, the
effects of the boundary conditions to the FLI can be ne-
glected if x satisfy the condition (29) below

sin2ðβrxÞ>
sin2ðβrLÞ
sinh2ðβrLÞ

sinh2ðβrxÞ (29)

(c) Free/fixed-free/fixed boundary conditions
For the free/fixed end at x ¼ 0, we have B ¼ �D A ¼

�C or. B ¼ D A ¼ C Equation (26) may be simplified as

WrðxÞ d2ðWrðxÞÞ
dx2

¼ �β2rA
2

��
sinðβrxÞ þ

B

A
cosðβrxÞ

�2

�
�
sinhðβrxÞ þ

B

A
coshðβrxÞ

�2�
(30)

For free/fixed-free/fixed boundary condition, the hy-
perbolic component ðsinhðβrxÞ þ B=AcoshðβrxÞÞ2 also has
effect on the sign of WrðxÞ d2ðWrðxÞÞ=dx2. The free/fixed
end condition results in the coefficient relationship

B

A
¼ sinðβrLÞsinhðβrLÞ

cosðβrLÞ � coshðβrLÞ
(31)

The effects of both the components in equation (29) on the
accumulation phenomenon along the beam are shown in
Figure A2, when the order of mode r is increasing. Similar to
the results in pinned-free/fixed boundary conditions, the ef-
fects of the hyperbolic components caused by fixed/free end
condition just affect the region near the boundary. With the
increase ofmode order, that region becomes smaller and closer
to the boundary. This shows that if we consider only the high-
order modes of the beams, the sign ofWrðxÞ d2ðWrðxÞÞ=dx2
is negative if x satisfy the condition (32) below�
sinðβrxÞ þ

sinðβrLÞsinhðβrLÞ
cosðβrLÞ � coshðβrLÞ

cosðβrxÞ
�2

>

�
sinhðβrxÞ þ

sinðβrLÞ � sinhðβrLÞ
cosðβrLÞ � coshðβrLÞ

coshðβrxÞ
�2

(32)

To sum up, according to the results shown with either
fixed, free, or pinned boundary condition, the proposed force
localization index (FLI) can be applied to the whole beam
span for beams with pinned–pinned boundary conditions.
The FLI can be applied to beams with pin-free or pin-fixed
boundary conditions at location x satisfying condition (29).
The FLI can be applied to beams with free/fixed-free/fixed
boundary conditions at location x satisfying condition (32).

Appendix B

FLI of a step beam structure

The eigenvalue solution of a step beam derived below
follows the approach of Wong et al. (2009). Consider a step
beam with different stiffness at different sections as
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illustrated in Figure B1. Applying Euler–Bernoulli beam
theory to the step beam, the governing differential equation
of each section of the beam can be expressed as

YI1
∂4w1

∂x4
þ m

∂2w1

∂t2
¼ 0 � l1 < x < 0

YI2
∂4w2

∂x4
þ m

∂2w2

∂t2
¼ 0 0 < x < l2

YI3
∂4w3

∂x4
þ m

∂2w3

∂t2
¼ 0 l2 < x < l3

(33)

where m is the mass per length of the beam, and w1, w2, and
w3 are the transverse vibratory displacements of the
Sections 1-3 of the beam, respectively.

The general solutions of equation (33) are

wiðx, tÞ ¼ ðAi sin βix þ Bi cos βix þ Ci sinh βix

þ Di cosh βixÞ ejωt, i ¼ 1, 2, 3

(34)

where j is the imaginary number
ffiffiffiffiffiffiffi�1

p
; βi ¼ ðmω2=Y IiÞ1=4

and i is the number to identify the spans shown in Figure B1.
The mode shape function of the beam is the spatial part of

equation (34) written as

wiðx, tÞ ¼ ðAi sin βix þ Bi cos βix

þ Ci sinh βix þ Di cosh βixÞ , i ¼ 1, 2, 3

(35)

To satisfy the continuity and equilibrium conditions at the
junctions of the sections, the following set of equations is
derived

w1ð0,tÞ ¼ w2ð0,tÞ,w0
1ð0,tÞ ¼ w0

2ð0,tÞ,
YI1w

00
1ð0,tÞ ¼ YI2w

00
2ð0,tÞ,YI1w000

1ð0,tÞ ¼ YI2w
000
2ð0,tÞ,

w2ðl2,tÞ ¼ w3ðl2,tÞ,w0
2ðl2,tÞ ¼ w0

3ðl2,tÞ,
YI2w

00
2ðl2,tÞ ¼ YI3w

00
3ðl2,tÞ,YI2w000

2ðl2,tÞ ¼ YI3w
000
3ðl2,tÞ

(36)

where primes denote differentiation with respect to x.
The boundary conditions of the step beam can be ex-

pressed as

½K1�

2
664
A1

B1

C1

D1

3
775þ ½K3�

2
664
A3

B3

C3

D3

3
775 ¼

2
664
0
0
0
0

3
775 (37)

where [K1] and [K3] depend on the actual arrangements of
the boundary conditions of the beam. At the first junction
at origin O, the continuity and equilibrium conditions
combined with equation (36) lead to a simple relationship
between coefficients for Section 1 and Section 2. Such
relationship can be written as2

664
A1

B1

C1

D1

3
775 ¼ ½Λ1�

2
664
A2

B2

C2

D2

3
775 (38)

where ½Λ1�¼1=22
666664
β2=β1þβ1=β2 0 β2=β1�β1=β2 0

0 1þβ21=β
2
2 0 1�β21=β

2
2

β2=β1�β1=β2 0 β2=β1þβ1=β2 0

0 1�β21=β
2
2 0 1þβ21=β

2
2

3
777775 is a ma-

trix relating the coefficient vector ½A1 B1 C1 D1 �T of

Section 1 and the coefficient vector ½A2 B2 C2 D2 �T of
Section 2.

For the junction of Sections 2 and 3, we can translate the
origin of the coordinates to the junction. By carrying out the
coordinate transformation on equation (38), we have

½TL�

2
664
A2

B2

C2

D2

3
775 ¼ ½Λ2�½TR�

2
664
A3

B3

C3

D3

3
775 (39)

where ½Λ2�¼1=22
666664
β3=β2þβ2=β3 0 β3=β2�β2=β3 0

0 1þβ22=β
2
3 0 1�β22=β

2
3

β3=β2�β2=β3 0 β3=β2þβ2=β3 0

0 1�β22=β
2
3 0 1þβ22=β

2
3

3
777775 ½TL� and

½TR� are two coordinate transfer matrices and written as

Fig. B1 Step beam with pinned-pinned boundary conditions.
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Fig. B2 Step beam with pinned-pinned boundary conditions.
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½TL� ¼

2
664
cos β2l2 �sin β2l2 0 0
sin β2l2 cos β2l2 0 0

0 0 cosh β2l2 sinh β2l2
0 0 sinh β2l2 cosh β2l2

3
775
(40)

½TR� ¼

2
664
cos β3l2 �sin β3l2 0 0
sin β3l2 cos β3l2 0 0

0 0 cosh β3l2 sinh β3l2
0 0 sinh β3l2 cosh β3l2

3
775
(41)

Substitute equation (38) into equation (39), the re-
lationship between the coefficients of Section 1 and those of
Section 3 can be expressed as2

664
A1

B1

C1

D1

3
775 ¼ ½Λ1�½TL��1½Λ2�½TR�

2
664
A3

B3

C3

D3

3
775 (42)

Substitute this equation into equation (37), the eigenvalue
problem can be expressed as

�½K1�½Λ1�½TL��1½Λ2�½TR� þ ½K3�
�
2
664
A3

B3

C3

D3

3
775 ¼

2
664
0
0
0
0

3
775 (43)

For a non-trival solution, the determinant of the 4 x 4
matrix in equation (43) should be zero; that is

��½K1�½Λ1�½TL��1½Λ2�½TR� þ ½K3�
�� ¼ 0 (44)

The eigenvalues ω2 can be obtained by solving the ei-
genvalue problem represented by equation (44).
Substituting these eigenvalues into equation (43) and
solving it together with equation (37) and (39), the co-
efficient vector [Ai Bi Ci Di]

T for the corresponding beam
spans can be obtained. Substituting the vector [Ai Bi Ci Di]

T

into equation (35), the corresponding eigenfunctions (mode
shapes), wi(x), are obtained. These mode shape functions
are used for the calculation of FLI in equation (20) for the
step beam.

A numerical experiment was done to test the proposed
FLI for a step beam. A pinned–pinned step beam with
three sections as illustrated in Figure B1 was used in the
test. For illustration purpose, it was assumed that YI1 =
YI3 = 2YI2 = 1, m = 1, l1 = 0.4 L, and l2 = l3 = 0.3 L. The
eigenvalues ω2 and the mode shape functions wi(x) of the
step beam were calculated according to the theory as
described above. The forcing frequency was assumed to
be in between the first and the second natural frequencies
of the step beam. The FLIs of the step beam were cal-
culated using natural frequencies and mode shapes from
the second to the seventh natural modes of the step beam
according to equation (20) with xf/L = 0.15, 0.55, and 0.9,
respectively. The FLI results were plotted in Figure B2.
As shown in Figure B2, highest peak value of FLI could
be observed at the exciting force location in all the three
cases. The proposed FLI was found to be applicable to
a step beam.
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